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Analysis of the loss of coherence in interferometry with macromolecules

A. Viale,* M. Vicari,† and N. Zanghı`‡
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We provide a self-contained quantum description of the interference produced by macromolecules diffracted
by a grating, with particular reference to fullerene interferometry experiments. We analyze the processes
inducing loss of coherence consisting in beam preparation~collimation setup and thermal spread of the wave-
lengths of the macromolecules! and in environmental disturbances. The results show a good agreement with
experimental data and highlight the analogy with optics. Our analysis gives some hints for planning future
experiments.
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I. INTRODUCTION

The aim of this paper is to provide a theoretical derivat
of the measured beam intensity profile for interferome
with macromolecular beams, under the influence of the p
cesses inducing loss of coherence, consisting both in b
preparation~collimation setup and thermal spread of t
wavelengths of the macromolecules! and in environmenta
disturbances.

We have been motivated by the impressive experime
with fullerene made by Zeilinger’s group@1,2#. In these ex-
periments, thermally produced beams of heavy macrom
ecules are collimated, diffracted by a grating, and then
tected on a distant screen. The diffraction pattern
produced shows the typical interference profile of wave p
nomena in the presence of incoherent contributions, and
reduced fringe visibility observed reminds us very much
Kirchhoff diffraction with thermal light produced by an ex
tended source. By taking into account the effects of the
teraction of the macromolecules with the environment a
with the photons they emit by internal cooling, we shall pr
vide a self-containedquantumdescription of these experi
ments that does not rely on methods of classical optics.

Our analysis is based on two main ingredients. The fi
one is a matter of principle: it is the formula for the statist
of particle arrival position and time on a distant surfa
given by Eq.~1! below. According to this formula, the inten
sity pattern revealed on a distant screen can be express
terms of the large-distance asymptotic behavior of the tim
integrated quantum current@see Eq.~3! below#. This formula
was conjectured a long time ago within the framework
scattering theory@3#, and only recently has been derive
@4–6#, extended to the mesoscopic regime, and physic
motivated within the framework of Bohmian mechanics@7#.

The second ingredient is a matter of analysis to simp
the dynamics of a test particle moving in a quantum mediu
it is the model of Joos and Zeh@8# for the phenomenologica
description of processes inducing loss of coherence in qu
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tum systems. In this model, the reduced density matrix of
system evolves autonomously according to a ‘‘Boltzman
type’’ master equation. The effect of the environment is su
marized by ‘‘a collision term,’’ added to the free dynamics
the system, which takes into account thedecoherence, i.e.,
damping of the off-diagonal terms of the density matrix
position representation.

Starting from these premises, and by means of some
proximations that are reasonable in the common experim
tal conditions for interferometry with heavy particles, w
shall derive an easy relation useful to describe diffract
patterns.

Finally, we shall provide a theoretical fit for the exper
mental data reported in Ref.@2#, and we shall discuss som
predictions about the dependence of the interference patt
on physical parameters such as the mass of the molec
the pressure at which the experiment is performed, and
distance of the detection screen. These predictions can b
some relevance for planning new experiments.

II. MEASURED INTENSITY

In the experiments with fullerenes a thermally produc
beam of heavy macromolecules is collimated, diffracted b
grating, and then detected on a distant screen~see Fig. 1!.
The grating is composed by parallel slits, and it is periodic

FIG. 1. Geometric configuration of the diffraction grating an
the detection screen.
©2003 The American Physical Society10-1
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periodD. The grating and the detection screen lie in para
planes, which are orthogonal to the longitudinal direction
beam propagation (y direction!, the so-calledoptical axis.
The screen is placed at the distanceL from the grating. Dur-
ing the flight from the grating to the screen the fulleren
interact with air at low pressure, as well as with therm
photons, and get entangled with the photons emitted by
laxation of the internal excited states. What is the theoret
prediction for the particle intensity measured at the scre
In order to answer to this question we shall proceed in t
steps. First, in Sec. II A, we shall consider the case in wh
the dynamics of center of mass of the diffracted particle
governed by free Schro¨dinger evolution. Though this ap
proximation is unrealistic for fullerenes, it is a good appro
mation for lighter particles as electrons or neutrons. Th
starting with Sec. II B, we shall refine the description a
take into account the influence of the environment on
motion of the particle.

A. Free evolution

In a typical detection experiment the count statistics
obtained by summing a large number of events in which
particle crosses the detection screen at a random time. W
is the appropriate quantum prediction for such a statist
This question is not quite as innocent as it sounds; it c
cerns in fact one of the most debated problems in quan
theory, the problem of time measurement, specifically
problem of arrival time, and position at such time. It is w
known that there is no self-adjoint time observable of a
sort, and since the arrival position is the position of the p
ticle at a random time, it cannot be expressed as a Hei
berg position operator in any obvious way. Bohmian m
chanics does provide, however, a remarkably simple ans
~for an updated review of Bohmian mechanics see Ref.@9#,
and references therein!: Let Sbe a surface in physical spac
C(r ,t) be the wave function of a particle, and

J~r ,t !5
\

M
Im@C~r ,t !*“ rC~r ,t !#

be the associated quantum current satisfying the contin
equation

]uC~r ,t !u2

]t
1“ r•J„r ,t)50.

Then the joint probability Prob(RTPdS,TPdt) that the
particle crosses the surface elementdS of the surfaceSat the
point r in the time betweent and t1dt is given by

Prob~RTPdS,TPdt!5J~r ,t !•dSdt , ~1!

providedthe current positivity conditionJ(r ,t)•dS.0 is sat-
isfied ~a condition on both the wave functionC and on the
surfaceS). See Ref.@7# for a general derivation of this~for
applications to mesoscopic physics see Ref.@10–12#, in this
regard, see also Ref.@13#!.

We would like now to apply such a probabilistic predi
tion to the typical situation of a diffraction experiment wi
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particles of massM diffracted by a grating and then detecte
on a distant screen. The geometry is that of Fig. 1 and,
~approximate! translational invariance along the sl
extension—thez axis—without loss of generality, we ca
consider the dynamics to be effectively two dimensionalr
5(x,y), wherex is the coordinate along the grating perpe
dicular to the slit axes andy is the coordinate perpendicula
to both the grating and the detection screen, i.e., along
so-called optical axis.

Let us make the physically reasonable assumption that
initial ( t50) wave function produced by the grating facto
izes

C~r ,0!5c0~x!f0~y!,

with the sizeDx of the support ofc0 being that of the grat-
ing. ThenC evolves freely according to Schro¨dinger equa-
tion

i\
]C

]t
52

\2

2M
“ r

2C, ~2!

until the particle is detected on the screen in thexz plane
placed at a ‘‘large’’ distancey5L. This last condition—see
below for a suitable specification of how largeL should be—
ensures that the current positivity condition is fulfilled. The
according to Eq.~1!, the probability density that the particl
crosses the screen at the pointx is

I ~x!5E
0

1`

dtJy~x,y,t !uy5L , ~3!

whereJy is the longitudinal component of the quantum cu
rent, i.e.,

I ~x!5
\

ME
0

1`

dtuc~x,t !u2 ImFf~y,t !*
]f~y,t !

]y G
y5L

.

~4!

For a large ensemble~beam! of particles identically pre-
pared in the same initial state, by the law of large numbe
I (x) is proportional to the localintensity measured at the
screen—and without loss of generality, the proportiona
constant, which is easily determinable by the total count s
tistics, will be hereafter assumed to be 1.

Let us now make some simplifications: Assume that
momentum componentpy is sharply defined, i.e.,Dpy
!py , so that with the initial wave function is associated
well-defined de Broglie wavelength

l;h/py!Dy. ~5!

Then we may approximate Schro¨dinger’s evolution off0
with a classical propagation at velocityv5py /M , so that
I (x) gets approximated by

I 1~x!5vE
0

1`

dtuc~x,t !u2uf0~L2vt !u2. ~6!
0-2
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Suppose furthermore that the detector distanceL is much
larger than the position spread in the longitudinal directio

L@Dy. ~7!

Then the time integration in Eq.~6! gives appreciable con
tributions only for

t5T[
L

v
5

Ml

2p\
L, ~8!

which is the so-called ‘‘time of flight,’’ that is, the time spen
by the particle to reach the detector. Thus, Eq.~6! can be
further approximated as

I 2~x!5uc~x,T!u2, ~9!

where c(x,t) is the solution of one-dimensional fre
Schrödinger’s equation, i.e.,

c~x,t !5A M

2p i\tE dx0e( iM /2\t)(x2x0)2
c0~x0!.

