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Quantum localization in the three-dimensional kicked Rydberg atom
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We study the three-dimensional~3D! unidirectionally kicked Rydberg atom. For parabolic initial states
elongated in the direction of the kicks we show that the ionization of the quantum system is suppressed as
compared to the classical counterpart and that the quantum wave function is localized along all degrees of
freedom, whereas the classical system is globally diffusive. We discuss the connection to the previously studied
one-dimensional~1D! model of the kicked Rydberg atom and verify that the 1D model is a good approximation
to the 3D quantum case in the limiting case of the most elongated initial states. We further study the quantum
phase-space distribution~Husimi distribution! of the eigenstates of the period-one time-evolution~Floquet!
operator and show that the eigenstates are localized in phase space. For the most elongated parabolic initial
state, we are able to identify the unstable periodic orbits around which Floquet states localize. We discuss the
possibility of observing quantum localization in high Rydberg states inn.100.

DOI: 10.1103/PhysRevA.68.063406 PACS number~s!: 32.80.Rm, 05.45.Mt, 32.60.1i
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I. INTRODUCTION

The classical-quantum correspondence in the long-t
evolution of classically chaotic few degrees of freedom s
tems has become one of the intensively investigated issu
the field of ‘‘quantum chaos’’@1–3#, i.e., the quantum dy-
namics of classically chaotic systems. One key feature
termed ‘‘quantum localization,’’ i.e., the localization of th
wave function while the corresponding classical distribut
shows diffusion@2,3#. Primarily two model systems hav
provided considerable insights into this phenomenon: the
riodically kicked rotor @4–8# and the Rydberg atom in
harmonic electric driving field@3,9–15#. Recently, a third
model system has become experimentally accessible@16–
18#, the ‘‘kicked’’ Rydberg atom, that is, the hydrogen ato
perturbed by a periodic sequence of ultrashort unidirectio
pulses. The experimental study of this previously theor
cally investigated system@19–24# generated a large numbe
of investigations, see, e.g., Refs.@25–30#. One common fea-
ture of these periodic systems is the discordance betw
quantum and classical dynamics@31# when the classical dy
namics is strongly diffusive. The quantum suppression
diffusive motion in classical phase space for finite\ is
caused by a variety of mechanisms, only some of which
well understood. For the kicked rotor, it could be shown t
a one-to-one mapping onto the Anderson localization pr
lem @5,32,33# in disordered solids exists. Localization h
also been extensively analyzed for the microwave driven
dberg atom@3,10–15#. In this case, different localization
mechanisms have been identified, such as Anderson loca
tion @11#, ‘‘scarring’’ of the Floquet states by unstable pe
odic orbits@12–14#, and suppression of quantum phase flo
by cantori@34#, i.e., broken tori.

Recently we found first evidence of quantum localizati
for the unidirectionally and periodically kicked Rydberg a
oms by studying a one-dimensional~1D! model @35#. The
present system differs from previously studied ones in s
eral aspects. The main difference between the kicked R
1050-2947/2003/68~6!/063406~15!/$20.00 68 0634
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berg atom and the kicked rotor is the presence of a c
tinuum of the unperturbed atomic system, leading to
possibility of decay of the system. On the other hand,
main differences to the harmonically driven atom are
presence of higher harmonics in the periodic perturbati
which prevents a direct mapping onto a photonic localizat
description@3,12#, and the unidirectionality of the field lead
ing to a preferred direction in space. Moreover, the exp
mental studies of the periodically kicked Rydberg atom ha
been performed at much higher principal quantum num
(n*350), i.e., much further into the~semi! classical regime.
Both experimental and theoretical observation of quant
effects such as localization or revival in such a system
mains a challenge.

The aim of the present paper is the identification of qu
tum localization in the three-dimensional~3D! kicked Ryd-
berg atom and the investigation of the prospect of its exp
mental verification. Classical simulations within th
framework of the classical-trajectory Monte Carlo meth
have proven remarkably successful in describing experim
tal data for alkali Rydberg atoms prepared in ap state with
principal quantum numbersn.350 @17#. Distinct quantum
effects have so far been elusive. Quantum localization,
the suppression of classical diffusion and ionization, wo
be one clear signature of classical-quantum discordance.
other one would be revivals@36#. Both of these features re
quire the maintenance of phase coherence over many or
periodsTorb and, therefore, tight control of stray fields in th
experimental setup. We will in the following delineate th
experimental parameter regime for which quantum locali
tion should be observable. On a more fundamental level,
dependence of quantum localization on the number of
grees of freedom is of intrinsic interest. For the kicked ato
with impulsive momentum transfersDpW along a fixed (ẑ)
axis the Lz projection of the angular momentum is co
served. The system is therefore a time-dependent two de
of freedom system. Quantum localization is usually detec
©2003 The American Physical Society06-1
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PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
as a suppression of ionization, i.e., the suppression of d
sive motion along the energy axis. The phase flow of
wave packet along a second degree of freedom, such as,
the angular spread, is thus an open question. By cont
when localization is detected in the recurrence probabilit
simultaneous freezing out of the diffusion in all degrees
freedom is implied. In fact, a recent study of the recurren
probability for the 3D atom@26# gave some indication of the
occurrence of localization in low Rydberg states (n'10).
However, an extension to much highern in order to make
contact with the experiment as well as a comparative an
sis of the classical phase-space structure in order to di
tangle localization from stabilization on surviving tori, a
pears missing. We will in the following present a
unequivocal characterization of the quantum localization
3D in terms of three alternative measures: suppression
ionization, stability of the recurrence probability, and a
sence of quantum diffusion in a globally chaotic phase-sp
region. Moreover, we will identify Floquet states with
small imaginary part of the quasienergies scarred by unst
periodic orbits.

