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Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse
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The elaborate linkage pattern of the interaction Hamiltonian descriptive of pulsed laser interaction of ellip-
tically polarized light with a degenerate two-level system can, for coherent excitation, be reduced to sets of
independent pairs of coupled two-state equations by means of the Morris-Shore transfofRiaymnRev. A
27,906 (1983]. By extending the earlier defining work, which dealt only with time-independent interactions,
to consider various pulse shapes, one can obtain exact analytic solutions to various multilevel linkages. We use
these to find the conditions on the interaction paramdis, the ellipticity leading to various population
transfer schemes, for example, to achieve either population inversion or orientation. We illustrate these with the
M andW linkages amongst magnetic sublevelslef1 or J=2 excited by elliptically polarized light.
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I. INTRODUCTION ments of the Hamiltonian produce, for incoherent excitation,
transition rate$3] and, for coherent excitation, Rabi frequen-
The properties of idealized nondegenerate two-state atonm@es [4]. A consequence of such linkages is that, even in a
acted on by pulsed laser radiation form a substantial part afvo-level system(with degenerate sublevglsthe task of
the now-standard textbook descriptions of time dependencsimulating the response to pulsed radiation can become com-
in quantum mechanic§l,2]. The behavior ofdegenerate plicated and no longer amenable to analytic solution.
two-level systems, such as occurs with systems possessing Fewell [3] has examined examples of degenerate two-
angular momentuntas characterized by quantum numbérs level systems and has suggested that some simplification oc-
and M for degeneracy 2+ 1), requires somewhat more curs if one is able to choose the polarization appropriately.
elaborate treatment, including averages over initially popuHere we reconsider this problem—the modeling of excitation
lated sublevelge.g., the magnetic sublevels distinguished byby elliptically polarized light—from a different perspective,
different M for given J). In the very simplest idealization, one that allows the use of the many known exact analytic
that of coherent excitation with linearly polarized light solutions to two-state coherent excitation by pul&std pos-
whose direction coincides with the quantization axis used taibly chirped laser radiation. Our approach is less general
define the magnetic quantum numidéyit is only necessary than that of Fewell, who allowed arbitrary directions for the
to consider averaging the behavior of sets of independerjuantization axis: we choose this axis along the propagation
two-state systems. However, for general choices of quantizadirection, and express the polarization in terms of the two
tion axis, or for elliptically polarized light, the laser- helicity states associated with this direction.
interaction Hamiltonian has elements linking more than two Some years ago it was recognized by Morris and Shore
guantum states, and the treatment becomes more compliMS) [7] that this replacement of a linkage pattern involving
cated[3]. two sets of arbitrarily coupled states could be generalized to
The objectives also become more diverse. One may wish variety of multilevel systems, including rather complicated
to remove all population from all of the lower-lying sublev- linkages. Under appropriate conditions, reviewed below, it is
els, or to put all population into somsuperposition ofex-  possible to replace aN-state system, described by a con-
cited sublevels, or just to redistribute the population amongsstant Hamiltonian matrix, by a set of independent two-state
the magnetic sublevel¢eading to orientation or alignment systems. The needed mathematical transformation is a gen-
For all such tasks it is desirable to have analytic expressionsralization of the change, when dealing with transitions be-
for the time dependence of the various sublevel populationdween magnetic sublevels of a system possessing angular
as will be provided in the present paper. momentum, from a helicity basigeft and right circular po-
As discussed in detail by Fewé¢B] and otherg4—6], the  larization to a quantization axis along the electric vector of
typical electric-dipole interaction Hamiltonian has matrix el- linear polarization.
ements (in an angular-momentum basis associated with The MS factorization has been used in techniques de-
guantum numberd andM) proportional to Clebsch-Gordon signed to measure the parameters of fully or partly coherent
coefficients or 3 symbols, and these prescribe not only superpositions of twf8] or more[9] states. A similar change
chains of couplings but also various branched linkage patef basis states is found in treatments of thelinkage of
terns: starting from a particuldvl value, dipole transitions three states, such as occuring with stimulated Raman transi-
generally induce transitions to states with magnetic quanturtions leading to the occurrence of so-called dark states
numbersM —1, M, and M+ 1. Hyperfine structure intro- [10,11]. More recently a four-state tripod-linkage system was
duces still further linkage$5]. These linking matrix ele- analyzed using two coupled states and two dark sfdi&s
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FIG. 1. Framg@a): the linkage pattern of the five-stdtésystem. ) .
The states withM = —2,0,2 (4_», o, and,) form the ground- FIG. 2. Same as Fig. 1 but for W-shaped linkage pattern,
state manifold. whereas the states withe — 1 1 (W, and yy) which can be viewed as an invertidtisystem. Now the decoupled
form the excited-state manifold. The coupling pulse is elliptically /A€ iS @ superposition of excited sublevels.
polarized and the relative coupling strengths, i.e., the Clebsch- o . L
Gordon coefficients, are denoted &)°. The pulse is detuned by ~ €xcitation dynamics is described by the Sclinger equa-
from exact resonance. Franig): the MS transformation casts this tlon,. which in - the r,Otat!ng'Wave picture and with the
system into a set of two two-state systems and a decoupled state@tating-wave approximatiotlRWA) [4] takes the form of

The driven two-state systems have Rabi frequengiés coupled ordinary differential equations for time-dependent
o . complex-valued probability amplitudés,(t),
The MS factorization has important advantages: rather

than dealing with atN X N Hamiltonian matrix, one has only d
several separate and independent 2 Hamiltonians to el i
solve. Because there are many known analytic solutions to dtC“(t) I% WamCm(®), @D
the two-state problem, this approach enables us to find ana-
lytic solutions for multistate problems. The present paper, . . .
t)r/lerefore extends and generaﬁizes earlier resﬁlts for apthpreg-Orn W_h'Ch_ one evalu_ates the probability Sf finding the
state A system[13]. Such solutions, which allow not only POPulation in state at timet as Pr=ICa(t)*.
time-varying pulse envelopes but also time-dependent detun- The coefficient matrixV, obtained from the Hamiltonian
ings, enable us to derive analytically numerous properties ofatrix by rescaling from energy to frequency with and
degenerate two-level systems driven by elliptically polarizedmaking the RWA, has detunings,=W,, as diagonal ele-
laser pulses. ments and Rabi frequencié€k,,,=2W,, as off-diagonal el-
The transformation to decoupled two-state systems ie€ments (originating typically with electric-dipole interac-
noteworthy of itself, but in addition there are some interesttions).
ing aspects of the physics. Just as in theystem, coherence Though not explicitly shown, the matrix elements may
plays a role that is easily overlooked: although the two-stateary with time. For the present interest, only two different
systems can be solved independently, their probability amdetuningsA,, occur in the Hamiltoniak W; each may vary
plitudes must be superposed coherently to obtain the proliindependentlywith time. We also assume that all the Rabi
abilities of physical interest. This superposition introducesfrequencies(),,, have the same time dependence, although
constructive and destructive interference, with attendanfnejr maximal amplitudes may differ. The special case when
novel population dynamics. all nonzero elements of the Hamiltonian, Rabi frequencies
_ Tr_ns paper is Qrgamzed as follows. The MS transforma-, 4 detunings, have the same time dependencef &3y
tion is reviewed in Sec. Il.