Consider nowuc(x,t)u2, i.e.,

M

2p\tE E dx0dx08e
( iM /2\t)[x0

2
2x08

2
12x(x082x0)]c0~x0!c0~x08!*

and note that in the integrations bothx0 andx08 are bounded
by Dx, the support ofc0. Thus, if

M ~Dx!2

\t
!1, ~10!

we have thate( iM /2\t)[x0
2
2x08

2]'1 and therefore thatuc(x,t)u2

is approximated by

M

2p\tE E dx0dx08e
( iMx/\t)(x082x0)c0~x0!c0~x08!* .

One can easily recognize that the above expression~modulo
an overall proportionality constant! is nothing but the square
of ĉ0(k), the Fourier transform ofc0(x), computed fork
5Mx/(\t). Therefore, by replacing in Eq.~9! such an ap-
proximation of uc(x,t)u2 for t5T, and recalling definition
~8! for T, we arrive at a further approximation for the inte
sity I (x), namely,

I 3~x!5
2p

lL Uĉ0S 2px

lL D U2

. ~11!

It is important to observe that the regime in which this a
proximation holds is that fixed by Eq.~10! for t5T, i.e., the
regime characterized by the condition

Dx

L
!

l

Dx
. ~12!

Note that condition~12! is indeed Fraunhofer’s condition o
classical optics and Eq.~11! is the corresponding formula fo
06361
,

-

the intensity of classical Fraunhofer diffraction theory@14#,
according to which the large-distance intensity of a diffrac
field is the squared modulus of the Fourier transform of
field distribution on the diffractive grating. For example, f
a double-slit diffractive grating, with apertured of each slit,
distanceD between the slits, and withc0 being the charac-
teristic function of the slits, Eq.~11! becomes the standar
formula for the intensity in the double-slits experimen
namely,

I 0

2
sinc2S pdx

lL D F11cosS 2pDx

lL D G ,
where I 0 is the intensity detected forx50 and, as usual
sinc(x)[x21sin(x).

In this regard, it should be observed that condition~10!
leading toI 3(x) is a known condition@7,15#. It corresponds
to a ‘‘large time’’ regime

T@t[
M ~Dx!2

\
5

Dx

Dpx /M
5

Dx

Dvx
~13!

for which the solution of Schro¨dinger’s equation is approxi
mated by

c~x,t !;AM

i\t
ei (Mx2/2\t)ĉ0S Mx

\t D .

Such a wave is what in Ref.@15# has been named ‘‘loca
plane wave’’: a wave that locally looks like a packet, havi
amplitude and local wave number that are slowly varyi
over distances of the order of the local de Broglie wav
length. Such waves are associated with classical motion
particles and a rough estimate of the time needed for
formation of such waves is indeed the timet above@15#. So,
evidence to the contrary notwithstanding, the particle mot
in the Fraunhofer region, that is, the particle motion on
time scale~13!, is indeed classical motion.

It might be useful to compare the domain of validity
the various approximations. ApproximationI 2(x) holds un-
der the spatial condition~7!, that is, on the time scale

T@
Ml

2p\
Dy.

The temporal and spatial conditions leading to t
Fraunhofer-like approximationI 3(x) are deduced by Eq.~10!
for t5T. For an initial packet withDx;Dy, comparison of
Dx!L @leading toI 2(x)] with Dx!AlL @leading toI 3(x)]
shows that the Fraunhofer approximation is realized on m
larger space and time scales.

A final remark. It could be objected that it is indeed~9!
the basic formula for the statistical predictions of detect
experiments—after all, it is this formula that seems to cor
spond directly to the standard statistical interpretation of
wave function.This objection, however, misses the point
together: I2(x) is only an approximation; the time at whic
the particle crosses the screen is typically random, and it
be treated as the deterministic quantity given by the time
0-3
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flight only when condition~7! is satisfied. In a sense, it i
true that in the regime of large distances there is no exp
mental difference betweenI (x) and the approximations w
have considered~indeed, this is a consequence of what it h
been proven with great generality in Refs.@4,6#!. However,
experimental research on near-field interferometry may
plore regimes in which these approximations fail, e.g., wh
statistical fluctuations in the arrival time become experim
tally relevant, as we shall comment in Sec.~VI C!. Hence the
need of anexact formula for the intensity. And, while the
standard quantum formalism fails to provide the exact
pression for the intensity, the formula given by Eq.~3!,
which clearly looks right, is naturally deduced from firs
principles of Bohmian mechanics@7#.

B. Interaction with the environment

In the more general case of a quantum particle interac
with its environment, the evolution can no longer be trea
in terms of one-particle Schro¨dinger equation because e
tanglement can be fastly developed. In this case, the sta
cal predictions concerning experiments performed on
particle are governed by thereduced density matrixr(r ,r 8),
which is obtained from the wave function describing the p
ticle and its environment by integrating out the configu
tional degrees of freedom of the environment; for examp
for an environment withN particles and total wave functio
C(r ,r1 , . . . ,rN), the reduced density matrix is given by

r~r ,r 8!5E dr1•••drNC~r ,r1 , . . . ,rN!C~r 8,r1 , . . . ,rN!* .

~14!

As far as detection experiments are concerned, the foll
ing natural generalization of Eq.~1! can be put forward: The
joint probability that the particle crosses the surface elem
dS of the surfaceS at the pointr in the time betweent and
t1dt is still given by Eq.~1!, but with currentJ given now
by

J~r ,t !5
\

M
Im@“ rr~r ,r 8,t !# r85r . ~15!

A detailed derivation of this result will be given elsewhe
@17#. In this regard, a key observation is thatJ given by Eq.
~15! is indeed the right probability current entering in th
continuity equation for the probability density of positio
r(r ,r ,t),

]r~r ,r ,t !

]t
1“ r•J„r ,t)50.

We may now make more realistic the analysis of Sec. I
by allowing that, during the flight from the grating to th
screen, the particle of massM diffracted by the grating inter-
acts with particles of the environment~say, air molecules!.
As before, the geometry is that of Fig. 1, so that the dyna
ics is effectively two dimensional, i.e., as before,r5(x,y).
Though the initial state produced by the grating needs no
06361
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assumption of factorization att50,

r~r ,r 8,0!5r0
(x)~x,x8!r0

(y)~y,y8!.

For an environment ofN particles, the time evolution o
r(r ,r 8,t) is that induced, according to Eq.~14!, by the
Schrödinger evolution of total wave function C
5 C(r ,r1 , . . . ,rN ,t),

i\
]C

]t
52

\2

2M
“ r

2C1H0
envC1H intC, ~16!

whereH0
env is the total Hamiltonian of theN particles~the

sum of the kinetic and potential energies! and H int is the
interaction potential between the particle and the otheN
particles.

Accordingly, the exact formula for the probability densi
that the particle crosses the screen at the pointx is given by
Eq. ~3!, whereJy is now the longitudinal component of th
probability current given by Eq.~15!. We shall now simplify
the expression for the intensity, in analogy with the treatm
of Sec. II A, by exploiting the typical physical conditions o
interference experiments.

Motion along they direction is typically ‘‘very fast,’’ be-
ing characterized by a ‘‘very short’’ wavelengthl, much
smaller than all the other relevant lengths scales~such as the
spreadsDx, Dy, and the screen distanceL). Accordingly,
we have an effective preservation of the factorization of
initial state, and Eq.~3! becomes

I ~x!;
\

ME
0

1`

dtr (x)~x,x,t !Im@]yr
(y)~y,y8,t !uy85y#y5L .

Note that, due to the condition of fast motion alongy direc-
tion, we may assume wave-packet motion, i.e.,r (y)(y,y8,t)
5f(y,t)f(y8,t)* , and consider the evolution of the wav
packetf to be classical. Thus, proceeding as in Sec. II A
going from Eq.~4! to Eq. ~9!, and a part from acaveatwe
shall discuss below, we arrive at the following approximati
for the measured intensity:

I 2~x!5r (x)~x,x,T!, ~17!

whereT is, as before, the time of flight given by Eq.~8!.
The caveat is the following: in the free case a cruc

condition for the validity of Eq.~9! is thatl!Dy. In case of
environmental interaction the momentum spread increa
due to scattering events and the previous condition is
more sufficient to assure a well-defined de Broglie wa
length along the longitudinal direction. An important cons
quence of the analysis of Sec. V is that interaction with
environment produces an effective reduction of the relev
length scales over which quantum coherence is prese
and this reduction is controlled by what we shall call t
‘‘coherence length’’ and denote by,. In general, the validity
of Eq. ~17! is assured byl!Dy and l!,; for relevant
incoherence effects, we have,&Dy and thus the crucia
condition becomesl!,.
0-4
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Let us consider the case of fullerene, and let the ini
state be the state at the moment of the splitting produced
the diffractive grating. It turns out that, at this time, the m
tion of fullerene along they direction can be described by
narrow wave packet translating with velocityv. In fact, ac-
cording to Table I, the typical de Broglie wavelength f
fullerene is l'10212 m. The analysis performed in Se
III A leads to ,'1027 m ~see Table III!, whencel!, ~and
sinceL'1 m, Dy!L). Thus, Eq.~17! provides a good ap
proximation for the measured intensity of fullerenes.

