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Quantum statistics of overlapping modes in open resonators
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We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes.
Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua
of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin
dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator
dynamics may be used as a starting point for a quantum theory of random lasers.
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[. INTRODUCTION tion for the memory of the “bath’i.e., the electromagnetic
field outside the resonatpwe obtain the equations of mo-
The interaction of a single resonator mode with an extertion for the intracavity field, including expressions for all
nal optical field leads to damping and noise for the intracavdamping and noise forcesii) Our derivation clarifies the
ity mode. The textbook example issingleoscillator linearly ~ status of the resulting stochas?ic equations. In particular, we
coupled to a continuum of harmonic oscillat¢ds-4]. Less ~ Show that they correctly describe separated as well as spec-
understood and in fact object of ongoing debi@e13 are trally overlapping resonances. Corrections would only be im-
the damp|ng and noise properties‘nﬁ'timodeﬁelds in reso- portant if the resonance WIdthS were to become Compal’ab|e
nators. Multimode fields show an excess noise or Petermari the resonance frequencies themselves, a regime not en-
factor [5,7,14. In laser systems this factor gives rise to acountered in optical or even microwave resonatdiis. We
peculiar enhancement of the laser linewidth above the funderive a representation of our master equation in terms of
damental Schawlow-Townes value; this enhancement wadonorthogonal modes and compare our result with master
measured in recent experiments on unstable laser caviti@§luations proposed earli¢d0,11,13. This allows us to
[15,16]. Excess noise and the enhancement of the laser lin&Pecify the physical conditions under which those previously
width may be attributed to the nonorthogonality and theProposed master equations hold.
spectral overlap of the cavity eigenmod&$in the presence
of the coupling to the external field. II. FIELD QUANTIZATION FOR OPEN-RESONATOR
While the phenomenon of excess noise has been known GEOMETRIES

for more than 20 years, there is still no complete description
of the quantum statistics of overlapping modes. A few ex- There is nothing to add to the familiar canonical quanti-
ample systems were discussg®l9] from a quantum me- zation of the electromagnetic field,2]. The field compo-
chanical point of view. Recently several authdif-13 nents may be expanded in terms of any complete set of basis
proposed quantum Langevin and master equations for multiunctions. As a matter of convenience one usually employs
mode fields; however, th&tatusof these equations remained eigenmodes pertinent to the given geometry and respecting
unclear as they were not derived from rigorously quantizedhe physical boundary conditions. Such expansions are at
electromagnetic fields. This is in contrast to the quanturissue here.

properties of a single-mode fieltinearly coupled to an ex- In the presence of a more or less open resonator, one often
ternal heat bathwhich are knowrj1,3,4] for arbitrary damp-  wants to distinguish between “inside” and “outside” even
ing strength and arbitrary heat-bath temperature. though any opening, i.e., a hole in the material walls of the

The goal of the present paper is to derive and clarify theesonator gives to the latter concepts an element of arbitrari-
status of stochastic equations for the field dynamics in resaess. Any choice of a fictitious surface covering the hole
nators with overlapping modes. The experimental motivatioryields its own inside/outside separation. Moreover, different
for our work derives both from realizatio45,16 of un-  boundary conditions may be imposed at the chosen separat-
stable laser cavities and from recent experiments of highlyng surface. Nevertheless, each such surface and boundary
disordered dielectrics which form mirrorless so-called ran-condition entail eigenmodes allowing us to represent the
dom lasers[17,18. We address the field dynamics both electromagnetic field almost everywhere, with the qualifier
within the Heisenberg picturén terms of quantum Langevin “almost” reminding us of the fact that the expansion cannot
equationy and within the Schrdinger picture(employing a be expected to converge pointwise everywhere, and in par-
master equation for the reduced density matrix of the cavityicular not on an arbitrarily chosen boundary.
modes. We go beyond previous work in the following re-  The freedom in choosing the separating surface and the
spects:(i) We derive the field dynamics starting from rigor- boundary condition thereon may be u$&8-21] to define a
ously quantized electromagnetic fields. In particular, no rediscrete set of inside modes which vanish outside; and simi-
striction of the dimensionality and the vector character of thdarly a continuum(or even several continua distinguished by
field strengths are indulged in. Keeping only resonant terms “channel” index of outside modes which vanish inside
in the field Hamiltonian and adopting a Markov approxima-and fulfill scattering-type boundary conditions at infinity; a
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scattering condition specifies a single channel for a wavehe electric and magnetic field¥x,t) andB(x,t); in brief,

coming in from infinity and entails different amplitudes for the Heisenberg equations of motion generated by lthate

the partial waves going out through the various channelsequivalent to the quantized Maxwell equations. Moreover, by

