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Quantum statistics of overlapping modes in open resonators

Gregor Hackenbroich, Carlos Viviescas, and Fritz Haake
Fachbereich Physik, Universita¨t Duisburg-Essen, 45117 Essen, Germany

~Received 2 September 2003; published 4 December 2003!

We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes.
Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua
of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin
dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator
dynamics may be used as a starting point for a quantum theory of random lasers.
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I. INTRODUCTION

The interaction of a single resonator mode with an ex
nal optical field leads to damping and noise for the intrac
ity mode. The textbook example is asingleoscillator linearly
coupled to a continuum of harmonic oscillators@1–4#. Less
understood and in fact object of ongoing debate@5–13# are
the damping and noise properties ofmultimodefields in reso-
nators. Multimode fields show an excess noise or Peterm
factor @5,7,14#. In laser systems this factor gives rise to
peculiar enhancement of the laser linewidth above the f
damental Schawlow-Townes value; this enhancement
measured in recent experiments on unstable laser cav
@15,16#. Excess noise and the enhancement of the laser
width may be attributed to the nonorthogonality and t
spectral overlap of the cavity eigenmodes@7# in the presence
of the coupling to the external field.

While the phenomenon of excess noise has been kn
for more than 20 years, there is still no complete descript
of the quantum statistics of overlapping modes. A few e
ample systems were discussed@8,9# from a quantum me-
chanical point of view. Recently several authors@10–13#
proposed quantum Langevin and master equations for m
mode fields; however, thestatusof these equations remaine
unclear as they were not derived from rigorously quantiz
electromagnetic fields. This is in contrast to the quant
properties of a single-mode field~linearly coupled to an ex-
ternal heat bath! which are known@1,3,4# for arbitrary damp-
ing strength and arbitrary heat-bath temperature.

The goal of the present paper is to derive and clarify
status of stochastic equations for the field dynamics in re
nators with overlapping modes. The experimental motivat
for our work derives both from realizations@15,16# of un-
stable laser cavities and from recent experiments of hig
disordered dielectrics which form mirrorless so-called ra
dom lasers@17,18#. We address the field dynamics bo
within the Heisenberg picture~in terms of quantum Langevin
equations! and within the Schro¨dinger picture~employing a
master equation for the reduced density matrix of the ca
modes!. We go beyond previous work in the following re
spects:~i! We derive the field dynamics starting from rigo
ously quantized electromagnetic fields. In particular, no
striction of the dimensionality and the vector character of
field strengths are indulged in. Keeping only resonant te
in the field Hamiltonian and adopting a Markov approxim
1050-2947/2003/68~6!/063805~6!/$20.00 68 0638
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tion for the memory of the ‘‘bath’’~i.e., the electromagnetic
field outside the resonator!, we obtain the equations of mo
tion for the intracavity field, including expressions for a
damping and noise forces.~ii ! Our derivation clarifies the
status of the resulting stochastic equations. In particular,
show that they correctly describe separated as well as s
trally overlapping resonances. Corrections would only be
portant if the resonance widths were to become compar
to the resonance frequencies themselves, a regime no
countered in optical or even microwave resonators.~iii ! We
derive a representation of our master equation in terms
nonorthogonal modes and compare our result with ma
equations proposed earlier@10,11,13#. This allows us to
specify the physical conditions under which those previou
proposed master equations hold.

II. FIELD QUANTIZATION FOR OPEN-RESONATOR
GEOMETRIES

There is nothing to add to the familiar canonical quan
zation of the electromagnetic field@1,2#. The field compo-
nents may be expanded in terms of any complete set of b
functions. As a matter of convenience one usually empl
eigenmodes pertinent to the given geometry and respec
the physical boundary conditions. Such expansions are
issue here.

In the presence of a more or less open resonator, one o
wants to distinguish between ‘‘inside’’ and ‘‘outside’’ eve
though any opening, i.e., a hole in the material walls of
resonator gives to the latter concepts an element of arbit
ness. Any choice of a fictitious surface covering the h
yields its own inside/outside separation. Moreover, differ
boundary conditions may be imposed at the chosen sep
ing surface. Nevertheless, each such surface and boun
condition entail eigenmodes allowing us to represent
electromagnetic field almost everywhere, with the qualifi
‘‘almost’’ reminding us of the fact that the expansion cann
be expected to converge pointwise everywhere, and in
ticular not on an arbitrarily chosen boundary.