Equation~17! is the basic equation of this paper. In ord
to avoid notational complexity, when no confusion will ari
and unless otherwise stated, we shall drop all the indices
simply write I (x) instead ofI 2(x) and r(x,x,T) instead of
r (x)(x,x,T).

III. MARKOVIAN APPROXIMATION

In order to evaluateI (x), we need to determiner(r ,r 8,t),
the reduced density matrix at timet. In general, the evolution
of r is highly non-Markovian, being the evolution induce
by Eq. ~16! via Eq. ~14!. For an environment made of a ga
at low pressure we may rely on the Markovian approxim
tion provided by the model of Joos and Zeh@8#. We shall
now recall the essential ingredients of this model and refe
literature for a thorough discussion@18,19#. ~For some basic
steps towards a rigorous derivation see Ref.@20#, in this re-
gard see also Ref.@21#, for a more general analysis of qua
tum Brownian motion see Refs.@22,23#.

This model aims at providing an autonomous evolut
equation for a heavy particle moving in a gas of light p
ticles under the approximation of negligible friction. To ge
handle on the model, consider a single collision of the he
particle, of massM, with a light particle of the medium, o
massm. If M@m the time scalets of a single-scattering
process is short with respect to the typical time scalet of
evolution of the heavy particle. Thus, Born-Oppenheim
adiabatic approximation applies, and the dynamics of
center of mass of the heavy particle can be considere
frozen in the timets . Accordingly, if C(r ) and x(r l) are,
respectively, the wave functions of the heavy particle and
the light particle before the collision, the wave function

TABLE I. Physical parameters of fullerene experiments@2#.

Mass of fullerene C60 M'1.2310224 Kg
Radius of C60 R'3.5310210 m
Temperature of C60 QF'900 K
Environmental temperature QE'300 K
Mean wavelength ofa C60 l'2.5310212 m
Mean time of flighta T'631023 s
Grating-screen distance L51.25 m
Collimator aperture a51025 m
Effective slits width d'3.631028 m
Grating period D51027 m

aMean values are deduced by the measured velocity distribu
characterizing the fullerene beam outgoing from the oven@see Eq.
~61! below#.
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the composite system after the collision isC(r )x r(r l),
wherex r(r l) is the outgoing wave function of the light pa
ticle, scattered off at the pointr5(x,y,z). As a consequence
the final state of the heavy particle is described by the
duced density matrixC(r )C(r 8)* ^x r8ux r&.

For arbitrary initial density matrixr(r ,r 8), and many in-
dependent individual scattering events, the variation in
time Dt of r(r ,r 8) due to collisions is then

Dr~r ,r 8!;2NDt~12^x r8ux r&!r~r ,r 8!,

whereN is the mean number of collisions per unit of tim
and ^x r8ux r& denotes the average with respect to a suita
ensemble of light particle wave functions. By taking in
account also the rate of change ofr due to the free dynamics
one arrives at the master equation of Joos and Zeh:

]r

]t
5L0r1LIr, ~18!

where

L0r52
i

\
@H0 ,r#5

i\

2M
@¹2,r#

and

~LIr!~r ,r 8!52N~12^x r8ux r&!r~r ,r 8!. ~19!

A. Estimation of environmental coupling

For a complete specification of the right-hand side of E
~18!, we need to evaluate the interaction operator~19! related
to the different processes inducing entanglement of C60 with
surrounding environment: scattering events~with thermal
photons and air molecules! and photon emission. Such a
evaluation of the interaction operator is rather standard,
can be found in the literature on the Joos and Zeh mode
modulo some numerical values that we have corrected,
with the exception of our treatment of decoherence due
photon emission that is slightly different from what can
found in the literature~see, e.g., Refs.@24,25#!.

1. Scattering with thermal photons

In fullerene experiment, the environmental temperature
QE'300 K and thus the wavelength of thermal photon
lph5hc/(kBQE)'4.831025 m. As we shall see in Sec. IV
@Eqs.~36! and ~37! and relative evaluation in Table III#, be-
cause of the incoherent preparation of the beam, we have
ux2x8u&,0'1027 m. Under this condition, Eq.~19! as-
sumes the form~see Refs.@8,19#!

~LIr!~x,x8!52Lph
(scat)ux2x8u2r~x,x8!,

with

Lph
(scat)58!

8ca6

3 Ue r21

e r12U
2

z~9!S 2p

lph
D 9

'2.43102 m22 s21,

~20!

n

0-5
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where the fullerene molecule has been modeled as a die
tric sphere with the dielectric constante r'4 @26# andz(9)
'1, with z(z) representing the Riemannz function. The
previous relation has been obtained in the regime of R
leigh scattering~since fullerene radiusR'3.5310210 m is
much smaller thanlph) and by using the Planck distributio
for environmental photons@27#.

2. Scattering with air molecules

Air molecules, with a mean massmair'4.8310226 Kg,
at the temperatureQE'300 K have a de Broglie wavelengt
lair5h/A2pmairkBQE'10211 m!,0 ~see Table III!. Thus,
assuming a Maxwell-Boltzmann distribution for air molecu
velocity, it follows from the analysis performed in Ref.@18#
@Eq. ~2.17!# that

~LIr!~x,x8!5H s totP~QE!A 32p

kBQEmair

for xÞx8,

0 for x5x8,

~21!

whereP(QE) is the pressure at the temperatureQE ands tot
is the total cross section for scattering events.

In the case of fullerene experimentP'531026 Pa and
s tot'9310218 m2 @28#. If Fair(`) is the constant value as
sumed by (LIr)(x,x8) for xÞx8, from Eq. ~21! we get
Fair(`)'32 s21. In order to make a comparison between t
different decoherence sources involved in diffraction exp
ments, we can introduce an effective localization factorL
also for air scattering events. Given a pair of slits at
distancenD in a periodic grating of periodD we have

Lair~n!5
Fair~`!

~nD!2
. ~22!

For adjacent slits (n51) the localization factorLair assumes
its greatest value

Lair~n51!'3.231015 m22 s21. ~23!

3. Photon emission

The model of Joos and Zeh can be extended to the
scription of photon emission processes. In fact, also in
case, the wave function of the composite system afte
single emission event is, in general,C(r )x r(r l), where
C(r ) is the initial wave function of fullerene andx r(r l) is
the outgoing wave function of the photon emitted inr . Since
emission time scale, in analogy with scattering events
much faster than characteristic time of fullerene free dyna
ics, the stateux r&, in position representation and asympto
cally in time, is well described by spherical waves

^r l ux r&}
eikur l2r u

ur l2r u
,

wherek is the wave number of emitted photons. It follow
that
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^x r8ux r&5
sin~kur2r 8u!

kur2r 8u
[sinc~kur2r 8u!.

According to Eq.~19! and assuming that fullerene diffractio
can be effectively treated as a one-dimensional problem,
interaction operator for photon emission becomes

~LIr!~x,x8!52N @12sinc~kux2x8u!#r~x,x8!. ~24!

In the fullerene experiment there are essentially two ch
nels for photon emission: the blackbody radiation and
disexcitation of internal vibrational energy levels. In partic
lar, for blackbody radiation at the fullerene temperature
QF'900 K, we have a mean wavelength of emitted pho
equal to

lem
(bb)'1.631025 m.

For decays of internal energy levels it was measured
peaked infrared spectrum with the shortest wavelength@29#

lem
(v ib)'731026 m.

In both cases it results~see Table III! in lem@,0. This per-
mits one to simplify Eq.~24! by the expansion of the sin
function in powers ofkux2x8u. Keeping the first no-constan
term, we directly obtain

~LIr!~x,x8!52Lemux2x8u2r~x,x8!,

with

Lem5
Nk2

6

~in agreement with what obtained by Alicki@24#!.
In the following, we shall calculate the mean valuek2 for

the two different channels of photon emission.
(a) Blackbody radiation.The probability distribution of

the wave numberk is given by the Planck law

n~k!dk5«S \c

kBQF
D 3 1

2z~3!

k2dk

e(\ckBQF)k21
,

where «'4.531025 is the emissivity of fullerene atQF
'900 K @30# andz(3)'1.2. Then Eq.~25! becomes

Lph
(bb)5

N
6 E dkk2n~k!5

8p2z~5!

z~3!