In Sec. Ill we describe an ap-rgqyces to that of a constant Hamiltonian by defining a new
proach based on the MS decomposition, which allows one tq,,o variablex=[f(t)dt. In the present paper, we do not

find analytic solutions to multistate dynamics by using anay,ye this latter assumption and we show that analytic solu-
lytically soluble two-state models. Section 1V illustrates th'stions can be found in the more general case when the detun-

approach for five-state chains with particular application tomgs vary independently of the Rabi frequencies. This in-

two cases of magnetic sublevel degeneracy. The populatiof),qes the important special case of constant detunings and
dynamics of aM system(cf. Fig. 1) is explored in Sec. V and pulse-shaped Rabi frequencies.

that of aW system(cf. Fig. 2) is examined in Sec. VI. Fi- " \ith the assumed two distinct detunings, and suitable or-
nally, the conclusions are summarized in Sec. VII. dering of the basis states, the matvikhas the form

Il. THE MS TRANSFORMATION

Ay, V
] 2.2

We assume completely coherent evolution, i.e., there are W:{ .
no decoherence processes during the interaction. Then the Vi Aply
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Herel, andl, are unit matrices, of dimensiomé, andN,, BV'VB'=diag. (2.9

respectively, and/ is a N, X Ny matrix of Rabi frequencies

(all with the same time dependenc®y suitable choice of In each case the diagonal elements are squares of Rabi fre-

overall phase for the probability amplitudes one of the twoquencies. Given the matrice’s and B, one constructs the

detunings can always be set to zero; this is traditionally takedesired transformation of the Hamiltonian as

to be the first of these detunings,, which is associated

with the initially populated state. When all transitions are

resonant, as is often assumed, both detunings are zero. U=G
Morris and Shoré¢7] showed that any such system can be

transformed, via suitable redefinition of basis states, to on

involving a set ofN_ independent two-state systems, where

N_ is the lesser oN, andN,, together with a set of decou-

pled spectator states that are unaffected by the radiation

(one-state systemsThat is, one is led to equations for new

A O

0 B G 1, (2.9

fhereG is a permutation matrix that reorders the states into
pairs. The set of nonzero eigenvalues is identical forAhe
and B subspaces, but if these are of different dimensions
(Na# Nyp) then the larger set will include also null eigenval-
ues associated with decoupled states, also known as multi-

MS amplitudesCy(t), level dark state$9,11,14. For example, in the five-statd
system of Fig. 1, the dimensions of the subspAcis N,
Cn(t)ZE UpnCrn(1), (2.3 =3=N., and the diagonalizatiofof basis states 1, 2, and
m 3) produces the results
of the form JAWTAT= 2110 ] [0@)],0}. (2.10
Ecn(t): _i% WamCrm(1), (2.4 In the B subspace of dimensioN,=2=N_ and involv-
ing basis states 4 and 5, the null eigenvalue is missing,
where the matrixv=UWU" is block diagonal
g VBVIVBT=2{|a®W] [0®)]}. (2.11)
w0 0

W o w® o0 ... 2.9 The phases of the eigenvalughe Rabi frequencie§)(™)

) 0o w® ... ' are obtained only with the evaluation W= UWU".

With appropriate reorganization of the MS statgéﬁf“)
=C,ym+n_2, ONe has the equation

Though not shown explicitly, the elementsdfand W, like

those of W and w{™, may be time dependent. Here each A, %Q(m) _

w is a one- or two-dimensional matrix. The two- ai*+ _ 1 (2.12
dimensional onegthere areN_ of thesg have the form dt E(Zm) %Q(m) A E(Zm) ' '
b
A Iam
wim — a2 2.6 The detunings in this last formula are unchanged from the

1m original problem. The Rabi frequendy(™ for the mth two-
2 Ap state system is obtained from square roots of the eigenvalues
of the matrixVV' or V'V, as explained above. Because, by

whereA, and A, are the detunings of the original system. assumption, all of the original Rabi frequencies share a com-

The remaining matrice&™ are one-dimensiondthere are mon time dependence, the eigenvalue frequer@€% share

N. —N_ of thesg. Their elements are detunings, eitideyif  this same time dependence.

N,>N,, or A, if N,>N,. These one-dimensional Hamilto-  Although the original Rabi frequencies may have very

nians induce only time-dependent phase facwr§'al or ~ simple symmetries, involving repetition of common values

e "%t in the evolution of the dark-state amplitudes. (they may be proportional to Clebsch-Gordon coefficients,
The elements of the transformation mattixare obtain- for example, the eigenvalue Rabi frequenci€s™ of the

able from the transformation that diagonalizes the product ofwo-state systems are generally not degenerate: they are all

interaction matrice&/V' by means of a transformation ma- different.

trix A, which operates in the lower-states maniféleferred The Morris-Shore transformation is quite genefgiven
to asA space, the constraint of only two distinct detuningst can be used,
for example, with various “bent” linkagesA, V, M, and

AVV'AT=diag, (2.7 W), with various many-to-one connectiond ( the tripod,

...), aswell as with complicated hyperfine interactions. It
and the similar transformation of"V within the excited can also be used with a resonahstate ladder of excitation:
states B space by means of a matriB, alternating states of the chain are placed intoAtandB set.
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lll. ANALYTIC SOLUTIONS IN MULTISTATE SYSTEMS thing intermediatedepends on the elements of tBematrix,
A. Time evolution in the original and MS bases which in turn depend not only on the time intervaltg) but
. - ) ) also on the original Rabi frequencies, detunings and linkage
The original probab|I|ty_ampI|tude§:n(t) are obtained pattern.
from the MS amplitudesC;(t) by means of the time-
independent unitary transformation, B. Analytic solutions

Cn(t)=2 ijgj(t)' (3.1) The proced_ure outlined abpve, for reduc_ing a class of de-
] generate multilevel systems into a set of independent two-
state systems, simplifies considerably the problem of finding
To obtain probabilitied,(t) for the physical basis states one analytic solutions of the Schdinger equatior{2.1) with the
therefore requires a coherefiiut time-independentsuper-  Hamiltonian%zW defined by Eq(2.2). In the MS basis the

position of the MS states, Hamiltonian W has block-diagonal form with one- and
5 T two-dimensional submatrices. Thex2 blocks describe
Pn(t)=|Cn(1)] :Z UniUniCi(DCT (D). B2 two-state systems undergoing time evolution, while the re-
: maining elements are associated with decoupled states.

The time development of each MS amplitm—iﬁ“)(t) can Numerous analytically soluble two-state models have
be obtained by solving the two coupled equatidBsL2). been described. We can use any of these with (Bdl.2.

Each solution, at a fixed time is expressible in terms of the However, each 2 blockw!™ must have the same pair of
initial amplitudes at time=t, by a unitary transformation ~ détunings(perhaps time dependgrind the same time de-
pendencdif any) for the Rabi frequencies.

