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Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse
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The elaborate linkage pattern of the interaction Hamiltonian descriptive of pulsed laser interaction of ellip-
tically polarized light with a degenerate two-level system can, for coherent excitation, be reduced to sets of
independent pairs of coupled two-state equations by means of the Morris-Shore transformation@Phys. Rev. A
27, 906 ~1983!#. By extending the earlier defining work, which dealt only with time-independent interactions,
to consider various pulse shapes, one can obtain exact analytic solutions to various multilevel linkages. We use
these to find the conditions on the interaction parameters~e.g., the ellipticity! leading to various population
transfer schemes, for example, to achieve either population inversion or orientation. We illustrate these with the
M andW linkages amongst magnetic sublevels ofJ51 or J52 excited by elliptically polarized light.

DOI: 10.1103/PhysRevA.68.063414 PACS number~s!: 32.80.Qk, 02.60.Cb, 33.80.2b
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I. INTRODUCTION

The properties of idealized nondegenerate two-state at
acted on by pulsed laser radiation form a substantial par
the now-standard textbook descriptions of time depende
in quantum mechanics@1,2#. The behavior ofdegenerate
two-level systems, such as occurs with systems posses
angular momentum~as characterized by quantum numberJ
and M for degeneracy 2J11), requires somewhat mor
elaborate treatment, including averages over initially po
lated sublevels~e.g., the magnetic sublevels distinguished
different M for given J). In the very simplest idealization
that of coherent excitation with linearly polarized lig
whose direction coincides with the quantization axis used
define the magnetic quantum numberM, it is only necessary
to consider averaging the behavior of sets of independ
two-state systems. However, for general choices of quan
tion axis, or for elliptically polarized light, the laser
interaction Hamiltonian has elements linking more than t
quantum states, and the treatment becomes more com
cated@3#.

The objectives also become more diverse. One may w
to remove all population from all of the lower-lying suble
els, or to put all population into some~superposition of! ex-
cited sublevels, or just to redistribute the population amon
the magnetic sublevels~leading to orientation or alignment!.
For all such tasks it is desirable to have analytic express
for the time dependence of the various sublevel populatio
as will be provided in the present paper.

As discussed in detail by Fewell@3# and others@4–6#, the
typical electric-dipole interaction Hamiltonian has matrix e
ements ~in an angular-momentum basis associated w
quantum numbersJ andM ) proportional to Clebsch-Gordo
coefficients or 3j symbols, and these prescribe not on
chains of couplings but also various branched linkage p
terns: starting from a particularM value, dipole transitions
generally induce transitions to states with magnetic quan
numbersM21, M, and M11. Hyperfine structure intro-
duces still further linkages@5#. These linking matrix ele-
1050-2947/2003/68~6!/063414~16!/$20.00 68 0634
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ments of the Hamiltonian produce, for incoherent excitati
transition rates@3# and, for coherent excitation, Rabi freque
cies @4#. A consequence of such linkages is that, even i
two-level system~with degenerate sublevels!, the task of
simulating the response to pulsed radiation can become c
plicated and no longer amenable to analytic solution.

Fewell @3# has examined examples of degenerate tw
level systems and has suggested that some simplification
curs if one is able to choose the polarization appropriat
Here we reconsider this problem—the modeling of excitat
by elliptically polarized light—from a different perspective
one that allows the use of the many known exact anal
solutions to two-state coherent excitation by pulsed~and pos-
sibly chirped! laser radiation. Our approach is less gene
than that of Fewell, who allowed arbitrary directions for th
quantization axis: we choose this axis along the propaga
direction, and express the polarization in terms of the t
helicity states associated with this direction.

Some years ago it was recognized by Morris and Sh
~MS! @7# that this replacement of a linkage pattern involvin
two sets of arbitrarily coupled states could be generalized
a variety of multilevel systems, including rather complicat
linkages. Under appropriate conditions, reviewed below, i
possible to replace anN-state system, described by a co
stant Hamiltonian matrix, by a set of independent two-st
systems. The needed mathematical transformation is a
eralization of the change, when dealing with transitions
tween magnetic sublevels of a system possessing ang
momentum, from a helicity basis~left and right circular po-
larization! to a quantization axis along the electric vector
linear polarization.

The MS factorization has been used in techniques
signed to measure the parameters of fully or partly cohe
superpositions of two@8# or more@9# states. A similar change
of basis states is found in treatments of theL linkage of
three states, such as occuring with stimulated Raman tra
tions leading to the occurrence of so-called dark sta
@10,11#. More recently a four-state tripod-linkage system w
analyzed using two coupled states and two dark states@12#.
©2003 The American Physical Society14-1
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VITANOV, KIS, AND SHORE PHYSICAL REVIEW A68, 063414 ~2003!
The MS factorization has important advantages: rat
than dealing with anN3N Hamiltonian matrix, one has only
several separate and independent 232 Hamiltonians to
solve. Because there are many known analytic solution
the two-state problem, this approach enables us to find
lytic solutions for multistate problems. The present pa
therefore extends and generalizes earlier results for a th
stateL system@13#. Such solutions, which allow not onl
time-varying pulse envelopes but also time-dependent de
ings, enable us to derive analytically numerous propertie
degenerate two-level systems driven by elliptically polariz
laser pulses.

The transformation to decoupled two-state systems
noteworthy of itself, but in addition there are some intere
ing aspects of the physics. Just as in theL system, coherence
plays a role that is easily overlooked: although the two-s
systems can be solved independently, their probability a
plitudes must be superposed coherently to obtain the p
abilities of physical interest. This superposition introduc
constructive and destructive interference, with attend
novel population dynamics.

This paper is organized as follows. The MS transform
tion is reviewed in Sec. II. In Sec. III we describe an a
proach based on the MS decomposition, which allows on
find analytic solutions to multistate dynamics by using a
lytically soluble two-state models. Section IV illustrates th
approach for five-state chains with particular application
two cases of magnetic sublevel degeneracy. The popula
dynamics of aM system~cf. Fig. 1! is explored in Sec. V and
that of aW system~cf. Fig. 2! is examined in Sec. VI. Fi-
nally, the conclusions are summarized in Sec. VII.

II. THE MS TRANSFORMATION

We assume completely coherent evolution, i.e., there
no decoherence processes during the interaction. Then

FIG. 1. Frame~a!: the linkage pattern of the five-stateM system.
The states withM522,0,2 (c22 , c0, andc2) form the ground-
state manifold, whereas the states withM521,1 (c21 and c1)
form the excited-state manifold. The coupling pulse is elliptica
polarized and the relative coupling strengths, i.e., the Clebs
Gordon coefficients, are denoted byjMa

Mb. The pulse is detuned byD

from exact resonance. Frame~b!: the MS transformation casts thi
system into a set of two two-state systems and a decoupled s
The driven two-state systems have Rabi frequenciesV ( i ).
06341
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excitation dynamics is described by the Schro¨dinger equa-
tion, which in the rotating-wave picture and with th
rotating-wave approximation~RWA! @4# takes the form of
coupled ordinary differential equations for time-depend
complex-valued probability amplitudesCn(t),

d

dt
Cn~ t !52 i(

m
WnmCm~ t !, ~2.1!

from which one evaluates the probability of finding th
population in staten at time t asPn(t)5uCn(t)u2.

The coefficient matrixW, obtained from the Hamiltonian
matrix by rescaling from energy to frequency with\, and
making the RWA, has detuningsDn5Wnn as diagonal ele-
ments and Rabi frequenciesVnm52Wnm as off-diagonal el-
ements ~originating typically with electric-dipole interac
tions!.