N«

~lem
(bb)!2

, ~25!

with z(5)'1.04.
The number of emitted photons per unit of time can

estimated asN;E(bb)/(kBQF), whereE(bb) is the total en-
ergy emitted per unit of time andkBQF'0.08 eV represents
the single-photon energy. By integrating the Planck distrib
tion, one evaluatesE(bb)5«SsQF

4'16 eV/s, where S
54pR2 is the total surface of fullerene macromoleculesR
'3.5310210 m) ands is the Stefan-Boltzmann constant.
results inN'200 colloids/s, and thus
0-6
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Lph
(bb)'2.53109 m22 s21. ~26!

(b) Decay of internal vibrational energy levels.Since we
lack a model able to describe decays of internal energy le
for fullerene, we directly refer to the results of experimen
spectroscopy. Since infrared spectrum shows a peaked s
ture, we can write

Lph
(v ib)[

Nk2

6
&

N~k* !2

6
'531013 m22 s21, ~27!

wherek* '93105 m is the wave number related to the mo
energetic spectral line~see Fig. 4 in Ref.@29#! and N
'400 colloids/s@1#.

A direct comparison between evaluation~20!, ~23!, ~26!,
and ~27!, reported in Table II, shows that the main decoh
ence processes are scattering with air molecules@especially
for adjacent slits, cf. Eq.~22!#, followed by photon emission
due to decay of internal vibrational energy levels.

B. The effective master equation

According to the foregoing analysis, the Joos-Zeh eq
tion ~18! effectively reduces to

i\
]r

]t
5@H0 ,r#2 iL†x,@x,r#‡

or, more explicitly,

i\
]r~x,x8,t !

]t
5

\2

2M S ]2

]x82
2

]2

]x2D r~x,x8,t !

2 iL~x2x8!2r~x,x8,t !, ~28!

with

L[Lair1Lph,

whereLair is given by Eq.~22! and the three terms inLph

[Lph
(scat)1Lph

(bb)1Lph
(v ib) are given, respectively, by Eqs

~20!, ~25!, and~27!.
Equation~28! is a well-known equation and its solution

are readily obtained~see, for example, Appendix 2 of Joos
Ref. @19#!

TABLE II. Sources of decoherence in the conditions of fullere
experiments@1,2#.

Decohering event L (m2 s21)

Scattering
with thermal photons Lph

(scat)'2.43102

with air molecules Lair&3.231015

Photon emission
blackbody radiation Lph

(bb)'2.53109

decay of excited states Lph
(v ib)&531013

Global effect L&3.331015
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r~x,x8,t !5E E dx0dx08K~x,x8,t;x0 ,x08,0!r0~x0 ,x08!,

~29!

where

K~x,x8,t;x0 ,x08,0!

5
M

2p\t
expH iM

2\t
@~x2x0!22~x82x08!2#J

3expH 2
Lt

3
@~x2x8!21~x02x08!21~x2x8!

3~x02x08!#J . ~30!

Notice that the first exponential describes the free dynam
while the second takes into account the interaction with
external environment.

IV. PREPARATION OF THE INITIAL STATE

In order to determiner(x,x8,t) and thereby evaluating
the intensity on the screen given by Eq.~17!, we still need to
specify the initial density matrixr0(x,x8), taking the initial
time t50 at the moment of the splitting produced by th
diffractive grating.

Because of thermal production and in spite of the follo
ing collimation, each fullerene wave function has a~mean!
transversal wave numberkx ~ideal collimation would corre-
spond tokx50). Thus, after the splitting, the macromolecu
wave function is of the form

c0~x;kx!5F(
s

ws~x!Geikxx, ~31!

wherews represents thesth of theN slit-shaped wave pack
ets outgoing from the grating. The beam is an incoher
mixture of such wave functions with wave numberkx ran-
domly distributed according to a probability distributio
p(kx). This distribution depends on the geometry charac
izing the collimation setup, which reduces the wide th
mally produced spread onx direction. The density matrix of
the beam att50 is then

r0~x,x8!5E dkxp~kx!c0~x;kx!c0~x8;kx!* .

Letting

r̃0~x,x8![(
s,s8

ws~x!ws8~x8!* , ~32!

we obtain

r0~x,x8!5 r̃0~x,x8!E dkxp~kx!e
2 ikx(x82x)

5A2pr̃0~x,x8! p̂~x82x!, ~33!
0-7
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where p̂ is the Fourier transform ofp and r̃0(x,x8) has the
meaning of the density matrix in the ideal case of perf
collimation. A typical diffraction setup consists in a period
grating of periodD, which we consider placed symmetrical
with respect to the optical axis as illustrated in Fig. 2!. In
other words, we consider

r̃0~x,x8!5(
s,s8

wS x1s
D

2 DwS x81s8
D

2 D *
, ~34!

wheres,s8561,63, . . . ,6(N21) ~for symmetry with re-
spect to the optical axis,N is considered to be even!. The size
Dx of the support ofr̃ is simply fixed by

Dx;ND. ~35!

The general structure of Eq.~33! ~for a treatment of which
we remind also to the Sec. 9.1 of Joos in Ref.@19#! appears
for any choice of the density matrixr̃0(x,x8) and in every
case in which a particle is subjected to an uncontrolla
source of random ‘‘kicks’’ which produces instantaneo
shifts in momentum, as in Eq.~31!. Moreover, in case of
random kicks with a mean momentum transfer positio
dependent~for example, in case of van der Waals interacti
between crossing particles and atoms of the grating!, the ef-
fect on the initial state consists in an effective reduction
the aperture width@31#. A similar effect in molecular diffrac-
tion has been already investigated in the framework of c
sical optics@32#.

Now, in order to simplify the analysis, we shall adopt t
convenient and physically reasonable assumption of a Ga
ian probability distribution

p~kx!5
1

A2pskx

expS 2
kx

2

2skx

2 D ,

so that

r0~x,x8!5 r̃0~x,x8!expF2
~x2x8!2

2,0
2 G , ~36!

where we have defined

FIG. 2. Collimation setup and diffraction grating. For clarity th
diagram is not to scale.
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21. ~37!

This quantity, which will play a relevant role in the fol
lowing analysis, will be called thecoherence length~at time
t50). We note that for,0<Dx there is a bound on the
length on which the macromolecules can be coherent,
pressed by,0 itself. In particular, only beams characterize
by an initial coherence length,0*D may produce a coher
ent superposition of wave packets, and thus interfere
fringes, on the detection screen. On the other hand, for,0
@Dx, the damping shown in Eq.~36! does not take effect
and the preparation of the initial state results to be cohe
on the whole supportDx.

Now we consider explicitly a typical diffraction exper
ment with macromolecules~see Fig. 2!, in which the colli-
mation apparatus consists in two identical slits with apert
a, at a distancel @a. The greatest drift velocity along thex
direction results to beuvxumax5vu, wherev is the macromol-
ecule classical velocity along the optical axis andu5a/ l is
the angle under which a point situated in the aperture of
first collimator sees the aperture of the second one~since l
@a, then the angleu can be considered the same for eve
point of the first collimator!. Thus we can put 3skx

5Mvu/\ and so we obtain

1

,0
2
[skx

2 5S Mvu

3\ D 2

. ~38!

An evaluation of the initial coherence length,0 for fullerene
experiments is reported in Table III.

V. THE INTERFERENCE PATTERN

Consider now the initial density matrixr0 given by Eq.
~36!. Define

1

2,~ t !2
[

Lt

3
1

1

2,0
2

, i.e., ,~ t ![
,0

A11
2Lt

3
,0

2

~39!

@note that,(0)5,0]. Then Eq.~29! becomes

r~x,x8,t !5
M

2p\tE E dx0dx08

3expH iM

2\t
@~x2x0!22~x82x08!2#2

~x02x08!2

2,~ t !2

2
Lt

3
@~x2x8!21~x2x8!~x02x08!#J

3 r̃0~x0 ,x08!,

when, from relation~17!, the intensity on the screen is give
by
0-8
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I 2~x![r~x,x,T!5
M

2p\TE E dx0dx08 expH iM

2\T
@x0

22x08
2

12x~x082x0!#2
~x02x08!2

2,2 J r̃0~x0 ,x08!, ~40!

where x0 and x08 run along the slits crossed by the initi
wave function whose support isDx and,[,(T) is the co-
herence length at the time of flightt5T.