~(M) 4y — a(m) ~(m) _ The algebra is simplified when the detunings are sym-
G k=21,2 S (L) Cic(to) - (M=1,... No). metrically distributed,
(3.3 A
—A=Ay=5. 3.8
The original probability amplitudes are then obtained as ammhTa S
Co() =2 Su(t,to) Cilto), (3.4 In this case the 22 transfer matrix of Eq(3.3) can be
K parametrized as
iy o 3 o™ —(gm)*
where the transition matrix |s_ S (1) = 20 (o (3.9
S(t,to) =U'S(t,to)V, (3.58
_ No _ The transition probability between the lower and upper state
S(t,t0)=( D sM(tty) |el. (3.5D  of a pair of MS basis states 8|2, and the probability for
m=1 no transition is|(M|?=1—|B8M|2. The Appendix provides

. o . a number of examples of these matrices for several analyti-
Here the transition matrix is expressed as a direct sum Oéally soluble two-state systems.

independent two-state transition matric€’(t,t,) together The decoupled states will also undergo a time evolution,
with I, a unit matrix of dimensiofN. —N_. acquiring a phase factor
Although the original Hamiltonian has been replaced by a .

. - i [t
set of independent two-state systems, the complexity of the K= ex _f A(t)dt|. (3.10
original problem returns when one evaluates the original 24,
populations,

9 Analytic solutions can reveal various properties of the

(3.69  Population dynamics of systems with complicated linkage
patterns. Such solutions allow one to estimate the maximal
) o ) population any particular state can obtain for chosen initial
From this expression it is clear that interference between thggnditions. In particular, one can derive conditions for com-
independent two-state systems can contribute to the obserftete population transfer between any two states, such as

able population changes. _ .  generalizedr pulses.
Even when the original physical system starts in a single

state, this initial condition will appear as a superposition of
the MS amplitudes. For example, let the single initial physi-

Pn<t>=|cn(t>|2=‘2k Su()Ci(to)

IV. APPLICATIONS TO DEGENERATE FIVE-STATE

cal state be labeleg= 1. Then the initial MS amplitudes are CHAINS
C;(tp)=U;; and Eq.(3.6) reads A. Example linkages
Po(t)=[Sm(t,to)]% (3.7 The properties of the MS transformation, and the novelty,

can be illustrated by reconsidering the system mentioned by
Interference still occurs between the separate two-state hiddorris and Shoré¢7], who considered only time-independent
tories. Whether this is constructive or destructiee some- Rabi frequencies. We consider transitions produced between
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angular momentum statéspecified by and M) produced where |, are the corresponding intensities afd=¢. 4,

by elliptically polarized light, and we take the quantization provides a useful means of parametrizing the polarization.
axis to be the laser propagation direction, i.e., we describgllipticity ==+ 1 corresponds to-™ polarization andt =0

the polarization by means of two helicity states. The selecto linear polarization. The Rabi frequenci@s. and()_ are
tion rule for electric-dipole interactiofassumefithen limits  conveniently parametrized in terms ot and Q
transitions to those for whichkM=*=1. We consider two 1

cases: thavl-linkage pattern(see Fig. 1found forJ,=2 to QU+ Q% asQ. =0z (1xe).
Jp=1 or J,=2, and theW linkage (see Fig. 2 found for
Ja=1 orJ,=2 toJ,=2. For each of these systems the MS

transformation produces a Hamiltonian that consists of two C. The M linkage

separate X2 matrices and one decoupled state. In the M linkage the lower level hag3,=2 and the upper
hasJ,=1 orJ,=2. We label the physical states by the mag-
B. Elliptical polarization netic quantum numbévl. States{—2,0,+2} are part of the

wer-level manifold, while states—1,+1} form the upper-
vel manifold, see Fig. 1. The>32 interaction matriy/ has
he elements

The couplings described by Figs. 1 and 2 can be producelé
by a single elliptically polarized laser whose electric field hast
the form[15]

) ) -1 i b
E(t)= He. £, (e ¥t e, (e i+ c.cl. L| e o
(4.1) V=3 & e - ga et | (4.5
Hereeg, is a unit vector, of helicityg=+1, as is appropriate 0 559—9_“/”

for the expression of elliptical polarization as a combination

of circular polarizationgr+ ando-. The needed matrix ele-

ments of the electric-dipole interaction can then be writtenfFor J,=2+J,=1 the Clebsch-Gordon coe1‘ficien§§b are
a

with the aid of the Wigner-Eckart theore(of. Ref.[4]) as ) R PP )
R P A N I S Vi, &t=é=\%, while for 3,
pTh alal 2Rt m, P —20:3,=2 they are¢_3=— &= -}, &= - =i

where the constant parametefs and ¢_ are the phases of
theo* ando ™ fields. The dependence on magnetic quantum D. The W linkage
numbers occurs through a Clebsch-Gordon coefficient, |, the W linkage the lower level hag,=1 or J,=2 and
which we incorporate into théconstank relative coupling the upper hasg,=2. As in the case of th&/ linkage, we
strength label the physical states by the magnetic quantum numdber
mb:(JaMaJQUbe)/m- (4.3  States{—1,+1} are part of the lower-level _manifold, vyhile
a states{ —2,0,+ 2} form the upper-level manifold, see Fig. 2.
The two real-valued quantitie® . =) , are time depen- The interaction matrix is that of E¢4.5), but with the states
dent(pulse-shapedRabi frequency “units” for the couplings  "elabeled, i.e., the indiceld , and M), are interchanged.
induced by the two independent polarizations. These must
share the same time dependence but may have different peak E. The MS transformation for the M and W linkages

values. _ The MS transformation replaces the usual atomic basis
The ellipticity of the laser pulse, defined by states by a set of new MS basis states. In our case, the Rabi

02-0%2 -2 .- frequencies of the Hamiltonian in the new MS basis are ob-
e= 2+ > = 2+ > = M (4.4)  tained from the square roots of the eigenvalues of the matri-

Q++Q_ g++g_ I++I— ces

|
. (£72)%0% £3610.0 €7 0
WI=Z1 €360, 0 e (§1)202+(£)%0F £60.0 7, (4.63
0 60, Qe 'Y (&)%0°

sy EDHED0E &760.0-¢7
i g 4.6b
4 &0.0 e (202 +E)1%02 (4.6
with p=¢p. + .
The three eigenvalues &V' provide the squares of MS Rabi frequencied’). One of these is zerd)(©=0, while the
other, nonzero ones area€1,2)
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TABLE |. The coefficients for the MS transformation fdg=2<J,=1 (first column andJ,=2<J,
=2 (second columncaseq9]. Note thatc”(—&)=—c{V(¢) andc{"(—&)=—c{"(e) for n=1,2.