Though not explicitly shown, the matrix elements m
vary with time. For the present interest, only two differe
detuningsDn occur in the Hamiltonian\W; each may vary
~independently! with time. We also assume that all the Ra
frequenciesVnm have the same time dependence, althou
their maximal amplitudes may differ. The special case wh
all nonzero elements of the Hamiltonian, Rabi frequenc
and detunings, have the same time dependence, sayf (t),
reduces to that of a constant Hamiltonian by defining a n
time variablex5* f (t)dt. In the present paper, we do no
make this latter assumption and we show that analytic s
tions can be found in the more general case when the de
ings vary independently of the Rabi frequencies. This
cludes the important special case of constant detunings
pulse-shaped Rabi frequencies.

With the assumed two distinct detunings, and suitable
dering of the basis states, the matrixW has the form

W5FDaIa V

V† DbIb
G . ~2.2!

h-

te.

FIG. 2. Same as Fig. 1 but for aW-shaped linkage pattern
which can be viewed as an invertedM system. Now the decoupled
state is a superposition of excited sublevels.
4-2
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Here Ia and Ib are unit matrices, of dimensionsNa andNb ,
respectively, andV is a Na3Nb matrix of Rabi frequencies
~all with the same time dependence!. By suitable choice of
overall phase for the probability amplitudes one of the t
detunings can always be set to zero; this is traditionally ta
to be the first of these detuningsDa , which is associated
with the initially populated state. When all transitions a
resonant, as is often assumed, both detunings are zero.

Morris and Shore@7# showed that any such system can
transformed, via suitable redefinition of basis states, to
involving a set ofN, independent two-state systems, whe
N, is the lesser ofNa andNb , together with a set of decou
pled spectatorstates that are unaffected by the radiati
~one-state systems!. That is, one is led to equations for ne
MS amplitudesC̄n(t),

C̄n~ t !5(
m

UnmCm~ t !, ~2.3!

of the form

d

dt
C̄n~ t !52 i(

m
W̄nmC̄m~ t !, ~2.4!

where the matrixW̄5UWU† is block diagonal

W̄5F w(1) 0 0 •••

0 w(2) 0 •••

0 0 w(3)
•••

••• ••• ••• •••

G . ~2.5!

Though not shown explicitly, the elements ofU andW̄, like
those ofW and w(m), may be time dependent. Here ea
w(m) is a one- or two-dimensional matrix. The two
dimensional ones~there areN, of these! have the form

w(m)5F Da

1

2
V (m)

1

2
V (m)

Db
G , ~2.6!

whereDa and Db are the detunings of the original system
The remaining matricesw(m) are one-dimensional~there are
N.2N, of these!. Their elements are detunings, eitherDa if
Na.Nb , or Db if Nb.Na . These one-dimensional Hamilto
nians induce only time-dependent phase factorse2 iDat or
e2 iDbt in the evolution of the dark-state amplitudes.

The elements of the transformation matrixU are obtain-
able from the transformation that diagonalizes the produc
interaction matricesVV† by means of a transformation ma
trix A, which operates in the lower-states manifold~referred
to asA space!,

AVV†A†5diag, ~2.7!

and the similar transformation ofV†V within the excited
states (B space! by means of a matrixB,
06341
n
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BV†VB†5diag. ~2.8!

In each case the diagonal elements are squares of Rab
quencies. Given the matricesA and B, one constructs the
desired transformation of the Hamiltonian as

U5GFA 0

0 BGG21, ~2.9!

whereG is a permutation matrix that reorders the states i
pairs. The set of nonzero eigenvalues is identical for theA
and B subspaces, but if these are of different dimensio
(NaÞNb) then the larger set will include also null eigenva
ues associated with decoupled states, also known as m
level dark states@9,11,14#. For example, in the five-stateM
system of Fig. 1, the dimensions of the subspaceA is Na
535N. , and the diagonalization~of basis states 1, 2, an
3! produces the results

AAVV†A†5
1

2
$uV (1)u,uV (2)u,0%. ~2.10!

In the B subspace of dimensionNb525N, and involv-
ing basis states 4 and 5, the null eigenvalue is missing,

ABV†VB†5
1

2
$uV (1)u,uV (2)u%. ~2.11!

The phases of the eigenvalues~the Rabi frequenciesV (m))
are obtained only with the evaluation ofW̄5UWU†.

With appropriate reorganization of the MS states,C̄n
(m)

[C̄2m1n22, one has the equation

d

dt F C̄1
(m)

C̄2
(m)G52 iF Da

1

2
V (m)

1

2
V (m)

Db
G F C̄1

(m)

C̄2
(m)G . ~2.12!

The detunings in this last formula are unchanged from
original problem. The Rabi frequencyV (m) for themth two-
state system is obtained from square roots of the eigenva
of the matrixVV† or V†V, as explained above. Because,
assumption, all of the original Rabi frequencies share a co
mon time dependence, the eigenvalue frequenciesV (m) share
this same time dependence.

Although the original Rabi frequencies may have ve
simple symmetries, involving repetition of common valu
~they may be proportional to Clebsch-Gordon coefficien
for example!, the eigenvalue Rabi frequenciesV (m) of the
two-state systems are generally not degenerate: they ar
different.

The Morris-Shore transformation is quite general~given
the constraint of only two distinct detunings!. It can be used,
for example, with various ‘‘bent’’ linkages (L, V, M, and
W), with various many-to-one connections (L, the tripod,
. . . ), aswell as with complicated hyperfine interactions.
can also be used with a resonantN-state ladder of excitation
alternating states of the chain are placed into theA andB set.
4-3
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III. ANALYTIC SOLUTIONS IN MULTISTATE SYSTEMS

A. Time evolution in the original and MS bases

The original probability amplitudesCn(t) are obtained
from the MS amplitudesC̄j (t) by means of the time-
independent unitary transformation,

Cn~ t !5(
j

Un j
† C̄j~ t !. ~3.1!

To obtain probabilitiesPn(t) for the physical basis states on
therefore requires a coherent~but time-independent! super-
position of the MS states,

Pn~ t !5uCn~ t !u25(
i j

Un j
† Uni

T C̄j~ t !C̄i* ~ t !. ~3.2!

The time development of each MS amplitudeC̄n
(m)(t) can

be obtained by solving the two coupled equations~2.12!.
Each solution, at a fixed timet, is expressible in terms of th
initial amplitudes at timet5t0 by a unitary transformation

C̄n
(m)~ t !5 (

k51,2
S̄nk

(m)~ t,t0!C̄k
(m)~ t0! ~m51, . . . ,N,!.

~3.3!

The original probability amplitudes are then obtained as

Cn~ t !5(
k

Snk~ t,t0!Ck~ t0!, ~3.4!

where the transition matrix is

S~ t,t0!5U†S̄~ t,t0!U, ~3.5a!

S̄~ t,t0!5S %
m51

N,

S̄(m)~ t,t0!D % I. ~3.5b!

Here the transition matrix is expressed as a direct sum
independent two-state transition matricesS̄(m)(t,t0) together
with I, a unit matrix of dimensionN.2N, .

Although the original Hamiltonian has been replaced b
set of independent two-state systems, the complexity of
original problem returns when one evaluates the origi
populations,

Pn~ t !5uCn~ t !u25U(
k

Snk~ t !Ck~ t0!U2

. ~3.6!

From this expression it is clear that interference between
independent two-state systems can contribute to the obs
able population changes.