As already argued for,0, if ,&Dx the exponential,
exp@2(x02x08)

2/(2,2)#, reduces fromDx to , the length scale
on which the initial state is coherent. This scale is fixed fro
both geometry of the experimental setup, i.e., the collimat
apparatus and the distanceL between grating and screen, an
the physical conditions under which the interferometry ta
place, i.e., the momentum of the macromolecule and the
fect of the environment@see Eqs.~39! and~8!#. On the other
hand, the above exponential does not give any relevant
tribution if ,@Dx, and, from Eqs.~38! and ~39!, it follows
that this occurs when there are both good collimationu
'0) and negligible coupling with surrounding environme
(L'0). In this case we fall back to the treatment of S
II A.

Note that interference fringes appear on the detec
screen ifDx*D and,*D, i.e., if the molecules are cohe
ent at least on two contiguous slits. The numerical estima
of ,0 and , in the condition of fullerene experiments a
shown in Table III. In particular, note that,'D and thus
interference is mainly due to adjacent slits. Moreover, a co
parison between the values of,0 and, shows that the main
mechanism which yields a loss of coherence is the ang
divergence of the beam@34#.

A. Fraunhofer approximation for the intensity

We shall now proceed to an approximate evaluation
I (x), relying on conditions that are reasonable in comm
interferometry experiments performed in far-field appro
mation~see Appendix A for a more refined evaluation in t
case of a pair of Gaussian shaped slits!.

Note that

expF iM ~x0
22x08

2!

2\T G'1,

when

M ~x0
22x08

2!

2\T
5

M ~x01x08!~x02x08!

2\T
!1,

and this condition is clearly satisfied in the Fraunhofer
gime ~13!. Nevertheless, in the presence of a cohere

TABLE III. Comparison between losses of coherence
fullerene experiments@1,2#.

Initial coherence length (t50) ,0'1.331027 m
Coherence length att5T ,;D51027 m
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length,&Dx, we have relevant contributions in integratio
~40! just for (x02x08)&,. Thus, under the condition

MDx,

\T
!1, ~41!

I 2(x) gets approximated by

I 3~x!5
M

2p\TE E dx0dx08 expF iMx

\T
~x082x0!Gr1~x0 ,x08!,

~42!

where

r1~x0 ,x08!5expF2
~x02x08!2

2,2 G r̃0~x0 ,x08!.

Introducing the Fourier transform ofr1,

r̂1~k0 ,k08!5~2p!21E E dx0dx08e
2 i (k0x01k08x08)r1~x0 ,x08!,

we have

I 3~x!5
M

\T
r̂1~ k̄,2 k̄!, where k̄[

Mx

\T
5

2px

lL
.

~43!

This result is very analogous to Eq.~11! of Sec. II A with Eq.
~41! replacing Eq.~10! whenever,&Dx. Also in this case
~41! should be rewritten in terms of the physical variabl
under control@cf. Eq. ~12!#, namely, as

,

L
!

l

Dx
.

Notwithstanding, there are some basic differences t
should be underlined: First,r1 is not the initial state, but it is
an effective state that takes into account incoherence du
preparation and to the time evolution. In fact, depends on
the physical and geometrical variables of the experimen
the phase of preparation and in its future development an
is progressively reduced by increasing the time of flight. S
ond, unlike what typically happens in the framework of cla
sical optics and the theory of scattering, it is no more use
to evaluater1 asymptotically in time, since environmenta
induced decoherence completely destroys interfere
fringes at times too large.

In fullerene experiments,,'1027 m,Dx'1026 m ~for
an estimate ofDx, see Sec. VII!. In this case the left-hand
side~LHS! of Eq. ~41! is not at all negligible with respect to
unity. Anyhow, a more precise inspection of integration~40!,
with r̃0 given by Eq.~34!, shows that condition~41! is too
strong a demand and that approximation~42! can be reason-
ably applied. So doing, the error made is not complet
negligible only for the pair of adjacent slits farthest wi
respect to the optical axis. This error, however, affects n
ligibly the sum involving the contributions of all the slits.
0-9
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Let us now computer̂1( k̄,2 k̄) for r̃0 expressed by Eq
~34!, i.e., for the split of macromolecules on a periodic gr
ing of period D. First we make the change of variablesj
[x01sD/2 andj8[x081s8D/2, which leads to

r̂1~ k̄,2 k̄!5
1

2p (
s,s8

eik̄(s2s8)D/2e2[(s2s8)D/2]2/2,2

3E E djdj8

3e2 i k̄jeik̄j8e(1/2,2)[( j82j)(s82s)D2(j82j)2]

3w~j!w~j8!* , ~44!

and second we perform the Taylor series expansion of
real exponential in the previous integral in the variable (j8
2j)/, and about the pointj85j,

expF ~j82j!~s82s!D2~j82j!2

2,2 G
511

~j82j!~s82s!D

2,2
OF S j82j

, D 2G . ~45!

The solution of Eq.~44! is particularly handy whenever th
effects due to incoherence are negligible on a length sca
the order of the slit widthd or, in other words, whenever th
strength of incoherence does not spatially resolve the si
slit. This is assured by a slit width much less than the coh
ence length

d/,!1. ~46!

Under condition~46! the LHS of Eq.~45! is well approxi-
mated by 1. In fact, sincej andj8 run within the slit width
d and (s82s)D/2&, due to the damping exponentia
exp$2@(s2s8)D/2#2/(2,2)% in Eq. ~44!, we have

~j82j!~s82s!D

2,2
&d/,!1.

Thus the Fourier transform~44! becomes

r̂1~ k̄,2 k̄!;
1

2p (
s,s8

eik̄(s2s8)(D/2)e2[(s2s8)D/2]2/2,2

3E E djdj8eik̄je2 i k̄jw~j!w~j8!* .

@Although the rough condition~46! is not directly satisfied in
fullerene experiments, the zero-order approximation of
~45! can be reasonably applied in integration~44!; for an
evaluation of the error introduced the reader can see App
dix B.#

In the light of these considerations, the intensity pattern
well approximated by
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I 4~x!5
M

\T
uŵ~ k̄!u2(

s,s8
e( i k̄/2)(s2s8)De2[(s82s)D/2]2/2,2

,

whereŵ is the Fourier transform ofw.
Note that the sum of the terms withs5s8 simply givesN,

while the sum of the terms withsÞs8 gives

2 (
s.s8

e2[(s82s)D/2]2/2,2
cosF k̄~s82s!

2
G .

By adding these two contributions and withk̄
52px/(lL) @see Eq.~43!#, we arrive at the suggestiv
‘‘Fraunhofer-like’’ expression

I 4~x![I ~x!5
2p

lL UŵS 2px

lL D U2FN12 (
n51

N21

~N2n!

3e2(nD)2/2,2
cosS 2pnDx

lL D G ~47!

~it being understood that forN51 the sum is zero!, where
n5(s82s)/2 @35#.

Equation~47! shows that, whereas all theN wave packets
outgoing from the grating contribute to the intensity revea
on the screen, the pairs of slits which concretely contribute
interference oscillations are distant at most of the order o,,
due to the damping exponential in the sum. It follows th
for a finite,, the interference pattern shows ‘‘distortions’’ i
fringe structure due to partially random preparation and
coherence, but, being incoherent effects typically negligi
on single-slit space scale, fringe pattern is just modulated
the single-slit diffraction profileuŵu2 according to classica
optics Fraunhofer diffraction.

As already sketched before, it should be observed that
intensity on the screen may show interference fringes onl
the coherence length is at least as long as the grating pe
i.e.,

,~ t !*D ~48!

~note that this inequality should be satisfied at least at
initial time t50). For positive times, recalling~39!, we ob-
tain

t&tc[
3

2LD2 F12S D

,0
D 2G ,

which provides an upper bound for the time of flight, i.e.,
evaluation for theeffective coherence timetc . Note that for
the fullerene experiment, according to Tables I and II, it
sults in

tc5431022 s,

which is indeed several times the value of the time of flig
in this experiment@36#.

The effective coherence timetc is clearly an upper bound
for the time of flightT, since interference fringes are detec
0-10
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ANALYSIS OF THE LOSS OF COHERENCE IN . . . PHYSICAL REVIEW A68, 063610 ~2003!
able only withintc . This shows that the ‘‘geometrical op
tics’’ limit in the presence of decoherence requires more c
than in the free case. In particular, it cannot be based on
standard time independent methods and the ‘‘t→` ’’ limit.

B. Extension to a generic angular divergence of the beam

This section is devoted to generalize Eq.~47! for a ge-
neric transversal wave number probability distributi
p(kx). Introducing Eqs.~30! and ~33! in Eq. ~29!, the long-
time asymptotic behavior of the intensity becomes

I 3~x!5
M

A2p\T
E E dx0dx08e

ik̄(x082x0)2(LT/3)(x082x0)2

3 p̂~x082x0!r̃0~x0 ,x08!.