Ja=2-3,=1 Ja=2-J,=2
d_(e) vg(1—e) vgV3(1-e)
do(e) —vg\/6(1-&?) vgV2(1-¢&%)
d.(e) vg(1+e) vgV3(1+e)
[vq(e)] 2 4(2—¢?) 4(2+¢?)
cB(e) — 3 I(1+e)(1— 68— 1+ 2467) 3vM(1+¢)(3—28—9-8¢?)
Cgl)(s) V(Cl)s\/6(l—82) V£1)8\/6(1—82)
cB(e) $vM(1—g)(1+ 68— 1+ 247) —3(1-)(3+25— 9 82?)
[v(e)] 2 V1424 (1+6%)V1+246%+ 1162 1] J9-8e7[(1+&%)9—8e2+&%-3]
c(e) —30M(1+e)(1-6e+ 1+ 2469 $v@(1+6)(3— 26+ /9—88?)
ng)(s) V(cz)s\/6(l—82) Vgl)s\/G(l—sz)
c@(e) $v@(1—e)(1+ 68+ 1+ 2467) —31v3(1-¢)(3+2e+ /9 8&?)
[vP(e)]72 V1+24e?[(1+6%) V1+2462— 1162 +1] V9—8s7(1+£?)/9— 82— £2+3]
e®(e) vo( I+ 247+ 5e) V2 ve(VO—BeZ— ) Y2
eB(e) vo(V1+246%—5¢)12 vo(VO—8e2+¢)12
e?(e) ve( 1+ 2467 —58) 172 ve(V9—8e?+¢)12
e(f)(e) — vo(J1+ 2462+ 5¢8) 12 —ve(9—8e2— )12
[ve(e)] 2 21+ 24¢2 2\9—-8¢?

=d_(e)¢y_o+ Tyt T2y .
Q(n)(t):\/Zio[?_(_l)n\/m]ﬂ(t), 473 pa(e)=d_(e)y_,+do(e)e " PPp+d . (e)e ¢+(28C)
The eigenvectors of 'V are superpositions of excited states
only,

QM(t)= \/i[S—(—l)“x/Q—Ssz]Q(t), (4.7b _
12 eB(e)=eDe)y 1 +eDiere Py, (4.99

for J,=2—Jy,=1 and J,=2<J,=2, respectively. Here eP(e)=eP(e)y_1+eP(e)e %y,  (4.9b

Q@ corresponds to the larger eigenvalue, with a plus sign in

Egs. (4.7), andQ® to the smaller eigenvalue, with a minus and the eigenvalues of'v are given by Eqs(4.7). The

sign. The eigenvectors afV' are superpositions of ground Parameters of these new _baSlS states are given in T_able I

states: two MS coupletbright) stateseP(s) and ¢?(&) Their values for the special cases=0,=~1 are given in

and a decoupleddark stateeqy(e), given by the construc- Table I1. ) _
tions We emphasize here that the five MS states, E48) and

(4.9—the decoupled state, the two coupled states, and the
4 - two excited states—are entirely determined by the laser po-
(P(cl)(s) :C(})(S)lp72+ C(ol)(s)e_l¢¢0+ C(J})(S)e_2|¢¢+2’ larization parameters and ¢ Y Y P
(4.89 The transformation matrix between the original ampli-
tudes and the MS amplitudes is constructed from the normal-
eP(e)=cP(e)y_,+cP(e)e Pyg+cP(e)e 2y, ,, ized eigenstates of the Hamiltonian. It is given by Ej9),
(4.8p  Where

TABLE II. The coefficients for the MS transformation fap,=2<J,=1 andJ,=2<J,=2 for the
special values of the ellipticity =0,+ 1.

e d_ do d. c® ¢ B @ @ B e B 2 @
1
Jj=263)=1 -1 1 0 ©o0 0o o0 1 0 o0 1 o0 1 1 0
1 0 0 1 1 0 0 1 0 0 1 0 0 1
1
J,=2-3,=2 -1 1 0 0 0 0 1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1 0 0 0 1 1 0
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TABLE Ill. Final populations for theM system for initial state

¢ _, and linear polarizationg=0).

J=203,=1 J,=20:3,=2
P> |%K+ga(l)+%a(2)|2 |%K+%a(l)+%a(2)|2
Po 3lk—a]? 3lk—aM]?
P, N I MORPRCT
P Rk FERR TRl
P1 INEp2+1p0)2 1280+ 3822
-1 0 0 0 07
0O 1 0 0 O
G=(0 0 0 1 0}, (4.10a
0O 01 0O
[0 0 0 0 1]
- d. dee'? d,e @ 0 0
c® et cMe 2¢ 0 0
[A 0}: C(}) cgz)e*“l’ C(+2)e—2i¢ 0 0
0B 0 0 0 e eMe-id
- +
0 0 0 e? e@Pei¢ |

V. THE M SYSTEM

A. Populations in the general case

(4.10B

If the system is initially in statey_,, i.e., C(—=)
=[1,0,0,0,0", the final populations are given by the squared On exact resonance, the elements of the transfer matrix
moduli of the elements in the first column of the evolution (3.9) take a particularly simple form, E4A4), for arbitrary

matriX U, PM = | U1M|2!

P_,=|kd? +aMc®24 42?2,

Po=|xd_do+ a(l)c(_l)cgl)-i- a(z)c(_Z)C§)2)|2’

P,=|kd_d, + aMcWcl+ o222,

P, =| W cWe® 4 g@x )2,

P,=|BW*cWe®+ g2 c(2)g2)2,

(5.1a
(5.1b
(5.19
(5.10
(5.18

PHYSICAL REVIEW A 68, 063414 (2003

3(1-8)?

T T (Ja=200y=2),
2240 = 0=2)

d (5.2b

is conserved. This population is trapped and excluded from
the excitation process. For example, for=0, the trapped
population isPy=3 andP4= 2, in the two cases 21 and

2+ 2, respectively.

B. All population in the ground sublevels

In this section we present the conditions needed to ensure
that, following a pulse, all population remains in the low-
lying initially populated sublevels, with none in the excited
sublevels.

1. General case

All population will be confined to the ground sublevels if
the excited-level populations vanish, ;=P;=0. Because
statesys_; andy, participate only in the MS statest™ and
©?, this condition requires no transition in the MS basis,

5(1)2,3(2): 0. (5.3
This means that the transition probabilities in both of the MS
two-state systems should vanish simultaneously, i.e., the evo-
lution matrix S in Eq. (3.5b should be diagonal. In the fol-
lowing sections we present several analytically solvable

models for two-state systems and find the parameters that
satisfy Eq.(5.3.

2. Exact resonance

pulse shape. In this case the phase factor of the decoupled
statex, Eq.(3.10), is equal to unity. In order to satisfy con-
ditions(5.3), the two pulse areas in the MS two-state systems
should be even integer multiples of,

AW=kMz (n=1,2), (5.4)
where the pulse area is defined by E43) and
k(MW=2m(™, (5.5

For linear polarization £=0) we summarize the values of Where m™ is an integer. Explicitly, forJ,=2«J,=1 and

these populations in Table Ill. Equatiofs.1) and the ana-
lytic formulas for the two-state evolution-matrix elements

o™ and B provide several analytic solutions for tié

system.

