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Analysis of the loss of coherence in interferometry with macromolecules
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We provide a self-contained quantum description of the interference produced by macromolecules diffracted
by a grating, with particular reference to fullerene interferometry experiments. We analyze the processes
inducing loss of coherence consisting in beam preparadtiotimation setup and thermal spread of the wave-
lengths of the macromoleculeand in environmental disturbances. The results show a good agreement with
experimental data and highlight the analogy with optics. Our analysis gives some hints for planning future
experiments.
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[. INTRODUCTION tum systems. In this model, the reduced density matrix of the
system evolves autonomously according to a “Boltzmann-
The aim of this paper is to provide a theoretical derivationtype” master equation. The effect of the environment is sum-
of the measured beam intensity profile for interferometrymarized by “a collision term,” added to the free dynamics of
with macromolecular beams, under the influence of the prothe system, which takes into account ttecoherencei.e.,
cesses inducing loss of coherence, consisting both in beaf@mping of the off-diagonal terms of the density matrix in
preparation(collimation setup and thermal spread of the position representation.
wavelengths of the macromoleculesnd in environmental Starting from these premises, and by means of some ap-
disturbances. proximations that are reasonable in the common experimen-
We have been motivated by the impressive experimentt®l conditions for interferometry with heavy particles, we
with fullerene made by Zeilinger’s grodd,2]. In these ex- shall derive an easy relation useful to describe diffraction
periments, thermally produced beams of heavy macromolPatterns.
ecules are collimated, diffracted by a grating, and then de- Finally, we shall provide a theoretical fit for the experi-
tected on a distant screen. The diffraction pattern sdnental data reported in Ref2], and we shall discuss some
produced shows the typical interference profile of wave phepredictions about the dependence of the interference patterns
nomena in the presence of incoherent contributions, and th@n physical parameters such as the mass of the molecules,
reduced fringe visibility observed reminds us very much ofthe pressure at which the experiment is performed, and the
Kirchhoff diffraction with thermal light produced by an ex- distance of the detection screen. These predictions can be of
tended source. By taking into account the effects of the insome relevance for planning new experiments.
teraction of the macromolecules with the environment and

with the photons they emit by internal cooling, we shall pro- Il. MEASURED INTENSITY
vide a self-containedjuantumdescription of these experi-
ments that does not rely on methods of classical optics. In the experiments with fullerenes a thermally produced

Our analysis is based on two main ingredients. The firsbeam of heavy macromolecules is collimated, diffracted by a
one is a matter of principle: it is the formula for the statisticsgrating, and then detected on a distant scresse Fig. L
of particle arrival position and time on a distant surfaceThe grating is composed by parallel slits, and it is periodic of
given by Eq.(1) below. According to this formula, the inten-
sity pattern revealed on a distant screen can be expressed in Detection screen
terms of the large-distance asymptotic behavior of the time-
integrated quantum currefgee Eq(3) below]. This formula ~ _ _ _|
was conjectured a long time ago within the framework of 7
scattering theory3], and only recently has been derived 7
[4-6], extended to the mesoscopic regime, and physically
motivated within the framework of Bohmian mechanjs.

The second ingredient is a matter of analysis to simplify y
the dynamics of a test particle moving in a quantum medium:
it is the model of Joos and Z¢8] for the phenomenological
description of processes inducing loss of coherence in quan- _
x
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periodD. The grating and the detection screen lie in parallelparticles of mas#/ diffracted by a grating and then detected
planes, which are orthogonal to the longitudinal direction ofon a distant screen. The geometry is that of Fig. 1 and, by
beam propagationy( direction, the so-calledoptical axis  (approximatg translational invariance along the slit
The screen is placed at the distaihcom the grating. Dur-  extension—thez axis—without loss of generality, we can
ing the flight from the grating to the screen the fullerenesconsider the dynamics to be effectively two dimensiomal:
interact with air at low pressure, as well as with thermal=(x,y), wherex is the coordinate along the grating perpen-
photons, and get entangled with the photons emitted by redicular to the slit axes angis the coordinate perpendicular
laxation of the internal excited states. What is the theoreticalo both the grating and the detection screen, i.e., along the
prediction for the particle intensity measured at the screen8o-called optical axis.

In order to answer to this question we shall proceed in two Let us make the physically reasonable assumption that the
steps. First, in Sec. Il A, we shall consider the case in whichnitial (t=0) wave function produced by the grating factor-
the dynamics of center of mass of the diffracted particle iszes
governed by free Schdinger evolution. Though this ap-
proximation is unrealistic for fullerenes, it is a good approxi-
mation for lighter particles as electrons or neutrons. Then,
starting with Sec. Il B, we shall refine the description andwith the sizeAx of the support of, being that of the grat-
take into account the influence of the environment on théng. Then¥ evolves freely according to Schitimger equa-
motion of the particle. tion

W (r,0)= ¢ho(X) do(Yy),

A. Free evolution 2
In a typical detection experiment the count statistics is
obtained by summing a large number of events in which the . . .
particle crosses the detection screen at a random time. whyfitil the particle is detected on the screen in ¥=plane
is the appropriate quantum prediction for such a statisticsPlaced at a “large” distancg=L. This last condition—see

This question is not quite as innocent as it sounds; it conP€loW for a suitable specification of how largeshould be—

cerns in fact one of the most debated problems in quanturRNSUres that the current positiv@t_y Condit?on is fulfilled. T_hen,
theory, the problem of time measurement, specifically thétccording to Eq(l), the probability density that the particle
problem of arrival time, and position at such time. It is well CTOSSes the screen at the poiris
known that there is no self-adjoint time observable of any
sort, and since the arrival position is the position of the par-
ticle at a random time, it cannot be expressed as a Heisen-
berg position operator in any obvious way. Bohmian me-
chanics does provide, however, a remarkably simple answavhereJ, is the longitudinal component of the quantum cur-
(for an updated review of Bohmian mechanics see F&Hf. rent, i.e.,
and references thergirLet Sbe a surface in physical space,

L.

4

W¥(r,t) be the wave function of a particle, and
For a large ensembl@gean) of particles identically pre-
}Sared in the same initial state, by the law of large numbers,

I(X):JO OOdt‘:ly(xvyit)|y=L1 (3)

ap(y,t)
ay

_ﬁ A 2 *
. 100=17 fo dt|y(x,1)] Imh(y,t)
J(r,t)=MIm[\I’(r,t)*V,\P(r,t)]

be the associated quantum current satisfying the continuit

equation I(x) is proportional to the locaintensity measured at the
I (r,0)? screen—and without loss of generality, the proportionality
ﬁ—t'+vr.3(r,t):o_ constant, which is easily determinable by the total count sta-

tistics, will be hereafter assumed to be 1.

Let us now make some simplifications: Assume that the
momentum componenp, is sharply defined, i.e.Ap,
<py, so that with the initial wave function is associated a
well-defined de Broglie wavelength

Then the joint probability ProtiX; e dS T e dt) that the
particle crosses the surface elemé8tof the surfaceSat the
point r in the time betweem andt+dt is given by

ProfR;edSTedt)=J(r,t)-dSdt, 1
providedthe current positivity conditiod(r,t) - dS>0 is sat-
isfied (a condition on both the wave functiolh and on the
surfaceS). See Ref[7] for a general derivation of thigor
applications to mesoscopic physics see RE®—12, in this
regard, see also Rf13]).

