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Multiorder coherent Raman scattering of a quantum probe field

Fam Le Kien,* Anil K. Patnaik, and K. Hakuta
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
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We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium
with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a
Bessel-function solution for the sideband field operators. We analytically and numerically calculate various
quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process
can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated
Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of
two-mode input. We show that the prepared Raman coherence and the medium length can be used as control
parameters to switch a sideband field from one type of photon statistics to another type, or from a nonsqueezed
state to a squeezed state and vice versa. We demonstrate that an even or odd coherent state of the quantum
probe field can produce a multipartite entangled coherent state. We show that the concurrence reaches its
maximal value at an optimal medium length that is determined by the magnitude of the Raman coherence and
the orders of the Raman sidebands.
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I. INTRODUCTION

The parametric beating of a weak probe field with a p
pared Raman coherence in a far-off-resonance medium
been extensively studied@1–4#. It has been demonstrate
that multimode laser radiation@2# and incoherent fluorescen
light @3# can be replicated into Raman sidebands. Sinc
substantial molecular coherence can be produced by the
color adiabatic Raman pumping method@5–8#, the quantum
conversion efficiency of the parametric beating techniq
can be maintained high even for weak light with less th
one photon per wave packet@3#. To describe the statistica
properties of a weak quantum probe and its first-order Sto
and anti-Stokes sidebands in the parametric beating proc
a simplified quantum treatment has recently been perform
@9#. It has been shown that the statistical properties of
quantum probe can be replicated into the two sidebands n
est to the input line, in agreement with the experimental
servations@2,3#.

However, many experiments have reported the obse
tions of ultrabroad Raman spectra with a large number
sidebands@2–6#. In the experiments with solid hydroge
@2,3#, at least two anti-Stokes sidebands and two Stokes s
bands have been observed. In the experiment with molec
deuterium @6#, a large Raman coherenceurabu>0.33 and
about 20 Raman sidebands, covering a wide spectral ra
from near infrared through vacuum ultraviolet, have be
generated. In rare-earth doped dielectrics with low Ram
frequency and long-lived spin coherence, a substantial
man coherenceurabu>0.25 and an extremely large numb
of sidebands~about 104) can also be generated@10#. Broad
combs of Raman sidebands@2–6# have been intensively
studied because they may synthesize to subfemtose
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@7,8,11,12# and subcycle@13# pulses. The generation o
broad combs of Raman sidebands has always been exam
as a semiclassical problem. While classical treatments
sufficient for many purposes, a quantum treatment is
quired when the statistical properties of the radiation fie
are important. On the other hand, broad combs of Ram
sidebands with similar nonclassical properties and differ
frequencies may find useful applications for hig
performance optical communication. Therefore it is intrig
ing to examine the quantum aspects of high-order cohe
Raman processes.

In this paper, we study the multiorder coherent Ram
scattering of a quantum probe field in a far-off-resonan
medium with a prepared coherence. We calculate vari
quantum statistical characteristics of the sideband fields g
erated from a single-mode quantum input, study the mix
and modulation of photon statistical properties in the case
two-mode input, and investigate the generation of a mu
partite entangled coherent state. Although the multiorder
herent Raman scattering has many similarities with a c
ventional beam splitter@14–19#, the two systems are
different in physical nature and, most importantly, the form
can produce a broad comb of sideband fields with differ
frequencies. Therefore, in this paper, we also make comp
son of our system with the conventional beam splitter as
when it is possible.

Before we proceed, we note that, in related problems,
generation of correlated photons using thex (2) andx (3) para-
metric processes has been studied@18–20#. The correlations
between the Stokes and anti-Stokes sidebands and the p
bility of transferring a quantum state of light from one carri
frequency to another carrier frequency~multiplexing! have
been discussed for resonant systems@21#.

The paper is organized as follows. In Sec. II, we descr
the model and present the basic equations. In Sec. III,
study various quantum characteristics of the sideband fi
generated from a single-mode quantum input. In Sec. IV,
discuss the quantum properties of the sideband fields ge

-
-
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LE KIEN, PATNAIK, AND HAKUTA PHYSICAL REVIEW A 68, 063803 ~2003!
ated from a two-mode quantum input. In Sec. V, we study
production of a multipartite entangled coherent state,
calculate the bipartite concurrence for the generated s
Finally, we present the conclusions in Sec. VI.

II. MODEL

We consider a far-off-resonance Raman medium sho
schematically in Fig. 1. Levela with energyva is coupled to
level b with energyvb by a Raman transition via intermed
ate levels that are not shown in the figure. We send a pa
long, strong, classical laser fields, with carrier frequenc
v21

(d) andv0
(d) , and a short, weak, quantum probe fieldÊin ,

with one or several carrier frequencies, through the Ram
medium, along thez direction. The timing and alignment o
these fields are such that they substantially overlap with e
other during the interaction process. The driving laser fie
are tuned close to the Raman transitiona↔b, with a small
finite two-photon detuningd, but are far detuned from th
upper electronic statesj of the molecules. We assume that a
the frequency components of the input probe field are se
rated by integer multiples of the Raman modulation f
quency vm5vb2va2d. The driving fields adiabatically
produce a Raman coherencerab @7,8#. When the probe field
propagates through the medium, it beats with the prepa
Raman coherence. Since the probe field is weak and s
compared to the driving fields, the medium state and
driving fields do not change substantially during this st
The beating of the probe field with the prepared Raman
herence leads to the generation of new sidebands in the
output fieldÊout. The frequencies of the sideband fieldsÊq
are given byvq5v01qvm , whereq is integer andv0 is a
carrier frequency of the input probe field. The range oq
should be appropriate so thatvq is positive. The probe field
is taken to be not too short so that the Fourier-transforma
limited broadening is negligible. We assume that the p
pared Raman coherencerab is substantial so that the spon
taneous Raman process is negligible compared to the st
lated and parametric processes. Consequently, the qua
noise can be neglected. Unlike Ref.@9#, our model does no
require any restriction on the magnitude of the coherenc

FIG. 1. Principle of the technique: Two classical laser fie
drive a Raman transition of molecules in a far-off-resonance
dium. The beating of a weak quantum probe field with the prepa
Raman coherence produces new sideband fields.
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all Raman sidebands are included. When we take the pro
gation equation for the classical Raman sidebands@7,8# and
replace the field amplitudes by the quantum operators,
obtain

]Êq

]z
1

]Êq

c]t
5 ibq~uqÊq1dq21rbaÊq211dqrabÊq11!.

~1!

Here, uq and dq are the dispersion and coupling constan
respectively. We have denotedbq5N\vq /e0c, whereN is
the molecular number density.

We take all the sidebands to be sufficiently far from res
nance that the dispersion of the medium is negligible. In t
case, we haveuq5u0 anddq5d0. We write

rab5r0exp@ i ~f02bmu0z!#, ~2!

wherer05urabu and bm5N\vm /e0c, and assume thatr0
and f0 are constant in time and space. We write the fie
amplitudes in terms of the photon operators as

Êq5ei (bqu0z2qf0)A2\vq

e0LA(
K

b̂q~K,t !eiK (z2ct). ~3!