Canonical quantization then amounts to representing the c@omposing the insidéoutsidé mode functions with coeffi-

efficients of the mode expansion of the electromagnetic fielql;ients{a)\ ,a;f} ({bm(w),bk(w)}) one gets the field&(x,t)

by creation and annihilation operatd, ,af} of photons of  and B(x,t) inside (outside; truncated, such compositions

the Ath inside mode and likewisgb,,(w),b ()} of pho-  will be robust against small changes of the separating surface

tons of the (, w)th outside mode, whenm labels channels unless an unreasonable choice is made to begin with.

(including polarization and o distinguishes modes within Hamiltonians of the above form have been ufgd] in

the channel continuum. The bosonic commutators read  quantum optics for high-quality resonators; there, inside ex-
citations are but slowly dissipated to the outside, with life-

[ay.a],1= 8\, (13 times long not only compared to typical internal periods
: 27/ wy but even to beat periodsiZ A w, whereAw denotes
[bm, b, (0)]=0nmwd(w—w'), (1b)  the modulus of the typical frequency spacing of neighboring

internal modes. In such applications the antiresonant terms
moreover, inside operators commute with outside ones.  y, 5 +V* a'p! can be neglected. However, the deriva-
It was shown in two previous papef0,21] that the {jon of Refs.[20,21] also secures validity of Hamiltonia®)
Hamiltonian of the electromagnetic field can be rigorouslyfor very much open resonators where the outside field causes
expressed as the following bilinear form in the foregoingine jnside resonances to overlap, the main case of interest in

creation and annihilation operators: the present paper. The Hamiltonié?) even remains valid in
the extreme case of overdamped inside excitations, where
H= 2 ﬁw}\a}‘[aﬁ E f dotho b%(m)bm(w) mode frequencies, are overwhelmed by large escape rates
A m

k; it is only in that extreme situation, which appears as not
of interest in optics, that the antiresonant terms would be

» j do[ Wym(w)a] by ) important.
A,m

2) I1l. LANGEVIN EQUATIONS FOR OVERLAPPING

+Vm(@)aybp(w)+H.c]. RESONANCES

Herg, the ms@e mode _frequenC|e§ as well as the |ns_|de— While Hamiltonian(2) describes the coupled dynamics of
outside coupling amp_lltudewm,vm reflect the c_h0|ces the inside and outside fields, its principle application is to
made for the separating surface.l The latter amplitudes ar, eparate descriptions of those two subsystems. As already
!ntggrals, take.n over the separating surfac;e, .Of products Ghdicated above, the continua of outside modes tend to act as
|r)5|d§ (or outside mode.funcuons W.'th derilvatlves of out- a “bath” damping the discrete inside modes. The effectively
side (insid® mode fur_u_:tlons. Specifically, if the von Neu- irreversible dynamics of the inside modes becomes manifest
mann boundary condition when the bath degrees of freedom are eliminated. The
nX[VXu,]|,=0 (3) HTeisenberg equations of motion o_f the ins.ide amplituzgi\es
a, then take the form of Langevin equations, in which the
was imposed for the inside modes and the Dirichlet outside amplitude®,(w), bl (w) enter only with their ini-
boundary condition tial values in inhomogeneities, the Langevin noise forces.
Due to the bilinear form of Hamiltoniaf2) the Langevin
NXVp(@)|5=0 (4) equations can be determined rigorously by diagonalization of
H, i.e., without resorting to perturbation expansidiisr a
single “system” oscillator the diagonalization was per-
formed in, e.g., Refd.4] and[22)).
The Langevin equations to be noted in the present section

for the outside modes,,(w) at the boundaryl (with nor-
mal vectorn), the coupling amplitudes are given by