A~h/p,<Ay. (5)
Then we may approximate Schiioger's evolution ofe,
with a classical propagation at velocity=p,/M, so that
I (X) gets approximated by

We would like now to apply such a probabilistic predic-
tion to the typical situation of a diffraction experiment with

+o
() =v j A doL—vD2 (6
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Suppose furthermore that the detector distdné® much  the intensity of classical Fraunhofer diffraction thediyt],
larger than the position spread in the longitudinal direction,according to which the large-distance intensity of a diffracted
field is the squared modulus of the Fourier transform of the
L>Ay. (7 field distribution on the diffractive grating. For example, for
a double-slit diffractive grating, with apertuceof each slit,
distanceD between the slits, and witly, being the charac-
teristic function of the slits, Eq(11) becomes the standard

Then the time integration in Ed6) gives appreciable con-
tributions only for

L M\ formula for the intensity in the double-slits experiment,
= T=—=—— namely,
t=T 5 27TﬁL, (8) \
I dx 2mDXx
which is the so-called “time of flight,” that is, the time spent —Osiné(L 1+cos< i ) ,
by the particle to reach the detector. Thus, E). can be 2 AL AL

further approximated as where |, is the intensity detected fax=0 and, as usual,

1200=|p(x DI, (9  SiNCK)=x"'sin®.
In this regard, it should be observed that condit{an)
where #(x,t) is the solution of one-dimensional free leading tol3(x) is a known conditior7,15]. It corresponds

Schralinger’s equation, i.e., to a “large time” regime
[ M (V7280 ()2 T M(Ax)?  Ax  Ax 13
p(xt)= mf dxoe O ho(Xo)- =T T Ap M Av, (13
Consider now ¢(x,1)[?, i.e., for which the solution of Schidinger's equation is approxi-
mated by
M . 2 12 !
I A(iM /27 - 2 - ’
mj J dxodxoe(' 1)[xg— X"+ 2X(Xg XO)]‘ﬂo(Xo)lﬁo(Xo)* v oo Mx
YO~ Nizee Yol it |-
and note that in the integrations both andx;, are bounded
by Ax, the support off,. Thus, if Such a wave is what in Refl5] has been named “local
5 plane wave”: a wave that locally looks like a packet, having
M(AX) <1 (10 amplitude and local wave number that are slowly varying

ht over distances of the order of the local de Broglie wave-
length. Such waves are associated with classical motion of
we have thae(M/Z0x5-x 1~ 1 and therefore thaiy(x,t)|>  particles and a rough estimate of the time needed for the
is approximated by formation of such waves is indeed the tim@bove[15]. So,
evidence to the contrary notwithstanding, the particle motion
M L - , in the Fraunhofer region, that is, the particle motion on the
mf J dxgdxpe ™ 00070 g (X) o(X0)* time scale(13), is indeed classical motion.
It might be useful to compare the domain of validity of
One can easily recognize that the above expressimuulo  the various approximations. Approximatidp(x) holds un-
an overall proportionality constant nothing but the square der the spatial conditiofi7), that is, on the time scale
of fpo(k), the Fourier transform of/y(x), computed fork
=Mx/(ht). Therefore, by replacing in Eq9) such an ap-
proximation of|¢(x,t)|2 for t=T, and recalling definition

(8) for T, we arrive at a further approximation for the inten-
sity 1(x), namely, The temporal and spatial conditions leading to the

Fraunhofer-like approximatioky(x) are deduced by Eq10)

for t=T. For an initial packet witlAx~ Ay, comparison of
Ax<L [leading tol ,(x)] with Ax<<\AL [leading tol 5(x)]
shows that the Fraunhofer approximation is realized on much
It is important to observe that the regime in which this ap-larger space and time scales.

T> —M)\ A
27h y:

2
. (12)

27| A

[3(X)= | ¢

AL |7

AL

27TX)

proximation holds is that fixed by E@L0) for t=T, i.e., the A final remark It could be objected that it is inded@)
regime characterized by the condition the basic formula for the statistical predictions of detection
experiments—atfter all, it is this formula that seems to corre-
AX< A (12) spond directly to the standard statistical interpretation of the

wave function.This objection, however, misses the point al-
together: L(x) is only an approximation; the time at which
Note that conditior(12) is indeed Fraunhofer’s condition of the particle crosses the screen is typically random, and it can
classical optics and Eq11) is the corresponding formula for be treated as the deterministic quantity given by the time of

L Ax’
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flight only when condition(7) is satisfied. In a sense, it is anymore a pure state, we maintain the physically reasonable
true that in the regime of large distances there is no experiassumption of factorization at=0,

mental difference betweel(x) and the approximations we

have consideretindeed, this is a consequence of what it has p(r,r’,O):pf)x)(x,x’)pgy)(y,y’).

been proven with great generality in Refd,6]). However,

experimental research on near-field interferometry may exfor an environment oN particles, the time evolution of
plore regimes in which these approximations fail, e.g., wherp(r,r’,t) is that induced, according to Eq14), by the
statistical fluctuations in the arrival time become experimenSchralinger evolution of total wave function ¥

tally relevant, as we shall comment in Sé¢l C). Hence the = W(r,ry, ... y.,t),

need of anexactformula for the intensity. And, while the o 42

standard quantum formalism fails to provide the exact ex- . B 2 en

pression for the intensity, the formula given by E®), =~ g Ve Y H Y+ HinY, (16

which clearly looks right is naturally deduced from first

principles of Bohmian mechani¢g]. whereHg" is the total Hamiltonian of thé\ particles(the
sum of the kinetic and potential energieend H,,; is the

B. Interaction with the environment interaction potential between the particle and the otNer
articles.

In the more general case of a quantum particle interacting - ccordingly, the exact formula for the probability density

. ‘ il hain ion b Yhat the particle crosses the screen at the poistgiven by
in terms of one-particle Schiinger equation because en- g (g whereJ, is now the longitudinal component of the

tanglement can be fastly developed. In this case, the statis srobability current given by E15). We shall now simplify
cal predictions concerning experiments performed on th

! ; . e expression for the intensity, in analogy with the treatment
particle are governed by threduced density matrip(r,r'), P 4 9y

of Sec. Il A, by exploiting the typical physical conditions of
which is obtained from the wave function describing the par- y eXp g yp Py

) . . . : , interference experiments.
t!cle and its environment by integrating out the configura- \1qtion along they direction is typically “very fast,” be-
tional degrees of freedom of the environment; for example

f : TN il q I ¢ ) ing characterized by a “very short” wavelength, much
or an environment with particles and total wave function - g ajier than all the other relevant lengths scé&eeh as the
Ww(r,rq, ... ,ry), the reduced density matrix is given by

spreadsAx, Ay, and the screen distandg. Accordingly,
we have an effective preservation of the factorization of the
p(r,r’)zf dro---dryW(r,ro, ... i)W’ re, ... r0)*. initial state, and Eq(3) becomes
e L e )
[(X)~ — t X, X, t)Im[ @ YDl =y ly=t -
As far as detection experiments are concerned, the follow- 0 M fo it ImLaye™ .y )ly ly=L
ing natural generalization of E@l) can be put forward: The
joint probability that the particle crosses the surface elemerfote that, due to the condition of fast motion alongdirec-
dS of the surfaceS at the pointr in the time betweemand ~ tion, we may assume wave-packet motion, ié?)(y,y’,t)
t-+dt is still given by Eq.(1), but with current] given now = ¢(y,t)¢(y',t)*, and consider the evolution of the wave
by packet¢ to be classical. Thus, proceeding as in Sec. Il Ain
going from Eq.(4) to Eq.(9), and a part from &aveatwe
A shall discuss below, we arrive at the following approximation
I = ImLVep(rr' O] = (15 for the measured intensity:

1(x)=p™(x,x,T), (17)

whereT is, as before, the time of flight given by E®).
The caveat is the following: in the free case a crucial
condition for the validity of Eq(9) is that\<Ay. In case of

A detailed derivation of this result will be given elsewhere
[17]. In this regard, a key observation is thiagiven by Eq.

(15) is indeed the right probability current entering in the
continuity equation for the probability density of position

p(r.r.1), environmental interaction the momentum spread increases
due to scattering events and the previous condition is no

ap(r,r,H) +V,.3(r,t)=0 more sufficient to assure a well-defined de Broglie wave-

at ' ’ ' length along the longitudinal direction. An important conse-

quence of the analysis of Sec. V is that interaction with the

We may now make more realistic the analysis of Sec. Il Aenvironment produces an effective reduction of the relevant
by allowing that, during the flight from the grating to the length scales over which quantum coherence is preserved
screen, the particle of mab4 diffracted by the grating inter- and this reduction is controlled by what we shall call the
acts with particles of the environmefgay, air molecules  “coherence length” and denote B In general, the validity
As before, the geometry is that of Fig. 1, so that the dynamef Eq. (17) is assured bya<Ay and A<¢; for relevant
ics is effectively two dimensional, i.e., as befores (x,y). incoherence effects, we hawesAy and thus the crucial
Though the initial state produced by the grating needs not beondition become& <¢.
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TABLE |. Physical parameters of fullerene experimelas the composite system after the collision W(r)x,(r)),

wherex,(r) is the outgoing wave function of the light par-
ticle, scattered off at the point=(x,y,z). As a consequence,
the final state of the heavy particle is described by the re-