The coefficients ¢_ ,dy,d,) of the decoupled stateq

appear in the populations of the ground sublevels. Their con-

tribution depends only on the ellipticity of the laser. - o o

laser pulse, its population,

_ )2
e

= (J,=200,=1),
4207 o= b

(5.23

J,=2+J,=2 we have, respectively,

A= \E[7- (- 1)1+ 2467] A=K7, (5.69

AM= L[5~ (~1)"9-8s2] A=k 7. (5.6

pairs of pulse areas and ellipticitiesl{¢). The solution for
A ande in the casel,=2+J,=1 reads

A=\ P (kM24+k2)2), (5.7a
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\/(4k<1>2—3k<2>2)(3k<1>2—4k<2>2)
e==

6(k(D2+k(22)2 , (5.7p
and forJ,=2<J,=2 itis
A= B2, (5.89
(4k(2)2_ k(l)Z)(4k(1)2_ k(2)2)
oo \/ 2(KD21 k(2)2)2 (5.8b

Only such pairs K& k() apply, for whiche is real and
|e|<1; these conditions require

\F k()
5$ W<l (Ja:2<—>Jb:1),

(5.93
1 k@ \/E
§$ @$ § (Ja=2-3p=2). (5.9b

Obviously, there are infinitely many pair&‘®),k(®), which
satisfy these conditions.

3. Off-resonant rectangular pulse

For a rectangular pulse with a constant detuning, we con-

clude from Eqs(A7) that conditiong5.3) require the fulfill-
ment of the following equations:

JODZ L AZT=o0mB) 7, (5.103
JO@ZLAZT=2m@) (5.100

wherem(™ are integers, anf.!) andQ(? are given by Egs.
(4.7). The solution forQ) and A in the casel,=2<—J,=1
reads

Q_277\/ 10
T J1+24e2

(mM2-m®@2) (5113
A_2_77\/m(1)2+m(2)2_7(m(1)2_m(2>2)
T 2 2\1+24¢?
(5.11b
and forJ,=2<J,=2 itis
2m \/ 6
Q= —\/—=(mB2-m@?2) (5123
T V. 9-8¢2
A_2_77\/m(l)2+m(2>2_5(m(1)2_m(z)z)
T 2 2\/9—-8s2
(5.12h

In the above equations the polarizatiors a free parameter.
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4. Other analytic models with detuning

We shall now discuss the possibility of satisfying the con-
ditions (5.3 for the other analytically soluble nonresonant
models. First of all, condition$5.3) are satisfied automati-
cally in the trivial case of no interactigall (2’s zerg, which
is of no interest; we therefore assume that the Rabi frequen-
cies are nonzero.

For the Landau-Zener modéAppendix, Sec. 8 condi-
tions (5.3) cannot be satisfied, cf. EGAL0).

For the Demkov-Kunike modéRppendix, Sec. 4 it fol-
lows from Eg.(A13) that conditions(5.3) can be satisfied
only for constant detuningB=0). Hence these conditions
cannot be satisfied for the Allen-Eberly-Hioe and Bambini-
Berman model$Appendix, Secs. 4 ¢ and 4,dvhich involve
chirped detuningB+ 0); for such detuning some population
is always left in the excited states of tive system. Hence,
chirped pulses are not suitable when the goal is to confine the
population dynamics in the ground sublevels.

For the Rosen-Zener modéAppendix, Sec. 4§ condi-
tions (5.3 are satisfied for the same pulse ar¢aste that
A=7Q T for the hyperbolic-secant pulsas for exact reso-
nance, cf. Eqs(A5) and (A15); this is a peculiarity of this
model only.

C. Complete population transfer between the ground
sublevels_,— i,

Redistribution of population amongst magnetic sublevels,
thereby producing orientation or alignment, is commonly ac-
complished by means of optical pumpifif]. Here we con-
sider the task of transferring population, via coherent pro-
cesses alone, between sublevels.

1. General case

An important special case of population residing in the
ground sublevels is the complete population trang®@®T)
from stateys_, to stateys,. In this case, in addition to the
requirementP _,=P;=0, which led us to conditioné5.3),
we must also have®_,=Py=0, i.e.[cf. Egs.(5.18 and
(5.1,

kd? +aMcM24 4(2)c@2=0, (5.133
kd_dg+aWcBe(V+ a@c@c@=0. (5.13p
The solution fore and a® reads
(e —1)(5e— 1+ 24¢?)
aM= K, (5.143
2
(e+1)
5 (= 1)(5e+ 1+ 2482)
a®= K. (5.14h
2
(e+1)

Because, as follows from E¢.3), the moduli ofe*) and
) should be unity we find from Eq4$5.14) that the value
of & has to be zero,

e=0. (5.19

We use this leeway below for finding cases of complete

population transfer fromy_, to 5.

In this case,
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W=k, a@=—k. (5.19 mt
It is easy to verify from Table IIl that these values indeed
lead to CPT from state_, to stateiy,.

For e=0 the MS Rabi frequencies become

2 3
(1= \/: (2) = \/: “—
Q 0, 0 o (2-1), (5173
2 1
QM= \/;Q, 0@ = \[EQ (2+2). (5.17bh

It follows from Eq. (5.6 that the same relations hold for the
pulse areasA V) and A @), with O replaced byA.

We note that in the (2:1) case the MS Rabi frequencies
are incommensurable, whereas in the{2) case they are 1 05 0 0.5 1
commensurableQ (V=20 Ellipticity &

Pulse Area A/w

2. Exact resonance

On exact resonance, the phase fad®i0 is unity,
=1. Therefore, we conclude that conditidigs16) require us
to find pairs ™, m@) for which A is an even multiple
of 277 and A is an odd multiple of Z, i.e., everm®) and
odd m® (mM>m®)),

First, we consider the cadg=2—J,=1. It follows from
Egs. (5.6 and(5.173 that

Pulse Area A/w

2m®@=/3m®), (5.189

Since \/3 is an irrational number, this equation cannot be
solved exactly for integem. However,we can find numeri-
cally pairs of everm® and oddm(® that satisfy Eq(5.18
arbitrarily accurately. Therefore, we can find approximate
CPT in principle, but the required pulse area may be quite
large. Such an example can be seen in the upper frame ¢ = ! 05 o 0.5 !
Fig. 4, whereP, approaches unity fad~ 80. Ellipticity.s

We now consider the second case ofMasystem,J,
=2-Jp,=2. Because Q=202 (and hence AWM
=2A @)y it follows from Eq. (5.6b that

FIG. 3. Population of staté , vs the ellipticitye and the pulse
areaA in the M system for resonant pulse and linear polarization,
£=0. The upper frame is fal,=2—J,=1 and the lower fold,
=2<J,=2. Complete population transfer from state, to state

m®)=2m) (5.19 4, occurs only in the latter case, fat=27m@6 for m?@
=1,3,5. Only approximate CPT can occur in thg=2-J,=1
Therefore conditior(5.16 can be satisfied by taking an ar- case due to the incommensurability of the oscillations in the MS
bitrary oddm(? and everm®=2m(2, and then calculatgl ~ basis.
and & from Eqgs (5.9 for thesem™® and m®: ¢=0, A

=27m@6. This choice of parameters will lead to CPT 3. Off-resonant rectangular pulse
from statey_, to statey,. This is an example of a general-  The reason that exact CPT is impossible 3qe= 2+ J,
ized 7 pulse. =1 derives from the fact that the Rabi frequencies of the two

