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Multiorder coherent Raman scattering of a quantum probe field
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We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium
with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a
Bessel-function solution for the sideband field operators. We analytically and numerically calculate various
guantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process
can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated
Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of
two-mode input. We show that the prepared Raman coherence and the medium length can be used as control
parameters to switch a sideband field from one type of photon statistics to another type, or from a nonsqueezed
state to a squeezed state and vice versa. We demonstrate that an even or odd coherent state of the quantum
probe field can produce a multipartite entangled coherent state. We show that the concurrence reaches its
maximal value at an optimal medium length that is determined by the magnitude of the Raman coherence and
the orders of the Raman sidebands.
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[. INTRODUCTION [7,8,11,12 and subcycle[13] pulses. The generation of
broad combs of Raman sidebands has always been examined
The parametric beating of a weak probe field with a pre-as a semiclassical problem. While classical treatments are
pared Raman coherence in a far-off-resonance medium hasifficient for many purposes, a quantum treatment is re-
been extensively studiedl—4]. It has been demonstrated quired when the statistical properties of the radiation fields
that multimode laser radiatidi2] and incoherent fluorescent are important. On the other hand, broad combs of Raman
light [3] can be replicated into Raman sidebands. Since gidebands with similar nonclassical properties and different
substantial molecular coherence can be produced by the twérequencies may find useful applications for high-
color adiabatic Raman pumping methidgd-8], the quantum  performance optical communication. Therefore it is intrigu-
conversion efficiency of the parametric beating techniquéng to examine the quantum aspects of high-order coherent
can be maintained high even for weak light with less thanRaman processes.
one photon per wave packEg8]. To describe the statistical In this paper, we study the multiorder coherent Raman
properties of a weak quantum probe and its first-order Stokescattering of a quantum probe field in a far-off-resonance
and anti-Stokes sidebands in the parametric beating procesaedium with a prepared coherence. We calculate various
a simplified quantum treatment has recently been performedquantum statistical characteristics of the sideband fields gen-
[9]. It has been shown that the statistical properties of therated from a single-mode quantum input, study the mixing
quantum probe can be replicated into the two sidebands neasind modulation of photon statistical properties in the case of
est to the input line, in agreement with the experimental obtwo-mode input, and investigate the generation of a multi-
servationg2,3]. partite entangled coherent state. Although the multiorder co-
However, many experiments have reported the observererent Raman scattering has many similarities with a con-
tions of ultrabroad Raman spectra with a large number ofentional beam splitter[14—-19, the two systems are
sidebandg2—6]. In the experiments with solid hydrogen different in physical nature and, most importantly, the former
[2,3], at least two anti-Stokes sidebands and two Stokes sidean produce a broad comb of sideband fields with different
bands have been observed. In the experiment with moleculdrequencies. Therefore, in this paper, we also make compari-
deuterium[6], a large Raman coherendp,,|=0.33 and son of our system with the conventional beam splitter as and
about 20 Raman sidebands, covering a wide spectral rangehen it is possible.
from near infrared through vacuum ultraviolet, have been Before we proceed, we note that, in related problems, the
generated. In rare-earth doped dielectrics with low Ramameneration of correlated photons using & andy(®) para-
frequency and long-lived spin coherence, a substantial Ranetric processes has been studi#8—20. The correlations
man coherencép,,|=0.25 and an extremely large number between the Stokes and anti-Stokes sidebands and the possi-
of sidebandgabout 16) can also be generatéd0]. Broad  bility of transferring a quantum state of light from one carrier
combs of Raman sideband2-6] have been intensively frequency to another carrier frequenayultiplexing have
studied because they may synthesize to subfemtosecomeen discussed for resonant systé@f.
The paper is organized as follows. In Sec. Il, we describe
the model and present the basic equations. In Sec. lll, we
*On leave from Department of Physics, University of Hanoi, Ha- study various quantum characteristics of the sideband fields
noi, Vietnam. Also at Institute of Physics, National Center for Natu-generated from a single-mode quantum input. In Sec. IV, we
ral Sciences and Technology, Hanoi, Vietnam. discuss the quantum properties of the sideband fields gener-
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driving fields all Raman sidebands are included. When we take the propa-
@ 1 @ gation equation for the classical Raman sidebdc] and
-1 0 replace the field amplitudes by the quantum operators, we
obtain
] ::*::" Iy R ~
F ol | By 9Eq . . .
— t = |:8q(quq+ dq—lpbaEq—l+ dqpaqu+l)-
Jz cat
\ 1)
E;p E oyt Here,u, andd, are the dispersion and coupling constants,

~~ o~~~ | Raman medium| ~~o~~m—

respectively. We have denotgd}=N% w,/€,c, whereNis
the molecular number density.

FIG. 1. Principle of the technique: Two classical laser fields Ve take all the sidebands to be sufficiently far from reso-
drive a Raman transition of molecules in a far-off-resonance mefance that the dispersion of the medium is negligible. In this
dium. The beating of a weak quantum probe field with the prepare@ase, we have,=u, andd,=d,. We write
Raman coherence produces new sideband fields. .

Pab= Po€XHi(Po— BmUoZ) ], 2

ated from a two-mode quantum input. In Sec. V, we study th§yhere py=|p,p| and Bm=N%wmn/€c, and assume that,

production of a mu_ltipartite entangled coherent state, angg #, are constant in time and space. We write the field
calculate the bipartite concurrence for the generated statgmplitudes in terms of the photon operators as
Finally, we present the conclusions in Sec. VI.

E = el (Batozado) 2hoq

Il. MODEL GOLA; 6q(Kat)eiK(Z_Ct)- 3)

We consider a far-off-resonance Raman medium showiere, L is the quantization length taken to be equal to the
schematically in Fig. 1. Leved with energyw, is coupled to  medium lengthA is the quantization transverse area taken to
level b with energyw,, by a Raman transition via intermedi- be equal to the beam areld, is a Bloch wave vector, and

ate levels that are not shown in the figure. We send a pair ogq(K,t) andBé(K,t) are the annihilation and creation opera-
long, strong, classical laser fields, with carrier frequencieqors for photons in the spectral modeand the spatial mode
w(_d% and wg‘) , and a short, weak, quantum probe fi&lg, K. Then, Eq.(1) yields

with one or several carrier frequencies, through the Raman

medium, along the direction. The timing and alignment of an . .