By the same variable change which leads to Eq.~44! and
making explicit r̃0 for a grating of periodD @cf. Eq. ~34!#,
we obtain

I 3~x!5
M

A2p\T
(
s,s8

eik̄(s2s8)D/2e2(LT/3)[(s82s)D/2]2

3E E djdj8

3e2 i k̄jeik̄j8e2(LT/3)[(j82j)21(j82j)(s82s)D]

3 p̂@j82j1~s2s8!D/2#w~j!w~j8!* . ~49!

As discussed in the preceding section, note thatuj82ju<d
and thatu(s82s)D/2umax;(LT)21/2 due to the damping term
e2(LT/3)[(s82s)D/2]2 in Eq. ~49!. Thus, in case of decoherenc
negligible on the single-slit length scale, i.e., ford(LT)1/2

!1, and for a slowly varying functionp̂, such thatp̂@6d

1(s2s8)D/2#; p̂@(s82s)D/2#;s,s8, Eq. ~49! becomes

I ~x!5
~2p!3/2

lL
p̂~0!UŵS 2px

lL D U2H N12 (
n51

N21

~N2n!

3e2(LT/3)(nD)2F p̂~nD!

p̂~0!
GcosS n

2pDx

lL D J , ~50!

where n5(s82s)/2 and k̄52px/(lL). Note that the as-
sumption of slow variation ofp̂ is directly assured by a suf
ficient sharpness of the wave-number distributionp(kx), i.e.,
by Dkx!d21.

VI. QUANTUM INTERFEROMETRY AND CLASSICAL
DIFFRACTION THEORY

A. Comparison with geometrical optics

In case of complete coherence, i.e., forp(kx)5d(kx) and
L50, Eq. ~50! reduces to the well-known Fraunhofer rel
tion for optical diffractive patterns
06361
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I ~x!5
2p

lL UŵS 2px

lL D (
n50

N21

ein2pDx/lLU2

5
2p

lL UŵS 2px

lL D U2Fsin~pNDx/lL !

sin~pDx/lL ! G2

.

Moreover, for just two slits (N52), i.e., for Young
double-slit interference, Eq.~50! becomes

I ~x!5
4p

lL
p̂~0!UŵS 2px

lL D U2F11
p̂~nD!

p̂~0!

3e2(LMlL6p\)D2
cosS 2pDx

lL D G .

This expression is very similar to that used in classical op
to describe interference patterns due to partially cohe
electromagnetic fields@14#. In particular, note that thedamp-
ing term for quantum interference oscillations

VQM5
p̂~nD!

p̂~0!
e2(LMlL/6p\)D2

~51!

is the quantum-mechanical counterpart of thefringe visibility
VCO of classical optics

VQM↔VCO. ~52!

Both for quantum and classical interferometry, the visibil
V is a measure of the distinctness of the fringes and is
fined by

V5
I max2I min

I max1I min
. ~53!

The intensitiesI max and I min are, respectively, the maximum
and the minimum revealed on the detection screen in
immediate neighborhood of the optical axis.

Now it is useful to recall an important result from th
classical theory of partial coherence. The pattern visibi
VCO of a quasimonochromatic field, equally split by a pair
slits, coincides with the modulus of thespectral degree of
coherencem(l) @14,37#, which characterizes the field corre
lation in the space-frequency domain

VCO5um~l!u. ~54!

From Eqs.~53! and~54! it follows that the degree of spectra
coherence is upper bounded by unit, value assumed in
dition of complete coherence~e.g., in case of laser radiatio
diffraction!.

According to the correspondence~52!, the results of the
classical theory of partial coherence extend to quantum
tems,mutata mutandis. For instance, in Sec.~VIII ! we shall
show some interesting analogies concerning withtemporal
and spatial coherenceof beams, while in the following we
underline the differences existing between classical op
and quantum mechanics.
0-11
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VIALE, VICARI, AND ZANGHI` PHYSICAL REVIEW A 68, 063610 ~2003!
First of all, the degree of coherence of quantum partic
depends both on the collimation of the macromolecular be
and on the strength of interaction with the surrounding en
ronment during the time of flight@cf. Eq. ~51!#. In optics,
instead, the degree of coherence of quasimonochrom
fields is only due to source details. More particularly, t
corruption of visibility of interfering fields increases with th
spatial extension of the source, composed by a statis
ensemble of many independent elementary radiators.

Moreover, in classical optics the explicit form of the d
gree of coherencem(l) depends on the geometrical shape
the source, while the damping termVQM depends both on the
features of the evolution kernel~30!, characterizing the de
coherence model, and on the geometrical details of the
limation apparatus@cf. Eq. ~51!#.

B. Fresnel regime and Talbot interferometry

We would like now to comment on interferometry in th
near-field zone@38–41#, which has been recently realized b
means of C70 beams@42,43#. Such experiments show that,
distances from the diffraction grating multiple of the leng
2D2/l, images of the grating itself are reconstructed~see
also the optical Talbot effect@44,45#!.

Thus, by shifting another identical grating, placed beh
the previous one at a distance 2D2/l, the integrated signa
outgoing from the gratings periodically changes from
minimum ~half period displacement of the two gratings! to
its maximum~complete alignment!.

If the influence of the environment is negligible, a trea
ment of this effect in the spirit of Sec. II A can be performe
In fact, given the correspondence between Helmholtz
stationary Schro¨dinger equation, one can directly exploit th
standard optical techniques, such as Fresnel-Kirchhoff
fraction integrals in Fresnel zone, with suitable bound
conditions—‘‘transmission functions’’—at the gratings. In
deed, this is what it has been done~see, e.g., Refs.@41,46#!
by means of the so-called ‘‘paraxial approximation,’’ assu
ing both gratings distances large with respect to the gra
period and an infinite number of slits.

In experiments with large molecules@43#, it has been ob-
served that the visibility of the signal is progressively r
duced by increasing the pressure of environmental ga
clear sign of environmental quantum decoherence. A qua
tative explanation of this effect—using the model of Jo
and Zeh in order to suitably modify the classical Fresn
Kirchhoff description recalled above—has been already p
vided in Ref. @43#. A more self-contained and thoroug
analysis, based on Eq.~17!, will be presented elsewhere@31#.
Here we shall provide just a sketchy outline, referring to
theoretical treatment already present in literature@47#. In this
last work, the form of the propagator describing the fr
evolution of a quantum wave is shown, split by a diffracti
grating with a formally infinite number of slits, i.e., with a
associated initial density matrix of the form

r0~x,x8!5 (
j , j 8PZ

w~x1 jD !w~x81 j 8D !* ~55!

~note that, with respect to initial state expressed by Eqs.~33!
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and ~34!, here it is assumed perfect collimation and an in
nite number of slits!. Let KT

(free) be the so-calledTalbot
propagator, including the sum overj and j 8 of Eq. ~55! and,
accordingly, providing the intensity patternI (x) in terms of
the singlewave packetw(x):

I ~x!}E dx0dx08KT
(free)~x,x,t;x0 ,x08 ,0!w~x0!w~x08!* .

~56!

It results~see, e.g., Ref.@47#! that at a distanceLT from the
grating equal to 2D2/l or multiple of it ~and consequently a
times tT multiples ofLT /v52MD2/h), KT

(free) reduces to

KT
(free)~x,x,tT ;x0 ,x08,0!

5
1

D2 (
j 52`

1`

expS 22p i j
x2x0

D D
3 (

j 852`

1`

expS 22p i j 8
x2x08

D D
5 (

j 52`

1`

d~x2x01 jD ! (
j 852`

1`

d~x2x081 j 8D !.

~57!

Clearly, from this relation and Eq.~56! it is immediate to
verify that the final state is an exact reconstruction of
initial one ~55!.

By following the same steps leading to Eq.~57!, but now
using the propagator~30! which embodies the incoherenc
effects, the Talbot propagator becomes

KT
(env)~x,x,tT ;x0 ,x08,0!

5
1

D2 (
j 52`

1`

expS 22p i j
x2x0

D DexpH 22 j 2F D

,~ tT!G
2J

3 (
j 852`

1`

expS 22p i j 8
x2x08

D DexpH 2~2 j 8214 j j 8!