2
Wim( @)= ¢ f d?ruf (r)-{nX[V X vm(w,r) 1}, are simplified _in three respects. First, we bar.aII antiresonant
2\w\wJ terms, assuming the absence of overdamping. Second, we
(5)  confine the discussion to a Markovian situation valid for
, times larger than “bath correlation times}, ., (like the ther-
; th . ; ;
B 2 mal time 7p=7/kgT); the existence of a time scale sepa-
Vam(@)= 2 ’_whwfmd Fuy(r) {nX[VXVi(w,N)]}. ration is thus assumed, such that all inside lifetimes are much

(6) in excess ofry,,. Third, to save space we do not bother to
pedantically write out the so—called frequency-shift terms
If the physical boundary conditions on material surfaces enwhich are rarely needed in practice. The limit in question
tail time reversal invariance, the amplitudds)’ can be cho- yields the Langevin equatiori21]
sen real and become identical)=V.
The derivation of the Hamiltonian takes full account of : i
three spatial dimensions as well as of the vector character of A (O="lean(t) 2;; MO+, 0
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wherein the damping matriy, , and the noise-forcé, are A final remark on the dynamics of the outside field is in
given in terms of the inside-outside coupling amplitudesorder here. The time scale separation assumed in deriving the
Wim as above Langevin equations is effective outside as well as in-
side as the outside field evolves in adiabatic equilibrium with
yw=7r(WWT)M, (88  the inside field for times—ty> 7., FoOr the quantitative

treatment by the quantum optical input-output formalism or,

) ot equivalently, scattering theory we refer the interested reader
Fx(t):_|f dwe ™t O)Em) Wimbm(@,to). (8D t0[1,2,21.

Note that the damping matrix is non-negative and Hermit- IV. MASTER EQUATION FOR OVERLAPPING
ian; the neglected frequency-shift terms would amount to an RESONANCES
anti-Hermitian addition tay. Under conditions of time rever-
sal invariance the matriy is even real symmetric. The Mar-
kovian limit mentioned allows us to drop the frequency de
pendence of the coupling amplitude® over the spectral
range in consideration and to restrict the time span pass

We now come to the central section of the present paper.
Switching to the Schudinger picture we present the master
“equation for the reduced density operatgt) of the inside
field equivalent to the Langevin equation of the preceeding

. L o ction,
since the initial moment, ast—ty> 7. IN that limit the
force has a white spectrum according(Eg, (t))=0, and the .
noise p=-12 anlalay .1+ (14w 2 nuila, pall
(FUDF (1) =27, Ny 8(t—t"), (93
+laup.al e mdlal pa,l+[alp.a,l}.
(FADFL(t)) =2, (1+ng) 8(t—t').  (9b) .

(11
The second two-time correlation functions follows from the _ _ - )
first and the commutation relatiotisb). The remaining sec- This equation generalizes the familiar quantum optical mas-
ond moments Vanish“:}\(t)':p'(t’)):O=<F1(t)FT(t’)> ter equation for a single damped harmonic oscillator to many
M 1 . .

and higher-order moments foliow from the ones of orders 10Scillators coupled by theoff-diagonal elements of the
and 2 according to Gaussian statistics. The thermal numbé&l@mping matrixy, , . The latter coupling is important when
of photonsn,,=[expfiw/kT)—1]"* appearing in the second the damping IS strong enough to cause spectral overlap of
moments must be taken as frequency independent throughofi°des. The first double sum, proportional te-dy,, de-
the spectral range of inside frequencies under consider- SC'IP€S spontaneous and induced emission of photons to-
ation. In the limitkT<%o we recover the Landevin equa- wards the outside while the second double sum, proportional
tions.of Bardroff and StenholffiL0] g g only to ny,, describes absorption from the outside; that inter-