these fields are such that they substantially overlap with each —t ~1(9gbg-179g+1Pg+ 1), 4
other during the interaction process. The driving laser fields

are tuned close to the Raman transitex-b, with a small where g = (M/ €o) Wdopo- For the medium length
finite two-photon detuning$, but are far detuned from the | ' the evolution time ig=L/c. For simplicity, we restrict
upper electronic statgsf the molecules. We assume that all oy discussion to the case where each sideband field contains
the frequency components of the input probe field are SePasnly a single spatial mod@vith, e.g.,K=0). It follows from

rated by integer multiples of the Raman modulation fre-gq (4) that the total photon number is conserved in time.
quency wm=wp— wa— 4. The driving fields adiabatically Note that Eq.(4) represents the Heisenberg equation for the

produce a Raman coherengg, [7,8]. When the probe field  fie|ds that are coupled to each other by the effective interac-
propagates through the medium, it beats with the preparegon Hamiltonian

Raman coherence. Since the probe field is weak and short

compared to the driving fields, the medium state and the . ~ oy Y

driving fields do not change substantially during this step. H:_hz 9q+1(bgbg 11 Dg+1bg). ®)

The beating of the probe field with the prepared Raman co- K

herence leads to the generation of new sidebands in the totghe interaction between the sideband fields via the prepared
output fieldE,,. The frequencies of the sideband fielg  Raman coherence is analogous to the interaction between the
are given byo,=wo+qwy,, Whereq is integer andvg is @ transmitted and reflected fields from a conventional beam
carrier frequency of the input probe field. The rangeqof splitter [19]. The two systems have the same underlying
should be appropriate so that, is positive. The probe field physics: the fields are linearly transformed from the input
is taken to be not too short so that the Fourier-transformatiowalues. However, the two mechanisms are very different in
limited broadening is negligible. We assume that the prephysical nature. The most important difference between them
pared Raman coherengg, is substantial so that the spon- is that the two fields from the conventional beam splitter
taneous Raman process is negligible compared to the stimtrave the same frequency while the sideband fields in the
lated and parametric processes. Consequently, the quantuRaman scheme have different frequencies. In addition, the
noise can be neglected. Unlike RES], our model does not model Hamiltonian(5) involves an infinitely large number of
require any restriction on the magnitude of the coherence aRaman sidebands, separated by integer multiples of the Ra-
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man modulation frequencw,,. Despite these differences, lll. SINGLE-MODE QUANTUM INPUT

the model(5) can be called the multiorder Raman beam In this section, we consider the case where the input probe

spliter. : : . . field has a single carrier frequeney,. In other words, we
Though we are dealing with quantum fields, the effective ‘ '

Hamiltonian (5) does not contain any Stark-shift terms, un- assume that the sidebage- 0 s initially prepared in a quan-

L ~ O . . g .
like the case of an atom with a two-photon transition insidefum statep(s’ and the other sidebands are initially in the
an ideal Cav|ty[22] However, the dynamica| Stark shift is vacuum state. The denSIty matrix of the initial state of the
not neglected in our model. The Stark shift caused by thdields is given by
strong classical driving fields affects the magnitudes of the
Raman coherence,, and the level populations,, andpyy pin=pe [T (10)0])q- 7
[7,8]. When the dispersion is negligible, the phasegf is q#0
modulated in space by the facter #m'o? [see Eq.(2)],
which leads to a shift for the phase velocity of the Raman A. Autocorrelation functions

polarization wave. The Stark shift caused by the quantum ) _
We study the autocorrelations of photons in the generated

sideband field€, is small compared to that caused by the : S
q -
strong classical driving fields. Therefore it does not affect theRaman sidebands. We use K@) and apply the initial den

) . ) sity matrix (7) to calculate the normally ordered moments
medium state. The propagation®f can be described by an

Lngn ) S _ DT )
effective Hamiltonian that contains the Stark-shift term éz?t ?S‘1> of the photon-number operatong bqbq' The re
— S quqELE/2. The signature of the Stark shift is the term

i BUqEq in Eq. (1). This term leads to a phase-velocity shift (b!"bhy=J2"(xL)(b{"(0)bG(0)). (8)
for the sideband). Sinceu,=uo in the condition of negli-
gible dispersion, this phase-velocity shift is the same for alln particular, the mean photon numbers of the sidebands are
the Raman sidebands. It is described by the phase fact@iven by
e'Pqt? in the transformatior{3), and is compensated by the . .
phase-velocity shift of the Raman polarization wave. This (nq)zJé(KL)(nm>. 9)
explains why the effective Hamiltoniai®) for the propaga-
tion of the photon operatori?xq does not contain any Stark- Here,n;,=b{(0)by(0) is the photon-number operator for the
shift terms. Such terms are also absent in the effectivénput field. Thenth-order autocorrelation functions of the
Hamiltonians for the propagating quantum fields generatedjdebands are defined bpgn):<ﬁgnﬁg>_<ﬁgﬁq>n_ From
in the[paaametric processes using classical nonresonant pungiys. (8) and (9), we find
fields[19].

We assume that the bandwidth of the generated Raman rg“)zjg”(KL)ri(r:‘), (10
spectrum is small compared to the characteristic probe fre-
guencywg. In this case, they dependen_ce of the coupling \where Fi(r?)=<55“(0)68(0)>—(65(0)60(0»“ is  the
parametersy, can be neglected, that is, we haug=do  nth-order autocorrelation function of the input field.
=Nfiwodopo !/ €o- With this assumption, we find the follow-  gquationg(9) and(10) indicate that, when we increase the
ing solution to Eq(4): effective medium lengthkL or the sideband ordeq, the

mean photon numbdﬁq) and the autocorrelation function
R . , R Fg”) undergo oscillations as described by even powers of the
by(t) =2 €902, (2g4t)bg:(0). (6)  Bessel function],(xL). Such oscillatory behavior is illus-
a’ trated in Fig. 2. When the sideband ordgiis higher, the
onset of(ﬁq) occurs latefsee Fig. 2a)] and hence so does
Here, J, is thekth-order Bessel function. The expressigh  the onset of"{" [see Fig. &)]. For a fixed ordem, both
for the output field operators is a generalization of the(ng) andT'{"’ reach their largest values at the same optimal
Bessel-function solution obtained earlier for the classicaimedium lengthL,=X,/«, wherex, is the position of the
fields [7,8]. The number of generated Raman sidebands ifirst peak of J4(x). The higher the sideband order the
characterized by the effective interaction timeoR or,  larger is the optimal length, and the smaller are the maxi-
equivalently, by the effective medium lengitl, where mal output values ofﬁq> and an) [see Figs. @) and (0)].