M=~1.2x10"?* Kg
R~3.5x10 *m

Mass of fullerene &,
Radius of Gy

Temperature of g ©r~900K duced density matrist (1)@ (r')* (x, | x.)-

Environmental temperature 0,~300K For arbitrary initial density matriyp(r,r’), and many in-
Mean wavelength df Cgg A~2.5X10"**m dependent individual scattering events, the variation in the
Mean time of flight T~6x10"°s time At of p(r,r') due to collisions is then

Grating-screen distance L=1.25m

Collimator aperture a=10"°m Ap(r,r")~=NAt(1—{ x| x:))p(r,r"),

Effective slits width d~3.6x10"8 m

Grating period D=10""m where N is the mean number of collisions per unit of time

and(x,.|x;) denotes the average with respect to a suitable
#ean values are deduced by the measured velocity distributioensemble of light particle wave functions. By taking into
characterizing the fullerene beam outgoing from the os® Eq.  account also the rate of changepofiue to the free dynamics,
(61) below]. one arrives at the master equation of Joos and Zeh:

Let us consider the case of fullerene, and let the initial
state be the state at the moment of the splitting produced by
the diffractive grating. It turns out that, at this time, the mo-
tion of fullerene along the direction can be described by a where
narrow wave packet translating with velocity In fact, ac-
cording to Table I, the typical de Broglie wavelength for
fullerene isA~10"'?m. The analysis performed in Sec.
Il A leads to¢~10" 7 m (see Table Il}, whencex<¢ (and
sinceL~1 m, Ay<<L). Thus, Eq.(17) provides a good ap-
proximation for the measured intensity of fullerenes.

Equation(17) is the basic equation of this paper. In order
to avoid notational complexity, when no confusion will arise
and unless otherwise stated, we shall drop all the indices and
simply write 1(x) instead ofl ,(x) and p(x,x,T) instead of
pX(x,x,T).

ot =Lop+Lip,

(18

i in
Lop=— g[Ho,P]Z W[V Pl

and

(Lip)(r,r")==N1=(xe/[xe))p(r,r'). (19

A. Estimation of environmental coupling

For a complete specification of the right-hand side of Eq.
(18), we need to evaluate the interaction operai® related
to the different processes inducing entanglement ggfviith
surrounding environment; scattering everitgith thermal

In order to evaluaté(x), we need to determing(r,r’ 1), photons and air moleculegnd photon emission. Such an
the reduced density matrix at tinieln general, the evolution evaluation of the interaction operator is rather standard, and
of p is highly non-Markovian, being the evolution induced @0 be found in the I_|terature on the Joos and Zeh model—
by Eq.(16) via Eq.(14). For an environment made of a gas modulo some numerical values that we have corrected, and

at low pressure we may rely on the Markovian approxima-With the exception of our treatment of decoherence due to
tion provided by the model of Joos and ZE8. We shall photon emission that is slightly different from what can be

now recall the essential ingredients of this model and refer tfound in the literaturésee, e.g., Ref$24,25).
literature for a thorough discussi¢h8,19. (For some basic

I1l. MARKOVIAN APPROXIMATION

steps towards a rigorous derivation see 2@, in this re-
gard see also Ref21], for a more general analysis of quan-
tum Brownian motion see Reff22,23.

1. Scattering with thermal photons

In fullerene experiment, the environmental temperature is
0®,~300 K and thus the wavelength of thermal photon is

This model aims at providing an autonomous evolution\ ,,=hc/(kg® ¢) ~4.8X 10° m. As we shall see in Sec. IV
equation for a heavy particle moving in a gas of light par-[Egs.(36) and(37) and relative evaluation in Table |JIbe-
ticles under the approximation of negligible friction. To get acause of the incoherent preparation of the beam, we have that
handle on the model, consider a single collision of the heavyx—x'|<€,~10" " m. Under this condition, Eq(19) as-
particle, of masdM, with a light particle of the medium, of sumes the fornisee Refs[8,19])
massm. If M>m the time scalerg of a single-scattering
process is short with respect to the typical time sdatd
evolution of the heavy particle. Thus, Born-Oppenheimer
adiabatic approximation applies, and the dynamics of th&vith
center of mass of the heavy particle can be considered as
frozenin the time 5. Accordingly, if ¥(r) and x(r,) are, (sca)_ g
respectively, the wave functions of the heavy particle and of\ ph '
the light particle before the collision, the wave function of

(Lip)(x.x") == A5G x=x"[?p(x,X"),

8ca®
3

e—1
€+2

2 9
g(g)(zl) ~2.4x10° m2 s,
Non
(20)
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where the fullerene molecule has been modeled as a dielec- sin(k|r—r’])
tric sphere with the dielectric constagt~4 [26] and £(9) (Xrr|xr)=—————=sindk[r—r']).
~1, with {(z) representing the Riemanf function. The Klr—r'|

revious relation has been obtained in the regime of Ray- . . . .
Ipeigh scatteringsince fullerene radiuf~3.5x 13710 m is yAccordmg to Eq(19) and assuming that fullerene diffraction

much smaller thaix ,;,) and by using the Planck distribution can be .effectively treated as a ong—di_mensional problem, the
for environmental p?hotonb??] interaction operator for photon emission becomes

2. Scattering with air molecules (Lip)(x,x")==N[1-sindk|x=x'])]p(x,x"). (24)

Air molecules, with a mean mass,;, ~4.8x 10" 26 Kg, In the fullerene experiment there are essentially two chan-
at the temperatur® .~ 300 K have a de Broglie wavelength nels for photon emission: the blackbody radiation and the
Nair=h/\2m,; kg®~10 ' m<¢{, (see Table Il). Thus, disexcitation of internal vibrational energy levels. In particu-
assuming a Maxwell-Boltzmann distribution for air molecule lar, for blackbody radiation at the fullerene temperature of
velocity, it follows from the analysis performed in R§L8]  ©®F~900 K, we have a mean wavelength of emitted photon
[Eq. (2.17] that equal to

T AP ~1.6x107° m.
ooiP(O —— for x#x/,
(Lip)(xx)=1 (O Kg©® eMai

For decays of internal energy levels it was measured a
0 for x=x', peaked infrared spectrum with the shortest wavelefi2@h
@D AP~ 7% 1078 m.

whereP(0®) is the pressure at the temperat@e and oy ) ) )
is the total cross section for scattering events. In both cases it resultsee Table I} in Aen>> €. This per-

In the case of fullerene experimeRt=5x10"° Pa and Mits one to simplify Eq(24) by the expansion of the sinc
o= 9% 10718 m2 [28]. If F,, (=) is the constant value as- function in powers of<|_x—x’|. Keeping the first no-constant
sumed by C,q)(x,x’) for x#x’, from Eq. (21) we get term, we directly obtain
F.i(°)~=32 s *. In order to make a comparison between the , , ,
di?lfr((are)nt decoherence sources involvedpin diffraction experi- (Lip)(XX)= = Aenlx=x'|"p(x,x"),
ments, we can introduce an effective localization factor
also for air scattering events. Given a pair of slits at the

distancenD in a periodic grating of perio we have NKk2
Aem:T
A (ny= ) (22
() = (nD)2’ (in agreement with what obtained by Alick24]).