3F D

,~ tT!G
2J ,

where,(tT) is the coherence length computed at the Tal
time tT . With respect to Eq.~57!, here some additional ex
ponential are present which obstructs the reconstruction
the initial wave function. So, if we put a second grating
distances multiples of 2D2/l, even for a perfect alignmen
between the two gratings the wave function is partia
stopped and thus the intensity detected will be lower than
the free case. Similarly, for a displacement between the g
ings of a half period, a portion of signal, even little, may
detectable further on. In such a scenario, a decrease o
coherence length,, i.e., a growth of the incoherence of th
beam, leads to a progressive reduction of the visibility of
total intensity on the screen, in agreement with the beha
of the experimental data reported in Ref.@43#. @An improve-
0-12
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ANALYSIS OF THE LOSS OF COHERENCE IN . . . PHYSICAL REVIEW A68, 063610 ~2003!
ment of this analysis should presumably take into acco
~1! the three free-standing gratings for the Talbot-Lau int
ferometer effectively used in experiments;~2! a proper de-
scription of the van der Waals interaction with the grating#

C. Near-field interferometry and randomness of arrival times

Near-field interferometry, such as Talbot-Lau interfero
etry, should allow us to probe quantum effects also due to
motion along the longitudinal direction, which so far h
been treated as classical. Such a treatment has been of c
completely motivated by the experimental conditions cons
ered so far for which both Eqs.~5! and~7! are satisfied with
a high degree of approximation. But suppose that posi
spread in the longitudinal directionDy is not completely
negligible with respect toL. Then the arrival times would
have statistical fluctuations of order

DT;Dy/v.

For the fullerene experiments in the Fraunhofer region s
fluctuations are not appreciable: in this case,DT;Dy/v
'531029 s, and sinceT'631023 s, we have

DT!T. ~58!

Near-field interferometry, possibly with light particle
should be able to test the measured intensity when Eq.~58! is
violated. A first prediction is immediately suggested by E
~6!: the measured intensity is obtained by the intensity d
tribution consider so far, namely,r(x,x,T), by convolution
with uf0u2. Thus, randomness of the arrival times appears
an independent noise on the standard interference pro
which reduces the fringe visibility as it were an addition
source of ‘‘decoherence.’’ This effect could be confused w
a sort of intrinsic decoherence~in this regard see a recen
proposal concerning atomic diffraction by standing lig
wave @48#!.

More generally, one may analyze the predictions of E
~3! in the mesoscopic regime@7#. Let us consider a mono
chromatic beam, devoid of angular divergence, compose
free light particles of massm. Let the beam be diffracted b
two slits of width d and distanceD. It is convenient to de-
scribe the split wave functionC(r ) by means of two-
bidimensional Gaussian wave packets, whose barycen
move parallel to the optical axisy with the velocity v
5\ky /m:

C~r !5c0~x!f0~y!5CF (
s56

e2(x2sD/2)2/4sx
2Ge2y2/4sy

2
1 ikyy.

~59!

The constantC ensures normalization. The transversal st
dard deviationsx of each wave packet is related to the s
width d ~a typical assumption is 6sx5d), while the longi-
tudinal one is related to the extension of the initial suppor
C(r ).

After the splitting, we can consider thatC(r ) evolves
according to the free Schro¨dinger equation~2! until the par-
ticle is detected on the detection screen placed at a dist
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L. Given an arbitrary distance, not necessarily large co
pared with the size of the support ofC(r ), and for a free
evolution, the intensity detected aty5L can be calculated by
means of Eq.~4!, with c(x,t) and f(x,t) obtained by the
free evolution of the initial state~59!. The result of such a
numerical simulation for ultracold neutrons is shown in F
3. At distances as short as to be comparable with the lo
tudinal spread of neutron wave packets, the statistical fl
tuations on arrival times produce an appreciable reductio
the fringe visibility just as it would happen in case of a
incoherent preparation of the beam and/or in case
environmental-induced decoherence. The only differe
consisting in the distance dependence of the different p
cesses: this kind of decoherence reduces by increasing
distance, environmental-induced decoherence increa
while the effects due to incoherent preparation are indep
dent.

In particular, notice that the reduced visibility is not du
not even partially, to an incomplete wave-packet superp
tion, being this ensured, also for the shortest distance sh
in Fig. 3, by the large wavelength of ultracold neutron
Thus, the loss of fringe contrast has to be ascribed only
arrival time fluctuations of the same order of the classi
time of flight.

For simulations of Fig. 3 we used a longitudinal deloc
ization at the double-slit given bysy51023 m. This as-
sumption can be relaxed to shorter values still detecting
sults analogous to those shown by Fig. 3, but at sho
distances. In this case the spatial resolution required for
ficient detection becomes higher. Conversely, for a lar
longitudinal delocalization, intrinsic decoherence effects c
be readily detected at larger distances by means of less
fined detectors.

FIG. 3. Double-slit interference patterns for different values
the distance between the grating and the detection screen. Pa
are obtained for ultracold neutrons (v'1 m/s) diffracted by a pair
of slits of width d5531026 m and separated by a distanceD
51025 m. Neutron initial wave function is described by means
bidimensional Gaussian wave packets with a longitudinal stand
deviationsy51023 m and a transversal onesx5d/6.
0-13
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In conclusion, let us underscore that, since very slow n
trons (v'1 m/s) @49# characterized by a wide transvers
support (Dx*1024 m) @49,50# have been used in interfer
ometry, we think that an experimental test of the predic
behavior shown in Fig. 3 might be indeed in the reach
present technology~not necessarily for the concrete situatio
we have simulated, which was mainly for illustrative pu
poses!.

VII. NUMERICAL CALCULATIONS

In this section we shall use Eq.~47! to fit the experimental
data reported in Ref.@2#. In this regard, note that Eq.~47!
describes an ideal situation where an infinitely accurate
tector measures the spatial intensity distribution of a stric
monochromatic beam. Some adjustments have to be ca
out in order to include in our treatment the effects on
diffraction pattern due both to the velocity distribution cha
acterizing the beam macromolecules and to the distort
unavoidably introduced during the measurement proc
@51#. Each of these corrections have to be implemented
the intensity level, since they consist in incoherent contri
tions.

The total intensity is obtained by the sum of the mon
chromatic components of the beam

Ī ~x!5E dl f ~l!I ~x,l!, ~60!

whereI (x,l) is given by Eq.~47! and its dependence onl is
shown by Eq.~8!. The wavelength distributionf (l)dl is
directly obtained by thesupersonic velocity distribution
f (v)dv characterizing the macromolecule ensemble@2#

f ~v !dv}v3 exp@2~v2v0!2/ v̂2#dv. ~61!

It describes beams in transition between effusive and slow
sources@52#. The parametersv0 and v̂ depend both on the
temperature of the beam and on the physical features o
given molecule and they are deduced by a best fit over
perimental measurement of the velocity distribution~see Fig.
2 in Ref. @2#!.

The finite spatial resolution can be taken into account
an integration over the size of the elementary detector,
2x̃, weighed on its spatial response functionD(x). In par-
ticular, in the case of a flat response function,D(x) becomes
the characteristic functiondefined on the interval@2 x̃,
1 x̃# and theeffective detected intensityis expressed by a
moving average

I eff~x!5E
2 x̃

1 x̃
dz Ī ~x1z!D~z!5

1

2x̃
E

x2 x̃

x1 x̃
dz Ī ~z!,

when, from Eq.~60!,

I eff~x!}E
x2 x̃

x1 x̃
dzE dl f ~l!I ~z,l!.

For the free gapd of the rectangular slits, it was use
according to Ref.@32#, the effective width estimated in Refs
06361
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@1,2# as previously discussed in Sec. IV@53#. Moreover, a
constant background has been subtracted from experime
data@1,2#.

Finally, referring to Eq.~47!, note that the numberN is
basically a priori unknown, being the effective number o
slits which concretely contribute to diffraction. In fact, on
the knowledge of the fullerene wave function on the grat
would allow us to fix the effective number of slits in whic
the initial wave function is split, since the width of collima
tion only gives information about the maximum number
wave packets which could contribute to the interference p
tern. Nevertheless,N can be easily inferreda posteriorias a
free parameters of the fit with experimental data. So doi
we find N510.

Our theoretical evaluation for the interference pattern
shown in Fig. 4, together with the experimental points pu
lished in Ref.@2#, p. 2819, Fig. 5.

VIII. CONCLUSIONS AND PERSPECTIVES

One of the main goals of our work has been that of d
ducing, within the framework of Joos and Zeh model, a g
metric optics limit of quantum mechanics in the presence
decoherence.

Our theoretical analysis confirms the negligibility of e
vironmental disturbances in recent experiments of macro
lecular interferometry@1,2# with respect to the loss of coher
ence due to beam production.