=2¢go/c=2hNwydopo/€pc. The coefficientc characterizes _. A (n) .
the strength of the parametric coupling and is proportional td:_lgures 2b) and(d) show t.hat(nq> aquq are su_bstantlally
different from zero only in the region whetg| is not too

the prepared Raman coherengg that is, to the intensities ) A -
of the driving laser fields. The Bessel functiohgxL) are large compared taL. For a givenxL, both(ng) andI'

the transmissionk=0) and scatteringk#0) coefficients achieve their maX|maI values gt xL. . _

for the Raman sidebands, similar to the transmission and The normalizedhth-order autocorrelation functions of the

reflection coefficients of a conventional beam splitter. Thesidebands are defined bg(”=(b{"bg)/(biby)". These
assumption of limited bandwidth requiret <wy/w.,, that  functions characterize the overall statistical properties, such

is, (2] egC) Nwdopol <1 [7,8]. as sub-Poissonian, Poissonian, or super-Poissonian photon
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FIG. 2. Mean photon numbe{ﬁq> (first row) and second-order
autocorrelation functioﬂfgz) (second row, both scaled to their ini-
tial values for the probe field, as functions of the effective medium
lengthkL (first columr and the sideband ordgr(second column
In (a) and(c), the sideband order is (olid line), 1 (dashed ling
and 5(dotted ling. In (b) and (d), the effective medium length is
xL=5. In (c), we have amplifiedl{*/T?) (dashed ling and 200°"2 : 1 5 I
AT (dotted ling by five and ten times, respectively. (b) and Sideband order /

(d), the negative side of the axis is not shown because the func-

tions plotted are symmetric i. FIG. 3. Cross-correlation functiofi{?, scaled with the second-
order autocorrelation function of the input field, as a functioiapf

. . the effective medium lengtkL and(b) the sideband orddr Here,
statistics, regardless qf the mean photon number. Unlike th{?1e sideband ordek is fixed to 1. In(a), the sideband orddris 0
mean photon numbemn,) and the autocorrelation function (solid line), 2 (dashed ling and 5(dotted ling. In (b), the effective
Fg“), the normalized autocorrelation functi@/a“) does not  medium length iscL=5. In (b), the negative side of theaxis is
oscillate when we change the effective medium length  not shown because the function plotted is symmetric with respect to

or the sideband ordeq. Indeed, with the help of Eq@8), the sideband orders.
we find [9] g{V=g{’, where g{i=(b{"(0)bj(0))/
(b{(0)by(0))". Thus the generated sideband fields and the
probe field have the same normalized autocorrelation func- We study the correlations between the generated Raman
tions, which are independent of the evolution time and aréidebands. For two different sidebankiand I (k#1), we
solely determined by the statistical properties of the inpuhave

field. In other words, the normalized autocorrelation func- R ) 5 .~ -

tions of the probe field do not change during the parametric (nny) = Ji (kL) IF (kL) (Nin(Nin—1)). (1)
beating process and are precisely replicated into the comb of

generated sidebands. Such a replication of the normalizefine cross-correlation function for the two sidebands is de-
autocorrelation characteristics can be called autocorrelatiofined by I'{2)=(n,n,}—(n)(n,). Using Egs.(9) and (11),
multiplexing. This result is in agreement with the experi- we find

ments on replication of multimode laser radiatifi?] and

2/ (2
/52
o
=<

B. Cross-correlation functions

broadband incoherent lighB8]. The ability of the Raman I(&=02(kL)IZ (k)T (12)
medium to replicate the autocorrelation characteristics is
similar to that of a conventional beam splitfa9]. When we extend (® for k=1, we havel'(2)=T'{?) . Accord-

It is not surprising that the normalized autocorrelatloning to Eq.(12), the cross-correlation functioﬂ(kf) oscillates

functions of the probe field are replicated into the sidebands . . .
) . . SR when we change the effective medium length or the side-
in the parametric beating process. Such a replication is po

sible because the medium is far off resonance and the quasllt@l%ndgorderk andl. Such oscillatory behavior is illustrated in

tum probe field is weak compared to the driving fields. Un- . . L .

e L The normalized cross-correlation function is defined by
der these two conditions, the photon annihilation operators @) = SN ) - 2)
are linearly transformed as described by the linear differendki _:<”k”|>/(<_nk><(g|>)- Unlike the functionI'}j”, the nor-
tial equation(4). This equation shows that the photon anni-malized funct|(2)r1gk| zdoesznot oscillate. Indeed, we find the
hilation operators are not mixed up with the creation operaselation [9] gif’=g?’=g{?). Thus the normalized cross-
tors, and therefore the evolution of the annihilation operatorsorrelation functiong(?) for all possible sideband pairk,()
is linear with respect to the initial annihilation operators. are equal to each other, to the normalized second-order au-
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tocorrelation functionggz) for each sideband,, and to the to those of the mean photon numh{éla) [see Figs. @) and
normalized second-order autocorrelation funcigfl of the ~ (b)]. Note that, when the input field is in a coherent state, the
input field. Wheng(?# 1, that is, when the photon statistics Sideband fields have no squeezing. This property is similar to
of the input field is non-Poissonian, we obtagﬁ)qél’ a thecase of four_-wave mixing buf[ is unlike the case of dege_n-
signature of cross correlations between the sidebands. sufjjate parametric down-ponversmn, where perfect squeezing
correlations are generated although the sidebands are initialﬁfaln in principle be obtained.

not correlated. In particular, if the input field has a sub-

Poissonian photon statisticg{f’<1), anticorrelations be- D. Photon distributions and quantum states
tween the sidebandg{?’<1) will be generated. Note that of the output fields
the conventional beam splitters also have a similar property e calculate the photon distributions and quantum states
[19]. of the output fields. We first consider the case where the
input sideband 0 is initially prepared in a Fock stf .
C. Squeezing The input state of the total field is written as
We examine the squeezing of the field quadratures. A field 1
quadrature of theqth mode is defined byX,=ble'¢ |\Irin)=|N>0];[O |0)q= WBSN(OMO). (15)
q !