Figure 3 displays the population of state , as a function ~MS two-state system®.173 are incommensurable. Interest-
of the ellipticity & and the pulse ared, for J,=2<J,=1 ingly, CPT becomes possible off resonande0), because
(upper framg and J,=2+J,=2 (lower framg. Figure 4 then the detuning\ provides an additional free parameter.
shows the corresponding frames for linear polarizatien ( We illustrate this possibility with the Rabi model, of rect-
=0). Three cases of exact CPT are observed in the latteangular pulse and constant detuning. The phase f&8tb9
case (,=2—J,=2), whereas only approximate CPT is for this model isk=exp(AT/2). Becausex*) and a? in
seen in the former casd{=2<J,=1), in complete agree- Eqs.(5.16 are real,x must be real too, which leads to the
ment with the analytic conclusions above. condition
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TABLE IV. Examples of parameter values for which CPT from

10 ' ' ﬁ 11:'? statey_, to ¢, occurs for off-resonant rectangular pulsiee other
. N | j— P; parameters are=0, A=2ms). Also solutions are all odd mul-
0.8 A !'\ ‘-’ i —— P, tiples of each set of values.
ANt N AR R | —
' ,/\\ ,' -! ,l = J,=2-3,=1 Ja=203,=2
§ 0.6 \ il i |l i ". md m® m Qr m® m® m QT
H N l| ,' N 8 7 2 24495 22 13 8  50.200
& 0.4r 1 nd i IR 40 37 26 96125 26 19 16  50.200
AR LT 48 43 22 134907 46 31 24 96.125
AL LA VLR 80 73 46 206978 74 61 56 118.491
ViRSUAT IR VARRTI 96 91 74 193391 94 49 16 226.892
WV AN VALY
WATAUAN S /A
20 30

' It follows from these equations that ca&és impossible and
Pulse Area (units of 7) we can only have evem® andm, and oddm(®. The CPT
value of(} is given by

OT=27J10mD2-m@2) (2-1), (5.233
OT=2m2(mP2=m@2) (22), (5.23h

andA is given by Eq.(5.20.

Several sets of parameter values for which CPT fim
to ¢, occurs are listed in Table IV.

Figure 5 displays the population of state , as a function
of the detuningA and the pulse ared, for J,=2—J,=1
(upper framg¢ and J,=2+J,=2 (lower framg. Figure 6
shows the corresponding frames for suitably chosen detun-
ings. One case of CPT is observed in each case, correspond-
ing to the parameters in the first row of Table IV.
Pulse Area (units of ) The important conclusion is that adding a suitably chosen
detuning, Eq(5.20, makes CPT from stat¢y_, to #, pos-
sible, while it is impossible on resonance for the cdge

Populations

FIG. 4. Populations vs the pulse arghin the M system for

resonant pulse and linear polarizatiens 0. The upper frame is for  ~ _ . o
J,=2<J3,=1 and the lower fod, =2 J,=2. Complete popula- =2+J,=1 because of the incommensurability of the MS

. . 1 2 .
tion transfer from state/_, to statey, occurs only in the latter case Rabi frequencie€2™ and Q. Indeed, adding such a de-

for A=27m® /6 for mM®=1,3,5. The irregulatregula oscilla- tuning gllows one to satisfy Eq¢5.10 and makes the Rabi
tion pattern in the uppefiower frame is indicative of incommen- Oscillations commensurate becausehanges the frequency

surate(commensuratefrequencies. of the Rabi oscillations. This fact, that one needs to detune
the transition to make CPT possible, is quite intriguing be-
AT=2mm, (5.20  cause in a nondegenerate two-state system, CPT is only pos-
sible on resonance but not for nonzero detuning.
wheremis an integer. Them=(—1)™ and conditiong5.16) We emphasize that as far as population transfer from state
become ¥, to i, is concerned, the process of stimulated Raman
adiabatic passag&TIRAP) [11] provides a superior tool for
aB=(-1)" o@=(-1)m*1 (5.2)  high efficiency and robustness. Because STIRAP uses de-

layed pulses, it cannot be treated by the current approach,
Because conditiong5.10, when inserted into EqsiA7),  which requires the same time dependence of all laser pulses.
lead toa®=(—1)"" and «®@=(-1)", we should se-
lect either oddm™® andm, and everm® (caseA) or even
m™) andm, and oddm® (caseB).
By comparing Eq.(5.20 with Egs. (5.11h and (5.12b

D. Complete population transfer between the ground
sublevelsy_,— i,

and taking into account E@5.15 we conclude that the fol- It can be shown that CPT from stafe , to the middle
lowing relations must hold state of theM system, is impossible. Fore=0 this is
easily seen from the values of the populations listed in Table
Am@2=3mM2+m?  (2-1), (5.223 Il It follows from there that the maximum population state
o can achieve ig, obtainable foraY=—« and|«|=1,
4mP2=m24+3m? (2-2). (5.220  both forJ,=2+Jy,=1 andJ,=2-J,=2.
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0.8 R
& 8 061 A
< £ .
< ifl!
: (1
< A 04 j il
2 . .
= (g | L
A iyt |
02} , AN i
i i Vit Py AT |
o< /{:/\‘l‘-’\ YA ~‘\\i'
0 10 20
o Pulse Area (units of r)
0 10 20 30 40 1.0 T T T T T T T T
Detuning AT/x | ” P,
—— P
L 0.8 e
_____ P,
......... P,
0 L — P,
E 0.6
g
E J |
. & ; L E
= o I8
3 THE IR N
& al
- T
3 i '!l'i'r-'i'.:‘i _
= It i i
: e
ik AR
80 100
Pulse Area (units of )
FIG. 6. Populations vs the pulse ardain the M system for a
0 nonresonant rectangular pulse and linear polarizationQ. The

upper frame is fod,=2-J,=1 andAT=4= and the lower for
J,=2<J,=2 andAT=16x. Complete population transfer from
statey_, to statey, occurs in both cases, for the parameters in the

FIG. 5. Population of staté, , vs the detuning\ and the pulse f!rstI row of Table IV: QT~24.495r and ) T~50.2007, respec-
areaA in theM system for nonresonant rectangular pulse and lineaf'vel:

polarization,e=0. The upper frame is fol,=2<J,=1 and the . . . .
lower for J,=2J,=2. Complete population transfer from state 'S preserved, since the decoupled state does not interact with

_, to statey, occurs in both cases, for the parameters shown inthe laser pul_se. Therefore, ’_[he po_pulatRmshould vanish in
Table IV. order to achieve complete inversion of the system. This con-
dition can be satisfied only far=1. Physically this means
For nonzero values of the ellipticity,# 0, the population that theM system cannot be inverted if all states are coupled
P, can reach larger values but never unity. This can be veriti.e., for[e[<1). If e=1, only theo™ pulse is present and
fied by settingk= o= a®=1 in Eq. (5.1 and consider- the M system reduces to a two-state system involving only
ing Py as a function ofe. The maximum value oP, is  Statesy_, and ¢_,. The population of this system can be
approximately 0.974 ford,=2<J,=1 and 0.676 forJ, inverted using, e.g., an odd-pulse or a chirped adiabatic