The freedom in choosing the separating surface and
boundary condition thereon may be used@19–21# to define a
discrete set of inside modes which vanish outside; and s
larly a continuum~or even several continua distinguished
a ‘‘channel’’ index! of outside modes which vanish insid
and fulfill scattering-type boundary conditions at infinity;
©2003 The American Physical Society05-1
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scattering condition specifies a single channel for a w
coming in from infinity and entails different amplitudes fo
the partial waves going out through the various chann
Canonical quantization then amounts to representing the
efficients of the mode expansion of the electromagnetic fi
by creation and annihilation operators$al ,al

†% of photons of
the lth inside mode and likewise$bm(v),bm

† (v)% of pho-
tons of the (m,v)th outside mode, wherem labels channels
~including polarization! and v distinguishes modes within
the channel continuum. The bosonic commutators read

@al ,al8
†

#5dl,l8 , ~1a!

@bm ,bm8
†

~v8!#5dmm8d~v2v8!, ~1b!

moreover, inside operators commute with outside ones.
It was shown in two previous papers@20,21# that the

Hamiltonian of the electromagnetic field can be rigorou
expressed as the following bilinear form in the foregoi
creation and annihilation operators:

H5(
l

\vlal
†al1(

m
E dv \v bm

† ~v!bm~v!

1\(
l,m

E dv@Wlm~v!al
†bm~v!

1Vlm~v!albm~v!1H.c.#. ~2!

Here, the inside mode frequenciesvl as well as the inside
outside coupling amplitudesWlm ,Vlm reflect the choices
made for the separating surface. The latter amplitudes
integrals, taken over the separating surface, of product
inside ~or outside! mode functions with derivatives of out
side ~inside! mode functions. Specifically, if the von Neu
mann boundary condition

n3@“3ul#u]I50 ~3!

was imposed for the inside modesul and the Dirichlet
boundary condition

n3vm~v!u]I50 ~4!

for the outside modesvm(v) at the boundary]I ~with nor-
mal vectorn), the coupling amplitudes are given by

Wlm~v!5
c2

2Avlv
E

]I
d2rul* ~r !•$n3@“3vm~v,r !#%,

~5!

Vlm~v!5
c2

2Avlv
E

]I
d2rul~r !•$n3@“3vm~v,r !#%.

~6!

If the physical boundary conditions on material surfaces
tail time reversal invariance, the amplitudesW,V can be cho-
sen real and become identical,W5V.

The derivation of the Hamiltonian takes full account
three spatial dimensions as well as of the vector characte
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the electric and magnetic fieldsE(x,t) andB(x,t); in brief,
the Heisenberg equations of motion generated by thatH are
equivalent to the quantized Maxwell equations. Moreover,
composing the inside~outside! mode functions with coeffi-
cients$al ,al

†% ($bm(v),bm
† (v)%) one gets the fieldsE(x,t)

and B(x,t) inside ~outside!; truncated, such composition
will be robust against small changes of the separating sur
unless an unreasonable choice is made to begin with.

Hamiltonians of the above form have been used@1,6# in
quantum optics for high-quality resonators; there, inside
citations are but slowly dissipated to the outside, with lif
times long not only compared to typical internal perio
2p/vl but even to beat periods 2p/Dv, whereDv denotes
the modulus of the typical frequency spacing of neighbor
internal modes. In such applications the antiresonant te
Vlmalbm1Vlm* al

†bm
† can be neglected. However, the deriv

tion of Refs.@20,21# also secures validity of Hamiltonian~2!
for very much open resonators where the outside field cau
the inside resonances to overlap, the main case of intere
the present paper. The Hamiltonian~2! even remains valid in
the extreme case of overdamped inside excitations, wh
mode frequenciesvl are overwhelmed by large escape ra
k; it is only in that extreme situation, which appears as n
of interest in optics, that the antiresonant terms would
important.

III. LANGEVIN EQUATIONS FOR OVERLAPPING
RESONANCES

While Hamiltonian~2! describes the coupled dynamics
the inside and outside fields, its principle application is
separate descriptions of those two subsystems. As alre
indicated above, the continua of outside modes tend to ac
a ‘‘bath’’ damping the discrete inside modes. The effective
irreversible dynamics of the inside modes becomes man
when the bath degrees of freedom are eliminated. T
Heisenberg equations of motion of the inside amplitudesal ,
al

† then take the form of Langevin equations, in which t
outside amplitudesbm(v), bm

† (v) enter only with their ini-
tial values in inhomogeneities, the Langevin noise forc
Due to the bilinear form of Hamiltonian~2! the Langevin
equations can be determined rigorously by diagonalization
H, i.e., without resorting to perturbation expansions~for a
single ‘‘system’’ oscillator the diagonalization was pe
formed in, e.g., Refs.@4# and @22#!.