+ qu*i"’. We say that thgith mode is in a squeezed state if
there exists such a phasge that((Af(q)2><1 or, equiva-
lently, S,<0, wheresq=<(A5(q_)2>—1. The squeezing de-
gree is measured by the quantiyS,. Note that the relation
between the squeezing factd®, and the conventional
squeezing parameter, is quefzrq—l. In terms of the |\pout>:2 cgrﬁ')ﬂ{nq})_ (16)
photon operators, we have {ngt 1

The output state of the total field is given By,
=(N!) ~¥2%N(—L/c)|0). With the help of Eq(6), we find

Sq=2[(bibg) —(b{)(be) 1+ [((B5) —(bg)?)e #¢+ C'Ci]is) Here,

N!
With the help of Eqs(6) and(7), we find Cgr'}‘)}:
q

H eiqnqﬂIZng(KL) (17)
q
Syl 9+ qmI2)=J2(KL)Spn( ). (14 11 nd

Here,S;,(¢) denotes the squeezing factor for thequadra- _ (N) _
ture of the input field. Equatiofl4) shows that, ifS,(¢) for 2qng=N, andCtn =0 for E‘?”‘*#N' WheanéQ a”?’
<0, thenSy(@+qm/2)<0. Thus the squeezing of the input _KL#O, the output statél6) is, in ge_neral, a multipartite
field can be transferred to the comb of generated sidebanddSeparablgentangled state. In a particular case where the
by the parametric beating process. The squeezing factdpPut state of the probe field is a single-photon state, Ne.,
Sy(¢+qm/2) of the sidebandy is reduced from the input il' in/qu- (16) and (17) yield [Wou=|Wg)
squeezing factoS,,(¢) by the factord?(«L). Unlike the = >q® Jg(kL)[1q). Here,|1y) is the quantum state of a
case of linear directional couplers and beam splitfiagl, ~ Sindle photon in the sidebarpwith no photons in the other
the squeezing degree of the probe field cannot be completefjdePands. .
transferred to the Raman sidebands. This difference is due to With the help of the above result, we can easily calculate
the fact that the linear directional coupler and the beam splitthe output statg,, generated from an arbitrary staify’ of

ter involve only two output modes while the multiorder co- the input mode 0. For the joint photon distribution of the
herent Raman process involves many more output mod_esmput fieIdsPE({nq})=<{nq}|;30utj{nq}), we find

Note that the phase of the squeezed quadrature of the side-

band g changes bygw/2. This means that the squeezed N! on
quadrature of a generated even-ordedd-ordey Raman Ps({ng}) =pin(N) 11 Jg kL), (18
sideband is parallglorthogonal to that of the input field. H ng! a

We introduce the normalized squeezing factsy q

=S,/(ng). We find the relatior{9] sq(¢+qm/2)=su(¢),
wheresi,(¢) = Sin(¢)/{ni,) is the normalized squeezing fac- . . :
tor for the input field. Thus besides a shift of the quadraturdNPut mode, andN==2nq is the total number of photons in
phase angle, the normalized squeezing factor for the inpdf'€ modes. From Ed18), the marginal photon distribution
field is replicated into the comb of generated sidebands. ThiBa(n) for the sideband is obtained as

result can be used to convert squeezing to a new frequency,

wherepi,(n) = o(n|p{?|n), is the photon distribution of the

i.e., to perform squeezing multiplexing. The relati I(kL) & (n+k)!

periorm siueezing mimpexng BHe  pym =2 S T 1 g2l py(n K.
+qm/2)/Sih(¢) =(ng)/(n;p) indicates that thecL andq de- nl &o kK
pendences of the squeezing fac8( ¢+ qw/2) are similar (19
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Clearly, py(n) is in general different fronp;,(n). When the A= 32 kWD 0YDa(0)) + J2 LYbBT(0Vb (0
probe field is initially in a Fock statfN)o, we find () =Jg(xL){bo(0)bo(0)) +Jq—, (L )(b,(0)b,(0))

NI +J34(xkL)Jq- (k)& "™Xb{(0))(b,(0))+c.c].
Pa(M =3¢ (kL1 = Jg(xL) N " gy (20 (24

for n<N, andpy(n)=0 for n>N. Furthermore, the second-order autocorrelation funcﬂﬁﬁ*\

When the input sideband 0 is initially in a coherent state=(b{?b%) —(b{b)? of the sideband is found to be
|@)o, the state of the fields at the output is given M, 5 s ) 4 )
=[{aq(L/c)})=IIglaq(L/c))q. Here,|aq(L/c))q is a co- Fg)qu(KL)Ft() )(O)+Jq—v("'-)r(v 0)
herent state of thgth mode, with the amplitudex,(L/c) +232( kL) J2 YA A+Te "7 32( kL) J2 LA
= adq(kL)€'972 Thus a probe field in a coherent state can a(kL) g (kL) Aot a kL) Jg— (kL) Ay
produce sideband fields that are also in coherent states but +2e‘“”7’2‘]g(KL)Jq_V(KL)A2
have different frequencies. Such a process can be called

coherent-state multiplexing. The ability of the Raman me- +2e 23 (kL) IS (kL) Ag+c.cl, (25)
dium to replicate a coherent state is similar to that of a con-
ventional beam splittelr19]. where
When the input sideband O is initially in an incoherent - ~ A N N N
mixed state Ao=<b5(0)bo(0)><b1(0)by(0)>_|<bo(0)>|2|<by(0)>|2,

—/hi2 n2 /Rt 2/% 2
ﬁi(r?):; pin(n)(|n><n|)oy (21) Ay <b0 (O)><bv(0)> <b0(0)> <bv(0)> )

A5=(b,(0))[(B5%(0)bo(0)) — (B3(0)bo(0))(b5(0)) ],
the density matrix of the output state of the fields is found to

be A3=(b}(0))[(b(0)b2(0))—(b!(0)b,(0))(b,(0))]. 5

~ _ (N) ~(N)* ,
Pout \ {nE}{n,} p'“(N)C{”q}C{n[]} [{ngh){ing}l- (22 The first two terms on the right-hand sides of E@#) and
et (25) are the individual contributions of the input sidebands 0
. =(q) . . : andv. The other terms result from the interference between
:F(f;)e reduced density matrp{%), for an arbitrary sidebandlis the two interaction channels.
Pout=ZnaPg(M(IN){n[)q. As seen, the reduced state of each  ypjike the case of single-mode input, in the case of two-
sideband is also an incoherent superposition of Fock statefyode input, the normalized second-order autocorrelation

Note that, in general, we hayey,# 1qp. functiong{?=1+T ?/(ny)? depends, in general, o and
g. Such behavior is illustrated in Fig. 4. Wherl is such
IV. TWO-MODE QUANTUM INPUT thath(KL)zo or \]qu(KL):Oy we ha\/eg((qz): 95,2)(0) or