Here, L is the quantization length taken to be equal to t
medium length,A is the quantization transverse area taken
be equal to the beam area,K is a Bloch wave vector, and
b̂q(K,t) andb̂q

†(K,t) are the annihilation and creation oper
tors for photons in the spectral modeq and the spatial mode
K. Then, Eq.~1! yields

]b̂q

]t
5 i ~gqb̂q211gq11b̂q11!, ~4!

wheregq5(N\/e0)Avqvq21d0r0. For the medium length
L, the evolution time ist5L/c. For simplicity, we restrict
our discussion to the case where each sideband field con
only a single spatial mode~with, e.g.,K50). It follows from
Eq. ~4! that the total photon number is conserved in tim
Note that Eq.~4! represents the Heisenberg equation for
fields that are coupled to each other by the effective inter
tion Hamiltonian

Ĥ52\(
q

gq11~ b̂qb̂q11
† 1b̂q11b̂q

†!. ~5!

The interaction between the sideband fields via the prepa
Raman coherence is analogous to the interaction betwee
transmitted and reflected fields from a conventional be
splitter @19#. The two systems have the same underlyi
physics: the fields are linearly transformed from the inp
values. However, the two mechanisms are very differen
physical nature. The most important difference between th
is that the two fields from the conventional beam split
have the same frequency while the sideband fields in
Raman scheme have different frequencies. In addition,
model Hamiltonian~5! involves an infinitely large number o
Raman sidebands, separated by integer multiples of the

-
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MULTIORDER COHERENT RAMAN SCATTERING OF A . . . PHYSICAL REVIEW A68, 063803 ~2003!
man modulation frequencyvm . Despite these differences
the model ~5! can be called the multiorder Raman bea
splitter.

Though we are dealing with quantum fields, the effect
Hamiltonian~5! does not contain any Stark-shift terms, u
like the case of an atom with a two-photon transition ins
an ideal cavity@22#. However, the dynamical Stark shift i
not neglected in our model. The Stark shift caused by
strong classical driving fields affects the magnitudes of
Raman coherencerab and the level populationsraa andrbb
@7,8#. When the dispersion is negligible, the phase ofrab is
modulated in space by the factore2 ibmu0z @see Eq.~2!#,
which leads to a shift for the phase velocity of the Ram
polarization wave. The Stark shift caused by the quant
sideband fieldsÊq is small compared to that caused by t
strong classical driving fields. Therefore it does not affect
medium state. The propagation ofÊq can be described by a
effective Hamiltonian that contains the Stark-shift te
2\(quqÊq

†Êq/2. The signature of the Stark shift is the ter

ibquqÊq in Eq. ~1!. This term leads to a phase-velocity sh
for the sidebandq. Sinceuq5u0 in the condition of negli-
gible dispersion, this phase-velocity shift is the same for
the Raman sidebands. It is described by the phase fa
eibqu0z in the transformation~3!, and is compensated by th
phase-velocity shift of the Raman polarization wave. T
explains why the effective Hamiltonian~5! for the propaga-
tion of the photon operatorsb̂q does not contain any Stark
shift terms. Such terms are also absent in the effec
Hamiltonians for the propagating quantum fields genera
in the parametric processes using classical nonresonant p
fields @19#.

We assume that the bandwidth of the generated Ra
spectrum is small compared to the characteristic probe
quencyv0. In this case, theq dependence of the couplin
parametersgq can be neglected, that is, we havegq5g0
5N\v0d0r0 /e0. With this assumption, we find the follow
ing solution to Eq.~4!:

b̂q~ t !5(
q8

ei (q2q8)p/2Jq2q8~2g0t !b̂q8~0!. ~6!

Here,Jk is thekth-order Bessel function. The expression~6!
for the output field operators is a generalization of t
Bessel-function solution obtained earlier for the classi
fields @7,8#. The number of generated Raman sideband
characterized by the effective interaction time 2g0t or,
equivalently, by the effective medium lengthkL, wherek
52g0 /c52\Nv0d0r0 /e0c. The coefficientk characterizes
the strength of the parametric coupling and is proportiona
the prepared Raman coherencer0, that is, to the intensities
of the driving laser fields. The Bessel functionsJk(kL) are
the transmission (k50) and scattering (k5” 0) coefficients
for the Raman sidebands, similar to the transmission
reflection coefficients of a conventional beam splitter. T
assumption of limited bandwidth requireskL!v0 /vm , that
is, (2\/e0c)Nvmd0r0L!1 @7,8#.
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III. SINGLE-MODE QUANTUM INPUT

In this section, we consider the case where the input pr
field has a single carrier frequencyv0. In other words, we
assume that the sidebandq50 is initially prepared in a quan
tum stater̂ in

(0) and the other sidebands are initially in th
vacuum state. The density matrix of the initial state of t
fields is given by

r̂ in5 r̂ in
(0)

^ )
qÞ0

~ u0&^0u!q . ~7!

A. Autocorrelation functions

We study the autocorrelations of photons in the genera
Raman sidebands. We use Eq.~6! and apply the initial den-
sity matrix ~7! to calculate the normally ordered momen

^b̂q
†nb̂q

n& of the photon-number operatorsn̂q5b̂q
†b̂q . The re-

sult is

^b̂q
†nb̂q

n&5Jq
2n~kL !^b̂0

†n~0!b̂0
n~0!&. ~8!

In particular, the mean photon numbers of the sidebands
given by

^n̂q&5Jq
2~kL !^n̂in&. ~9!

Here,n̂in5b̂0
†(0)b̂0(0) is the photon-number operator for th

input field. Thenth-order autocorrelation functions of th
sidebands are defined byGq

(n)5^b̂q
†nb̂q

n&2^b̂q
†b̂q&

n. From
Eqs.~8! and ~9!, we find

Gq
(n)5Jq

2n~kL !G in
(n) , ~10!

where G in
(n)5^b̂0

†n(0)b̂0
n(0)&2^b̂0

†(0)b̂0(0)&n is the
nth-order autocorrelation function of the input field.

Equations~9! and~10! indicate that, when we increase th
effective medium lengthkL or the sideband orderq, the
mean photon number̂n̂q& and the autocorrelation functio
Gq

(n) undergo oscillations as described by even powers of
Bessel functionJq(kL). Such oscillatory behavior is illus
trated in Fig. 2. When the sideband orderq is higher, the
onset of^n̂q& occurs later@see Fig. 2~a!# and hence so doe
the onset ofGq

(n) @see Fig. 2~c!#. For a fixed orderq, both

^n̂q& andGq
(n) reach their largest values at the same optim

medium lengthLq5xq /k, wherexq is the position of the
first peak of Jq(x). The higher the sideband orderq, the
larger is the optimal lengthLq and the smaller are the max
mal output values of̂ n̂q& andGq

(n) @see Figs. 2~a! and ~c!#.