In the following, we shall calculate the mean vakfefor
For adjacent slitsrf{(=1) the localization facton ,;, assumes the two different channels of photon emission.
its greatest value (a) Blackbody radiation.The probability distribution of
the wave numbek is given by the Planck law
Au(n=1)~3.2x10% m 2 s1. (23

he )3 1 k2dk

”(k)dk:‘g(kB@F 20(3) elick®pk_ 1

3. Photon emission
The model of Joos and Zeh can be extended to the de- ] o
scription of photon emission processes. In fact, also in thigvhere e~4.5x 10°° is the emissivity of fullerene a®
case, the wave function of the composite system after a~900 K[30] and{(3)~1.2. Then Eq(25) becomes
single emission event is, in general(r)x,(r,), where )
W¥(r) is the initial wave function of fullerene ang(r,) is A(bb):'/l/'f dkien(k) = 8m°((5) Ne (25
the outgoing wave function of the photon emitted irSince CUN (3) ()\gbn?))Z’
emission time scale, in analogy with scattering events, is
much faster than characteristic time of fullerene free dynamwith /(5)~1.04.
ics, the statey,), in position representation and asymptoti-  The number of emitted photons per unit of time can be
cally in time, is well described by spherical waves estimated asv~E®Y/(kg0¢), whereE®? is the total en-
ergy emitted per unit of time ankk®~0.08 eV represents
| >Oce the single-photon energy. By integrating the Planck distribu-
WX T = tion, one evaluatesE"?=¢SoOF~16 eV/s, whereS
=47R? is the total surface of fullerene macromolecul&s (
wherek is the wave number of emitted photons. It follows ~3.5x 10" ° m) ando is the Stefan-Boltzmann constant. It
that results inA/~200 colloids/s, and thus

ik|rj—r|

063610-6



ANALYSIS OF THE LOSS OF COHERENCE IN . .. PHYSICAL REVIEW 88, 063610 (2003

TABLE Il. Sources of decoherence in the conditions of fullerene
experimentg1,2]. p(X, X' t)= f f dxodx{K(X,X",t;Xg,Xg,0) po(Xg,Xg),
Decohering event A (m?s™h (29)
Scattering where
with thermal photons Ap{5e¥~2.4x 107 K(x,X' t:Xg,X5,0)
with air molecules A=3.2}10' o Reno
Photon emission M iM ) L
blackbody radiation ApPP~2.5x10° = 51 P 57 L(X=X0) "= (X" =%)]
decay of excited states AP =5x 101
Global effect A=<3.3x10%° At
xexp{ - ?[(x—x’)2+(xo—x(’,)2+(x—x’)
ABP~25x1P m 2 s L, (26) » (XO_X(,))]} _ 30

(b) Decay of internal vibrational energy levelSince we ] ] ) ) )
lack a model able to describe decays of internal energy levelyotice that the first exponential describes the free dynamics,
for fullerene, we directly refer to the results of experimentalWhile the second takes into account the interaction with the
spectroscopy. Since infrared spectrum shows a peaked stru@xternal environment.
ture, we can write

IV. PREPARATION OF THE INITIAL STATE

2 *\2
Ag;]ib)E&sN(k ) ~5x108 m2 sl (27 In order to determing(x,x’,t) and thereby evaluating
6 6 the intensity on the screen given by Eg7), we still need to
) specify the initial density matriyqy(x,x’), taking the initial
Wherek* ~9X :I.OIS mis the wave number related to the mosttime t=0 at the moment Of the Sp“t“ng produced by the
energetic spectral lindsee Fig. 4 in Ref[29]) and N (iffractive grating.

~400 colloids/g1]. _ Because of thermal production and in spite of the follow-
A direct comparison between evaluati®0), (23), (26),  ing collimation, each fullerene wave function hasnaean
and(27), reported in Table Il, shows that the main decoherransversal wave numbésg, (ideal collimation would corre-

ence processes are scattering with air moleclgepecially  spond tok,=0). Thus, after the splitting, the macromolecule
for adjacent slits, cf. Eq22)], followed by photon emission \ave function is of the form

due to decay of internal vibrational energy levels.

Po(X;Ky) = g @o(x) €/, (31)

B. The effective master equation

tior? ?fgil#gczﬁlélr;erfe%rsggén% analysis, the Joos-Zen equa\_/vheregos represents theth of theN slit-shaped wave pack-

ets outgoing from the grating. The beam is an incoherent
_dp _ mixture of such wave functions with wave numbey ran-
in—-=[Ho,p]=1A[X,[X,p]] domly distributed according to a probability distribution
p(ky). This distribution depends on the geometry character-
izing the collimation setup, which reduces the wide ther-
mally produced spread ondirection. The density matrix of
the beam at=0 is then

or, more explicitly,

h(?p(X,X',t)_ G ,
T oM\ ez g2 PO , .
po(x,x')= f dkp(Ky) ro(X; Ke) tho(X 1K) *
—iA(X=x")2p(x,X" 1), (28)
Letting
with
A=At App, Po(x,x) =2 es(X)@g(X)*, (32

s,s’

where A is given by Eq.(22) and the three terms ih,, e obtain
=AGP+ARY+ AL are given, respectively, by Egs.

(20)1 (25)! and(27) ’ -~ ' —iky(x" —x)
Equation(28) is a well-known equation and its solutions Po(X,X") = po(X,X )f dkyp(ky)e™ ™

are readily obtainetsee, for example, Appendix 2 of Joos in .

Ref.[19]) =\2mpo(X,X")p(x' —Xx), (33
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Collimation Diffraction to=0\ L (37)

P q This quantity, which will play a relevant role in the fol-
t=0). We note that forf;<Ax there is a bound on the
a .
e e J£| D length on which the macromolecules can be coherent, ex-
P by an initial coherence lengtf,=D may produce a coher-
b g d ent superposition of wave packets, and thus interference
l | > Ax, the damping shown in Eq36) does not take effect,
and the preparation of the initial state results to be coherent
diagram is not to scale. Now we consider explicitly a typical diffraction experi-
ment with macromoleculegsee Fig. 2, in which the colli-
meaning of the density matrix in the ideal case of perfec® at a distancé>a. The greatest drift velocity along the
collimation. A typical diffraction setup consists in a periodic direction results to bev,|ma=v 6, wherev is the macromol-
with respect to the optical axis as illustrated in Fig. B the angle under which a point situated in the aperture of the
other words, we consider first collimator sees the aperture of the second (siecel

lowing analysis, will be called theoherence lengtkat time
pressed by, itself. In particular, only beams characterized
fringes, on the detection screen. On the other hand{ for
FIG. 2. Collimation setup and diffraction grating. For clarity the on the whole supporAXx.
wherefj is the Fourier transform op andﬁo(x,x’) has the Mmation apparatus consists in two identical slits with aperture
grating of periodD, which we consider placed symmetrically ecule classical velocity along the optical axis atvda/l is
>a, then the angle can be considered the same for every

~ , _E N D - D\* 34 point of the first collimator Thus we can put &kx
pO(X’X)_SS,(PX sple\x TSy (34) =Mu 6/4 and so we obtain
wheres,s’=*1,+3,...,=(N—1) (for symmetry with re- 1 >, [Mvé 2
spect to the optical axi®\ is considered to be evirThe size 27\ 3 (38)
0

Ax of the support of is simply fixed by

An evaluation of the initial coherence length for fullerene

Ax~ND. (39 experiments is reported in Table III.

The general structure of EG33) (for a treatment of which
we remind also to the Sec. 9.1 of Joos in H&B]) appears V. THE INTERFERENCE PATTERN

for any choice of the density matri(x,x’) and in every Consider now the initial density matrix, given by Eq.
case in which a particle is subjected to an uncontrollablg3e). Define

source of random “kicks” which produces instantaneous

shifts in momentum, as in Eq31). Moreover, in case of At 1 ¢
random kicks with a mean momentum transfer position- =—+—, e, €)=
dependentfor example, in case of van der Waals interaction  2¢(t)2 3 202 At
between crossing particles and atoms of the gratitig ef- 1+ —€§
fect on the initial state consists in an effective reduction of 3
the aperture widtii31]. A similar effect in molecular diffrac- (39)
tion has been already investigated in the framework of clas- _
sical optics[32]. [note thatf (0)={,]. Then Eq.(29) becomes
Now, in order to simplify the analysis, we shall adopt the M
convenient and physically reasonable assumption of a Gausgyx, x’ t)= _f f dxodxg
ian probability distribution 2mht
iM (Xo—X4)?
1 ki Xexp{l— (X—Xg)2— (X' —x{)3]— ——2
k)= ——=—=—exp — 21t 0 0 2
Plk N2moy l{ ZUﬁX) 26(1)
At ) ,
so that — 3 LX)+ (X=Xx") (X~ Xo) ]
- x—x")? ~ '
po(X,X')IpO(X,X')eX[{—% , (36) X po(Xo0:Xg),
0
when, from relation(17), the intensity on the screen is given

where we have defined by
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TABLE II1. .Comparison between losses of coherence inlength{=<Ax, we have relevant contributions in integration
fullerene experimentfl,2]. (40) just for (xo—x()=¢. Thus, under the condition
Initial coherence lengtht&0) €p~1.3x10" " m MAXE
Coherence length at&=T {~D=10"m —7 <L (41)