The Langevin equations to be noted in the present sec
are simplified in three respects. First, we bar all antireson
terms, assuming the absence of overdamping. Second
confine the discussion to a Markovian situation valid f
times larger than ‘‘bath correlation times’’tbath ~like the ther-
mal timetbath

th 5\/kBT); the existence of a time scale sep
ration is thus assumed, such that all inside lifetimes are m
in excess oftbath. Third, to save space we do not bother
pedantically write out the so–called frequency-shift ter
which are rarely needed in practice. The limit in questi
yields the Langevin equations@21#

ȧl~ t !52 ivlal~ t !2(
m

glmam~ t !1Fl~ t !, ~7!
5-2
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QUANTUM STATISTICS OF OVERLAPPING MODES IN . . . PHYSICAL REVIEW A68, 063805 ~2003!
wherein the damping matrixglm and the noise-forceFl are
given in terms of the inside-outside coupling amplitud
Wlm as

glm5p~WW †!lm , ~8a!

Fl~ t !52 i E dve2 iv(t2t0)(
m

Wlm bm~v,t0!. ~8b!

Note that the damping matrixg is non-negative and Hermit
ian; the neglected frequency-shift terms would amount to
anti-Hermitian addition tog. Under conditions of time rever
sal invariance the matrixg is even real symmetric. The Mar
kovian limit mentioned allows us to drop the frequency d
pendence of the coupling amplitudesW over the spectra
range in consideration and to restrict the time span pas
since the initial momentt0 as t2t0@tbath. In that limit the
force has a white spectrum according to^Fl(t)&50, and the
noise

^Fl
†~ t !Fm~ t8!&52gml nth d~ t2t8!, ~9a!

^Fl~ t !Fm
† ~ t8!&52glm~11nth! d~ t2t8!. ~9b!

The second two-time correlation functions follows from t
first and the commutation relations~1b!. The remaining sec-
ond moments vanish,̂Fl(t)Fm(t8)&505^Fl

†(t)Fm
† (t8)&,

and higher-order moments follow from the ones of order
and 2 according to Gaussian statistics. The thermal num
of photonsnth5@exp(\v̄/kT)21#21 appearing in the secon
moments must be taken as frequency independent throug
the spectral range of inside frequenciesvl under consider-
ation. In the limit kT!\v̄ we recover the Langevin equa
tions of Bardroff and Stenholm@10#.

The appearance of anondiagonal damping matrix g
5pWW † signals that the Langevin equation may legi
mately be applied to the case of overlapping resonance
which typical matrix elementsglm are larger than a typica
nearest-neighbor spacingDv of frequencies. However, al
elements ofg must be smaller in magnitude than the fr
quenciesvl themselves as antiresonant terms were drop
in the derivation of Eq.~7!. Conversely, we could specializ
to the weak-coupling regimeuglmu!Dv. Then, lowest-order
perturbation theory simply amounts to dropping the o
diagonal elements of the damping matrix,glm→0 for l
Þm, whereupon the Langevin equation~7! simplifies so as
to describe a set of mutually independent damped harm
oscillators.

For some applications it will be helpful to rewrite th
above Langevin equation with the non-Hermitian matrix

Hlm5\vldlm2 i\glm ~10!

diagonalized. The eigenvalues ofH will then represent
‘‘true’’ resonances of the cavity. As a ‘‘penalty’’ for tha
change of representation one would have to work with n
standard commutation relations for the operators conne
with the eigenvectors ofH ~see Sec. VI!.
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A final remark on the dynamics of the outside field is
order here. The time scale separation assumed in deriving
above Langevin equations is effective outside as well as
side as the outside field evolves in adiabatic equilibrium w
the inside field for timest2t0@tbath. For the quantitative
treatment by the quantum optical input-output formalism
equivalently, scattering theory we refer the interested rea
to @1,2,21#.

IV. MASTER EQUATION FOR OVERLAPPING
RESONANCES

We now come to the central section of the present pa
Switching to the Schro¨dinger picture we present the mast
equation for the reduced density operatorr(t) of the inside
field equivalent to the Langevin equation of the preceed
section,

ṙ52 i(
l

vl@al
†al ,r#1~11nth!(

lm
glm$@am ,ral

†#

1@amr,al
†#%1nth(

lm
glm$@al

† ,ram#1@al
†r,am#%.