Even when the original physical system starts in a sin
state, this initial condition will appear as a superposition
the MS amplitudes. For example, let the single initial phy
cal state be labeledn51. Then the initial MS amplitudes ar
C̄j (t0)5U j 1 and Eq.~3.6! reads

Pn~ t !5uSn1~ t,t0!u2. ~3.7!

Interference still occurs between the separate two-state
tories. Whether this is constructive or destructive~or some-
06341
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thing intermediate! depends on the elements of theS matrix,
which in turn depend not only on the time interval (t,t0) but
also on the original Rabi frequencies, detunings and link
pattern.

B. Analytic solutions

The procedure outlined above, for reducing a class of
generate multilevel systems into a set of independent t
state systems, simplifies considerably the problem of find
analytic solutions of the Schro¨dinger equation~2.1! with the
Hamiltonian\W defined by Eq.~2.2!. In the MS basis the
Hamiltonian \W̄ has block-diagonal form with one- an
two-dimensional submatrices. The 232 blocks describe
two-state systems undergoing time evolution, while the
maining elements are associated with decoupled states.

Numerous analytically soluble two-state models ha
been described. We can use any of these with Eq.~2.12!.
However, each 232 block w(m) must have the same pair o
detunings~perhaps time dependent! and the same time de
pendence~if any! for the Rabi frequencies.

The algebra is simplified when the detunings are sy
metrically distributed,

2Da5Db5
D

2
. ~3.8!

In this case the 232 transfer matrix of Eq.~3.3! can be
parametrized as

S̄(n)~ t !5Fa (n) 2~b (n)!*

b (n) ~a (n)!* G . ~3.9!

The transition probability between the lower and upper st
of a pair of MS basis states isub (n)u2, and the probability for
no transition isua (n)u2512ub (n)u2. The Appendix provides
a number of examples of these matrices for several ana
cally soluble two-state systems.

The decoupled states will also undergo a time evoluti
acquiring a phase factor

k5expF i

2Et0

t

D~ t !dtG . ~3.10!

Analytic solutions can reveal various properties of t
population dynamics of systems with complicated linka
patterns. Such solutions allow one to estimate the maxi
population any particular state can obtain for chosen ini
conditions. In particular, one can derive conditions for co
plete population transfer between any two states, such
generalizedp pulses.

IV. APPLICATIONS TO DEGENERATE FIVE-STATE
CHAINS

A. Example linkages

The properties of the MS transformation, and the nove
can be illustrated by reconsidering the system mentioned
Morris and Shore@7#, who considered only time-independe
Rabi frequencies. We consider transitions produced betw
4-4
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angular momentum states~specified byJ and M ) produced
by elliptically polarized light, and we take the quantizatio
axis to be the laser propagation direction, i.e., we desc
the polarization by means of two helicity states. The sel
tion rule for electric-dipole interaction~assumed! then limits
transitions to those for whichDM561. We consider two
cases: theM-linkage pattern~see Fig. 1! found for Ja52 to
Jb51 or Jb52, and theW linkage ~see Fig. 2! found for
Ja51 or Ja52 to Jb52. For each of these systems the M
transformation produces a Hamiltonian that consists of
separate 232 matrices and one decoupled state.

B. Elliptical polarization

The couplings described by Figs. 1 and 2 can be produ
by a single elliptically polarized laser whose electric field h
the form @15#

E~ t !5 1
2 @e11E11~ t !e2 ivt1e21E21~ t !e2 ivt1c.c.#.

~4.1!

Hereeq is a unit vector, of helicityq561, as is appropriate
for the expression of elliptical polarization as a combinat
of circular polarizationss1 ands2. The needed matrix ele
ments of the electric-dipole interaction can then be writt
with the aid of the Wigner-Eckart theorem~cf. Ref. @4#! as

^JbMbud•E~ t !eivtuJaMa&5
1

2
\VqjMa

Mbei (vt2fq), ~4.2!

where the constant parametersf1 andf2 are the phases o
thes1 ands2 fields. The dependence on magnetic quant
numbers occurs through a Clebsch-Gordon coefficie
which we incorporate into the~constant! relative coupling
strength

jMa

Mb5~JaMa ,1quJbMb!/A2Ja11. ~4.3!

The two real-valued quantitiesV6[V6q are time depen-
dent~pulse-shaped! Rabi frequency ‘‘units’’ for the couplings
induced by the two independent polarizations. These m
share the same time dependence but may have different
values.

The ellipticity of the laser pulse, defined by

«5
V1

2 2V2
2

V1
2 1V2

2
5

E1
2 2E2

2

E1
2 1E2

2
5

I 12I 2

I 11I 2
, ~4.4!
06341
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where I 6 are the corresponding intensities andE6[E61,
provides a useful means of parametrizing the polarizati
Ellipticity «561 corresponds tos6 polarization and«50
to linear polarization. The Rabi frequenciesV1 andV2 are
conveniently parametrized in terms of« and V

5AV1
2 1V2

2 asV65VA1
2 (16«).

C. The M linkage

In the M linkage the lower level hasJa52 and the upper
hasJb51 or Jb52. We label the physical states by the ma
netic quantum numberM. States$22,0,12% are part of the
lower-level manifold, while states$21,11% form the upper-
level manifold, see Fig. 1. The 332 interaction matrixV has
the elements

V5
1

2F j22
21V1eif1 0

j0
21V2e2 if2 j0

1V1eif1

0 j2
1V2e2 if2

G . ~4.5!

For Ja52↔Jb51 the Clebsch-Gordon coefficientsjMa

Mb are

given by j22
215j2

15A3
5 , j0

215j0
15A 1

10 , while for Ja

52↔Jb52 they arej22
2152j2

152A 1
3 , j0

2152j0
15A 1

2 .

D. The W linkage

In the W linkage the lower level hasJa51 or Ja52 and
the upper hasJb52. As in the case of theM linkage, we
label the physical states by the magnetic quantum numbeM.
States$21,11% are part of the lower-level manifold, while
states$22,0,12% form the upper-level manifold, see Fig. 2
The interaction matrix is that of Eq.~4.5!, but with the states
relabeled, i.e., the indicesMa andMb are interchanged.

E. The MS transformation for the M and W linkages

The MS transformation replaces the usual atomic ba
states by a set of new MS basis states. In our case, the
frequencies of the Hamiltonian in the new MS basis are
tained from the square roots of the eigenvalues of the ma
ces
VV†5
1

4F ~j22
21!2V1

2 j22
21j0

21V1V2eif 0

j22
21j0

21V1V2e2 if ~j0
21!2V2

2 1~j0
1!2V1

2 j0
1j2

1V1V2eif

0 j0
1j2

1V1V2e2 if ~j2
1!2V2

2
G , ~4.6a!

V†V5
1

4 F ~j22
21!2V1

2 1~j0
21!2V2

2 j0
21j0

1V1V2eif

j0
21j0

1V1V2e2 if ~j0
1!2V1

2 1~j2
1!2V2

2 G ~4.6b!

with f5f11f2 .
The three eigenvalues ofVV† provide the squares of MS Rabi frequenciesV (n). One of these is zero,V (0)50, while the

other, nonzero ones are (n51,2)
4-5
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TABLE I. The coefficients for the MS transformation forJa52↔Jb51 ~first column! and Ja52↔Jb

52 ~second column! cases@9#. Note thatc2
(n)(2«)52c1

(n)(«) andc0
(n)(2«)52c0

(n)(«) for n51,2.