I,(x) gets approximated by

— _ M ’ iM 2 12
I2(x)=p(x,x,T)—mf fdxodxoex m[xo—x0 M , iMx ,
|3(X):m dxodxg ex ﬁ(xo_xo) p1(Xo,Xg),
(Xo—%g)?| ~ 42
2 X0) ] o BolXo K (40 (42
where
where X and x; run along the slits crossed by the initial o
wave function whose support isx and€=¢(T) is the co- (X, X0 =exy — (Xo—Xo)" |~ (Xo1X0)
herence length at the time of flightT. P1i%0:%0 ap2  |Potfo%o)

As already argued for,, if {=<Ax the exponential,
exd — (Xo—xp)?/(2¢?)], reduces fromx to ¢ the length scale Introducing the Fourier transform gf;,
on which the initial state is coherent. This scale is fixed from
both geometry of the experimental setup, i.e., the collimation ~ , N . i~ ,
appa?atus an():i/ the distarﬁcebetween gratFi)ng and screen, and P1(Ko.Ko)=(27) lf f dxpdxge (00T 0X0)py (X0, xp),
the physical conditions under which the interferometry takes
place, i.e., the momentum of the macromolecule and the efye have
fect of the environmernjisee Eqs(39) and(8)]. On the other

hand, the above exponential does not give any relevant con- N — — — Mx 27X
tribution if £>Ax, and, from Eqs(38) and (39), it follows l3(x)= 7pa(k,—k),  where k=-—=-——.
that this occurs when there are both good collimatien ( (43)

~0) and negligible coupling with surrounding environment

(A=0). In this case we fall back to the treatment of Sec.This result is very analogous to Ed.1) of Sec. Il A with Eq.

IMA. (41) replacing Eq.(10) wheneverf <Ax. Also in this case
Note that interference fringes appear on the detectioi4l) should be rewritten in terms of the physical variables

screen ifAx=D and¢=D, i.e., if the molecules are coher- under controlcf. Eq.(12)], namely, as

ent at least on two contiguous slits. The numerical estimates

of €4 and ¢ in the condition of fullerene experiments are € X\

shown in Table Ill. In particular, note thd@t~D and thus [<H'

interference is mainly due to adjacent slits. Moreover, a com-

parison between the values &f and¢ shows that the main Notwithstanding, there are some basic differences that

mechanism which yields a loss of coherence is the angulaghould be underlined: Firsp, is not the initial state, but it is

divergence of the beaii84]. an effective state that takes into account incoherence due to
preparation and to the time evolution. In fattdepends on
A. Fraunhofer approximation for the intensity the physical and geometrical variables of the experiment in

We shall now proceed to an approximate evaluation otthe phase (_)f preparation anq in its future dgvelopm_ent and it
[(x), relying on conditions that are reasonable in commort> progrgsswely redu_ced by Increasing the time of flight. Sec-
interferometry experiments performed in far-field approxi-ond’ unlike what typically happens in the framework of clas-

mation (see Appendix A for a more refined evaluation in the Sical optics and the theory of scattering, it is no more useful
case of a pair of Gaussian shaped slits to evaluatep; asymptotically in time, since environmental-

Note that induced decoherence completely destroys interference
fringes at times too large.
In fullerene experiments,~10" ' m<Ax~10 ® m (for
~1, an estimate ofAx, see Sec. VIl In this case the left-hand
side(LHS) of Eq. (41) is not at all negligible with respect to
when unity. Anyhow, a more precise inspection of integratidf),

with }30 given by Eq.(34), shows that conditiori41) is too
M(X§—X5%)  M(Xo+Xp)(Xo—Xp) strong a demand and that approximati@g) can be reason-
28T - 28T <1 ably applied. So doing, the error made is not completely
negligible only for the pair of adjacent slits farthest with
and this condition is clearly satisfied in the Fraunhofer re+espect to the optical axis. This error, however, affects neg-
gime (13). Nevertheless, in the presence of a coherencdgibly the sum involving the contributions of all the slits.

iM(X5—X5°)
MY
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Let us now compute;(k, —k) for po expressed by Eq.
(34), i.e., for the split of macromolecules on a periodic grat-

I4(x)= f;\A_T|‘}(?)|22 e(ik_/z)(S_S,)De_[(S’_S)D/2]2/2€2,
ing of periodD. First we make the change of variablés s’

=Xo+sD/2 and¢’' =xg+s'D/2, which leads to where ¢ is the Fourier transform op.
Note that the sum of the terms wigix s’ simply givesN,
/31(F—?)=i > oik(s—s")D/2g—[(s—5")D/2)2/2¢2 while the sum of the terms with#s’ gives
o s.s —
2 E e~ [(s'~9)D/21%2¢2 cos{ k(s _S)]
XJ dedf' s>s' 2
x @ ikégiké’ o(U2A)[(€' = &)(s' ~s)D—(¢' = )7 By adding these two contributions and with
=2mx/I(\L) [see Eq.(43)], we arrive at the suggestive
Xo(&)e(&E)*, (44 “Fraunhofer-like” expression
N—1
and second we perform the Taylor series expansion of the _ 27|~ 27X 2
real exponential in the previous integral in the variabfé ( L) =1(x)= M P\ONL N+2nzl (N=n)
—¢&)/¢ and about the poing’ =¢,
x g~ (nD)?12¢? cos( 27;nLDx (47

p[(g'—gxs'—s)D—(g'—g)j
ex
202

(it being understood that fal=1 the sum is zenp where
n=(s’'—s)/2[35].

(45 Equation(47) shows that, whereas all tikwave packets
outgoing from the grating contribute to the intensity revealed

. ) ) on the screen, the pairs of slits which concretely contribute to
The solution of Eq(44) is particularly handy whenever the interference oscillations are distant at most of the ordef, of

effects due to incoherence are negligible on a length scale ¢fye to the damping exponential in the sum. It follows that,
the order of the slit widtfd or, in other words, whenever the oy 4 finite ¢, the interference pattern shows “distortions” in

strength of incoherence does not spatially resolve the singlginge structure due to partially random preparation and de-
slit. This is assured by a slit width much less than the COherCoherence, but, being incoherent effects typically negligible
ence length on single-slit space scale, fringe pattern is just modulated by
_ the single-slit diffraction profild¢|? according to classical
d/f<1. (46) optics Fraunhofer diffraction.

As already sketched before, it should be observed that the
intensity on the screen may show interference fringes only if
the coherence length is at least as long as the grating period,

., (' =8(s'=s)D
=1+
2¢2

f’—f)z
7 :

i

Under condition(46) the LHS of Eq.(45) is well approxi-
mated by 1. In fact, sincé and ¢’ run within the slit width
d and §'—s)D/2<¢ due to the damping exponential

ie.,
exp(—[(s—s')D/2]%/(2¢?)} in Eq. (44), we have
{(t)=D (48
(' —¢)(s'—s)D o : -
—zsd/€<1. (note that this inequality should be satisfied at least at the
2¢ initial time t=0). For positive times, recallin¢39), we ob-
tain
Thus the Fourier transforr®4) becomes
- L)
51(E_?)~2i2 eik_(s—s’)(DIZ)e—[(s—s’)D/2]2/2€2 =Te= 2AD?2 Co |’
s,s’
- which provides an upper bound for the time of flight, i.e., an
Xj fdgdg’eikfe*‘k%(g)go(g’)*. evaluation for theeffective coherence time. . Note that for
the fullerene experiment, according to Tables | and Il, it re-
sults in

[Although the rough conditiof¥6) is not directly satisfied in

fullerene experiments, the zero-order approximation of Eq. 7.=4X1072 s,

(45 can be reasonably applied in integratiei); for an

evaluation of the error introduced the reader can see Appenwhich is indeed several times the value of the time of flight

dix B.] in this experimen{36].
In the light of these considerations, the intensity pattern is The effective coherence time is clearly an upper bound
well approximated by for the time of flightT, since interference fringes are detect-
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able only within .. This shows that the “geometrical op- 2
tics” limit in the presence of decoherence requires more care
than in the free case. In particular, it cannot be based on the

I(x)—

(277)() E in2mDX/AL

standard time independent methods and the &” limit.