~11!

This equation generalizes the familiar quantum optical m
ter equation for a single damped harmonic oscillator to ma
oscillators coupled by the~off-diagonal elements of the!
damping matrixglm . The latter coupling is important whe
the damping is strong enough to cause spectral overla
modes. The first double sum, proportional to 11nth , de-
scribes spontaneous and induced emission of photons
wards the outside while the second double sum, proportio
only to nth , describes absorption from the outside; that int
pretation is easily checked by employing the Fock repres
tation, i.e., the representation in terms of eigenstates of
photon number operatorsal

†al .
Systematic and stochastic forces are not as clearly s

rated here as in the Langevin equation. In order to br
about such distinction here as well, and to prepare for
proof of equivalence of Eqs.~7! and ~11! we may imagine
the density operatorr(t) at time t antinormally ordered in
the annihilation and creation operators~all a’s to the left of
all a†’s!; further, we rearrange the commutators in the rig
hand side of the master equation~11! such thatṙ becomes
antinormally ordered providedr(t) is

ṙ52 i(
l

vl$@al ,ral
†#2@alr,al

†#%1(
lm

glm$@am ,ral
†#

1@amr,al
†#%12nth(

lm
glm@@am ,r#,al

†#. ~12!

The latter form of the master equation preserves antinor
ordering ofr(t) at all times. Moreover, we have now sep
rated reversible drift terms~proportional to the frequencie
vl), irreversible drift terms (}glm) not involving the ther-
mal number of quantanth , and noise generated diffusio
5-3
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HACKENBROICH, VIVIESCAS, AND HAAKE PHYSICAL REVIEW A 68, 063805 ~2003!
terms (}nth); the latter interpretation will become obvious
the following section where a representation based on co
ent states will be employed.

V. EQUIVALENCE OF LANGEVIN AND MASTER
EQUATIONS

There are various ways of demonstrating the equivale
of the Langevin equations~7! and the master equations~11!
and~12!. A somewhat indirect~and, in fact, the most labori
ous! way would be to start from the Liouville–von Neuman
equationṙ in% out(t)52 i @H,r in% out(t)#/\ for the density op-
erator of the full electromagnetic field and stick to the Sch¨-
dinger picture in eliminating the outside field, employing t
same approximations as in deriving the Langevin equatio
A standard, and more economical, procedure is to show
Eqs.~7! and ~12! entail the same evolution equations for a
mean valueŝ )l(al

†)ml)m(am)nm&(t) with integer expo-
nents$ml ,nm%. We here prefer to employ a less familiar b
particularly elegant method.

If we consistently stick to antinormal ordering ofr(t) we
may write the commutators in the master equation~12! as
differential operators as@a,(•)#→(]/]a†)(•) and @(•),a†#
→(]/]a)(•). We may then just as well degrade all creati
and annihilation operators to complexc number variables
and the density operator to a real function of those variab

al→al , al
†→al* , r~ t !→P~$a,a* %,t !. ~13!

The function P in question is the familiar Glauber–
Sudarshan quasiprobability@1# which has as its moments ex
pectation values of normally ordered observables,

K)
l

~al
†!ml)

m
~am!nmL ~ t !

5E H)
l

daldal* ~al* !ml~al!nlJ P~$a,a* %,t !.

~14!

The master equation~12! then becomes the Fokker–Plan
equation~with the shorthand]/]al[]l , ]/]al* []l* )

Ṗ5F2 i(
l

vl~]l* al* 2]lal!

1(
lm

glm~]l* am* 1]mal12nth]m]l* !GP. ~15!

At this point the interpretation of the various terms in t
master equation~12! given earlier becomes obvious.

In the same vein we may degrade the Langevin equa
to thec-number equation

ȧl~ t !52
i

\ (
m

Hlmam~ t !1wl~ t !, ~16!

wherewl(t) is the c-number representative of the operat
valued random forceFl(t). Gaussian statistics and ze
06380
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mean are imparted tow(t). Moreover, since observables a
consistently to be taken as normally ordered we must id
tify second moments as

^wl* ~ t !wm~ t8!&5^Fl
†~ t !Fm~ t8!&52nthgmld~ t2t8!,

~17!

while holding on to ^wl(t)&50,^wl(t)wm(t8)&50, and
Gaussian factorization for the higher-order moments.