. . . (2)— 4(2) ; . .
A far-off-resonance medium with a substantial Raman co9a =90 (0), respectively. Consequently, if the two input
herence, prepared by two strong driving fields, can effi sidebands have different normalized autocorrelation func-

ciently mix and modulate the quantum statistical propertiedions, i.e.,g5(0)#9?(0), then, with increasingcL or g,
of the sideband fields. To understand this mechanism, wie normalized autocorrelation functigff’ will oscillate be-
study the case where the input probe field has two carrieiween the valueg{?(0) andg{®(0) (see Fig. 4 In particu-
frequenciespy andw,= wy+ vo,,, separated by an integer lar, if the photon statistics of one of the input fields, e.g., the
multiple » of the Raman modulation frequenay,,. We as-  sideband O, is sub—Poissoni{aggz)(O)< 1] and that of the
sume that the Raman sidebands O arafe initially in inde-  other input field is super—Poissoni@g(f)(O)> 1], then each
pendent quantum statp&” andp{”) , respectively, while the generated sidebargiwill have complex statistical properties
other sidebands are initially in the vacuum state. The densitand will oscillate between sub-Poissoniag{’<1] and
matrix of the initial state of the fields is given by super—PoissoniaﬁggZB 1] photon statisticg¢see Fig. 4. Us-
ing the prepared Raman coherengeor the medium length
~ 7 (0) o N (v L as a control parameter, we can switch a sideband field from
Pin= '(“)®p‘(”)®qg,,, (|0><0|)q' 23 super-Poissonian photon statistics to sub-Poissonian or vice
versa. Similar modulation of photon statistics has been dem-
Here,v#0. onstrated in a linear directional coupld8].

A. Modulation of photon statistics B. Modulation of squeezing

We study the mixing and modulation of photon statistics We study the mixing and modulation of the squeezing
of the sideband fields. When we use E@). to calculate the properties of the sideband fields. When we use g.to
mean photon numbers of the sidebands generated from tlalculate the squeezing facttk3) for the sidebands gener-
initial state(23), we find ated from the initial stat€23), we find
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FIG. 4. Normalized second-order autocorrelation functg
as a function of(a) the effective medium lengtikL and (b) the
sideband ordeq in the case of two-mode input. The input sideban
0 is initially prepared in a Fock state, with five photons. The input
sideband 1 is initially prepared in a thermal state, with 1 photon in
average. Ina), the sideband order is 1 (solid line) and 2(dashed
line). In (b), the effective medium length isL=5.

FIG. 5. Normalized squeezing factsy(q=/2) as a function of
d (a) the effective medium lengtkL and(b) the sideband ordeg in
the case of two-mode input. The input sideband O is initially pre-
pared in a squeezed vacuum state, with the squeezing parameter
=1 and the phas@=0. The input sideband 1 is initially prepared
in a thermal state, with the mean photon number 1(dn the
sideband order is-1 (solid line) and 2 (dashed ling In (b), the
) ) effective medium length i«L=5.
Sa(@+aqm/2)=J5(kL)SSV (@) + 35 (kL) SIV (@ + var/2),
(27) squeezed statesy(¢)>0], see Fig. 5. Using the prepared
_ _ Raman coherencp, or the medium length. as a control
whereS{™ and S{" are the initial squeezing factors of the parameter, we can switch a sideband field from a non-
sidebands 0 and, respectively. As seen, the squeezing fac-squeezed state to a squeezed state or vice versa. Note that a
tor S, of the sidebandq is a superposition of the input similar result has been obtained for a linear directional cou-
squeezing factor§{™ and S, taken with the quadrature pler[18].
phase shifts—qw/2 and —(q—v)w/2, respectively, and We analyze a particular case where the sideband O is ini-
weighted by the factordj(«L) andJ;_ (L), respectively. tially in a squeezed vacuum  statéé),=exg (&b
Unllke the case of smgle-mode mput, in the case of two-_§652)/2]|0>0 and the sideband is initially in a coherent
mode input, the normalized squeezing facsgte+a7/2)  giate|a),. Here,é=re'’ is a complex number, the modulus
=Sy(@+qm/2)/(ny) varies, in general, witlkL andg. Such  r=|¢| characterizes the amount of squeezing, and the phase
behavior is illustrated in Fig. 5. WherL is such that angle# characterizes the alignment of the squeezed vacuum
Jo(kL)=0 or Jq ,(kL)=0, we have s4(¢+qm/2) state in phase space. Then, we find from &) the mean
=siV(@+vm/2) or sy(¢+aqm/2)=si"(e), respectively. photon number
Consequently, if the normalized squeezing factsﬁ@(go)
andsgn?(cp+ var/2) of the two input fields are different, the (h) = J2(xL)sintPr +J2_ (xL)|al?. 29)
normalized squeezing factey(¢+qw/2) will oscillate be-
tween the values{”(¢) andsi"(¢+ v=7/2). In particular,
if one of the two input fields, e.g., the sideband O, is
squeezeqsgn)(cpo)<0] and the other input field is not
squeezetﬂs(v'”)(¢)>0], then, each generated sidebandill
have complex squeezing properties and will oscillate be- 5 o
tween a squeezed stafes,(¢o+Qqm/2)<0] and a non- Sqleg)=Jdg(kL) (e —1). (29

We find from Eq.(27) that the maximal squeezing of the
sidebandq occurs in thep, quadrature wherep,= 6/2
+q/2. The corresponding value of the squeezing factor is
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o

=4.2, a generated new sideband 3 is squeezed by about 16%
and has the mean photon number of about 39. Thus, from a

weak squeezed field at the input, we can obtain other output

squeezed fields that have smaller but still substantial squeez-
ing degrees, much larger mean photon numbers, and differ-

ent frequencies.

q

C. Two-photon interference

Squeezing factor S (qn/2)
=)
H

o
o

We show the possibility of quantum interference between
the probability amplitudes for a pair of photons with differ-
ent frequencies in the coherent Raman process. We assume
that the sidebands 0 and 1 are initially prepared in indepen-
dent single-photon states. This initial condition corresponds
to the situation where two photons with different frequencies
wg and w4 are incident into the Raman medium. The input
state of the fields can be written as

N
o
)
7
P
h

[Py =11)0|1)1 I] 10)q=Dbd(0)bI(0)]0). (30
g#0,1

Mean photon number <7,
N
o
o

(=)

The output state of the fields is given by ..)=b]
0 (—L/c)b(—L/c)|0). With the help of Eq(6), we find

FIG. 6. (8) Squeezing factoS,(qm/2) and (b) mean photon
number(ﬁq) as functions of the effective medium length in the
case where the sideband 0 is initially prepared in a weak squeezed
vacuum state and the sideband 1 is initially prepared in a strong

|\Pout>=—iﬁ§ €973, (kL) Jq-1(kL)|24)

—i Y, e (kL) Iy 4(kL)

coherent state. The parameters for the initial states of the input =l
sidebands are=1, #=0, anda=20. The curves are calculated for
the sidebands (solid line), 1 (dashed ling and 3(dotted ling. +31(kL) k- 1(kL)]|1,L)). (31