B. Extension to a generic angular divergence of the beam

This section is devoted to generalize E47) for a ge-

_277
AL

~ [ 27X
PINL

Moreover, for just two slits N=2),

2[sin(wNDx/AL)]?
sin(wDx/AL)

i.e., for Young

neric transversal wave number probability distributiondouble-slit interference, E450) becomes

p(ky). Introducing Eqs(30) and(33) in Eq. (29), the long-
time asymptotic behavior of the intensity becomes

M Y ’ 2
50 = == J f A0 7o)~ (ATI3) (x5 x0)
3l 27hT om0

X P(Xh—X0) po(Xo,Xp)-

By the same variable change which leads to @¢) and

making explicitp, for a grating of periodD [cf. Eq. (34)],
we obtain

ei?(s—s’)Dlze— (AT/3)[(s’ —s)D/2]2

I3(x)=

M
27hT &
<[ [ asae

« e ikégike’ g~ (ATR)(E' =92+ (¢ ~&)(s' ~5)D]
XpLE' —E+(s—s)DR2le(§)e(¢)*. (49

As discussed in the preceding section, note that &|<d

and that|(s’ —s)D/2|maX~(AT)‘1’2 due to the damping term
in EqQ. (49). Thus, in case of decoherence

e~ (AT/3)[(s' ~5)D/2]
negligible on the single-slit length scale, i.e., ffAT)*?
<1, and for a slowly varying functiop, such thatp[ =d
+(s—s')D/2]~p[(s'—s)D/2]Vs,s’, Eq. (49) becomes

(27TX)
AL

(nD)
p(0)

32
100=2""50

2 N—-1
IN+221 (N—n)

b 222

where n=(s’—s)/2 andk=2mx/(\L). Note that the as-

27DXx

« @~ (AT/3)(nD)?
AL

sumption of slow variation op is directly assured by a suf-

ficient sharpness of the wave-number distributigk,), i.e.,
by Ak,<d ™1

VI. QUANTUM INTERFEROMETRY AND CLASSICAL
DIFFRACTION THEORY

A. Comparison with geometrical optics

In case of complete coherence, i.e., fdk,) = 6(k,) and

47 277x p(nD)
I(x)— N =
p(0)
2mDx
—(AMAL67#)D?
xXe cos( L

This expression is very similar to that used in classical optics
to describe interference patterns due to partially coherent
electromagnetic fieldsl4]. In particular, note that théamp-

ing termfor quantum interference oscillations

p(nD)
p(0)

is the quantum-mechanical counterpart of fitiege visibility
Vco Of classical optics

Vou= e—(AMAL/Gwh)DZ (51)

Vaom< Veo- (52
Both for quantum and classical interferometry, the visibility
V is a measure of the distinctness of the fringes and is de-
fined by

I max_ I min

V= (53

I max+ I min

The intensitied ., and|l i, are, respectively, the maximum
and the minimum revealed on the detection screen in the
immediate neighborhood of the optical axis.

Now it is useful to recall an important result from the
classical theory of partial coherence. The pattern visibility
Vco Of a quasimonochromatic field, equally split by a pair of
slits, coincides with the modulus of thepectral degree of
coherencew(\) [14,37], which characterizes the field corre-
lation in the space-frequency domain

Veo=|un(N)].

From Eqgs.(53) and(54) it follows that the degree of spectral
coherence is upper bounded by unit, value assumed in con-
dition of complete coherendge.g., in case of laser radiation
diffraction).

According to the correspondenc¢g?), the results of the
classical theory of partial coherence extend to quantum sys-
tems, mutata mutandisFor instance, in Se¢VIll ) we shall
show some interesting analogies concerning viémporal
and spatial coherencef beams, while in the following we

(54)

A =0, Eq.(50) reduces to the well-known Fraunhofer rela- underline the differences existing between classical optics

tion for optical diffractive patterns

and quantum mechanics.
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First of all, the degree of coherence of quantum particlegnd (34), here it is assumed perfect collimation and an infi-
depends both on the collimation of the macromolecular beamite number of slits Let K{™® be the so-calledTalbot
and on the strength of interaction with the surrounding envipropagator including the sum overandj’ of Eq. (55) and,
ronment during the time of flighficf. Eq. (51)]. In optics,  accordingly, providing the intensity pattet(x) in terms of
instead, the degree of coherence of quasimonochromatige singlewave packetp(x):
fields is only due to source details. More particularly, the
corruption of visibility of interfering fields increases with the )1 (free) ) , s
spatial extension of the source, composed by a statistical l(x)“f dxdXoKT (X, X, 1 X0, X0, 0) @(X0) ¢ (X0) ™ -
ensemble of many independent elementary radiators. (56)

Moreover, in classical optics the explicit form of the de-
gree of coherencg(\) depends on the geometrical shape oflt results(see, e.g., Ref47]) that at a distance from the
the source, while the damping tefva,, depends both on the grating equal to B?/\ or multiple of it (and consequently at
features of the evolution kernéB0), characterizing the de- timesty multiples ofLt/v=2MD?h), K{™® reduces to
coherence model, and on the geometrical details of the col-

limation apparatugcf. Eq. (51)]. K€ x, X, tr;X0,X5,0)
+ o
B. Fresnel regime and Talbot interferometry _ 1 S exd — 2] X_Xo)

We would like now to comment on interferometry in the D? === D
near-field zon¢38—41], which has been recently realized by +oo o
means of G, beamg42,43. Such experiments show that, at X > ex;{ —27ij X XO)
distances from the diffraction grating multiple of the length i'= D
2D?/)\, images of the grating itself are reconstructsee bo o
also the optical Talbot effe¢t4,45). _ B . i

Thus, by shifting another identical grating, placed behind _J-:z_m olx X°+JD)J.,:2_DO OX=X*+}'D).
the previous one at a distanc®2/\, the integrated signal
outgoing from the gratings periodically changes from its (57)

minimum (half period displacement of the two gratings
its maximum(complete alignment

If the influence of the environment is negligible, a treat-
ment of this effect in the spirit of Sec. Il A can be performed.
In faCt' glven._th.e correspo_ndence betwegn HeImhoI.tz anglsing the propagatof30) which embodies the incoherence
stationary Schrdinger equation, one can directly exploit the effects, the Talbot propagator becomes
standard optical techniques, such as Fresnel-Kirchhoff dif- ’
fraction integrals in Fresnel zone, with suitable boundaryK(env)(
conditions—“transmission functions”—at the gratings. In- i

Clearly, from this relation and Eq56) it is immediate to
verify that the final state is an exact reconstruction of the
initial one (55).

By following the same steps leading to E§7), but now

X, X, t1:Xg,%4,0)

D
€(ty)

b
€(tr)

deed, this is what it has been dofsee, e.g., Ref§41,46) 1 = X—X 2
. . . e . 0 o
by means of the so-called “paraxial approximation,” assum- = — 2 exp —2ij D )exp[ —2j ]
ing both gratings distances large with respect to the grating ===
period and an infinite number of slits. +oo X x!
In experiments with large molecul43], it has been ob- X > exp( —2mij’ °) exp[ —(2j'2+4jj")
served that the visibility of the signal is progressively re- A D
duced by increasing the pressure of environmental gas, a 2
clear sign of environmental quantum decoherence. A quanti- ]
tative explanation of this effect—using the model of Joos
and Zeh in order to suitably modify the classical Fresnel- )
Kirchhoff description recalled above—has been already prowhere{(tr) is the coherence length computed at the Talbot
vided in Ref.[43]. A more self-contained and thorough time tr. With respect to Eq(57), here some additional ex-
analysis, based on E(L7), will be presented elsewhefa1]. ponential are present which obstructs the reconstruction of
Here we shall provide just a sketchy outline, referring to athe initial wave funct|on.2 So, if we put a second grating at
theoretical treatment already present in literafd@. In this  distances multiples of @</, even for a perfect alignment
last work, the form of the propagator describing the freebetween the two gratings the wave function is partially
evolution of a quantum wave is shown, split by a diffraction Stopped and thus the intensity detected will be lower than in
grating with a formally infinite number of slits, i.e., with an the free case. Similarly, for a displacement between the grat-
associated initial density matrix of the form ings of a half period, a portion of signal, even little, may be
detectable further on. In such a scenario, a decrease of the
NS : s coherence lengtld, i.e., a growth of the incoherence of the
po(X X' )= 2, @(x+]D)e(x'+]j'D) (59 heam, leads to a progressive reduction of the visibility of the
ji'ez : : . . .
total intensity on the screen, in agreement with the behavior
(note that, with respect to initial state expressed by E2@).  of the experimental data reported in Rgf3]. [An improve-
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ment of this analysis should presumably take into account: Y =0.70
(1) the three free-standing gratings for the Talbot-Lau inter-
ferometer effectively used in experiment&) a proper de-
scription of the van der Waals interaction with the grafjng.