At this point the equivalence proof can be carried out
deducing the Fokker–Planck equation~15! from the
c-number Langevin equation~16!, and to that task we now
turn. In order to make the argument as transparent as
sible we drop mode indices; the initial time at which stat
tical independence of the inside and outside fields is assu
is taken ast050. We start by considering a fixed realizatio
of the time-dependent ‘‘external forces’’w(t),w* (t). The so-
lution of the Langevin equation is then a functional of t
temporal course taken by the external force between the
tial and the current time. Correspondingly, we introduce
densityW(a,a* ,tu$w(t)w* (t)%) functionally depending on
the realization of the external field under consideration;
the initial time t50 the new density coincides with th
Glauber–SudarshanP function, W(0)5P(0). The density
W obeys the evolution equation

Ẇ~ t !5@L01 l ~ t !#W~ t !, ~18!

L052 iv~]* a* 2]a!1g~]* a* 1]a!,

l ~ t !52@]* w* ~ t !1]w~ t !#.

Clearly, we encounter a first-order partial differential equ
tion since the random character of the external force is
yet invoked. The time-independent partL0 of the generator
accounts for oscillation and damping, whilel (t) includes the
time-dependent forcesw(t),w* (t). The formal solution
readsW(t)5(exp*0

t ds@L01l(s)#)1W(0), where (•)1 denotes
positive time ordering. Temporarily employing an ‘‘intera
tion picture’’ we split off the motion generated byL0 as

W~ t !5eL0tW̃~ t !,

W̃~ t !5FexpE
0

t

ds l̃~s!G
1

P~0!, ~19!

l̃ ~ t !5e2L0tl ~ t !eL0t52@w* ~ t !]̃* ~ t !1w~ t !]̃~ t !#.

Now we may take the average over the Gaussian ensemb
realizations ofw(t),w* (t). The average of thew-dependent
density W(t) is just the Glauber–SudarshanP function,
^W(a,a* ,tu$w(t),w* (t)%)&5P(a,a* ,t). Invoking the
above first and second moments we get
5-4
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QUANTUM STATISTICS OF OVERLAPPING MODES IN . . . PHYSICAL REVIEW A68, 063805 ~2003!
P̃~ t !5K S expF E
0

t

ds l̃~s!G D
1
L P~0!

5S expF E
0

t

dsE
0

t

ds8^w* ~s!w~s8!&]̃* ~s!]̃~s8!G D
1

P~0!

5S expF2nthgE
0

t

ds]̃* ~s!]̃~s!G D
1

P~0!. ~20!

Upon differentiating with respect to time we haveṖ̃(t)
52nthg]̃* (t) ]̃(t) P̃(t), and going back toP(t)5eL0t P̃(t),
we arrive at the Fokker–Planck equation~15! and have thus
arrived at our goal.

We should add that a mathematically more satisfact
variant of the foregoing considerations would result fro
employing the so-called Ito calculus@1#.

VI. STATIONARY SOLUTION OF THE MASTER
EQUATION

The general time-dependent solution of the Fokke
Planck equation~12! is, due to the linearity of the drift co
efficients and the constancy of the diffusion matrix, easy
construct@23#. We are in fact facing a stochastic process
the Ornstein–Uhlenbeck type. The Gaussian distribution
the noise together with the linear evolution equation~16!
imply that the stochastic variables must be Gaussian dis
uted. In particular, the stationaryP function is immediately
checked to be

P̄~$a,a* %!5)
l

1

pnth
exp~2al* al /nth!. ~21!

The dissipative coupling of the system modes is no lon
visible in the stationary state; rather, we encounter the t
mal equilibrium state one would also find in the absence
spectral overlap.

VII. STATUS OF LANGEVIN AND MASTER EQUATIONS
AND RELATED LITERATURE

Multimode fields are more complex than single-mo
fields due the additional frequency scale set by the m
frequency spacingDv of internal modes. For resonators wi
overlapping modes the mode spectral broadening is com
rable toDv. Langevin or master equations may then only
used if they provide anonperturbativedescription of damp-
ing and noise~in the sense that the mode decay ratesk may
exceed the mode spacingDv).

To show that the Langevin~7! and the master equation
~11! and ~12! are nonperturbative in the above mention
sense, we now drop the rotating wave and Markov appro
mation and address the exact field dynamics. From the fi
Hamiltonian ~2! one obtains the following set of Langevi
equations:
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ȧl~ t !52 ivlal~ t !2(
m

E
t0

t

dt8@Glm~ t2t8!am~ t8!