Ja52↔Jb51 Ja52↔Jb52

d2(«) nd(12«) ndA3(12«)
d0(«) 2ndA6(12«2) ndA2(12«2)
d1(«) nd(11«) ndA3(11«)
@nd(«)#22 4(22«2) 4(21«2)
c2

(1)(«) 2
1
2 nc

(1)(11«)(126«2A1124«2) 1
2 nc

(1)(11«)(322«2A928«2)
c0

(1)(«) nc
(1)«A6(12«2) nc

(1)«A6(12«2)
c1

(1)(«) 1
2 nc

(1)(12«)(116«2A1124«2) 2
1
2 nc

(1)(12«)(312«2A928«2)
@nc

(1)(«)#22 A1124«2@(11«2)A1124«2111«221# A928«2@(11«2)A928«21«223#

c2
(2)(«) 2

1
2 nc

(1)(11«)(126«1A1124«2) 1
2 nc

(2)(11«)(322«1A928«2)
c0

(2)(«) nc
(2)«A6(12«2) nc

(1)«A6(12«2)
c1

(2)(«) 1
2 nc

(2)(12«)(116«1A1124«2) 2
1
2 nc

(2)(12«)(312«1A928«2)
@nc

(2)(«)#22 A1124«2@(11«2)A1124«2211«211# A928«2@(11«2)A928«22«213#

e2
(1)(«) ne(A1124«215«)1/2 ne(A928«22«)1/2

e1
(1)(«) ne(A1124«225«)1/2 ne(A928«21«)1/2

e2
(2)(«) ne(A1124«225«)1/2 ne(A928«21«)1/2

e1
(2)(«) 2ne(A1124«215«)1/2 2ne(A928«22«)1/2

@ne(«)#22 2A1124«2 2A928«2
n
s
d

es

le I.

the
po-

li-
al-
V (n)~ t !5A 1

20
@72~21!nA1124«2#V~ t !, ~4.7a!

V (n)~ t !5A 1

12
@52~21!nA928«2#V~ t !, ~4.7b!

for Ja52↔Jb51 and Ja52↔Jb52, respectively. Here
V (1) corresponds to the larger eigenvalue, with a plus sig
Eqs.~4.7!, andV (2) to the smaller eigenvalue, with a minu
sign. The eigenvectors ofVV† are superpositions of groun
states: two MS coupled~bright! stateswc

(1)(«) and wc
(2)(«)

and a decoupled~dark! statewd(«), given by the construc-
tions

wc
(1)~«!5c2

(1)~«!c221c0
(1)~«!e2 ifc01c1

(1)~«!e22ifc12 ,

~4.8a!

wc
(2)~«!5c2

(2)~«!c221c0
(2)~«!e2 ifc01c1

(2)~«!e22ifc12 ,

~4.8b!
06341
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wd~«!5d2~«!c221d0~«!e2 ifc01d1~«!e22ifc12 .

~4.8c!

The eigenvectors ofV†V are superpositions of excited stat
only,

we
(1)~«!5e2

(1)~«!c211e1
(1)~«!e2 ifc1 , ~4.9a!

we
(2)~«!5e2

(2)~«!c211e1
(2)~«!e2 ifc1 , ~4.9b!

and the eigenvalues ofV†V are given by Eqs.~4.7!. The
parameters of these new basis states are given in Tab
Their values for the special cases«50,61 are given in
Table II.

We emphasize here that the five MS states, Eqs.~4.8! and
~4.9!—the decoupled state, the two coupled states, and
two excited states—are entirely determined by the laser
larization parameters« andf.

The transformation matrix between the original amp
tudes and the MS amplitudes is constructed from the norm
ized eigenstates of the Hamiltonian. It is given by Eq.~2.9!,
where
TABLE II. The coefficients for the MS transformation forJa52↔Jb51 and Ja52↔Jb52 for the
special values of the ellipticity«50,61.

« d2 d0 d1 c2
(1) c0

(1) c1
(1) c2

(2) c0
(2) c1

(2) e2
(1) e1

(1) e2
(2) e1

(2)

0 A 1
8 2A 3

4 A 1
8 A 3

8

1
2 A 3

8 2A 1
2

0 A 1
2 A 1

2 A 1
2 A 1

2 2A 1
2

Ja52↔Jb51 21 1 0 0 0 0 1 0 0 1 0 1 1 0
1 0 0 1 1 0 0 1 0 0 1 0 0 1
0 A 3

8

1
2 A 3

8 A 1
8 2A 3

4 2A 1
8 A 1

2
0 2A 1

2 A 1
2 A 1

2 A 1
2 2A 1

2

Ja52↔Jb52 21 1 0 0 0 0 1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1 0 0 0 1 1 0
4-6
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G5F 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

G , ~4.10a!

FA 0

0 BG5F d2 d0e2 if d1e22if 0 0

c2
(1) c0

(1)e2 if c1
(1)e22if 0 0

c2
(2) c0

(2)e2 if c1
(2)e22if 0 0

0 0 0 e2
(1) e1

(1)e2 if

0 0 0 e2
(2) e1

(2)e2 if

G .

~4.10b!

V. THE M SYSTEM

A. Populations in the general case

If the system is initially in statec22, i.e., C(2`)
5@1,0,0,0,0#T, the final populations are given by the squar
moduli of the elements in the first column of the evoluti
matrix U, PM5uU1Mu2,

P225ukd2
2 1a (1)c2

(1)21a (2)c2
(2)2u2, ~5.1a!

P05ukd2d01a (1)c2
(1)c0

(1)1a (2)c2
(2)c0

(2)u2, ~5.1b!

P25ukd2d11a (1)c2
(1)c1

(1)1a (2)c2
(2)c1

(2)u2, ~5.1c!

P215ub (1)* c2
(1)e2

(1)1b (2)* c2
(2)e2

(2)u2, ~5.1d!

P15ub (1)* c2
(1)e1

(1)1b (2)* c2
(2)e1

(2)u2. ~5.1e!

For linear polarization («50) we summarize the values o
these populations in Table III. Equations~5.1! and the ana-
lytic formulas for the two-state evolution-matrix elemen
a (n) and b (n) provide several analytic solutions for theM
system.

The coefficients (d2 ,d0 ,d1) of the decoupled statewd
appear in the populations of the ground sublevels. Their c
tribution depends only on the ellipticity« of the laser.

Because the decoupled state does not interact with
laser pulse, its population,

Pd5
~12«!2

4~22«2!
~Ja52↔Jb51!, ~5.2a!

TABLE III. Final populations for theM system for initial state
c22 and linear polarization («50).

Ja52↔Jb51 Ja52↔Jb52

P22 u 1
8 k1

3
8 a (1)1

1
2 a (2)u2 u 3

8 k1
1
8 a (1)1

1
2 a (2)u2

P0
3

32 uk2a (1)u2 3
32 uk2a (1)u2

P2 u 1
8 k1

3
8 a (1)2

1
2 a (2)u2 u 3

8 k1
1
8 a (1)2

1
2 a (2)u2

P21 uA 3
16b (2)2

1
2 b (2)u2 u 1

4 b (1)2
1
2 b (2)u2

P1 uA 3
16b (2)1

1
2 b (2)u2 u 1

4 b (1)1
1
2 b (2)u2
06341
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Pd5
3~12«!2

4~21«2!
~Ja52↔Jb52!, ~5.2b!

is conserved. This population is trapped and excluded fr
the excitation process. For example, for«50, the trapped
population isPd5 1

8 andPd5 3
8 , in the two cases 2↔1 and

2↔2, respectively.

B. All population in the ground sublevels

In this section we present the conditions needed to en
that, following a pulse, all population remains in the low
lying initially populated sublevels, with none in the excite
sublevels.