The appearance of aondiago.nal damping matrix y pretathn is easily checked'by gmploylng th? Fock represen-
— W signals that the Langevin equation may legiti- tation, i.e., the representation in terms of eigenstates of the

mately be applied to the case of overlapping resonances, %hc;tont nurrl_ber ogerf\tor?‘{a'?. f ; lear]
which typical matrix elementy, , are larger than a typical ystematic and stochastic forces are not as clearly sepa-

nearest-neighbor spacinjw of frequencies. However, all rated here as iT‘ the Langevin equation. In order to bring
elements ofy must be smaller in magnitude than the fre- about such Q|st|nct|on here as well, and 1o prepare for the
guenciesw, themselves as antiresonant terms were droppe rgoée(ﬁsﬁquévﬂf;ge ((t))f thﬁi’?n)einz;jrf;%X’vnealrlnagrtljrgﬁagc;nii
in the derivation of Eq(7). Conversely, we could specialize sity op p . : y
to the weak-coupling regimiey, ,|<Aw. Then, lowest-order the eTmmhlIatlon and creation operatdedl a’s to the left of
perturbation theory simply a/anounts to dropping the Oﬁ_all a'’s); further, we rearrange the commutators in the right-
diagonal elements of the damping matrix,,,—0 for X hand side of the master equati@tl) such thatp becomes
# u, whereupon the Langevin equati¢f) simplifies so as antinormally ordered provide(t) is
to describe a set of mutually independent damped harmonic
oscillators. S t T t
L L . =—i a,,pa, | —[ayp.a,]}+ a,,pa

For some applications it will be helpful to rewrite the * 2;‘ odlapal-law.al} AE,L Ml @upar]

above Langevin equation with the non-Hermitian matrix

: +[a,p,a]]}+2n a,.plall. 12
Hxﬂ:ﬁwx&\#_lﬁ%\ﬂ (10) [ uP }\]} th}\Eﬁ ‘y}\,u[[ “w p] )\] ( )

diagonalized. The eigenvalues @i will then represent The latter form of the master equation preserves antinormal
“true” resonances of the cavity. As a “penalty” for that ordering ofp(t) at all times. Moreover, we have now sepa-
change of representation one would have to work with nonrated reversible drift term§oroportional to the frequencies
standard commutation relations for the operators connected, ), irreversible drift terms €y, ,) not involving the ther-
with the eigenvectors of{ (see Sec. Vl mal number of quantay,, and noise generated diffusion
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terms (<nyy); the latter interpretation will become obvious in Mean are imparted to(t). Moreover, since observables are
the following section where a representation based on cohegonsistently to be taken as normally ordered we must iden-

ent states will be employed. tify second moments as
V. EQUIVALENCE OF LANGEVIN AND MASTER (X (D@, (1) =(FLF (1)) =2n4y,n8(t—t"),
EQUATIONS (17)

There are various ways of demonstrating the equivalence
of the Langevin equation&) and the master equatioisl) ~ while holding on to (¢,(t))=0,(¢)\(t)¢,(t"))=0, and
and(12). A somewhat indirectand, in fact, the most labori- Gaussian factorization for the higher-order moments.
ous way would be to start from the Liouville—von Neumann At this point the equivalence proof can be carried out by
equationpineeu(t) = —i[H, pinsou(t) 1/% for the density op- deducing the Fokker—Planck equatiofl5) from the
erator of the full electromagnetic field and stick to the Sehro -Number Langevin equatiofi6), and to that task we now
dinger picture in eliminating the outside field, employing theturn. In order to make the argument as transparent as pos-
same approximations as in deriving the Langevin equation$ible we drop mode indices; the initial time at which statis-
A standard, and more economical, procedure is to show thdical independence of the inside and outside fields is assumed
Egs.(7) and(12) entail the same evolution equations for all IS taken ad,=0. We start by considering a Exed realization
mean vaIues(Hx(aI)mAHM(aM)”@(t) with integer expo- of the time-dependent “external forceg(t), ¢* (t). The so-

nents{m, ,n,}. We here prefer to employ a less familiar but lution of the Langevin equation is then a functional of th.e.
particularly elegant method. temporal course taken by the external force between the ini-

If we consistently stick to antinormal ordering pft) we U@l and the current time. Correspondingly, we introduce a
may write the commutators in the master equatip®) as  9€NSity W(e,a* t{e(t)¢* (1)}) functionally depending on
differential operators aa,(-)]— (d/da)(-) and[(-),a'] the (egjlzat!on of the external f|eld_under cgnmder_auon; at
—(a/4a)(-). We may then just as well degrade all creationthe initial time t=0 the new density coincides Wlth_ the
and annihilation operators to complexnumber variables Claubeér—SudarshaR function, W(0)=P(0). The density
and the density operator to a real function of those variables/V 0P€ys the evolution equation

a—ay, a—al, p()—P(aa*ht). (13 W(t)=[Lo+ () ]W(1), (18)
The function P in question is the familiar Glauber—
Sudarshan quasiprobabilif§] which has as its moments ex- Lo=—iw(d* a* —da)+ y(d* a* + da),
pectation values of normally ordered observables,

<H (ah™J] (aﬂ>“u><t>
A M

()= —[d"¢* (1) +de(1)].