1Slm~ t2t8!am
† ~ t8!#1 f l~ t !. ~22!

Non-Markovian effects and corrections to isolated–mode
havior are encoded in the autocorrelation functions

Glm~ t2t8!5(
m

E
vm

`

dv@e2 iv(t2t8)Wlm~v!Wmm* ~v!

2e1 iv(t2t8)Vlm* ~v!Vmm~v!#, ~23!

Slm~ t2t8!5(
m

E
vm

`

dv@e2 iv(t2t8)Wlm~v!Vmm~v!

2e1 iv(t2t8)Vlm* ~v!Wmm~v!#. ~24!

The noise term takes the form

f l~ t !52 i(
m

E
vm

`

dv@e2 iv(t2t0)Wlm~v!bm~v,t0!

1e1 iv(t2t0)Vlm* ~v!bm
† ~v,t0!#. ~25!

Due to the bilinear form of the field Hamiltonian the exa
Langevin equations are linear in the system and bath op
tors. In principle, their solution can be found by Lapla
transformation. The details of the exact solution will depe
both on the spectral strength of the bath and the freque
dependent coupling amplitudesWlm(v) andVlm(v).

The result~22!–~25! holds for arbitrary damping. Here
our main focus is on quantum optical systems where
oscillation frequenciesv̄ much exceed the typical dampin
ratesk. Then our result can be used to compute correcti
to the Markovian dynamics of Secs. III–V. We substitute t
ansatzal(t);exp(2i@v̄2ik#t) with the damping ratek into
Eq. ~22!; herev̄ includes a frequency shiftdv̄. One obtains
four terms proportional toam or am

† , out of which three
terms are strongly oscillating: the contributio
}V* W (WV* ) has the oscillatory integrand
;e22i v̄t8 (e12i v̄t8), respectively, and the term}V* W oscil-
lates;e12i v̄t with respect toal(t). To leading order in the
ratio udVu/v̄[udv̄2 iku/v̄ only the term}WW* must be
kept. The corrections of higher order inudVu/v̄ are very
small for the systems of interest in quantum optics. We n
that there are no corrections of the orderudVu/Dv; thus our
field dynamics correctly describes the regime of overlapp
modes.

So far we described the field dynamics in terms of eig
modes of a conveniently chosenclosedsystem. The associ
ated mode operators$al ,al

†% obey canonical commutation
relations. The master equation~11! may equivalently be ex-
pressed in terms of a biorthogonal set of modes represen
the resonances of theopencavity. It turns out that the opera
5-5
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tors associated with the resonances obey nonstandard
mutation rules. We focus on the casekT!\v̄ and write Eq.
~11! in the form

ṙ52
i

\
~Heffr2rHeff

† !12(
lm

glmamral
† , ~26!

Heff5(
lm

Hlmal
†am . ~27!

The non-Hermitian matrixH was introduced in Eq.~10!. The
complex eigenvalues ofH represent the resonances of cav
in the presence of the coupling to the bath. Generally,
eigenvalues are nondegenerate, andH can be diagonalized
by a similarity transformationH5TVT21. The diagonal
matrix V comprises the eigenvalues ofH while T is a gen-
eral matrix with complex entries. In terms of two novel se
of operators

dn5(
l

Tnl
21al , ~28!

en
†5(

l
al

†Tln , ~29!

the effective Hamiltonian takes the diagonal form
. A

er

06380
m-

e

Heff5(
n

Vnen
†dn . ~30!

This result resembles the diagonal field Hamiltonian
closed resonators. However, the peculiar properties of
open-resonator dynamics are encoded in nonstandard c
mutation relations of the new operators. From Eqs.~28! and
~29! and the canonical commutation rules for the operat
$al ,al

†% one finds, e.g.,@dm ,en
†#5dm,n and @em ,en

†#5Amn

with A[T†T. Substitution of Eq.~28! into Eq. ~26! yields
the master equation

ṙ52
i

\
~Heffr2rHeff

† !1
i

\ (
nm

Anm~Vm2Vn* !dmrdn
† .

This is the master equation proposed by Lamprecht
Ritsch @13#. Our derivation provides a microscopic basis f
that equation@24# and proves the equivalence to the mas
equation~11! in the limit kT!\v̄.
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