0 10 20 30 40
Detuning A7/n

=20,=2. pulse.
In the other extreme case=—1, only theo™ pulse is
E. Complete population inversion present, thePy=1 and theM system, which is initially in

o _ ~_ statey_,, does not interact with the laser field.
A common objective is to induce complete population in-

version, that is, to transfer the population from the initial
stateys_, to some combination of the two excited staies;
and ;. As we have noted at the end of Sec. V A, the popu- Another five-state chainwise-connected system is formed
lation P4 [Eq. (5.2)] associated with the decoupled statg  from the magnetic sublevels of two levels wilh=1 or 2

VI. THE W SYSTEM
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andJ,=2 when the system is prepared initially in state

PHYSICAL REVIEW A68, 063414 (2003

TABLE V. Final populations for than system for initial state

=—1 or M=1 of the lower level. The treatment of such a ¥-1 and linear polarizationg=0).

system, in a\-like linkage pattern, proceeds similarly to the
M system, the difference being that now the initial condition

isC_;=1C_,=Cy=C;=C,=0. There are both similari-
ties and differences from thd system, which we shall dis-
cuss below.

A. Populations in the general case

If the system is initially in statey_,, the final populations
are

P_1=|aMe®?+ o(e2)?2, (6.1a
P,=|aMeMeM+ a@ee?)2, (6.1b
— | W) 4 g2, (6.10
Po=|8Mc{eM+ g@)cPe?)?, (6.10
P,=|8WcPe) 4 g2, (6.18

Ja=23,=1 Ja=203p=2

P, FHaW+a?)? FlaM+ )2
P, FHaW—a?)? FlaM—a?)?
= V5 ; 1B+ 35
1 5(2)
Po 4 s 3102
2
V5 141) 4 1 52)2
P2 B(1)+ ,8(2) |4IB +2B |
1 J1—g2
Cl(oo)=——(a<1>— a@)e” (6.3b
2 1+ 24¢?

C. Complete population transfer between stategs_, and ¢,

To achieve complete population transfer from siatg to
Yy it is necessary, in addition to conditiori.2), that the
probability amplitudeC _ ;() in Eqg. (6.38 should also van-
ish. By taking into account that the moduli ef") and «(®

For linear polarization £=0) we summarize the values of are unity we find that the only way to satisfy the condition
these populations in Table V. Note that the decoupled state ;=0 is to sete=0. Then it follows easily from Table V
¢4 does not play any role here, since in this case it is and Eq.(6.39 that

superposition of the upper levels; therefore, it cannot be

populated in the course of the excitation process.
Equations(6.1), along with the analytic formulas for the
two-state evolution-matrix elements™ and 8, given in

the Appendix, provide a number of analytic solutions for the

W system. We discuss below some of the ensuing general

properties of this system.

B. All population in the ground levels

aM=— ) (6.4)

For example, we can have either of
a®=1, o@=-1, (6.5a
a®P=-1, oP=1. (6.5

All population will be confined to the ground sublevels Conditions(6.59 are the same as for thd system in the

¢_, and ¢, if the upper-level populations vanisiy_,
=Py=P,=0. Because states_, and, participate only in
the MS statesogl) and (pff), the confinement of the popula-
tion to statesy_, and ¢, is equivalent to requiring that the
transition probabilities in the MS basis are zero, i.e.,
BV =p2=0, (6.2

We can proceed in the same way as for Mesystem in

case of resonance\=0, hencex=1), Eqs.(5.16. There-

fore, all ensuing conclusions in Secs. VC2 and V C 3 re-
main valid. In particular, CPT ofy_,— ¢ is impossible for
resonant excitation in thé,=1-J,=2 case, while it is
possible forJ,=2<J,=2; the reason is found again in the
commensurability of the MS Rabi frequencies. Off reso-
nance, CPT becomes possible alsofor 1 J,=2, for the
reasons discussed in Sec. V C 3. The presence of the alterna-
tive condition (6.5b), which is opposite to conditiof6.53,

Sec. V. On resonance, for example, the conditions for ngrovides more possibilities to achieve CRT ;— ;. How-

transition to the upper states are given by E@s6), the
solutions for which in terms of the pulse arédaand the
ellipticity e are given by Egs(5.7) (for J,=1<J,=2) and
by Egs. (5.8 (for J,=2—J,=2). The even integerk®

andk(® are arbitrary as long as they satisfy the restrictions

(5.9.

The probability amplitudes in the final coherent superpo-

sition state are given by

5 8( M) — o(2)
w)=-(a®+a@)+- , (6.3
C_y(#)= 5 Vg ey (6.3

ever, the conclusions remain qualitatively the same: exact
CPT for J,=1+J,=2 is impossible for a resonant pulse,
whereas it is possible for an off-resonance one.

D. Complete population inversion

We now address the problem of population inversion, that
is, the transfer of all population to the sublevels,, ¥,
and ¢, of the degenerate upper level. The populations of
statesy_, and ¢, vanish when

aM=q@) =0, (6.6)
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that is both MS two-state systems should be inverted. Thus TABLE VI. Examples of parameter values for which complete
unlike the M system, theW system can be inverted even population transfer occurs from sublevel ; of the ground level to
when all states are coupldde., for e+ 1) because then the sublevelsy_,, o, andy, of the excited level.
the decoupled state is a superposition of excited states ard
hence it remains unpopulated. J,=2+0,=1 Ja=20,=2

kO k@ Al € kW k@ Al €

1. Generalizeds pulses

Condition (6.6) means that the transition probabilities in 3 6.969 f0'641
both MS two-state systems should be equal to unity. This caf 3 9103 +0.964
be achieved easily in the on-resonance case if the pulse areas >  10.282 £0.416

5
7

6.387 =*=0.658
9.423 =*0.892
11.278 *=0.503
12.490 *0.967
14.283 *£0.751

5

AM and A®@), Egs.(5.6), are both odd multiples of-, that 9 12.306 +0.727
is, 9 13.628 =0.286 11

kW=2mM+1, (n=1,2), (6.7)

© © N ;
~N N oo w

wherem(™ are arbitrary integers.

These conditions can be satisfied for an infinite number of
pairs (A,e) of pulse areas and ellipticities, which can be
obtained from Eqs(5.7) and (5.8) with odd k(™ that obey
the restrictiong5.9). Table VI lists a few examples of pa-
rameter values for which population inversiog_,
—[¥_o,¥9,¥,] Occurs. Figure 7 illustrates two of these ex- g
amples for the parameters in the first row of Table VI. 0.8 "-‘

2. Chirped pulses

Apart from resonant odeé- pulses, conditions(6.6),
which require CPT in each of the two MS two-state systems,’;;
cannot be satisfied for pulses with constant detuning, such a&
the rectangular pulse in the Rabi model and the hyperbolic-
secant pulse in the Rosen-Zener model. These conditions ca
be satisfied, however, for chirped pulses, such as the ¢,|§
hyperbolic-secant pulse with the hyperbolic-tangent chirp in
the Allen-Eberly-Hioe model and the constant pulse with lin-
ear detuning in the Landau-Zener model. 0

In excitation with chirped pulses it is not the complete-
ness(100% of the population transfer that is significant but
rather the robustness of tileigh) transfer efficiency against
variations in the interaction parameters, which derives from
the adiabatic nature of the population transfer. Typically, if
the Rabi frequency) and the chirp rateC are sufficiently 0.8
large compared to the inverse pulse widti,1the transfer
efficiency remains little changed for small-to-moderate varia-
tions in Q) and C. Because the MS Rabi frequencies in the
two MS two-state systems are different and because the chirg
rate in both is the samsince the detuning (t) is the samg
it is the smaller of the two MS Rabi frequencig(?, that
determines when the transfer efficiency will exceed the value

P=1-¢, (6.9

10nS
(=]
N

t

1.0

0.6

tions

Populai
<
~

HAY

02F \

il AN
:

wheree is the deviation from CPT. We consider for simplic- . L
ity only the case when the ellipticity is zere=0; then the 1.0 05 0 0.5 1.0
MS Rabi frequencies are given by E@5.17).