As seen from Eq(29), squeezing can be transferred from the Here, the Fock statf2,) is the state of two photons in the
initial squeezed vacuum state of the sideband 0 to the oth&jidebandg with no photons in the other sidebands, and the
sidebands. The squeezing factors of the sidebands are indeock statd1,1,) is the state in which there is one photon in
pendent of the amplitude of the initial coherent state of the each of the sidebandsand| but no photons in the other
sidebandv. Meanwhile, the mean photon number of eachsidebands.

sideband is governed not only by the squeezing parameter The probability for finding two photons in the sidebamd
of the initial state of the sideband 0 but also by the amplitudgs given byW?)=2J%(«xL)J>_,(xL). The joint probability

« of the initial state of the sidebanel Using this fact, we for finding one photon in each of the sidebardsand |
can manipulate to get optimized mean photon numbers angk#1) is

squeezing degrees of the sideband fields at the output as per

requirement. In particular, we can convert squeezing from a Wi =[ (kL) _1(kL)+ I (kL) _1(kL)]%. (32
weak field to a much stronger field. To illustrate this possi-

bility, we plot in Fig. 6 the squeezing fact®,(qn/2) and The probabilityWé”zEMQWq, for having one and only one
the mean photon numbén,) as functions of the effective photon in the sideband is WD =02(kL) + 334 (xL)
medium lengthxL for the parameters=1, =0, v=1, —4J§(KL)J§,1(KL). The mean photon number of the side-
anda=20. In thi%nc):ase, the most negative value of the inpubandq is <ﬁq>=J§(KL)+J§_l(KL)_ We find the relations
S((qirlseez[\gfgfiosg E(p) is aphlgveq alp=0 and is given by W(—zc)4=W(12+)q, W(_lc)qzw(llJr)q, and(ﬁ_q)=(ﬁ1+q), which re-

S (0)=e 1=-0.86, indicating the squeezing degree fiect the symmetry of the generated Stokes and anti-Stokes
86%. The mean photon number of the input squeezedjgepbands with respect to the two input sidebands 0 and 1.
vacuum state igny(0))=sinifr=1.38, rather small. The When we inserk=0 andl=1 into Eq.(32), we obtain
solid lines in Fig. 6 show that the sideband 0, initially pre-the following expression for the joint probability for finding
pared in a weak squeezed vacuum state, can be significaniyze photon in each of the sidebands 0 and 1:

enhanced while keeping its squeezing degree substantial.

Meanwhile, the dashed lines show that, felt =1.84, the Wor=[J3(kL)—J%(kL)]2. (33
sideband 1, initially prepared in a strong coherent state, is

squeezed by about 29% and has the mean photon number Blfiis expression shows that the joint probabilityy,; may
about 41. Similarly, the dotted lines show that, fet become zero at certain values of (see Fig. 7. This is a
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1 - - - - arbitrary multimode coherent staf¢a(0)}) of the input
fields produces a coherent stafer,(L/c)}) of the output
fields. Here, the output amplitudgse,(L/c)} are linearly
transformed from the input amplitud¢a,(0)} as given by

aq(Llc)=2, @ a2 (kL)agq(0).  (34)
q!
Consequently, the diagonal coherent-state representation
Pin({aq}) of an arbitrary input quantum statg, determines

Joint probability w,
o
[3;]

0 y . ~ .
0 1 2 3 4 5 the representatioR,({«,}) of the output state,, via the
L equation
FIG. 7. Joint probabilitywy, for finding one photon in each of Poul{aq}) =Pin({ag}). (35
the sidebands 0 and 1 as a function of the effective medium length
kL. Here, we have introduced the notation

signature of destructive interference between two channels
that form the statél,1,). In the first channel, each of the
two photons individually transmits through the medium
without any changes. The two-photon probability amplitude If the input statep,, is a classical statf19], Pu({ag))

. . _ 2
for this channel isJo(xL)Jo(xL)=Jo(xL). In the second gt pe non-negative and less singular tha@anction, and

channel, both the photons are scattered from the prepar%nsequently SO MU o,({ag}). In this case, the output

Raman coherence and exchange their sidebands. The two- .~ . X . .
. Statepy,: is also a classical state. Moreover, since the multi-

hoton probability amplitude for this channel is ; :
ZW/ZJJ_(KLF))eiW/le(ZL)Z—%i(KL). Since Raman scatter- mode coherent stafga}) is separable and the weight factor

ing produces a phase shift af2 for each photon, the prob- Pouf{@q}) is non-negative, the output stgig,, is, by defi-
ability amplitudes for the two channelghe transmission and Nition, separablé24,ZS.IThergfore a necessary condition for
scattering of both the photonare 180° out of phase. The the output fields to be in an inseparabémtangled state or,
interference between the two channels is therefore destrugl0re generally, in a nonclassical state is that the input field

tive, yielding the output stately1,) with the joint probabil- sta’ge is a nonclassical _state. A similar condition has been
ity W, given above. When the medium lendths such that derived for the beam splitter entang|éi7]. Note that, in the

J3(kL)=J%(kL), the interference between the two two- ©45€ where we use a single-mode input field with0, pre-
photon amplitudes becomes completely destructive, anaared In an art()(l)'grary quantum state W'th,the coherent-state
therefore the statilyl,) is removed from the output state 'ePresentatio;,’(a) (the Stokes and anti-Stokes sideband
(31). We denote such a medium length by. The positions ~ fields are mm(g;ly In the vacuum stateEq. (35 becomes

of the zeros oW, depicted in Fig. 7 indicate that the first Poul{{@q})=Pin’(@o)lg-08(ay).-

three values ok ; are given byxL;=1.44, 3.11, and 4.68. It

is interesting to note thatL; can be determined by an ex- V. PRODUCTION OF A MULTIPARTITE ENTANGLED

periment using a single-mode input. Indeed, in the case COHERENT STATE

where a single sideband 0 is initially excited, the mean pho-
ton numbers of the generated sidebands are given byoEq.
Therefore the effective medium lengiL; corresponds to

aa=2 e i@y (kLl)ayg . (36)
qI

In this section, we show that the coherent Raman scatter-
ing can produce a multipartite entangled coherent state if the

the situation where the probe sideband 0 and its adjacerrl‘tmbe field is initially prepared in an odd or even coherent

sidebandst1 have the same mean photon numbers at thetate. Entangled coherent Staﬁ?§—34] Of. the electromag-
output. netic field have attracted considerable interest for quantum