1. General case

All population will be confined to the ground sublevels
the excited-level populations vanish,P215P150. Because
statesc21 andc1 participate only in the MS stateswe

(1) and
we

(2) , this condition requires no transition in the MS basis

b (1)5b (2)50. ~5.3!

This means that the transition probabilities in both of the M
two-state systems should vanish simultaneously, i.e., the
lution matrix S̄ in Eq. ~3.5b! should be diagonal. In the fol
lowing sections we present several analytically solva
models for two-state systems and find the parameters
satisfy Eq.~5.3!.

2. Exact resonance

On exact resonance, the elements of the transfer ma
~3.9! take a particularly simple form, Eq.~A4!, for arbitrary
pulse shape. In this case the phase factor of the decou
statek, Eq. ~3.10!, is equal to unity. In order to satisfy con
ditions~5.3!, the two pulse areas in the MS two-state syste
should be even integer multiples ofp,

A (n)5k(n)p ~n51,2!, ~5.4!

where the pulse area is defined by Eq.~A3! and

k(n)52m(n), ~5.5!

wherem(n) is an integer. Explicitly, forJa52↔Jb51 and
Ja52↔Jb52 we have, respectively,

A (n)5A 1
20 @72~21!nA1124«2#A5k(n)p, ~5.6a!

A (n)5A 1
12 @52~21!nA928«2#A5k(n)p. ~5.6b!

These conditions can be satisfied for an infinite number
pairs of pulse areas and ellipticities (A,«). The solution for
A and« in the caseJa52↔Jb51 reads

A5pA 10
7 ~k(1)21k(2)2!, ~5.7a!
4-7
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«56A~4k(1)223k(2)2!~3k(1)224k(2)2!

6~k(1)21k(2)2!2
, ~5.7b!

and forJa52↔Jb52 it is

A5pA6
5 ~k(1)21k(2)2!, ~5.8a!

«56A~4k(2)22k(1)2!~4k(1)22k(2)2!

2~k(1)21k(2)2!2
. ~5.8b!

Only such pairs (k(1),k(2)) apply, for which« is real and
u«u<1; these conditions require

A1

6
<

k(2)

k(1)
,1 ~Ja52↔Jb51!, ~5.9a!

1

2
<

k(2)

k(1)
<A2

3
~Ja52↔Jb52!. ~5.9b!

Obviously, there are infinitely many pairs (k(1),k(2)), which
satisfy these conditions.

3. Off-resonant rectangular pulse

For a rectangular pulse with a constant detuning, we c
clude from Eqs.~A7! that conditions~5.3! require the fulfill-
ment of the following equations:

AV (1)21D2T52m(1)p, ~5.10a!

AV (2)21D2T52m(2)p, ~5.10b!

wherem(n) are integers, andV (1) andV (2) are given by Eqs.
~4.7!. The solution forV and D in the caseJa52↔Jb51
reads

V5
2p

T
A 10

A1124«2
~m(1)22m(2)2!, ~5.11a!

D5
2p

T
Am(1)21m(2)2

2
2

7~m(1)22m(2)2!

2A1124«2
,

~5.11b!

and forJa52↔Jb52 it is

V5
2p

T
A 6

A928«2
~m(1)22m(2)2!, ~5.12a!

D5
2p

T
Am(1)21m(2)2

2
2

5~m(1)22m(2)2!

2A928«2
.

~5.12b!

In the above equations the polarization« is a free parameter
We use this leeway below for finding cases of compl
population transfer fromc22 to c2.
06341
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4. Other analytic models with detuning

We shall now discuss the possibility of satisfying the co
ditions ~5.3! for the other analytically soluble nonresona
models. First of all, conditions~5.3! are satisfied automati
cally in the trivial case of no interaction~all V ’s zero!, which
is of no interest; we therefore assume that the Rabi frequ
cies are nonzero.

For the Landau-Zener model~Appendix, Sec. 3!, condi-
tions ~5.3! cannot be satisfied, cf. Eq.~A10!.

For the Demkov-Kunike model~Appendix, Sec. 4!, it fol-
lows from Eq. ~A13! that conditions~5.3! can be satisfied
only for constant detuning (B50). Hence these condition
cannot be satisfied for the Allen-Eberly-Hioe and Bambi
Berman models~Appendix, Secs. 4 c and 4 d!, which involve
chirped detuning (BÞ0); for such detuning some populatio
is always left in the excited states of theM system. Hence,
chirped pulses are not suitable when the goal is to confine
population dynamics in the ground sublevels.

For the Rosen-Zener model~Appendix, Sec. 4 b!, condi-
tions ~5.3! are satisfied for the same pulse areas~note that
A5pV0T for the hyperbolic-secant pulse! as for exact reso-
nance, cf. Eqs.~A5! and ~A15!; this is a peculiarity of this
model only.

C. Complete population transfer between the ground
sublevelscÀ2\c2

Redistribution of population amongst magnetic subleve
thereby producing orientation or alignment, is commonly a
complished by means of optical pumping@16#. Here we con-
sider the task of transferring population, via coherent p
cesses alone, between sublevels.

1. General case

An important special case of population residing in t
ground sublevels is the complete population transfer~CPT!
from statec22 to statec2. In this case, in addition to the
requirementP215P150, which led us to conditions~5.3!,
we must also haveP225P050, i.e. @cf. Eqs. ~5.1a! and
~5.1b!#,

kd2
2 1a (1)c2

(1)21a (2)c2
(2)250, ~5.13a!

kd2d01a (1)c2
(1)c0

(1)1a (2)c2
(2)c0

(2)50. ~5.13b!

The solution fora (1) anda (2) reads

a (1)5
~«21!~5«2A1124«2!

~«11!2
k, ~5.14a!

a (2)5
~«21!~5«1A1124«2!

~«11!2
k. ~5.14b!

Because, as follows from Eq.~5.3!, the moduli ofa (1) and
a (2) should be unity we find from Eqs.~5.14! that the value
of « has to be zero,

«50. ~5.15!

In this case,
4-8
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a (1)5k, a (2)52k. ~5.16!

It is easy to verify from Table III that these values inde
lead to CPT from statec22 to statec2.

For «50 the MS Rabi frequencies become

V (1)5A2

5
V, V (2)5A 3

10
V ~2↔1!, ~5.17a!

V (1)5A2

3
V, V (2)5A1

6
V ~2↔2!. ~5.17b!

It follows from Eq.~5.6a! that the same relations hold for th
pulse areasA (1) andA (2), with V replaced byA.

We note that in the (2↔1) case the MS Rabi frequencie
are incommensurable, whereas in the (2↔2) case they are
commensurable,V (1)52V (2).

2. Exact resonance

On exact resonance, the phase factor~3.10! is unity, k
51. Therefore, we conclude that conditions~5.16! require us
to find pairs (m(1),m(2)) for which A (1) is an even multiple
of 2p andA (2) is an odd multiple of 2p, i.e., evenm(1) and
odd m(2) (m(1).m(2)).

First, we consider the caseJa52↔Jb51. It follows from
Eqs.~5.6a! and ~5.17a! that

2m(2)5A3m(1). ~5.18!

Since A3 is an irrational number, this equation cannot
solved exactly for integerm. However,we can find numeri
cally pairs of evenm(1) and oddm(2) that satisfy Eq.~5.18!
arbitrarily accurately. Therefore, we can find approxim
CPT in principle, but the required pulse area may be qu
large. Such an example can be seen in the upper fram
Fig. 4, whereP2 approaches unity forA'80.

We now consider the second case of aM system,Ja
52↔Jb52. Because V (1)52V (2) ~and hence A (1)

52A (2)) it follows from Eq. ~5.6b! that

m(1)52m(2). ~5.19!