Figures 2~b! and~d! show that̂ n̂q& andGq
(n) are substantially

different from zero only in the region whereuqu is not too
large compared tokL. For a givenkL, both ^n̂q& andGq

(n)

achieve their maximal values atq'kL.
The normalizednth-order autocorrelation functions of th

sidebands are defined bygq
(n)5^b̂q

†nb̂q
n&/^b̂q

†b̂q&
n. These

functions characterize the overall statistical properties, s
as sub-Poissonian, Poissonian, or super-Poissonian ph
3-3
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LE KIEN, PATNAIK, AND HAKUTA PHYSICAL REVIEW A 68, 063803 ~2003!
statistics, regardless of the mean photon number. Unlike

mean photon number̂n̂q& and the autocorrelation functio
Gq

(n) , the normalized autocorrelation functiongq
(n) does not

oscillate when we change the effective medium lengthkL
or the sideband orderq. Indeed, with the help of Eq.~8!,
we find @9# gq

(n)5gin
(n) , where gin

(n)5^b̂0
†n(0)b̂0

n(0)&/

^b̂0
†(0)b̂0(0)&n. Thus the generated sideband fields and

probe field have the same normalized autocorrelation fu
tions, which are independent of the evolution time and
solely determined by the statistical properties of the in
field. In other words, the normalized autocorrelation fun
tions of the probe field do not change during the parame
beating process and are precisely replicated into the com
generated sidebands. Such a replication of the normal
autocorrelation characteristics can be called autocorrela
multiplexing. This result is in agreement with the expe
ments on replication of multimode laser radiation@2# and
broadband incoherent light@3#. The ability of the Raman
medium to replicate the autocorrelation characteristics
similar to that of a conventional beam splitter@19#.

It is not surprising that the normalized autocorrelati
functions of the probe field are replicated into the sideba
in the parametric beating process. Such a replication is p
sible because the medium is far off resonance and the q
tum probe field is weak compared to the driving fields. U
der these two conditions, the photon annihilation opera
are linearly transformed as described by the linear differ
tial equation~4!. This equation shows that the photon an
hilation operators are not mixed up with the creation ope
tors, and therefore the evolution of the annihilation operat
is linear with respect to the initial annihilation operators.

FIG. 2. Mean photon number^n̂q& ~first row! and second-orde
autocorrelation functionGq

(2) ~second row!, both scaled to their ini-
tial values for the probe field, as functions of the effective medi
lengthkL ~first column! and the sideband orderq ~second column!.
In ~a! and ~c!, the sideband order is 0~solid line!, 1 ~dashed line!,
and 5~dotted line!. In ~b! and ~d!, the effective medium length is
kL55. In ~c!, we have amplifiedG1

(2)/G in
(2) ~dashed line! and

G5
(2)/G in

(2) ~dotted line! by five and ten times, respectively. In~b! and
~d!, the negative side of theq axis is not shown because the fun
tions plotted are symmetric inq.
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B. Cross-correlation functions

We study the correlations between the generated Ra
sidebands. For two different sidebandsk and l (k5” l ), we
have

^n̂kn̂l&5Jk
2~kL !Jl

2~kL !^n̂in~ n̂in21!&. ~11!

The cross-correlation function for the two sidebands is
fined by Gkl

(2)5^n̂kn̂l&2^n̂k&^n̂l&. Using Eqs.~9! and ~11!,
we find

Gkl
(2)5Jk

2~kL !Jl
2~kL !G in

(2) . ~12!

When we extendGkl
(2) for k5 l , we haveGkk

(2)5Gk
(2) . Accord-

ing to Eq.~12!, the cross-correlation functionGkl
(2) oscillates

when we change the effective medium lengthkL or the side-
band ordersk andl. Such oscillatory behavior is illustrated i
Fig. 3.

The normalized cross-correlation function is defined
gkl

(2)5^n̂kn̂l&/(^n̂k&^n̂l&). Unlike the functionGkl
(2) , the nor-

malized functiongkl
(2) does not oscillate. Indeed, we find th

relation @9# gkl
(2)5gq

(2)5gin
(2) . Thus the normalized cross

correlation functionsgkl
(2) for all possible sideband pairs (k,l )

are equal to each other, to the normalized second-order

FIG. 3. Cross-correlation functionGkl
(2) , scaled with the second

order autocorrelation function of the input field, as a function of~a!
the effective medium lengthkL and~b! the sideband orderl. Here,
the sideband orderk is fixed to 1. In~a!, the sideband orderl is 0
~solid line!, 2 ~dashed line!, and 5~dotted line!. In ~b!, the effective
medium length iskL55. In ~b!, the negative side of thel axis is
not shown because the function plotted is symmetric with respec
the sideband orders.
3-4
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MULTIORDER COHERENT RAMAN SCATTERING OF A . . . PHYSICAL REVIEW A68, 063803 ~2003!
tocorrelation functiongq
(2) for each sidebandq, and to the

normalized second-order autocorrelation functiongin
(2) of the

input field. Whengin
(2)5” 1, that is, when the photon statistic

of the input field is non-Poissonian, we obtaingkl
(2)5” 1, a

signature of cross correlations between the sidebands. S
correlations are generated although the sidebands are ini
not correlated. In particular, if the input field has a su
Poissonian photon statistics (gin

(2),1), anticorrelations be-
tween the sidebands (gkl

(2),1) will be generated. Note tha
the conventional beam splitters also have a similar prop
@19#.

C. Squeezing

We examine the squeezing of the field quadratures. A fi
quadrature of theqth mode is defined byX̂q5b̂q

†eiw

1b̂qe2 iw. We say that theqth mode is in a squeezed state
there exists such a phasew that ^(DX̂q)2&,1 or, equiva-
lently, Sq,0, whereSq5^(DX̂q)2&21. The squeezing de
gree is measured by the quantity2Sq . Note that the relation
between the squeezing factorSq and the conventiona
squeezing parameterr q is Sq5e22r q21. In terms of the
photon operators, we have

Sq52@^b̂q
†b̂q&2^b̂q

†&^b̂q&#1@~^b̂q
2&2^b̂q&

2!e22iw1c.c.#.
~13!

With the help of Eqs.~6! and ~7!, we find

Sq~w1qp/2!5Jq
2~kL !Sin~w!. ~14!

Here,Sin(w) denotes the squeezing factor for thew quadra-
ture of the input field. Equation~14! shows that, ifSin(w)
,0, thenSq(w1qp/2),0. Thus the squeezing of the inpu
field can be transferred to the comb of generated sideba
by the parametric beating process. The squeezing fa
Sq(w1qp/2) of the sidebandq is reduced from the inpu
squeezing factorSin(w) by the factorJq

2(kL). Unlike the
case of linear directional couplers and beam splitters@18#,
the squeezing degree of the probe field cannot be comple
transferred to the Raman sidebands. This difference is du
the fact that the linear directional coupler and the beam s
ter involve only two output modes while the multiorder c
herent Raman process involves many more output mo
Note that the phase of the squeezed quadrature of the
band q changes byqp/2. This means that the squeez
quadrature of a generated even-order~odd-order! Raman
sideband is parallel~orthogonal! to that of the input field.