There exist literatures on two-photon interference in Vari_comdmunltcatl?n dpurrp])oses{. ItErtltank?Iemint protperugs cl>f two-
ous system§l5,16,23. Two-photon interference in coherent mode entangled coherent states have been st{2ifed. In
Raman scattering, described above, is an analogy of tw _he_c_:ont_ext of these_states,_tele_portgt[ﬁﬁ], entangle_ment
photon interference at a conventional beam splitiér 19, purification[29], Bell-_mequallty V|0Iat|ons_[30], and univer-
We emphasize that two-photon interference in coherent RT—aI quantum computinf31] have been discussed. The mul-

man scattering involves copropagating photons with differen ipqrtite generali.za.tionBZ] of gntangled coherent states and
frequencies in a collinear scheme heir photon statistical properti€33] have been examined. It

has been shown that entangled coherent states can be gener-
. . . ated in schemes using a nonlinear interferomi&ér32 or a
D. General relation between theP representations of the input double eIeCtromagngtically induced transparency system
and output states [34]
To be more general, we consider the case where an arbi- We assume that the probe field is initially in an even or
trary number of sidebands is initially excited. We find that anodd superposition of coherent sta{&$]
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|\Pin>O:NV(|a>0+V|_a>O)! (37) I’:\zk|:ﬁk|((}y®(}y);)ﬁ((}y@(}y). (42)

i.e., a Schrdinger cat state, while the other sideband fields . _

are initially in the vacuum state. Here, we have introduced—|ere,ay=(i0 o) is a Pauli matrix in the standard basis of a
the notationv=+1, where the plus and minus signs corre- qubit, ando,® o is the spin-flip operator for two qubits.
spond to the even and odd coherent states, respectively. The \we choose an orthogonal qubit basi6,),|14)} for each
normalization ~constant N, is given as N,=(2  sidebandg. We distinguish this basis from the Fock states,
+2ve2le*) =12 Note that Schidinger cat states have been employed earlier, by using boldface symbols. For the side-
produced in the microwave cavity fie[®6], the center-of- bandk, the qubit basis is defined d6,)=|«,) and|1,)
mass vibrational motion of a trapped if87], and the radial =(|—ay)—py|ax))/M. For the sidebant] the qubit basis
excitation of an electron in a Rydberg st4®8]. A great is defined asl0)=|—qa)) and|L)=(|a))—p/|—a))/M,.
variety of methods have been proposed for generating Schrgyere, we have introduced the notatipg= e 2lagl? andM

dinger cat states in the optical dom4Bg]. =\1—pZ. It then follows that, for the sidebarid one has
For the input staté€37), we obtain the output state la) =]00) and| — &) =M | 1)+ |0, while, for the side-
W o =N, [{agh)+ vl{— ag))]. (39) bandl, one hag— «,)=|0,) and|a;)=M,| 1)+ p,|0;). Then,

in the standard baSiﬁOkOO,|0k1|>,|1k0|>,|1k1|>} of the two
Here, [{ay}) and |{—«ag}) are multimode coherent states, qubits, Eq.(42) yields
with the amplitudes

0O D F —Ax
0 F, D —-Ayl’
0O O 0 0

aq=ady(kL)e'9™2. (39

5 N4
Equation(38) stands for a multimode even or odd coherent Ra=N,MM, (43

state[33], which is also a multipartite entangled coherent
state[32]. Note that the multipartite entangled coherent state
studied in[32] involves a finite number of modes with equal
mode amplitudes. Meanwhile, the output sté88) involves ~ where A =M [p,(1+Q?) +2vQp.], B=2(px+ »Qp)(p
an infinite number of modes with a Bessel-function distribu-+ »Qp,), D=MM,(1+Q?), and F,=2vQM:. The
tion of mode amplitudes. Such a mode amplitude distributionsguare roots of the eigenvalues R, are A ;=N2M M (1
results frqm the coherent—Rama}n—scqttering process. Unlike Q), )\2=N5M M (1—Q), andhs=\,=0. TheVn, we find
the techniques based on a nonlinear interferon|@2ror a from Eq. (41) that the concurrence i§k|=2N§MkM|Q.

double electromagnetlc_ally induced transparency s:ys_terwhen we use the explicit expressions %y, M., andQ,
[34], the Raman technique does not require multiparticle .
e we obtain

Bell-state measurements, and therefore is simple and effi-

cient. In addition, the Raman technique allows us to generate ) . - o

multipartite entanglement between the sideband fields with ~ C=[exp(2|a|9)+ v]™ {exd 4|a|*Ji(xL)] -1}

different frequencies, unlike the nonlinear interferometer 2.2 T

method[32]. x{exd 4| a|?Jf(kL)]—1}1= (44)
We examine the bipartite entanglement of the generated _ o _

multimode staté38). We follow the procedures of Wang and ~ Unlike the case of a finite number of modes with equal

Sanders[32] to calculate the so-called concurrenpg0], =~ mode amplitude$32], the expressiori44) for the concur-

which is a measure of bipartite entanglement. We consideience contains the Bessel functions, which result from the

the bipartite reduced density matrfxd obtained from the scattgring amplitudes of the modes. It is clear from the ex-
density matrix| W o,)( ¥, by tracing out all sidebands ex- Pression(44) that an odd coherent state< —1) of the in-

cept for the two sidebands and | (with k#1). Using Eq. put can produce a larger bipartite entanglement than an even
(38), we find coherent statey(=1) can. In addition, when we increase the

medium lengthL or the sideband ordek or |, the concur-
renceC,, undergoes oscillations as described by the Bessel
functionsJy(xL) andJ;(xL), and tends to zero in the limit
+vQ(|ay, ) — e, — )|+ | — ey, — ) W e, ] ], L—o. One can show that9C, <1 (for k#1), that is, the
(40) state(38) does not possess more than one ebit of bipartite
entanglement. For the higher sideband orders, the onset of
where Q=exp(—2|a*+2|af?+2/ey[). For the hbipartite generation of the sidebands occurs later and hence so does
the onset of the entanglement between them.
For two conjugate anti-Stokes and Stokes sidebdtis
pair of sideband& and —k, wherek+0), Eq.(44) yields

q:

pra=N2[ |y, ) g, + | — an, — @ )(— e, — |

mixed state described by the density mapix, the concur-
rence is defined 0]

Ck|=ma){)\1—)\2—)\3—)\4,0}, (41)

212 _
whereh 1, N,, A3, and\, are the square roots of the eigen- . _k:exp[4|a| Jilkl)] -1

values, in decreasing order, of the matrix ‘ exp(2|al?) + v

(49
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Concurrence G, ; for the sideband pair (%,/)

o

0.004

KL

0.002 | FIG. 9. Concurrenc€y for various asymmetric-order sideband

%20 pairs ,1) (k# =1I). The pairs arga) the probe and one of the

1 other sidebands an@) the tenth anti-Stoke sideband and one of the

Lo e other sidebands. The probe field is initially in an odd coherent state
S (v=—1), with the amplitudex=0.1.