Therefore condition~5.16! can be satisfied by taking an a
bitrary oddm(2) and evenm(1)52m(2), and then calculateA
and « from Eqs ~5.8! for thesem(1) and m(2): «50, A
52pm(2)A6. This choice of parameters will lead to CP
from statec22 to statec2. This is an example of a genera
ized p pulse.

Figure 3 displays the population of statec12 as a function
of the ellipticity « and the pulse areaA, for Ja52↔Jb51
~upper frame! and Ja52↔Jb52 ~lower frame!. Figure 4
shows the corresponding frames for linear polarization«
50). Three cases of exact CPT are observed in the la
case (Ja52↔Jb52), whereas only approximate CPT
seen in the former case (Ja52↔Jb51), in complete agree
ment with the analytic conclusions above.
06341
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3. Off-resonant rectangular pulse

The reason that exact CPT is impossible forJa52↔Jb
51 derives from the fact that the Rabi frequencies of the t
MS two-state systems~5.17a! are incommensurable. Interes
ingly, CPT becomes possible off resonance (DÞ0), because
then the detuningD provides an additional free parameter

We illustrate this possibility with the Rabi model, of rec
angular pulse and constant detuning. The phase factor~3.10!
for this model isk5exp(iDT/2). Becausea (1) and a (2) in
Eqs. ~5.16! are real,k must be real too, which leads to th
condition

FIG. 3. Population of statec12 vs the ellipticity« and the pulse
areaA in the M system for resonant pulse and linear polarizatio
«50. The upper frame is forJa52↔Jb51 and the lower forJa

52↔Jb52. Complete population transfer from statec22 to state
c2 occurs only in the latter case, forA52pm(2)A6 for m(2)

51,3,5. Only approximate CPT can occur in theJa52↔Jb51
case due to the incommensurability of the oscillations in the
basis.
4-9
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DT52mp, ~5.20!

wherem is an integer. Thenk5(21)m and conditions~5.16!
become

a (1)5~21!m, a (2)5~21!m11. ~5.21!

Because conditions~5.10!, when inserted into Eqs.~A7!,
lead toa (1)5(21)m(1)

and a (2)5(21)m(2)
, we should se-

lect either oddm(1) andm, and evenm(2) ~caseA) or even
m(1) andm, and oddm(2) ~caseB).

By comparing Eq.~5.20! with Eqs. ~5.11b! and ~5.12b!
and taking into account Eq.~5.15! we conclude that the fol-
lowing relations must hold

4m(2)253m(1)21m2 ~2↔1!, ~5.22a!

4m(2)25m(1)213m2 ~2↔2!. ~5.22b!

FIG. 4. Populations vs the pulse areaA in the M system for
resonant pulse and linear polarization,«50. The upper frame is for
Ja52↔Jb51 and the lower forJa52↔Jb52. Complete popula-
tion transfer from statec22 to statec2 occurs only in the latter cas
for A52pm(2)A6 for m(2)51,3,5. The irregular~regular! oscilla-
tion pattern in the upper~lower! frame is indicative of incommen
surate~commensurate! frequencies.
06341
It follows from these equations that caseA is impossible and
we can only have evenm(1) andm, and oddm(2). The CPT
value ofV is given by

VT52pA10~m(1)22m(2)2! ~2↔1!, ~5.23a!

VT52pA2~m(1)22m(2)2! ~2↔2!, ~5.23b!

andD is given by Eq.~5.20!.
Several sets of parameter values for which CPT fromc22

to c2 occurs are listed in Table IV.
Figure 5 displays the population of statec12 as a function

of the detuningD and the pulse areaA, for Ja52↔Jb51
~upper frame! and Ja52↔Jb52 ~lower frame!. Figure 6
shows the corresponding frames for suitably chosen de
ings. One case of CPT is observed in each case, corresp
ing to the parameters in the first row of Table IV.

The important conclusion is that adding a suitably chos
detuning, Eq.~5.20!, makes CPT from statec22 to c2 pos-
sible, while it is impossible on resonance for the caseJa
52↔Jb51 because of the incommensurability of the M
Rabi frequenciesV (1) and V (2). Indeed, adding such a de
tuning allows one to satisfy Eqs.~5.10! and makes the Rab
oscillations commensurate becauseD changes the frequenc
of the Rabi oscillations. This fact, that one needs to det
the transition to make CPT possible, is quite intriguing b
cause in a nondegenerate two-state system, CPT is only
sible on resonance but not for nonzero detuning.

We emphasize that as far as population transfer from s
c22 to c2 is concerned, the process of stimulated Ram
adiabatic passage~STIRAP! @11# provides a superior tool for
high efficiency and robustness. Because STIRAP uses
layed pulses, it cannot be treated by the current appro
which requires the same time dependence of all laser pu

D. Complete population transfer between the ground
sublevelscÀ2\c0

It can be shown that CPT from statec22 to the middle
state of theM systemc0 is impossible. For«50 this is
easily seen from the values of the populations listed in Ta
III. It follows from there that the maximum population sta
c0 can achieve is3

8 , obtainable fora (1)52k and uku51,
both for Ja52↔Jb51 andJa52↔Jb52.

TABLE IV. Examples of parameter values for which CPT fro
statec22 to c2 occurs for off-resonant rectangular pulse~the other
parameters are«50, D52mp). Also solutions are all odd mul-
tiples of each set of values.

Ja52↔Jb51 Ja52↔Jb52
m(1) m(2) m VT/p m(1) m(2) m VT/p

8 7 2 24.495 22 13 8 50.200
40 37 26 96.125 26 19 16 50.200
48 43 22 134.907 46 31 24 96.125
80 73 46 206.978 74 61 56 118.491
96 91 74 193.391 94 49 16 226.892
4-10
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For nonzero values of the ellipticity,«Þ0, the population
P0 can reach larger values but never unity. This can be v
fied by settingk5a (1)5a (2)51 in Eq. ~5.1b! and consider-
ing P0 as a function of«. The maximum value ofP0 is
approximately 0.974 forJa52↔Jb51 and 0.676 forJa
52↔Jb52.

E. Complete population inversion

A common objective is to induce complete population
version, that is, to transfer the population from the init
statec22 to some combination of the two excited statesc21
andc1. As we have noted at the end of Sec. V A, the pop
lation Pd @Eq. ~5.2!# associated with the decoupled statewd

FIG. 5. Population of statec12 vs the detuningD and the pulse
areaA in theM system for nonresonant rectangular pulse and lin
polarization,«50. The upper frame is forJa52↔Jb51 and the
lower for Ja52↔Jb52. Complete population transfer from sta
c22 to statec2 occurs in both cases, for the parameters shown
Table IV.
06341
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is preserved, since the decoupled state does not interact
the laser pulse. Therefore, the populationPd should vanish in
order to achieve complete inversion of the system. This c
dition can be satisfied only for«51. Physically this means
that theM system cannot be inverted if all states are coup
~i.e., for u«u,1). If «51, only thes1 pulse is present and
the M system reduces to a two-state system involving o
statesc22 and c21. The population of this system can b
inverted using, e.g., an odd-p pulse or a chirped adiabati
pulse.

In the other extreme case,«521, only thes2 pulse is
present, thenPd51 and theM system, which is initially in
statec22, does not interact with the laser field.