We introduce the normalized squeezing factorsq

5Sq /^n̂q&. We find the relation@9# sq(w1qp/2)5sin(w),
wheresin(w)5Sin(w)/^n̂in& is the normalized squeezing fac
tor for the input field. Thus besides a shift of the quadrat
phase angle, the normalized squeezing factor for the in
field is replicated into the comb of generated sidebands. T
result can be used to convert squeezing to a new freque
i.e., to perform squeezing multiplexing. The relationSq(w
1qp/2)/Sin(w)5^n̂q&/^n̂in& indicates that thekL andq de-
pendences of the squeezing factorSq(w1qp/2) are similar
06380
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to those of the mean photon number^n̂q& @see Figs. 2~a! and
~b!#. Note that, when the input field is in a coherent state,
sideband fields have no squeezing. This property is simila
the case of four-wave mixing but is unlike the case of deg
erate parametric down-conversion, where perfect squee
can in principle be obtained.

D. Photon distributions and quantum states
of the output fields

We calculate the photon distributions and quantum sta
of the output fields. We first consider the case where
input sideband 0 is initially prepared in a Fock stateuN&0.
The input state of the total field is written as

uC in&5uN&0)
qÞ0

u0&q5
1

AN!
b̂0

†N~0!u0&. ~15!

The output state of the total field is given byuCout&
5(N!) 21/2b̂0

†N(2L/c)u0&. With the help of Eq.~6!, we find

uCout&5(
$nq%

C$nq%
(N) u$nq%&. ~16!

Here,

C$nq%
(N) 5A N!

)
q

nq!
)

q
eiqnqp/2Jq

nq~kL ! ~17!

for (qnq5N, andC$nq%
(N) 50 for (qnq5” N. WhenN5” 0 and

kL5” 0, the output state~16! is, in general, a multipartite
inseparable~entangled! state. In a particular case where th
input state of the probe field is a single-photon state, i.e.N
51, Eqs. ~16! and ~17! yield uCout&5uWR&
[(qeiqp/2Jq(kL)u1q&. Here,u1q& is the quantum state of a
single photon in the sidebandq with no photons in the othe
sidebands.

With the help of the above result, we can easily calcul
the output stater̂out generated from an arbitrary stater̂ in

(0) of
the input mode 0. For the joint photon distribution of th
output fieldsPS($nq%)5^$nq%ur̂outu$nq%&, we find

PS~$nq%!5pin~N!
N!

)
q

nq!
)

q
Jq

2nq~kL !, ~18!

wherepin(n)5 0^nur̂ in
(0)un&0 is the photon distribution of the

input mode, andN5(qnq is the total number of photons in
the modes. From Eq.~18!, the marginal photon distribution
pq(n) for the sidebandq is obtained as

pq~n!5
Jq

2n~kL !

n! (
k50

`
~n1k!!

k!
@12Jq

2~kL !#kpin~n1k!.

~19!
3-5
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Clearly,pq(n) is in general different frompin(n). When the
probe field is initially in a Fock stateuN&0, we find

pq~n!5Jq
2n~kL !@12Jq

2~kL !#N2n
N!

n! ~N2n!!
~20!

for n<N, andpq(n)50 for n.N.
When the input sideband 0 is initially in a coherent st

ua&0, the state of the fields at the output is given byuCout&
5u$aq(L/c)%&[)quaq(L/c)&q . Here, uaq(L/c)&q is a co-
herent state of theqth mode, with the amplitudeaq(L/c)
5aJq(kL)eiqp/2. Thus a probe field in a coherent state c
produce sideband fields that are also in coherent states
have different frequencies. Such a process can be ca
coherent-state multiplexing. The ability of the Raman m
dium to replicate a coherent state is similar to that of a c
ventional beam splitter@19#.

When the input sideband 0 is initially in an incohere
mixed state

r̂ in
(0)5(

n
pin~n!~ un&^nu!0 , ~21!

the density matrix of the output state of the fields is found
be

r̂out5 (
N,$nq%,$nq8%

pin~N!C$nq%
(N) C

$nq8%
(N)* u$nq%&^$nq8%u. ~22!

The reduced density matrixr̂out
(q) for an arbitrary sidebandq is

r̂out
(q)5(npq(n)(un&^nu)q . As seen, the reduced state of ea

sideband is also an incoherent superposition of Fock sta
Note that, in general, we haver̂out5” )qr̂out

(q) .

IV. TWO-MODE QUANTUM INPUT

A far-off-resonance medium with a substantial Raman
herence, prepared by two strong driving fields, can e
ciently mix and modulate the quantum statistical proper
of the sideband fields. To understand this mechanism,
study the case where the input probe field has two car
frequencies,v0 andvn5v01nvm , separated by an intege
multiple n of the Raman modulation frequencyvm . We as-
sume that the Raman sidebands 0 andn are initially in inde-
pendent quantum statesr̂ in

(0) andr̂ in
(n) , respectively, while the

other sidebands are initially in the vacuum state. The den
matrix of the initial state of the fields is given by

r̂ in5 r̂ in
(0)

^ r̂ in
(n)

^ )
qÞ0,n

~ u0&^0u!q . ~23!

Here,n5” 0.

A. Modulation of photon statistics

We study the mixing and modulation of photon statist
of the sideband fields. When we use Eq.~6! to calculate the
mean photon numbers of the sidebands generated from
initial state~23!, we find
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^n̂q&5Jq
2~kL !^b̂0

†~0!b̂0~0!&1Jq2n
2 ~kL !^b̂n

†~0!b̂n~0!&

1Jq~kL !Jq2n~kL !@e2 inp/2^b̂0
†~0!&^b̂n~0!&1c.c.#.

~24!

Furthermore, the second-order autocorrelation functionGq
(2)

5^b̂q
†2b̂q

2&2^b̂q
†b̂q&

2 of the sidebandq is found to be

Gq
(2)5Jq

4~kL !G0
(2)~0!1Jq2n

4 ~kL !Gn
(2)~0!

12Jq
2~kL !Jq2n

2 ~kL !D01@e2 inpJq
2~kL !Jq2n

2 ~kL !D1

12e2 inp/2Jq
3~kL !Jq2n~kL !D2

12e2 inp/2Jq~kL !Jq2n
3 ~kL !D31c.c.#, ~25!

where

D05^b̂0
†~0!b̂0~0!&^b̂n

†~0!b̂n~0!&2u^b̂0~0!&u2u^b̂n~0!&u2,

D15^b̂0
†2~0!&^b̂n

2~0!&2^b̂0
†~0!&2^b̂n~0!&2,

D25^b̂n~0!&@^b̂0
†2~0!b̂0~0!&2^b̂0

†~0!b̂0~0!&^b̂0
†~0!&#,

D35^b̂0
†~0!&@^b̂n

†~0!b̂n
2~0!&2^b̂n

†~0!b̂n~0!&^b̂n~0!&#.
~26!