Clearly, we encounter a first-order partial differential equa-
:J (H daxda;‘(a;‘)mh(ax)”x+ P({a,a* 1 t). tion since the random character of the external force is not
X yet invoked. The time-independent parg of the generator
accounts for oscillation and damping, whilg) includes the
time-dependent forcesp(t),¢* (t). The formal solution
The master equatiofl2) then becomes the Fokker—Planck readsW(t) = (exp/¢dqLo+1(s)])-W(0), where (), denotes
equation(with the shorthand/da,=d, , d/dat =d¥) positive time ordering. Temporarily employing an “interac-
tion picture” we split off the motion generated ly, as

(14

P=|:_|z w)\(é?’)taf—c?)\a)\) ~

A W(t)=eo'W(t),
+AE,L Ynu( X @+ 9,00+ 2000, 0%) [P, (15)
P(0), (19

+

W(t) =

expfotdsfl(s)

At this point the interpretation of the various terms in the
master equatioil2) given earlier becomes obvious.
In the same vein we may degrade the Langevin equation ~,. . | ; Lot [ %S ~
to the c-number equation [(t)=e ~0'l(t)e-o'=—[e* (1) d* (1) + @(t)I(1)].
: _ '_ Now we may take the average over the Gaussian ensemble of
aV=-3 % Hauu(D+ ex(t), 18 | ealizations ofp(t),¢* (t). The average of the-dependent
density W(t) is just the Glauber—Sudarshdn function,
where ¢, (t) is the c-number representative of the operator (W(a,a* ,t|{¢(t),¢* (t)}))=P(a,a*,t). Invoking the
valued random forcd=, (t). Gaussian statistics and zero above first and second moments we get
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~ o . t
P(t)=< exr{stl(s)) >P(0) ax(t)=—iw>\a)\(t)—2 j dt'[T) (t—t")a,(t")
0 N mo Jig
t [t o +3,,(t=t)al(t) ]+ (). (22)
=(ex fdsf ds'{e*(s)e(s"))d*(s)d(s") ) P(0)
0 0
- Non-Markovian effects and corrections to isolated—mode be-
to ~ havior are encoded in the autocorrelation functions
=| expg 2nyy | dsd*(s)d(s) P(0). (20
0
+

rxﬂ(t_t’)ZZJ dw[eiiw(titr)w)\m(w)vv::m(w)
Upon differentiating with respect to time we haw(t) mosem
=2nyyd* (1)3(t)P(t), and going back tdP(t)= e P(t), —e"etOVE (0)V,m(w)], (23)
we arrive at the Fokker—Planck equatidd) and have thus
arrived at our goal. .
We should add that a mathematically more satisfactory s, (t—t)=>, f do[e W, (0)V m(®)
variant of the foregoing considerations would result from . m .
employing the so-called Ito calculfi§].

—e" VY (@) Wm()]. (29)

VI. STATIONARY SOLUTION OF THE MASTER The noise term takes the form

EQUATION
The general time-dependent solution of the Fokker— . o _
Planck equatior{12) is, due to the linearity of the drift co- fu(t)=—i> f dw[e™ "W, ()b ,to)
efficients and the constancy of the diffusion matrix, easy to m Jom
construct{23]. We are in fact facing a stochastic process of +etiettovr (w)bl(w,to)]. (25)

the Ornstein—Uhlenbeck type. The Gaussian distribution of

the noise together with the linear evolution equatid®)

imply that the stochastic variables must be Gaussian distrig?u€ to the bilinear form of the field Hamiltonian the exact
uted. In particular, the stationafy function is immediately —L-@ngevin equations are linear in the system and bath opera-
checked to be tors. In principle, their solution can be found by Laplace

transformation. The details of the exact solution will depend
both on the spectral strength of the bath and the frequency
dependent coupling amplitud®$, ,(w) andV, ().