C. Near-field interferometry and randomness of arrival times

Near-field interferometry, such as Talbot-Lau interferom- V=096

etry, should allow us to probe quantum effects also due to the
motion along the longitudinal direction, which so far has
been treated as classical. Such a treatment has been of cour
completely motivated by the experimental conditions consid-
ered so far for which both Eq$5) and(7) are satisfied with

a high degree of approximation. But suppose that position
spread in the longitudinal directiody is not completely
negligible with respect td.. Then the arrival times would
have statistical fluctuations of order

Distance (mm)
-~ gy o 0.8

AT~Aylv. Position (mm) :
For the fullerene experiments in the Fraunhofer region such
fluctuations are not appreciable: in this cagel~Ay/v

~5%x10" % s, and sincF~6x10"% s, we have

FIG. 3. Double-slit interference patterns for different values of
the distance between the grating and the detection screen. Patterns
are obtained for ultracold neutrons<1 m/s) diffracted by a pair
of slits of width d=5x10"% m and separated by a distanEe
=10"° m. Neutron initial wave function is described by means of
bidimensional Gaussian wave packets with a longitudinal standard

' deviationay=10’3 m and a transversal ong,=d/6.

AT<T. (59)

Near-field interferometry, possibly with light particles
should be able to test the measured intensity wher{dB)is
violated. A first prediction is immediately suggested by Eq.L. Given an arbitrary distance, not necessarily large com-
(6): the measured intensity is obtained by the intensity dispared with the size of the support 8f(r), and for a free
tribution consider so far, namelg(x,x,T), by convolution  €volution, the intensity detectedatL can be calculated by
with | ¢bo|2. Thus, randomness of the arrival times appears agieans of Eq(4), with ¢(x,t) and ¢(x,t) obtained by the
an independent noise on the standard interference profiléee evolution of the initial stat€59). The result of such a
which reduces the fringe visibility as it were an additional "umerical simulation for ultracold neutrons is shown in Fig.
source of “decoherence.” This effect could be confused with3- At distances as short as to be comparable with the longi-
a sort ofintrinsic decoherencéin this regard see a recent tudinal spread of neutron wave packets, the statistical fluc-

proposal concerning atomic diffraction by standing light lUations on arrival times produce an appreciable reduction of
wave[48]) the fringe visibility just as it would happen in case of an

- incoherent preparation of the beam and/or in case of
More generally, one may analyze the pre_d|ct|ons of Eq'environmental-induced decoherence. The only difference
(3) in the mesoscopic regimé]. Let us consider a mono-

h tic b devoid of lar di d bconsisting in the distance dependence of the different pro-
chromatic beam, devoid or anguiar aIvergence, COmposed By gqes: this kind of decoherence reduces by increasing the

free light particles of mass. Let the beam be diffracted by jistance, environmental-induced decoherence increases,

two slits of widthd and distance. It is convenient to de- \yhjle the effects due to incoherent preparation are indepen-
scribe the split wave function'(r) by means of two- gent.

bidimensional Gaussian wave packets, whose barycenters |n particular, notice that the reduced visibility is not due,
move parallel to the optical axig with the velocity v not even partially, to an incomplete wave-packet superposi-

=hk,/m: tion, being this ensured, also for the shortest distance shown
in Fig. 3, by the large wavelength of ultracold neutrons.
—(x— 2| y2ag2 Thus, the loss of fringe contrast has to be ascribed only to
W(r)= al(X -C o (x=sDI2)%/ay | o= y?lAay +ikyy us, ! )
(r)=o(X) bo(y) 512: " ’ arrival time fluctuations of the same order of the classical

(59  time of flight.
For simulations of Fig. 3 we used a longitudinal delocal-

The constanC ensures normalization. The transversal stanization at the double-slit given by;o-yzlo*3 m. This as-
dard deviationo, of each wave packet is related to the slit sumption can be relaxed to shorter values still detecting re-
width d (a typical assumption isd@=d), while the longi- sults analogous to those shown by Fig. 3, but at shorter
tudinal one is related to the extension of the initial support ofdistances. In this case the spatial resolution required for ef-
W (r). ficient detection becomes higher. Conversely, for a larger

After the splitting, we can consider that(r) evolves longitudinal delocalization, intrinsic decoherence effects can
according to the free Schdinger equatior(2) until the par-  be readily detected at larger distances by means of less re-
ticle is detected on the detection screen placed at a distanfi@ed detectors.
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In conclusion, let us underscore that, since very slow neu- 1
trons =1 m/s) [49] characterized by a wide transversal
support Ax=10"% m) [49,50 have been used in interfer-
ometry, we think that an experimental test of the predicted , 4
behavior shown in Fig. 3 might be indeed in the reach of
present technologgnot necessarily for the concrete situation
we have simulated, which was mainly for illustrative pur-
poses.

VII. NUMERICAL CALCULATIONS

In this section we shall use E@7) to fit the experimental
data reported in Ref.2]. In this regard, note that E¢47)
describes an ideal situation where an infinitely accurate de-
tector measures the spatial intensity distribution of a strictly o,
monochromatic beam. Some adjustments have to be carrie °
out in order to include in our treatment the effects on the
diffraction pattern due both to the velocity distribution char-
acterizing the beam macromolecules and to the distortions
unavoidably introduced during the measurement procest Position (um)

[51]. Each of these corrections have to be implemented on
the intensity level, since they consist in incoherent contribu- FIG. 4. Theoretical fit and experimental data fog @terferom-

Normalized Intensity

-150 -75 0 75 150

tions. etry[2]. The theoretical fit was performed considerMg 10 equal,
The total intensity is obtained by the sum of the mono-rectangular shaped, slits of an effective widtk 36 nm. The spa-
chromatic components of the beam tial resolution of the detector isx2==8 pwm. The theoretical curve
and experimental data are normalized to the value of the central
maximum.
=f dNF(N)T(XN), (60)

[1,2] as previously discussed in Sec. [83]. Moreover, a
wherel (x,\) is given by Eq(47) and its dependence onis  constant background has been subtracted from experimental
shown by Eq.(8). The wavelength distributiofi(\)d\ is  data[1,2].
directly obtained by thesupersonic velocity distribution Finally, referring to Eq.(47), note that the numbeN is

f(v)dv characterizing the macromolecule enseniile basicallya priori unknown, being the effective number of
. slits which concretely contribute to diffraction. In fact, only
f(v)dvecv® ex — (v —vo)*/v?]dv. (61)  the knowledge of the fullerene wave function on the grating

would allow us to fix the effective number of slits in which
It describes beams in transition between effusive and slow j&je jnitial wave function is split, since the width of collima-
sourceg52]. The parameters, andv depend both on the tion only gives information about the maximum number of
temperature of the beam and on the physical features of thgave packets which could contribute to the interference pat-
given molecule and they are deduced by a best fit over exern. Neverthelessy can be easily inferred posteriorias a
perimental measurement of the velocity distributisee Fig.  free parameters of the fit with experimental data. So doing,
2 in Ref.[2]). we find N=10.

The finite spatial resolution can be taken into account by Qur theoretical evaluation for the interference pattern is
an integration over the size of the elementary detector, saghown in Fig. 4, together with the experimental points pub-
2X, weighed on its spatial response functibifx). In par- lished in Ref.[2], p. 2819, Fig. 5.
ticular, in the case of a flat response functibr{x) becomes

the characteristic functiondefined on the interva[ —X, VIIl. CONCLUSIONS AND PERSPECTIVES
+x]_and theeffective detected intensitg expressed by a One of the main goals of our work has been that of de-
moving average ducing, within the framework of Joos and Zeh model, a geo-
_ 1 - metric optics limit of quantum mechanics in the presence of
_ | P _ XX o decoherence.
Ix—fdlx+D ——~j dzl(g), _ ) _
er(X) X L+ OB 2xJx—x (g Our theoretical analysis confirms the negligibility of en-
vironmental disturbances in recent experiments of macromo-
when, from Eq.(60), lecular interferometry1,2] with respect to the loss of coher-
- ence due to beam production.
. ) .
leﬁ(X)MJX ~Xd§f ANFOVI(ZN). Moreover, our analys_|s reprodu_ces c_IaSS|c_aI results, as
well as Fraunhofer relation for optical diffractive patterns,

For the free gam of the rectangular slits, it was used, and provides the quantum-mechanical analog for interferom-
according to Ref[32], the effective width estimated in Refs. etry with partially coherent sources of radiation. For the lat-
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FIG. 6. Diffraction of molecules with masses multiple of thg C
massM. For larger masses the quantum behavior becomes progres-
sively negligible, approaching the classical limit. Every curve has

Position (#m) been normalized to the value of the central maximum obtained for
the masaV.