The first two terms on the right-hand sides of Eqs.~24! and
~25! are the individual contributions of the input sidebands
andn. The other terms result from the interference betwe
the two interaction channels.

Unlike the case of single-mode input, in the case of tw
mode input, the normalized second-order autocorrela
functiongq

(2)511Gq
(2)/^n̂q&

2 depends, in general, onkL and
q. Such behavior is illustrated in Fig. 4. WhenkL is such
that Jq(kL)50 or Jq2n(kL)50, we havegq

(2)5gn
(2)(0) or

gq
(2)5g0

(2)(0), respectively. Consequently, if the two inpu
sidebands have different normalized autocorrelation fu
tions, i.e.,g0

(2)(0)5” gn
(2)(0), then, with increasingkL or q,

the normalized autocorrelation functiongq
(2) will oscillate be-

tween the valuesg0
(2)(0) andgn

(2)(0) ~see Fig. 4!. In particu-
lar, if the photon statistics of one of the input fields, e.g., t
sideband 0, is sub-Poissonian@g0

(2)(0),1# and that of the
other input field is super-Poissonian@gn

(2)(0).1#, then each
generated sidebandq will have complex statistical propertie
and will oscillate between sub-Poissonian@gq

(2),1# and
super-Poissonian@gq

(2).1# photon statistics~see Fig. 4!. Us-
ing the prepared Raman coherencer0 or the medium length
L as a control parameter, we can switch a sideband field f
super-Poissonian photon statistics to sub-Poissonian or
versa. Similar modulation of photon statistics has been d
onstrated in a linear directional coupler@18#.

B. Modulation of squeezing

We study the mixing and modulation of the squeezi
properties of the sideband fields. When we use Eq.~6! to
calculate the squeezing factor~13! for the sidebands gener
ated from the initial state~23!, we find
3-6
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Sq~w1qp/2!5Jq
2~kL !S0

(in)~w!1Jq2n
2 ~kL !Sn

(in)~w1np/2!,
~27!

whereS0
(in) and Sn

(in) are the initial squeezing factors of th
sidebands 0 andn, respectively. As seen, the squeezing fa
tor Sq of the sidebandq is a superposition of the inpu
squeezing factorsS0

(in) and Sn
(in) , taken with the quadrature

phase shifts2qp/2 and 2(q2n)p/2, respectively, and
weighted by the factorsJq

2(kL) andJq2n
2 (kL), respectively.

Unlike the case of single-mode input, in the case of tw
mode input, the normalized squeezing factorsq(w1qp/2)
5Sq(w1qp/2)/^n̂q& varies, in general, withkL andq. Such
behavior is illustrated in Fig. 5. WhenkL is such that
Jq(kL)50 or Jq2n(kL)50, we have sq(w1qp/2)
5sn

(in)(w1np/2) or sq(w1qp/2)5s0
(in)(w), respectively.

Consequently, if the normalized squeezing factorss0
(in)(w)

andsn
(in)(w1np/2) of the two input fields are different, th

normalized squeezing factorsq(w1qp/2) will oscillate be-
tween the valuess0

(in)(w) and sn
(in)(w1np/2). In particular,

if one of the two input fields, e.g., the sideband 0,
squeezed@s0

(in)(w0),0# and the other input field is no
squeezed@sn

(in)(w).0#, then, each generated sidebandq will
have complex squeezing properties and will oscillate
tween a squeezed state@sq(w01qp/2),0# and a non-

FIG. 4. Normalized second-order autocorrelation functiongq
(2)

as a function of~a! the effective medium lengthkL and ~b! the
sideband orderq in the case of two-mode input. The input sideba
0 is initially prepared in a Fock state, with five photons. The inp
sideband 1 is initially prepared in a thermal state, with 1 photon
average. In~a!, the sideband order is21 ~solid line! and 2~dashed
line!. In ~b!, the effective medium length iskL55.
06380
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squeezed state@sq(w).0#, see Fig. 5. Using the prepare
Raman coherencer0 or the medium lengthL as a control
parameter, we can switch a sideband field from a n
squeezed state to a squeezed state or vice versa. Note
similar result has been obtained for a linear directional c
pler @18#.

We analyze a particular case where the sideband 0 is
tially in a squeezed vacuum stateuj&05exp@(j* b̂0

2

2jb̂0
†2)/2#u0&0 and the sidebandn is initially in a coherent

stateua&n . Here,j5reiu is a complex number, the modulu
r 5uju characterizes the amount of squeezing, and the ph
angleu characterizes the alignment of the squeezed vacu
state in phase space. Then, we find from Eq.~24! the mean
photon number

^n̂q&5Jq
2~kL !sinh2r 1Jq2n

2 ~kL !uau2. ~28!

We find from Eq.~27! that the maximal squeezing of th
sidebandq occurs in thewq quadrature wherewq5u/2
1qp/2. The corresponding value of the squeezing factor

Sq~wq!5Jq
2~kL !~e22r21!. ~29!

t
n

FIG. 5. Normalized squeezing factorsq(qp/2) as a function of
~a! the effective medium lengthkL and~b! the sideband orderq in
the case of two-mode input. The input sideband 0 is initially p
pared in a squeezed vacuum state, with the squeezing paramer
51 and the phaseu50. The input sideband 1 is initially prepare
in a thermal state, with the mean photon number 1. In~a!, the
sideband order is21 ~solid line! and 2 ~dashed line!. In ~b!, the
effective medium length iskL55.
3-7



he
th
in
e
ch
te
d

a
s

si

pu

ee
ze

e-
an
t

,
e

16%
m a
tput
eez-
ffer-

en
r-
ume
en-
ds

ies
ut

e
he
in
r

e-

kes
1.

g

ez
on
p
r

LE KIEN, PATNAIK, AND HAKUTA PHYSICAL REVIEW A 68, 063803 ~2003!
As seen from Eq.~29!, squeezing can be transferred from t
initial squeezed vacuum state of the sideband 0 to the o
sidebands. The squeezing factors of the sidebands are
pendent of the amplitudea of the initial coherent state of th
sidebandn. Meanwhile, the mean photon number of ea
sideband is governed not only by the squeezing paramer
of the initial state of the sideband 0 but also by the amplitu
a of the initial state of the sidebandn. Using this fact, we
can manipulate to get optimized mean photon numbers
squeezing degrees of the sideband fields at the output a
requirement. In particular, we can convert squeezing from
weak field to a much stronger field. To illustrate this pos
bility, we plot in Fig. 6 the squeezing factorSq(qp/2) and
the mean photon number^n̂q& as functions of the effective
medium lengthkL for the parametersr 51, u50, n51,
anda520. In this case, the most negative value of the in
squeezing factorS0

(in)(w) is achieved atw50 and is given by
S0

(in)(0)5e22r21>20.86, indicating the squeezing degr
86%. The mean photon number of the input squee
vacuum state iŝ n̂0(0)&5sinh2r>1.38, rather small. The
solid lines in Fig. 6 show that the sideband 0, initially pr
pared in a weak squeezed vacuum state, can be signific
enhanced while keeping its squeezing degree substan
Meanwhile, the dashed lines show that, forkL51.84, the
sideband 1, initially prepared in a strong coherent state
squeezed by about 29% and has the mean photon numb
about 41. Similarly, the dotted lines show that, forkL

FIG. 6. ~a! Squeezing factorSq(qp/2) and ~b! mean photon

number^n̂q& as functions of the effective medium lengthkL in the
case where the sideband 0 is initially prepared in a weak sque
vacuum state and the sideband 1 is initially prepared in a str
coherent state. The parameters for the initial states of the in
sidebands arer 51, u50, anda520. The curves are calculated fo
the sidebands 0~solid line!, 1 ~dashed line!, and 3~dotted line!.
06380
er
de-

r
e

nd
per
a
-

t

d

tly
ial.

is
r of

54.2, a generated new sideband 3 is squeezed by about
and has the mean photon number of about 39. Thus, fro
weak squeezed field at the input, we can obtain other ou
squeezed fields that have smaller but still substantial squ
ing degrees, much larger mean photon numbers, and di
ent frequencies.