VI. THE W SYSTEM

Another five-state chainwise-connected system is form
from the magnetic sublevels of two levels withJa51 or 2

r

n

FIG. 6. Populations vs the pulse areaA in the M system for a
nonresonant rectangular pulse and linear polarization,«50. The
upper frame is forJa52↔Jb51 andDT54p and the lower for
Ja52↔Jb52 andDT516p. Complete population transfer from
statec22 to statec2 occurs in both cases, for the parameters in
first row of Table IV: VT'24.495p and VT'50.200p, respec-
tively.
4-11
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and Jb52 when the system is prepared initially in stateM
521 or M51 of the lower level. The treatment of such
system, in aW-like linkage pattern, proceeds similarly to th
M system, the difference being that now the initial conditi
is C2151,C225C05C15C250. There are both similari-
ties and differences from theM system, which we shall dis
cuss below.

A. Populations in the general case

If the system is initially in statec21, the final populations
are

P215ua (1)e2
(1)21a (2)e2

(2)2u2, ~6.1a!

P15ua (1)e2
(1)e1

(1)1a (2)e2
(2)e1

(2)u2, ~6.1b!

P225ub (1)c2
(1)e2

(1)1b (2)c2
(2)e2

(2)u2, ~6.1c!

P05ub (1)c0
(1)e2

(1)1b (2)c0
(2)e2

(2)u2, ~6.1d!

P25ub (1)c1
(1)e2

(1)1b (2)c1
(2)e2

(2)u2. ~6.1e!

For linear polarization («50) we summarize the values o
these populations in Table V. Note that the decoupled s
wd does not play any role here, since in this case it i
superposition of the upper levels; therefore, it cannot
populated in the course of the excitation process.

Equations~6.1!, along with the analytic formulas for th
two-state evolution-matrix elementsa (n) andb (n), given in
the Appendix, provide a number of analytic solutions for t
W system. We discuss below some of the ensuing gen
properties of this system.

B. All population in the ground levels

All population will be confined to the ground subleve
c21 and c1 if the upper-level populations vanish,P22
5P05P250. Because statesc21 andc1 participate only in
the MS stateswe

(1) andwe
(2) , the confinement of the popula

tion to statesc21 andc1 is equivalent to requiring that th
transition probabilities in the MS basis are zero, i.e.,

b (1)5b (2)50. ~6.2!

We can proceed in the same way as for theM system in
Sec. V. On resonance, for example, the conditions for
transition to the upper states are given by Eqs.~5.6!, the
solutions for which in terms of the pulse areaA and the
ellipticity « are given by Eqs.~5.7! ~for Ja51↔Jb52) and
by Eqs. ~5.8! ~for Ja52↔Jb52). The even integersk(1)

andk(2) are arbitrary as long as they satisfy the restrictio
~5.9!.

The probability amplitudes in the final coherent superp
sition state are given by

C21~`!5
1

2
~a (1)1a (2)!1

5

2

«~a (1)2a (2)!

A1124«2
, ~6.3a!
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C1~`!5
1

2

A12«2

A1124«2
~a (1)2a (2)!e2 if. ~6.3b!

C. Complete population transfer between statescÀ1 and c1

To achieve complete population transfer from statec21 to
c1 it is necessary, in addition to conditions~6.2!, that the
probability amplitudeC21(`) in Eq. ~6.3a! should also van-
ish. By taking into account that the moduli ofa (1) anda (2)

are unity we find that the only way to satisfy the conditio
C2150 is to set«50. Then it follows easily from Table V
and Eq.~6.3a! that

a (1)52a (2). ~6.4!

For example, we can have either of

a (1)51, a (2)521, ~6.5a!

a (1)521, a (2)51. ~6.5b!

Conditions~6.5a! are the same as for theM system in the
case of resonance (D50, hencek51), Eqs.~5.16!. There-
fore, all ensuing conclusions in Secs. V C 2 and V C 3
main valid. In particular, CPT ofc21→c1 is impossible for
resonant excitation in theJa51↔Jb52 case, while it is
possible forJa52↔Jb52; the reason is found again in th
commensurability of the MS Rabi frequencies. Off res
nance, CPT becomes possible also forJa51↔Jb52, for the
reasons discussed in Sec. V C 3. The presence of the alte
tive condition~6.5b!, which is opposite to condition~6.5a!,
provides more possibilities to achieve CPTc21→c1. How-
ever, the conclusions remain qualitatively the same: ex
CPT for Ja51↔Jb52 is impossible for a resonant puls
whereas it is possible for an off-resonance one.

D. Complete population inversion

We now address the problem of population inversion, t
is, the transfer of all population to the sublevelsc22 , c0,
and c2 of the degenerate upper level. The populations
statesc21 andc1 vanish when

a (1)5a (2)50, ~6.6!

TABLE V. Final populations for theW system for initial state
c21 and linear polarization («50).

Ja52↔Jb51 Ja52↔Jb52

P21
1
4 ua (1)1a (2)u2 1

4 ua (1)1a (2)u2

P1
1
4 ua (1)2a (2)u2 1

4 ua (1)2a (2)u2

P22 UA5

4
b (1)2

1
2 b (2)U2 u 1

4 b (1)1
1
2 b (2)u2

P0
1
8 ub (1)u2 3

8 ub (1)u2

P2 UA5

4
b (1)1

1
2 b (2)U2

u 1
4 b (1)1

1
2 b (2)u2
4-12
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that is both MS two-state systems should be inverted. T
unlike the M system, theW system can be inverted eve
when all states are coupled~i.e., for «Þ61) because then
the decoupled state is a superposition of excited states
hence it remains unpopulated.

1. Generalizedp pulses

Condition ~6.6! means that the transition probabilities
both MS two-state systems should be equal to unity. This
be achieved easily in the on-resonance case if the pulse a
A (1) andA (2), Eqs.~5.6!, are both odd multiples ofp, that
is,

k(n)52m(n)11, ~n51,2!, ~6.7!

wherem(n) are arbitrary integers.
These conditions can be satisfied for an infinite numbe

pairs (A,«) of pulse areas and ellipticities, which can b
obtained from Eqs.~5.7! and ~5.8! with odd k(n) that obey
the restrictions~5.9!. Table VI lists a few examples of pa
rameter values for which population inversionc21
→@c22 ,c0 ,c2# occurs. Figure 7 illustrates two of these e
amples for the parameters in the first row of Table VI.

2. Chirped pulses

Apart from resonant odd-p pulses, conditions~6.6!,
which require CPT in each of the two MS two-state system
cannot be satisfied for pulses with constant detuning, suc
the rectangular pulse in the Rabi model and the hyperbo
secant pulse in the Rosen-Zener model. These conditions
be satisfied, however, for chirped pulses, such as
hyperbolic-secant pulse with the hyperbolic-tangent chirp
the Allen-Eberly-Hioe model and the constant pulse with l
ear detuning in the Landau-Zener model.

In excitation with chirped pulses it is not the complet
ness~100%! of the population transfer that is significant b
rather the robustness of the~high! transfer efficiency agains
variations in the interaction parameters, which derives fr
the adiabatic nature of the population transfer. Typically
the Rabi frequencyV and the chirp rateC are sufficiently
large compared to the inverse pulse width 1/T, the transfer
efficiency remains little changed for small-to-moderate va
tions in V and C. Because the MS Rabi frequencies in t
two MS two-state systems are different and because the c
rate in both is the same~since the detuningD(t) is the same!,
it is the smaller of the two MS Rabi frequencies,V (2), that
determines when the transfer efficiency will exceed the va

P*12e, ~6.8!

wheree is the deviation from CPT. We consider for simpli
ity only the case when the ellipticity is zero,«50; then the
MS Rabi frequencies are given by Eqs.~5.17!.