Moreover, our analysis reproduces classical results,
well as Fraunhofer relation for optical diffractive pattern
and provides the quantum-mechanical analog for interfero
etry with partially coherent sources of radiation. For the l

FIG. 4. Theoretical fit and experimental data for C60 interferom-
etry @2#. The theoretical fit was performed consideringN510 equal,
rectangular shaped, slits of an effective widthd536 nm. The spa-

tial resolution of the detector is 2x̃58 mm. The theoretical curve
and experimental data are normalized to the value of the cen
maximum.
0-14
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ANALYSIS OF THE LOSS OF COHERENCE IN . . . PHYSICAL REVIEW A68, 063610 ~2003!
ter subject, referring to the theory of partial coherence,
isting analogies can be pointed out in a deeper way
exploiting numerical simulations. Figure 5 clearly show
that, by selecting the particle beam velocity, the visibility
the corresponding interference pattern does not tend to u
being upper bounded by the damping termVQM @cf. Eqs.
~51!–~53!#. On the other hand, the effect of the velocity s
lection makes more interference fringes visible at the bor
of the interference pattern.

The same behavior is obtained in the framework of cl
sical optics, studying interference patterns due to quasi
nochromatic fields @54,55#. Classical partial coherenc
theory, supported by recent experiments@56#, states that, by
filtering, the pattern visibility at most approaches the va
of the modulus of thedegree of spectral coherencem(l),
which depends on thespatial coherenceof the source, and
that more fringes becomes visible, since thetemporal coher-
enceis improved.

Moreover, our approach provides a useful theoreti
framework for analyzing present~and possibly new! interfer-
ence experiments. For instance, we have studied the m
dependence of the interference pattern due to the diffrac
of heavy particles. Figure 6 shows the simulations cor
sponding to beams of macromolecules heavier than C60, but
characterized by the same physical features. Note that
larger masses the quantum behavior becomes progress
negligible, approaching to the classical limit. There are,
deed, other experimental investigations which support
previous expected behavior@57#. They show that visibility of
C70 diffracted beams is slightly reduced than that obtain
for C60 ones in the same conditions.

In studying the effects of decoherence, it is particula
interesting to analyze the case of a diffracted quantum

FIG. 5. Interference patterns due both to a macromolec
beam characterized by a velocity distribution given by Eq.~61! as
in Ref. @2# ~full line! and to a strictly monochromatic beam corr
sponding to the mean velocity~dashed line!. The curves are nor-
malized to the value of the central maximum.
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ticle which experiences a lot of scattering events bef
reaching the detection screen. This situation is realized
larger grating-screen distances~see Fig. 7! or for more fre-
quent scattering processes due, for example, to increa
value of pressure~see Fig. 8!. In both cases the fringe vis
ibility, and thus the wavelike behavior of the molecule,
progressively corrupted.

By improving the collimation of velocity selected C60
beams, the interference pattern shows a richer structur
fringes and thus a more evident quantum behavior. Mo
over, interference oscillations appear also in less restric
environmental conditions, provided that the signal-to-no
ratio is such to allow experimental detection. In fact,
shown by the right plot in Fig. 8, side maxima, far from th
optical axis, which are not detected at pressureP in experi-
ments@1,2#, turn out to be clearly visible even for pressur
ten times larger thanP. This might be relevant in devising

r

FIG. 6. Diffraction of molecules with masses multiple of the C60

massM. For larger masses the quantum behavior becomes prog
sively negligible, approaching the classical limit. Every curve h
been normalized to the value of the central maximum obtained
the massM.

FIG. 7. Interference patterns for different values of the dista
between the grating and the detection screen, in units of the valL
reported in Ref.@2#. Increasing the distance the pattern spreads
position with respect to the optical axis. The visibility is reduced
the increased number of decohering events. Every curve has
normalized to the value of the central maximum obtained for
distanceL.
0-15
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FIG. 8. The two figures show interference patterns for increasing pressures at fixed temperature, in units of the pressuP55
31026 Pa used in Ref.@2#. The left figure corresponds to the experimental setup reported in Ref.@2#: slit effective width d53.6
31028 m and collimator aperturea51025 m. The right figure has been obtained for narrower slits (d5231028 m), an improved
collimation (a5531026 m), and a velocity selected C60 beam (Dv/v510%, wherev is the mean velocity!. Every curve has been
normalized to the value of the central maximum at the pressureP.
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. It
new interferometry experiments directed to the study of
quantum behavior of macroscopic objects and also to
quantitatively the effects on a quantum subsystem due
external noise. Our suggestion has been partially realize
very recent experiments@58#, which show results in agree
ment with the prediction of Fig. 8.
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APPENDIX A: YOUNG INTERFERENCE PATTERN
WITH GAUSSIAN SLITS

In the following we shall develop the exact solution
Eq. ~40! in the case of slits with a Gaussian shaped profi
For simplicity we shall treat the case of interference patte
due to just a pair of slits of widthd and distanceD, even
though an analytical solution can be obtained also for a g
ing composed of several slits.

Let us consider an initial wave function split by tw
Gaussian slits of standard deviationsx and centered atx5
6D/2 ~we can typically choose 6sx5d),

c0~x;kx!5FwS x1
D

2 D1wS x2
D

2 D Geikxx

5C@e2(x2D/2)2/4sx
2
1e2(x1D/2)2/4sx

2
#eikxx,

~A1!

whereC is the normalization constant. Inserting Eq.~32! in
Eq. ~40! with the initial state~A1! we get
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I ~x!5
MC2

2p\TE E
2`

1`

dx0dx08

3expH iM

2\T
@x0

22x08
212x~x082x0!#2

~x02x08!2

2,2 J
3 (

s,s856

expF 2

S x01s
D

2 D 2

4sx
2

2

S x081s8
D

2 D 2

4sx
2

G ,

when

I ~x!5
4Msx

2C2

\TAQ~T!
expF2

x21D2/4

Q~T!
SA2Msx

\T D 2G
3H coshF SA2Msx

\T D 2 Dx

Q~T!
G

1expF2
D2

2Q~T!,2GcosF MDx

\TQ~T!G J , ~A2!

whereQ(T)[11@2Msx
2/(\T)#21(2sx /,)2.

For T@MsxD/\ and ,@sx the term Q(T)→1,
the first exponential in Eq. ~A2! reduces to
exp$2@A2Mxsx /(\T)#2%, when xmax'\T/(Msx), and
thus the argument of the hyperbolic cosine is close to zero
follows that Eq.~A2! is well approximated by@see Eq.~8!#

I ~x!5
8psx

2C2

lL
expF S 2A2pxsx

lL D 2G
3F11e2D2/2,2

cosS 2pDx

lL D G
5

4p

lL UŵS 2px

lL D U2F11e2D2/2,2
cosS 2pDx

lL D G ,
which coincides with Eq.~47! evaluated forN52.
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APPENDIX B: APPROXIMATION QUALITY TEST
FOR THE FULLERENE EXPERIMENT

In this appendix we evaluate the error committed int
ducing the zero-order approximation of Eq.~45! in Eq. ~44!,
referring to experimental conditions reported in Ref.@2#.

Sinceu(s82s)Du&2,, we will test the previous approxi
mation in the most unfavorable situation, according
exp@(j82j)/,#'1. To this aim, it is useful to introduce th
integrals

I~,,k̄!5E
2`

1`

djw~j!ej/,eik̄j,

A~ k̄!5E
2`

1`

djw~j!eik̄j,

where k̄5Mx/(\T). Zero-order approximation of Eq.~45!
can be checked by evaluating the relative displacement o
square modulus of the previous integrals

R~,,k̄!5UuI~,,k̄!u22uA~ k̄!u2

uI~,,k̄!u2
U .

The less the value assumed byR(,,k̄), the better the quality
of the zero-order approximation of Eq.~45!.

By making explicitw(j) with the characteristic function
defined in the interval@2d/2,d/2#, a straightforward calcu-
lation leads to
w,

v.

/

06361
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uI~,,k̄!u25
2

1/,2k̄2
@cosh~d/, !2cos~ k̄d!#,

uA~ k̄!u25d2 sinc2~ k̄d/2!5
2

k̄2
@12cos~ k̄d!#,

whence

R~,,k̄!5U12F11
1

~, k̄!2G 12cos~ k̄d!

cosh~d/, !2cos~ k̄d!
U . ~B1!

In the limit of small k̄ ~i.e., for positionsx'0, close to the
maximum of intensity!, we get

lim
k̄→0

R~,,k̄!512
~d/, !2

2@cosh~d/, !21#
;

~d/, !2

12
'0.011.

~B2!

This means that in correspondence of the greatest intens
the approximate expression just moves away from the c
rect one of about 1%.

SinceR(,,k̄) is an increasing function ofk̄, and thus of
uxu, then the most unfavorable case takes place at the edg
the interference pattern, where, however, the intensity is n
ligible. By using k̄max'd21 in evaluating~B1!, it turns out
that R(,,k̄max) does not significantly differ from evaluatio
~B2!.
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