C. Two-photon interference

We show the possibility of quantum interference betwe
the probability amplitudes for a pair of photons with diffe
ent frequencies in the coherent Raman process. We ass
that the sidebands 0 and 1 are initially prepared in indep
dent single-photon states. This initial condition correspon
to the situation where two photons with different frequenc
v0 and v1 are incident into the Raman medium. The inp
state of the fields can be written as

uC in&5u1&0u1&1 )
qÞ0,1

u0&q5b̂0
†~0!b̂1

†~0!u0&. ~30!

The output state of the fields is given byuCout&5b̂0
†

(2L/c)b̂1
†(2L/c)u0&. With the help of Eq.~6!, we find

uCout&52 iA2(
q

eiqpJq~kL !Jq21~kL !u2q&

2 i(
k, l

ei (k1 l )p/2@Jk~kL !Jl 21~kL !

1Jl~kL !Jk21~kL !#u1k1l&. ~31!

Here, the Fock stateu2q& is the state of two photons in th
sidebandq with no photons in the other sidebands, and t
Fock stateu1k1l& is the state in which there is one photon
each of the sidebandsk and l but no photons in the othe
sidebands.

The probability for finding two photons in the sidebandq
is given byWq

(2)52Jq
2(kL)Jq21

2 (kL). The joint probability
for finding one photon in each of the sidebandsk and l
(kÞ l ) is

Wkl5@Jk~kL !Jl 21~kL !1Jl~kL !Jk21~kL !#2. ~32!

The probabilityWq
(1)5( lÞqWql for having one and only one

photon in the sidebandq is Wq
(1)5Jq

2(kL)1Jq21
2 (kL)

24Jq
2(kL)Jq21

2 (kL). The mean photon number of the sid

bandq is ^n̂q&5Jq
2(kL)1Jq21

2 (kL). We find the relations

W2q
(2)5W11q

(2) , W2q
(1)5W11q

(1) , and^n̂2q&5^n̂11q&, which re-
flect the symmetry of the generated Stokes and anti-Sto
sidebands with respect to the two input sidebands 0 and

When we insertk50 and l 51 into Eq. ~32!, we obtain
the following expression for the joint probability for findin
one photon in each of the sidebands 0 and 1:

W015@J0
2~kL !2J1

2~kL !#2. ~33!

This expression shows that the joint probabilityW01 may
become zero at certain values ofkL ~see Fig. 7!. This is a

ed
g
ut
3-8



ne
e
m
d

ar
tw
is
-
-

e
tru

o-
an
e

t
t
-
as
ho
.

ce
th

ri
t

w

R
en

r
an

tion

t
lti-
r

r

eld
een

tate
nd

tter-
the
nt

tum
wo-

l-
d

t
ener-

tem

or

f
ng

MULTIORDER COHERENT RAMAN SCATTERING OF A . . . PHYSICAL REVIEW A68, 063803 ~2003!
signature of destructive interference between two chan
that form the stateu1011&. In the first channel, each of th
two photons individually transmits through the mediu
without any changes. The two-photon probability amplitu
for this channel isJ0(kL)J0(kL)5J0

2(kL). In the second
channel, both the photons are scattered from the prep
Raman coherence and exchange their sidebands. The
photon probability amplitude for this channel
eip/2J1(kL)eip/2J1(kL)52J1

2(kL). Since Raman scatter
ing produces a phase shift ofp/2 for each photon, the prob
ability amplitudes for the two channels~the transmission and
scattering of both the photons! are 180° out of phase. Th
interference between the two channels is therefore des
tive, yielding the output stateu1011& with the joint probabil-
ity W01 given above. When the medium lengthL is such that
J0

2(kL)5J1
2(kL), the interference between the two tw

photon amplitudes becomes completely destructive,
therefore the stateu1011& is removed from the output stat
~31!. We denote such a medium length byL f . The positions
of the zeros ofW01 depicted in Fig. 7 indicate that the firs
three values ofL f are given bykL f51.44, 3.11, and 4.68. I
is interesting to note thatkL f can be determined by an ex
periment using a single-mode input. Indeed, in the c
where a single sideband 0 is initially excited, the mean p
ton numbers of the generated sidebands are given by Eq~9!.
Therefore the effective medium lengthkL f corresponds to
the situation where the probe sideband 0 and its adja
sidebands61 have the same mean photon numbers at
output.

There exist literatures on two-photon interference in va
ous systems@15,16,23#. Two-photon interference in coheren
Raman scattering, described above, is an analogy of t
photon interference at a conventional beam splitter@15,19#.
We emphasize that two-photon interference in coherent
man scattering involves copropagating photons with differ
frequencies in a collinear scheme.

D. General relation between theP representations of the input
and output states

To be more general, we consider the case where an a
trary number of sidebands is initially excited. We find that

FIG. 7. Joint probabilityW01 for finding one photon in each o
the sidebands 0 and 1 as a function of the effective medium le
kL.
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arbitrary multimode coherent stateu$aq(0)%& of the input
fields produces a coherent stateu$aq(L/c)%& of the output
fields. Here, the output amplitudes$aq(L/c)% are linearly
transformed from the input amplitudes$aq(0)% as given by

aq~L/c!5(
q8

ei (q2q8)p/2Jq2q8~kL !aq8~0!. ~34!

Consequently, the diagonal coherent-state representa
Pin($aq%) of an arbitrary input quantum stater̂ in determines
the representationPout($aq%) of the output stater̂out via the
equation

Pout~$aq%!5Pin~$aq8%!. ~35!

Here, we have introduced the notation

aq85(
q8

e2 i (q2q8)p/2Jq2q8~kL !aq8 . ~36!