The result(22)—(25) holds for arbitrary damping. Here,
our main focus is on quantum optical systems where the

The dissipati i f th ¢ des i | oscillation frequencies» much exceed the typical damping
€ dissipative coupiing of the System MOodes 1S NO 1oNY€L a5, Then our result can be used to compute corrections

visible n 'th'e stationary state; rather, we encounter the ther%-o the Markovian dynamics of Secs. IlI-V. We substitute the
mal equilibrium state one would also find in the absence o

spectral overlap. ansatzak(t)~9<p(—i[5—ix]t) with the da_mBing ratec int_o
Eqg. (22); herew includes a frequency shiiw. One obtains
four terms proportional ta, or aL, out of which three
VIl. STATUS OF LANGEVIN AND MASTER EQUATIONS terms are strongly oscillating: the contribution
AND RELATED LITERATURE VW (WV*F) has the oscillatory integrand

—Jiwt’ +2iot! . .

Multimode fields are more complex than single-mode ™€ . t+(2?72| "), respectively, and the termV* W oscil-
fields due the additional frequency scale set by the mealftes~e" =" with respect taa,(t). To leading order in the
frequency spacind w of internal modes. For resonators with ratio |6Q|/w=|sw—ix|/w only the termxWW* must be
overlapping modes the mode spectral broadening is comp&ept. The corrections of higher order |BQ|/w are very
rable toAw. Langevin or master equations may then only besmall for the systems of interest in quantum optics. We note
used if they provide monperturbativedescription of damp- that there are no corrections of the orléf}|/A w; thus our
ing and nois€in the sense that the mode decay ratemay field dynamics correctly describes the regime of overlapping
exceed the mode spacingw). modes.

To show that the Langevifi7) and the master equations  So far we described the field dynamics in terms of eigen-
(11) and (12) are nonperturbative in the above mentionedmodes of a conveniently chosetosedsystem. The associ-
sense, we now drop the rotating wave and Markov approxiated mode operatora, ,a{} obey canonical commutation
mation and address the exact field dynamics. From the fielcelations. The master equatiohl) may equivalently be ex-
Hamiltonian (2) one obtains the following set of Langevin pressed in terms of a biorthogonal set of modes representing
equations: the resonances of ttepencavity. It turns out that the opera-

_ 1
P({a,a*})=1:[ mexp(— at oy Ing). (21)
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tors associated with the resonances obey nonstandard com-

mutation rules. We focus on the cas&<#w and write Eq.
(11) in the form

Heﬂ:; Qeld,. (30)

This result resembles the diagonal field Hamiltonian of
closed resonators. However, the peculiar properties of the
open-resonator dynamics are encoded in nonstandard com-
mutation relations of the new operators. From Eg@8) and

(29) and the canonical commutation rules for the operators
{a,,a]} one finds, e.g.[d,el]= 6, and[en,el1=An,

with A=T'T. Substitution of Eq(28) into Eq. (26) yields

the master equation

o
p=-— 5(Heﬁp—leﬁ)+2; Y0l ,  (26)
"

(27)

_ T
Her= }\2 Hyparay, -
"

The non-Hermitian matrig{ was introduced in Eq10). The
complex eigenvalues @fl represent the resonances of cavity
in the presence of the coupling to the bath. Generally, the
eigenvalues are nondegenerate, &haan be diagonalized
by a similarity transformatior’{=TQT 1. The diagonal
matrix {) comprises the eigenvalues ®f while T is a gen-
eral matrix with complex entries. In terms of two novel setsThis is the master equation proposed by Lamprecht and

. i i
p=— g(Heﬁp—leﬁH 7 > Ann( Q= QF)dpd] .

nm

of operators

d,= 2 T la,, (28)

T T
n ; aThn,

e (29

the effective Hamiltonian takes the diagonal form

Ritsch[13]. Our derivation provides a microscopic basis for
that equatiorf24] and proves the equivalence to the master

equation(11) in the limit kT<#A w.
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