For the Landau-Zener model@Eqs.~A9!#, Eq. ~6.8! leads
to

V2*
20uCu
3p

u ln eu ~1↔2!, ~6.9a!

V2*
12uCu

p
u ln eu ~2↔2!. ~6.9b!
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FIG. 7. Populations vs the ellipticity« in the W system for
resonant excitation (D50). The upper frame is forJa51↔Jb52
and pulse areaA5A340/7p'6.969p and the lower for Ja

52↔Jb52 and pulse areaA5A204/5p'6.387p. Complete
population transfer from statec21 to the upper sublevelsc22 , c0

andc2 occurs in both cases, for the parameters in the first row
Table VI: «'60.641 and«'60.658, respectively.

TABLE VI. Examples of parameter values for which comple
population transfer occurs from sublevelc21 of the ground level to
the sublevelsc22 , c0, andc2 of the excited level.

Ja52↔Jb51 Ja52↔Jb52
k(1) k(2) A/p « k(1) k(2) A/p «

5 3 6.969 60.641 5 3 6.387 60.658
7 3 9.103 60.964 7 5 9.423 60.892
7 5 10.282 60.416 9 5 11.278 60.503
9 5 12.306 60.727 9 7 12.490 60.967
9 7 13.628 60.286 11 7 14.283 60.751
4-13
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For the Allen-Eberly-Hioe model@Eqs. ~A16!#, Eq. ~6.8!
reduces to

A 3

10
V*uBu*

1

pT
lnS 11A12e

e D ~1↔2!,

~6.10a!

A1

6
V*uBu*

1

pT
lnS 11A12e

e D ~2↔2!.

~6.10b!

VII. SUMMARY AND CONCLUSIONS

We have discussed the extension of the MS transfor
tion to time-dependent pulses, restricted only by the con
tion that, in addition to having only two distinct~but possibly
time-dependent! detunings, all of the pulse envelopes~Rabi
frequencies! have the same time dependence. The MS tra
formation converts the full linkage pattern into separate tw
state systems. In a number of cases~i.e., particular choices
for the time dependences of the Rabi frequency and the
tuning! there exist analytic expressions for the two indep
dent elements of the transition matrix. We have used th
together with the time-independent MS transformation,
evaluate the conditions needed to produce such desire
sults as complete population transfer. We have illustrated
application of this technique to several two-state models,
cluding chirped pulses.

We have used this analytic technique to study the prop
ties of the population dynamics in chainwise-connected fi
state systems inM- andW-linkage patterns. Such systems a
formed amongst the magnetic sublevels in degenerate
level systems with angular momentaJ51 or 2, driven by
elliptically polarized laser pulse. We have derived vario
conditions for complete population transfer between
magnetic sublevels, with examples of generalizedp pulses
and chirped pulses.
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APPENDIX: ANALYTICALLY SOLUBLE
TWO-STATE MODELS

We collect here expressions for the elements of the tr
sition matrix

S̄5Fa 2b*

b a* G , ~A1!
06341
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for a number of analytically soluble models, defined by t
Hamiltonian

H̄5
\

2 F2D~ t ! V~ t !

V~ t ! D~ t !
G . ~A2!

1. Exact resonance

When excitation is resonant,Da5Db50, the elements of
the two-state transition matrix are expressible, for any pu
shapeV(t), in terms of the pulse area

A5E
2`

1`

V~ t !dt, ~A3!

as simply

a5cos~A/2!, ~A4a!

b52 i sin~A/2!. ~A4b!

The transition probability is

P5ubu25sin2~A/2!. ~A5!

Complete population transfer (a50,ubu51) occurs when
A5kp for any odd integerk ~odd-p pulse!. Complete popu-
lation return (uau51,b50), occurs whenA5kp for any
even integerk ~even-p pulse!.

Models with nonzero detuning typically introduce
change of independent variable from timet to some appro-
priately chosen functionz(t). Such a transformation can b
used to transform the two-state Schro¨dinger equation into a
second-order equation satisfied by one of the many spe
functions of mathematical physics, cf. Ref.@4#. We shall
summarize below the best known nonresonant analytic s
tions.

2. The Rabi model

The simplest and most widely used soluble model o
two-state system with nonresonant excitation is the R
model, with rectangular pulse shape and constant detun

V~ t !5V0 ~2T/2<t<T/2!, ~A6a!

D~ t !5D0 . ~A6b!

In this model the elements of the transfer matrix~3.9! are
given by

a5cos~ 1
2 ṼT!1 i

D

Ṽ
sin~ 1

2 ṼT!, ~A7a!

b52 i
V

Ṽ
sin~ 1

2 ṼT!, ~A7b!

whereṼ5AV0
21D0

2. The transition probability is
4-14



ity
-

s

COHERENT EXCITATION OF A DEGENERATE TWO- . . . PHYSICAL REVIEW A 68, 063414 ~2003!
P5ubu25
V0

2

V0
21D0

2
sin2~ 1

2 AV0
21D0

2T!, ~A8!

The transition probability is always less than un
(ubu,1,uau.0), unlessD050, and has infinitely many ze
roes (uau51,b50).

3. The Landau-Zener model

In the Landau-Zener model@17#, the Rabi frequency is
constant and the detuning varies linearly with time~linear
frequency chirp!,

V~ t !5V0 , ~A9a!

D~ t !5Ct. ~A9b!

The couplingV(t) is supposed to last fromt→2` to t→
1`. The transition probability is

P5ubu2512e2pL, ~A10!

where

L5
V0

2

2C
. ~A11!

The transition probability is always nonzero~which means
that uau,1,ubu.0), unlessV050, and approaches unity a
V0 increases.

4. The Demkov-Kunike Model

a. General case

The Demkov-Kunike~DK! model @18# is defined by

V~ t !5V0 sech~ t/T!, ~A12a!

D~ t !5D01B tanh~ t/T!. ~A12b!

The pulse area isA5pV0T. The transition probability is

P5ubu25
cosh~pBT!2cos~pTAV0

22B2!

cosh~pD0T!1cosh~pBT!
. ~A13!

The DK model has several important particular cases.

b. The Rosen-Zener Model

The Rosen-Zener model@19# is a particular case of the
DK model for constant detuning (B50),
el

06341
V~ t !5V0 sech~ t/T!, ~A14a!

D~ t !5D0 . ~A14b!

The transition probability is

P5ubu25
sin2~ 1

2 pV0T!

cosh2~ 1
2 pD0T!

. ~A15!

It is always less than unity~which means thatuau.0,ubu
,1), unlessD050, and vanishes for even-p pulses (A
52mp), as for the exact-resonance solution.

c. The Allen-Eberly-Hioe model

The Allen-Eberly-Hioe model@1,20# is a particular case
of the DK model forD050,

V~ t !5V0 sech~ t/T!, ~A16a!

D~ t !5B tanh~ t/T!. ~A16b!

The transition probability is

P5ubu2512
cos2~ 1

2 pTAV0
22B2!

cosh2~ 1
2 pBT!

. ~A17!

It is always nonzero~which means thatuau,1,ubu.0), un-
less V050, and approaches rapidly unity asB increases
~providedV0.B).

d. The Bambini-Berman model

The Bambini-Berman model@21# is defined by

V~ t !5V0 sech~ t/T!, ~A18a!

D~ t !5B@11tanh~ t/T!#. ~A18b!

The transition probability is

P5ubu25
1

2
2

1

2

cos~pTAV0
22B2!

cosh~pBT!
. ~A19!

It never reaches zero or unity~which means thatuau
Þ0,1;ubuÞ0,1), unlessV050 or B50, and approaches12
asB increases~providedV0.B).
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