If the input stater̂ in is a classical state@19#, Pin($aq%)
must be non-negative and less singular than ad function, and
consequently so mustPout($aq%). In this case, the outpu
stater̂out is also a classical state. Moreover, since the mu
mode coherent stateu$aq%& is separable and the weight facto
Pout($aq%) is non-negative, the output stater̂out is, by defi-
nition, separable@24,25#. Therefore a necessary condition fo
the output fields to be in an inseparable~entangled! state or,
more generally, in a nonclassical state is that the input fi
state is a nonclassical state. A similar condition has b
derived for the beam splitter entangler@17#. Note that, in the
case where we use a single-mode input field withq50, pre-
pared in an arbitrary quantum state with the coherent-s
representationPin

(0)(a) ~the Stokes and anti-Stokes sideba
fields are initially in the vacuum state!, Eq. ~35! becomes
Pout($aq%)5Pin

(0)(a08))qÞ0d(aq8).

V. PRODUCTION OF A MULTIPARTITE ENTANGLED
COHERENT STATE

In this section, we show that the coherent Raman sca
ing can produce a multipartite entangled coherent state if
probe field is initially prepared in an odd or even cohere
state. Entangled coherent states@26–34# of the electromag-
netic field have attracted considerable interest for quan
communication purposes. Entanglement properties of t
mode entangled coherent states have been studied@27,28#. In
the context of these states, teleportation@28#, entanglement
purification@29#, Bell-inequality violations@30#, and univer-
sal quantum computing@31# have been discussed. The mu
tipartite generalizations@32# of entangled coherent states an
their photon statistical properties@33# have been examined. I
has been shown that entangled coherent states can be g
ated in schemes using a nonlinear interferometer@26,32# or a
double electromagnetically induced transparency sys
@34#.

We assume that the probe field is initially in an even
odd superposition of coherent states@35#

th
3-9
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LE KIEN, PATNAIK, AND HAKUTA PHYSICAL REVIEW A 68, 063803 ~2003!
uC in&05Nn~ ua&01nu2a&0), ~37!

i.e., a Schro¨dinger cat state, while the other sideband fie
are initially in the vacuum state. Here, we have introduc
the notationn561, where the plus and minus signs corr
spond to the even and odd coherent states, respectively.
normalization constant Nn is given as Nn5(2
12ne22uau2)21/2. Note that Schro¨dinger cat states have bee
produced in the microwave cavity field@36#, the center-of-
mass vibrational motion of a trapped ion@37#, and the radial
excitation of an electron in a Rydberg state@38#. A great
variety of methods have been proposed for generating Sc¨-
dinger cat states in the optical domain@39#.

For the input state~37!, we obtain the output state

uCout&5Nn@ u$aq%&1nu$2aq%&]. ~38!

Here, u$aq%& and u$2aq%& are multimode coherent state
with the amplitudes

aq5aJq~kL !eiqp/2. ~39!

Equation~38! stands for a multimode even or odd cohere
state @33#, which is also a multipartite entangled cohere
state@32#. Note that the multipartite entangled coherent st
studied in@32# involves a finite number of modes with equ
mode amplitudes. Meanwhile, the output state~38! involves
an infinite number of modes with a Bessel-function distrib
tion of mode amplitudes. Such a mode amplitude distribut
results from the coherent-Raman-scattering process. Un
the techniques based on a nonlinear interferometer@32# or a
double electromagnetically induced transparency sys
@34#, the Raman technique does not require multiparti
Bell-state measurements, and therefore is simple and
cient. In addition, the Raman technique allows us to gene
multipartite entanglement between the sideband fields w
different frequencies, unlike the nonlinear interferome
method@32#.

We examine the bipartite entanglement of the genera
multimode state~38!. We follow the procedures of Wang an
Sanders@32# to calculate the so-called concurrence@40#,
which is a measure of bipartite entanglement. We cons
the bipartite reduced density matrixr̂kl obtained from the
density matrixuCout&^Coutu by tracing out all sidebands ex
cept for the two sidebandsk and l ~with kÞ l ). Using Eq.
~38!, we find

r̂kl5Nn
2@ uak ,a l&^ak ,a l u1u2ak ,2a l&^2ak ,2a l u

1nQ~ uak ,a l&^2ak ,2a l u1u2ak ,2a l&^ak ,a l u!#,

~40!

where Q5exp(22uau212uaku212ualu2). For the bipartite
mixed state described by the density matrixr̂kl , the concur-
rence is defined as@40#

Ckl5max$l12l22l32l4,0%, ~41!

wherel1 , l2 , l3, andl4 are the square roots of the eige
values, in decreasing order, of the matrix
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R̂kl5 r̂kl~ ŝy^ ŝy!r̂kl* ~ ŝy^ ŝy!. ~42!

Here,ŝy5( i
0

0
2 i) is a Pauli matrix in the standard basis of

qubit, andŝy^ ŝy is the spin-flip operator for two qubits.
We choose an orthogonal qubit basis$u0q&,u1q&% for each

sidebandq. We distinguish this basis from the Fock state
employed earlier, by using boldface symbols. For the si
band k, the qubit basis is defined asu0k&[uak& and u1k&
[(u2ak&2pkuak&)/Mk . For the sidebandl, the qubit basis
is defined asu0l&[u2a l& and u1l&[(ua l&2pl u2a l&)/Ml .
Here, we have introduced the notationpq5e22uaqu2 andMq

5A12pq
2. It then follows that, for the sidebandk, one has

uak&5u0k& andu2ak&5Mku1k&1pku0k&, while, for the side-
bandl, one hasu2a l&5u0l& andua l&5Ml u1l&1pl u0l&. Then,
in the standard basis$u0k0l&,u0k1l&,u1k0l&,u1k1l&% of the two
qubits, Eq.~42! yields

R̂kl5Nn
4MkMlS 0 Akl Alk 2B

0 D Fl 2Alk

0 Fk D 2Akl

0 0 0 0

D , ~43!

where Akl5Mk@pl(11Q2)12nQpk#, B52(pk1nQpl)(pl

1nQpk), D5MkMl(11Q2), and Fk52nQMk
2 . The

square roots of the eigenvalues ofR̂kl are l15Nn
2MkMl(1

1Q), l25Nn
2MkMl(12Q), andl35l450. Then, we find

from Eq. ~41! that the concurrence isCkl52Nn
2MkMlQ.

When we use the explicit expressions forNn , Mq , andQ,
we obtain

Ckl5@exp~2uau2!1n#21$exp@4uau2Jk
2~kL !#21%1/2

3$exp@4uau2Jl
2~kL !#21%1/2. ~44!

Unlike the case of a finite number of modes with equ
mode amplitudes@32#, the expression~44! for the concur-
rence contains the Bessel functions, which result from
scattering amplitudes of the modes. It is clear from the
pression~44! that an odd coherent state (n521) of the in-
put can produce a larger bipartite entanglement than an e
coherent state (n51) can. In addition, when we increase th
medium lengthL or the sideband orderk or l, the concur-
renceCkl undergoes oscillations as described by the Bes
functionsJk(kL) andJl(kL), and tends to zero in the limi
L→`. One can show that 0<Ckl<1 ~for k5” l ), that is, the
state~38! does not possess more than one ebit of bipar
entanglement. For the higher sideband orders, the onse
generation of the sidebands occurs later and hence so
the onset of the entanglement between them.