KL oscillations are insignificant in Fig.(8, where the probe
field amplitude is rather large.

In Fig. 9, we plot the concurrenc€,, for various
asymmetric-order sideband paits# =1). The most distinct
feature of this case as compared to the case of symmetric
(conjugate pairs[Eq. (45) and Fig. § is that the condition
for maximum entanglement is governed by the interference
. 2 w a2 between the Bessel functions of different orders, and hence
S'nceJO(X)+22k:.1‘]k(X):.1‘ the .Set of the CONCUITENCES 0 £t peak irC, ; need not be the absolute maximum for a
Ck,_k_for all p_oss.lble conjugate-sideband pairs satisfies thegiven pair &,1). Furthermore, Fig. ®) shows that, for a
following relation: sideband pairK,|) with a givenk# 0, the largest achievable

" entanglement need not be obtainedIfer0 (the input probe
olal? B 2 2 field).

kﬂl [1+(e et v)Cr -] =exp(2]a| 1= Jo(xL)T}- We evaluate the concurren€g, for an arbitrary sideband

(46)  pair (k1) in the limit of large|a|. Under the conditions

|a|,|@di(kL)|,|ad(kL)[>1, we find from Eq.(44) the es-

We denote by, the value ofx at which the Bessel function timate Cy=exp{—2a/q1-J(xL)—J(«xL)]}. This expres-
J(x) reaches its largest absolute value. Then, the concusion says thaCy, tends to zero in the limit of largke|.
renceC, _ (with k#0) reaches its largest value at the op-  In the limit |a|<1, we expand the expressiod) into a
timal medium length_,=x, /. The higher the sideband or- series of a| and keep only the first nonvanishing term. In the
derk, the larger is the optimal length, and the smaller is case ofv=1 (even coherent statewe find the estimate
the maximal value oy _. Cu=2|a@|?|3¢(xL)J,(«xL)|, which tends to zero in the limit

In Fig. 8, we plot the conjugate-sideband concurrenceéa|—0. This asymptotic behavior is due to the fact that, in
Ck -k as a function of the effective medium lengiL. the limit |a|—0, the even coherent state approaches the
Clearly, the maximum entanglement of the sideband paivacuum statd0). Meanwhile, in the case of=—1 (odd
(k,—k) is attained at the first peak of the Bessel functioncoherent stae the value ofC,, in the limit |a|—0 is Cy,
Ji(x). As seen from the figure and as can be shown analyti=2|J,(«xL)J,(«xL)|. This bipartite concurrence is nonzero
cally, in the case of odd coherent states, the amount of erexcept for the medium lengths at which eithk(«L) or
tanglement between the sidebands decreases with the id{«L) is zero. This nonzero asymptotic value is due to the
crease of the probe field amplitude. In Figéa)8and(b), we  fact that, in the limit|a|—0, the odd coherent state of the
observe oscillations Ty _ that are due to the dependence input field approaches the single-photon stdte and con-
of this quantity on the Bessel functialy. However, such sequently the output field state approaches the $wie

FIG. 8. ConcurrenceCy _y for different conjugate-sideband
pairs (k,—k) and for various values of the input probe field ampli-
tude a. The probe field is initially in an odd coherent state=(
—1). In (c) we have amplifiedC,_, and C5_5 by 20 and 200
times, respectively.
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EEqu(;<L)eiq”’2|1q>. Thus the multipartite entangled state type, or from a nonsqueezed state to a squeezed state and
|Wg) can be generated by high-order coherent Raman scavice versa. In addition, we can switch nonclassical properties
tering of a single photon. This state is similar to the so-calledrom one frequency to another frequency. We have shown an
W state[32,41]. Unlike the stateW, which is a symmetric example of quantum interference between the probability
single-excitation superposition state of a finite number ofmplitudes for two photons with different frequencies.

qubits, the statéWg) involves an infinite number of side- _ We have investigated the bipartite entanglement of mul-
bands, weighted by the Bessel functions. tiorder sidebands generated by the coherent Raman scatter-
ing of a quantum probe field prepared in an even or odd
V1. CONCLUSIONS AND DISCUSSIONS coherent state. We have shown that the concurrence for a pair

of conjugate sidebands reaches a maximum value at an op-

We have studied the quantum properties of multiordettimal medium length that is determined by the medium co-
sidebands generated by the beating of a quantum probe fielterence and the Raman sideband order.
with a prepared Raman coherence in a far-off-resonance me- The ability of the far-off-resonance Raman medium to
dium. Under the conditions of negligible dispersion and lim-generate a broad comb of fields with similar quantum statis-
ited bandwidth, we have derived a Bessel-function solutiortical properties and to switch the quantum statistical charac-
for the sideband field operators. We have examined the quareristics of the radiation fields from one type to another type
tum properties of the sideband fields in the case of singlemay find useful applications for high-performance optical
mode quantum input. We have shown that, when we changeommunication networks. In addition, two-photon interfer-
the effective medium length or the Raman sideband ordegnce in coherent Raman scattering may find various applica-
the autocorrelation functions, the cross-correlation functionstions for high-precision measurements and also for quantum
the photon distributions, and the squeezing factors undergocomputation. We emphasize that the coupling between the
oscillations governed by the Bessel functions. However, th&kaman sidebands can be controlled by the magnitude of the
normalized autocorrelation functions and normalized squeezprepared Raman coherence, that is, by the intensities of the
ing factors of the probe field are not altered by the parametridriving fields. In a realistic far-off-resonance Raman me-
beating process, and are replicated into the comb of genedium, such as molecular hydrogen or deuterium vdpg|,
ated sidebands. Therefore the multiorder coherent Ramasolid hydroger{7,8], and rare-earth doped dielectridD], a
process can be used to multiplex the statistical properties darge Raman coherence and, consequently, a large number of
a quantum probe field into a broad comb of different fre-Raman sidebands can be generated by the two-color adia-
guencies. batic pumping technique. In such a system, the generation of

We have studied the mixing and modulation of photona broad comb of high-order Raman sidebands with nonclas-
statistical properties in the case of two-mode quantum inputsical properties is, in principle, feasible. Therefore we expect
We have shown that the prepared Raman coherence and ttiaat the coherent-Raman-scattering technique using quantum
medium length can be used as control parameters to switchfeelds will become a practical and efficient method for a wide
sideband field from one type of photon statistics to anotherange of applications in nonlinear and quantum optics.
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