For the Landau-Zener modgEgs. (A9)], Eq. (6.8) leads Fllipticity e
to FIG. 7. Populations vs the ellipticitg in the W system for
20C resonant excitation=0). The upper frame is fal,=1—J,=2
02= OI | |In 6| (152), (6.99 and pulse aread=340/77~6.969r and the lower forJ,
3m =2<J,=2 and pulse aread=204/57~6.387r. Complete
population transfer from stat¢_; to the upper sublevelg_,, ¥,
2= 12|C| |In €| (22) (6.99 and ¢, occurs in both cases, for the parameters in the first row of

Table VI: e~ *+0.641 ands ~ +0.658, respectively.
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For the Allen-Eberly-Hioe moddlEgs. (A16)], Eq.(6.8)  for a number of analytically soluble models, defined by the
reduces to Hamiltonian

\/§Q> = L 1+\1—e¢ Lo g mAm 0w a2)
= BlE i ) (12 2l o A
(6.10a
1. Exact resonance
\ﬁ92|5|2 im 1+vi- 6) (22). When excitation is resonams,=A,=0, the elements of
6 € the two-state transition matrix are expressible, for any pulse
(6.100 shape()(t), in terms of the pulse area
VIl. SUMMARY AND CONCLUSIONS A= J+mﬂ(t)dt (A3)

We have discussed the extension of the MS transforma-
tion to time-dependent pulses, restricted only by the condi

tion that, in addition to having only two distin@ut possibly as simply

time-dependentdetunings, all of the pulse envelopgRabi = cog A12), aga
frequencieshave the same time dependence. The MS trans-

formation converts the full linkage pattern into separate two- B —i SN Al2). Adb)

state systems. In a number of cases., particular choices

for the time dependences of the Rabi frequency and the derpq transition probability is

tuning) there exist analytic expressions for the two indepen-

dent elements of the transition matrix. We have used these, P=|p|2=SsirA(A2). (A5)
together with the time-independent MS transformation, to

evaluate the conditions needed to produce such desired '®omplete population transfera=0,/8|=1) occurs when
sults as complete population transfer. We have illustrated the — - for any odd integek (odd-r pulse. Complete popu-
application of this technique to several two-state models, intation return {¢|=1,8=0), occurs whend=kx for any
cluding chirped pulses. _ even integek (evenr pulse.

We have used this analytic technique to study the proper- nodels with nonzero detuning typically introduce a
ties of the population dynamics in chainwise-connected ﬁvethange of independent variable from timé some appro-
state systems iM- and\W-linkage patterns. Such systems are priately chosen functiom(t). Such a transformation can be
formed amongst the magnetic sublevels in degenerate tWQrsed to transform the two-state Sétlirmer equation into a
level systems with angular momenia=1 or 2, driven by  second-order equation satisfied by one of the many special
elliptically polarized laser pulse. We have derived variousfnctions of mathematical physics, cf. R¢#l]. We shall

conditions for complete population transfer between thesymmarize below the best known nonresonant analytic solu-
magnetic sublevels, with examples of generalizegulses  tjgns.

and chirped pulses.

2. The Rabi model
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APPENDIX: ANALYTICALLY SOLUBLE a=COS{%ﬂT)+i ésin(%ﬁT), (A7a)
TWO-STATE MODELS Q
We collect here expressions for the elements of the tran-
sition matrix B i gsin(%f)T), (A7)
a —pB* o
- B o } (A1) where{) = \/QOZ+ AOZ. The transition probability is
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05
P=|BP=—5—5siP(3 QT +AST),  (A8)
Qo+ A§
The transition probability is always less than unity

(I18|<1|a|>0), unlessA,=0, and has infinitely many ze-
roes (a|=1,8=0).

3. The Landau-Zener model

In the Landau-Zener mod¢l7], the Rabi frequency is
constant and the detuning varies linearly with tifi@ear
frequency chirp,

Q()=Qo, (A93)
A(t)=Ct. (A9b)

The coupling€(t) is supposed to last fromn— —« to t—
+o0. The transition probability is

P=|pl?=1-e ™, (A10)
where
A %
=7 (A11)

The transition probability is always nonzetahich means
that|a|<1,8|>0), unless2;=0, and approaches unity as
Q, increases.
4. The Demkov-Kunike Model
a. General case

The Demkov-Kunike(DK) model[18] is defined by

Q(t)=Qysecht/T), (A123)
A(t)=Ay+BtanHt/T). (A12b)

The pulse area igl=7Q,T. The transition probability is

,_ costi7BT)—cog 7T\Q5—B?)
cosi{mAgT)+cosi7BT)

P=18| (A13)

The DK model has several important particular cases.

b. The Rosen-Zener Model

The Rosen-Zener mod¢l9] is a particular case of the
DK model for constant detuning3=0),

PHYSICAL REVIEW A 68, 063414 (2003

Q(t)=Qqseclit/T), (Al4a
A(t)=Ag. (Al4b)
The transition probability is
Sirf(3mQ,T)
P=|Bl2= . (A15)
cosit(3mAT)

It is always less than unitywhich means thata|>0,g|
<1), unlessA,=0, and vanishes for even-pulses (4
=2mmr), as for the exact-resonance solution.

c. The Allen-Eberly-Hioe model

The Allen-Eberly-Hioe mode|1,2Q] is a particular case
of the DK model forA,=0,

Q(t)=Qqsecht/T), (Al6a)
A(t)=Btanht/T). (Al6b)
The transition probability is
cog (27 T\Q5—B?)
P=|8|>=1- . (A17)
costt(:7BT)

It is always nonzergwhich means thafta|<1,8|>0), un-
less ),=0, and approaches rapidly unity &s increases
(providedQy>B).

d. The Bambini-Berman model

The Bambini-Berman mod¢R1] is defined by

Q(t)=Qqseclit/T), (A18a
A(t)=B[1+tanHt/T)]. (A18b)
The transition probability is
1 1 cognT{Q2-B?)
P:|B|2:§_§ coshi7BT) (AL9)

It never reaches zero or unitpwhich means that|«|
#0,1;8|#0,1), unles);=0 or B=0, and approache}
asB increasegprovided(Q),>B).
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