For two conjugate anti-Stokes and Stokes sidebands~the
pair of sidebandsk and2k, wherekÞ0), Eq. ~44! yields

Ck,2k5
exp@4uau2Jk

2~kL !#21

exp~2uau2!1n
. ~45!
3-10
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Since J0
2(x)12(k51

` Jk
2(x)51, the set of the concurrence

Ck,2k for all possible conjugate-sideband pairs satisfies
following relation:

)
k51

`

@11~e2uau21n!Ck,2k#5exp$2uau2@12J0
2~kL !#%.

~46!

We denote byxk the value ofx at which the Bessel function
Jk(x) reaches its largest absolute value. Then, the con
renceCk,2k ~with kÞ0) reaches its largest value at the o
timal medium lengthLk5xk /k. The higher the sideband o
der k, the larger is the optimal lengthLk and the smaller is
the maximal value ofCk,2k .

In Fig. 8, we plot the conjugate-sideband concurren
Ck,2k as a function of the effective medium lengthkL.
Clearly, the maximum entanglement of the sideband p
(k,2k) is attained at the first peak of the Bessel functi
Jk(x). As seen from the figure and as can be shown ana
cally, in the case of odd coherent states, the amount of
tanglement between the sidebands decreases with the
crease of the probe field amplitude. In Figs. 8~a! and~b!, we
observe oscillations inCk,2k that are due to the dependen
of this quantity on the Bessel functionJk . However, such

FIG. 8. ConcurrenceCk,2k for different conjugate-sideban
pairs (k,2k) and for various values of the input probe field amp
tude a. The probe field is initially in an odd coherent state (n5
21). In ~c! we have amplifiedC2,22 and C5,25 by 20 and 200
times, respectively.
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oscillations are insignificant in Fig. 8~c!, where the probe
field amplitude is rather large.

In Fig. 9, we plot the concurrenceCk,l for various
asymmetric-order sideband pairs (kÞ6 l ). The most distinct
feature of this case as compared to the case of symm
~conjugate! pairs @Eq. ~45! and Fig. 8# is that the condition
for maximum entanglement is governed by the interfere
between the Bessel functions of different orders, and he
the first peak inCk,l need not be the absolute maximum for
given pair (k,l ). Furthermore, Fig. 9~b! shows that, for a
sideband pair (k,l ) with a givenk5” 0, the largest achievable
entanglement need not be obtained forl 50 ~the input probe
field!.

We evaluate the concurrenceCkl for an arbitrary sideband
pair (k,l ) in the limit of large uau. Under the conditions
uau,uaJk(kL)u,uaJl(kL)u@1, we find from Eq.~44! the es-
timate Ckl5exp$22uau2@12Jk

2(kL)2Jl
2(kL)#%. This expres-

sion says thatCkl tends to zero in the limit of largeuau.
In the limit uau!1, we expand the expression~44! into a

series ofuau and keep only the first nonvanishing term. In th
case ofn51 ~even coherent state!, we find the estimate
Ckl52uau2uJk(kL)Jl(kL)u, which tends to zero in the limit
uau→0. This asymptotic behavior is due to the fact that,
the limit uau→0, the even coherent state approaches
vacuum stateu0&. Meanwhile, in the case ofn521 ~odd
coherent state!, the value ofCkl in the limit uau→0 is Ckl
52uJk(kL)Jl(kL)u. This bipartite concurrence is nonzer
except for the medium lengths at which eitherJk(kL) or
Jl(kL) is zero. This nonzero asymptotic value is due to t
fact that, in the limituau→0, the odd coherent state of th
input field approaches the single-photon stateu1&, and con-
sequently the output field state approaches the stateuWR&

FIG. 9. ConcurrenceCk,l for various asymmetric-order sideban
pairs (k,l ) (kÞ6 l ). The pairs are~a! the probe and one of the
other sidebands and~b! the tenth anti-Stoke sideband and one of t
other sidebands. The probe field is initially in an odd coherent s
(n521), with the amplitudea50.1.
3-11
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[(qJq(kL)eiqp/2u1q&. Thus the multipartite entangled sta
uWR& can be generated by high-order coherent Raman s
tering of a single photon. This state is similar to the so-cal
W state@32,41#. Unlike the stateW, which is a symmetric
single-excitation superposition state of a finite number
qubits, the stateuWR& involves an infinite number of side
bands, weighted by the Bessel functions.

VI. CONCLUSIONS AND DISCUSSIONS

We have studied the quantum properties of multior
sidebands generated by the beating of a quantum probe
with a prepared Raman coherence in a far-off-resonance
dium. Under the conditions of negligible dispersion and li
ited bandwidth, we have derived a Bessel-function solut
for the sideband field operators. We have examined the q
tum properties of the sideband fields in the case of sin
mode quantum input. We have shown that, when we cha
the effective medium length or the Raman sideband or
the autocorrelation functions, the cross-correlation functio
the photon distributions, and the squeezing factors unde
oscillations governed by the Bessel functions. However,
normalized autocorrelation functions and normalized sque
ing factors of the probe field are not altered by the parame
beating process, and are replicated into the comb of ge
ated sidebands. Therefore the multiorder coherent Ra
process can be used to multiplex the statistical propertie
a quantum probe field into a broad comb of different f
quencies.

We have studied the mixing and modulation of phot
statistical properties in the case of two-mode quantum in
We have shown that the prepared Raman coherence an
medium length can be used as control parameters to swit
sideband field from one type of photon statistics to anot
v

r-

ta

ta

ys

.
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type, or from a nonsqueezed state to a squeezed state
vice versa. In addition, we can switch nonclassical proper
from one frequency to another frequency. We have shown
example of quantum interference between the probab
amplitudes for two photons with different frequencies.

We have investigated the bipartite entanglement of m
tiorder sidebands generated by the coherent Raman sca
ing of a quantum probe field prepared in an even or o
coherent state. We have shown that the concurrence for a
of conjugate sidebands reaches a maximum value at an
timal medium length that is determined by the medium c
herence and the Raman sideband order.

The ability of the far-off-resonance Raman medium
generate a broad comb of fields with similar quantum sta
tical properties and to switch the quantum statistical char
teristics of the radiation fields from one type to another ty
may find useful applications for high-performance optic
communication networks. In addition, two-photon interfe
ence in coherent Raman scattering may find various app
tions for high-precision measurements and also for quan
computation. We emphasize that the coupling between
Raman sidebands can be controlled by the magnitude of
prepared Raman coherence, that is, by the intensities of
driving fields. In a realistic far-off-resonance Raman m
dium, such as molecular hydrogen or deuterium vapor@5,6#,
solid hydrogen@7,8#, and rare-earth doped dielectrics@10#, a
large Raman coherence and, consequently, a large numb
Raman sidebands can be generated by the two-color a
batic pumping technique. In such a system, the generatio
a broad comb of high-order Raman sidebands with nonc
sical properties is, in principle, feasible. Therefore we exp
that the coherent-Raman-scattering technique using quan
fields will become a practical and efficient method for a wi
range of applications in nonlinear and quantum optics.
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