FIG. 5. Interference patterns due both to a macromolecular
beam characterized by a velocity distribution given by &4) as ticle which eXperienceS a lot of Scattering events before
in Ref.[2] (full line) and to a strictly monochromatic beam corre- reaching the detection screen. This situation is realized for
sponding to the mean velocitylashed ling The curves are nor- larger grating-screen distancésee Fig. 7 or for more fre-
malized to the value of the central maximum. quent scattering processes due, for example, to increasing

) ] ) value of pressurésee Fig. 8 In both cases the fringe vis-
ter subject, referring to the theory of partial coherence, €Xibility, and thus the wavelike behavior of the molecule, is

isting analogies can be pointed out in a deeper way b¥)rogressively corrupted.

exploiting numerical simglations. Figurel 5 clear_ly_ ;_hows By improving the collimation of velocity selectedg§
that, by selecting the particle beam velocity, the visibility of heams the interference pattern shows a richer structure of
the corresponding interference pattern does not tend to UNityinges and thus a more evident quantum behavior. More-
being upper bounded by the damping tebgy [cf. Eds.  qyer, interference oscillations appear also in less restrictive

(51)—(53)]. On the other hand, the effect of the velocity se-enyironmental conditions, provided that the signal-to-noise
lection makes more interference fringes visible at the bordeftig is such to allow experimental detection. In fact, as

of the interference pattern. shown by the right plot in Fig. 8, side maxima, far from the
The same behavior is obtained in the framework of clasyptical axis, which are not detected at pressRiie experi-

sical optics, studying interference patterns due to quasimQments[1,2], turn out to be clearly visible even for pressures
nochromatic  fields[54,55. Classical partial coherence tgn times larger thai®. This might be relevant in devising
theory, supported by recent experimel&s], states that, by

filtering, the pattern visibility at most approaches the value
of the modulus of thedegree of spectral coherenge(\),
which depends on thepatial coherencef the source, and
that more fringes becomes visible, since temporal coher-
enceis improved.

Moreover, our approach provides a useful theoretical
framework for analyzing preserdnd possibly neywinterfer- _150
ence experiments. For instance, we have studied the mas
dependence of the interference pattern due to the diffractior
of heavy particles. Figure 6 shows the simulations corre-
sponding to beams of macromolecules heavier thgn But
characterized by the same physical features. Note that fo pggition
larger masses the quantum behavior becomes progressivery
negligible, approaching to the classical limit. There are, in- kg 7. Interference patterns for different values of the distance
deed, other experimental investigations which support th@etween the grating and the detection screen, in units of the talue
previous expected behavis7]. They show that visibility of  reported in Ref[2]. Increasing the distance the pattern spreads in
Cyo diffracted beams is slightly reduced than that obtainedhosition with respect to the optical axis. The visibility is reduced by
for Cgo Ones in the same conditions. the increased number of decohering events. Every curve has been

In studying the effects of decoherence, it is particularlynormalized to the value of the central maximum obtained for the
interesting to analyze the case of a diffracted quantum pamistancel.

(pam) tep " b Distance
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FIG. 8. The two figures show interference patterns for increasing pressures at fixed temperature, in units of the PreSsure
X108 Pa used in Ref[2]. The left figure corresponds to the experimental setup reported in [Refslit effective width d=3.6
x10 8 m and collimator apertura=10 °m. The right figure has been obtained for narrower slids=2x10 8 m), an improved
collimation (@=5x10"° m), and a velocity selectedgCbeam Qv/v=10%, wherev is the mean velocity Every curve has been
normalized to the value of the central maximum at the presBure

new interferometry experiments directed to the study of the MC2 +oo

quantum behavior of macroscopic objects and also to testl(X)= 27-rth f dxodxg

guantitatively the effects on a quantum subsystem due to o

external noise. Our suggestion has been partially realized in p{ - (xo—x())Z]
X ex

. . ) M
very recent experiment$8], which show results in agree- ZIh_T[XS_X‘I)ZJF 2X(X4—Xo)]—

ment with the prediction of Fig. 8. 2¢2
D 2 2
Xot+ S+ x(’)+s’—)
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APPENDIX A: YOUNG INTERFERENCE PATTERN X cos AT | Q(T)
WITH GAUSSIAN SLITS
In the following we shall develop the exact solution of +ex;{ _ D? cos{ MDx H (A2)
Eq. (40) in the case of slits with a Gaussian shaped profile. 2Q(T)€? ATQ(T)| |’

For simplicity we shall treat the case of interference patterns
due to just a pair of slits of widthl and distanceD, even  whereQ(T)=1+[2Mo2/(AT) 1>+ (204/€)2.
though an analytical solution can be obtained also for a grat- For T>Mg,D/4 and ¢>0, the term Q(T)—1,

ing composed of several slits. _ _ the first exponential in Eq. (A2) reduces to
Let us consider an initial wave function split by two exp[—[\/fMXJX/(hT)]Z} when x,.~%T/(Ma,), and
Gaussian slits of standard deviation and centered at= 5 the argument of the hyperbolic cosine is close to zero. It
+D/2 (we can typically choose &,=d), follows that Eq.(A2) is well approximated bysee Eq.(8)]
D D | 8770')2(C2 2\/§7TXO'X 2
Po(X;ke) = @ X+ 5)+<p X— 5) elkxx (0= & AL
:C[e—(x—D/2)2/4o§+e—(x+D/2)2/4a§]eikxx > 1+eD2/2€2005< @)
' A
Al
(AD) 4| . [ 27x\|? 5. [2mwDx
=—|ol—|| |1+e P7%"co :
AL AL AL
whereC is the normalization constant. Inserting E§2) in
Eq. (40) with the initial state(Al) we get which coincides with Eq(47) evaluated foN=2.
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APPENDIX B: APPROXIMATION QUALITY TEST 2

FOR THE FULLERENE EXPERIMENT |Z(¢,k)|?>= [coshd/¢)—cogkd)],

21,2
In this appendix we evaluate the error committed intro- ek
ducing the zero-order approximation of Eg5) in Eq. (44),
referring to experimental conditions reported in Ré&fl.
Since|(s’ —s)D|=2¢, we will test the previous approxi-
mation in the most unfavorable situation, according to
ext (& —9/¢]~1. To this aim, it is useful to introduce the Whence
integrals

|A(K)| 2= d? siné(?d/2)=%[1—cos(?d)],

_ 1—cogkd) ‘
o _ R(€.K) =11+ — —. (B1)
WI)ZI déo()edlt et (€k)?|costd/€) - cogkd)|
In the limit of smallk (i.e., for positionsx~0, close to the
_ + o0 — . . .
A(k)=J dé(£)ee, maximum of intensity, we get
h limR(€,k)=1 (are)” (drey? 0.011
_ im K)=1- ~ ~0.011.
wherek=Mx/(%T). Zero-order approximation of Eq45) 0 2[coshd/€)—1] 12
can be checked by evaluating the relative displacement of the (B2)

square modulus of the previous integrals . . ) N
This means that in correspondence of the greatest intensities

II(«‘?,?)IZ—IA(?)IZ‘ the approximate expression just moves away from the cor-
20 K)2 ‘ : rect one of about 1%.
' SinceR(¢,k) is an increasing function df, and thus of

The less the value assumed R¢¢ k), the better the quality ||, then the most unfavorable case takes place at the edge of
of the zero-order approximation of E45). the interference pattern, where, however, the intensity is neg-

By making explicite(€) with the characteristic function ligible. By usingkya~d™* in evaluating(B), it turns out
defined in the interval —d/2,d/2], a straightforward calcu- that R(¢,k,,,,) does not significantly differ from evaluation
lation leads to (B2).
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