The plan of the paper is as follows: We start by present
the method used for our numerical studies in Sec. II. T
relation between the 3D kicked Rydberg atom and the pr
ously studied 1D model is discussed in Sec. III. In Sec.
we work through the different measures for quantum loc
ization and identify a region in parameter space for an
perimental verification of quantum localization. We prese
Floquet states and the ‘‘scarring’’ around unstable perio
orbits in Sec. V followed by a short summary. Atomic un
are used unless otherwise stated.

II. METHOD

The experimental realization of the kicked Rydberg at
has been achieved by exposing alkali atoms with initial pr
cipal quantum numberni'350 to a train of up to about on
hundred equispaced half-cycle pulses@25,30,37#. The pulses
in the electric fieldF(t) have a widthTp which is much
shorter than the period of the unperturbed classical orb
motion, Tp!Torb52pni

3 . Each ultrashort pulse therefor
transfers a net momentum or ‘‘kick’’ to the electron@38#,

DpW 52E FW ~ t !dt. ~2.1!

The kicked atom is described by the Hamiltonian

H~ t !5Hat1V~ t !, ~2.2!

where

Hat5
pW 2

2
2

1

urWu
~2.3!

is the unperturbed atomic Hamiltonian.pW and rW are the mo-
mentum and position of the electron, respectively. The tim
dependent perturbation is
06340
-
e
.g.,
st,
s,
f
e

y-
n-

n
of
-
e

le

g
e
i-

l-
-
t
c

-

al

-

V~ t !5rW•FW ~ t !. ~2.4!

In this paper we focus on the unidirectionally kicked ato
with constant kick strength, i.e.,DpW 5Dpz and Dp.0. In
this case, one can writeV(t)5zF(t) where

F~ t !52Dp(
k51

K

d~ t1T/22kT!. ~2.5!

HereT is the period of the kicks, andK the number of kicks.
We place the kicks at the midpoint of the periodT, i.e., the
first kick comes att5T/2. The frequencyn of the perturba-
tion is defined asn51/T. The Hamiltonian~2.2! is cylindri-
cally symmetric about thez axis and the magnetic quantum
number is conserved. Throughout this paper we restrict o
selves tom50 and drop the indexm.

We solve the time-dependent Schro¨dinger equation

i
]

]t
uc~ t !&5H~ t !uc~ t !& ~2.6!

by means of the pseudospectral method@39#. Since the per-
turbationV(t) @Eq. ~2.4!# is periodic in time, the operatorU
describing the time evolution of the state afterK periods,

uc~KT!&5U~KT!uc~0!&, ~2.7!

is completely determined by the period-one time-evolut
operatorU(T), i.e.,

U~KT!5U~T!K, ~2.8!

where

U~T!5exp~2 iH atT/2!exp~ iDpz!exp~2 iH atT/2!.
~2.9!

We note that Eq.~2.9! resembles the split operator algorith
which is, however, exact in the present case of delta-sha
kicks rather than an approximation to orderT3.

The free evolution operator

exp~2 iH atT/2! ~2.10!

is calculated in the energy representation, the eigenbas
Hat, as

exp~2 iH atT/2!unl&5exp~2 i«nlT/2!unl& ~2.11!

with

^ruunl&5unl~r !Yl~cosu!/r . ~2.12!

Here Yl5Yl
m50 are the spherical harmonics and«nl and

unl(r ) are the eigenvalues and eigenfunctions of the ra
Schrödinger equation,

S 2
d2

2dr2
2

1

r
1

l ~ l 11!

2r 2 D unl~r !5«nlunl~r !. ~2.13!
6-2
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QUANTUM LOCALIZATION IN THE THREE- . . . PHYSICAL REVIEW A 68, 063406 ~2003!
Solving Eq. ~2.13! in a finite domain in coordinate spac
unl(r ) coincides with the hydrogenic bound states with pr
cipal quantum numbern for the lower portion of the spec
trum n,nb ~for a number nb to be estimated below!,
whereas the eigenstates forunl with n.nb provide a discrete
representation of the continuum. In general,n is referred to
as the pseudostate number.

Evaluation of the boost operator

B5exp~ izDp! ~2.14!

in an atomic energy eigenbasis for high Rydberg states
continuum states has proven to be numerically difficult a
unstable@40#. The operator is, however, diagonal in the c
ordinate representation. We therefore transform the tim
evolved stateuC(t)& to a coordinate space representati
urW&5uru&,

^ruuc~ t !&5(
l

gl~ t,r !Yl~cosu!, ~2.15!

where

gl~ t,r !5(
n

^ruunl&^nluC~ t !&. ~2.16!

B mixes, however, the angular momental,

gl 8~ t1,r !5(
l

gl~ t2,r !@ l 8uexp~ ir Dp cosu!u l #,

~2.17!

wheret2 and t1 denote the time right before and right aft
a kick, respectively, and

@ l 8uexp~ ir Dp cosu!u l #

5E
0

1

d~cosu!Yl 8~cosu!eir Dp cosuYl~cosu!

~2.18!

denotes a matrix element in angular momentum space w
being still a local function inr. We evaluate the integral@Eq.
~2.18!# by a Gauss-Legendre quadrature. Subsequently,
perform an inverse transformation back to the energy re
sentation in order to evaluate the free evolution for the s
ond half of the period@see Eq.~2.9!#.

This scheme for solving the Schro¨dinger equation faces
two numerical difficulties: the first one is to solve Eq.~2.13!
for a large number of states subtending the continuum.
second difficulty is to calculate the transformation betwe
the energy basis and the local radial coordinate basis
ciently for a large number of kicks without accumulatin
numerical errors. Both problems can be solved by mean
the pseudospectral method.

Within the pseudospectral method a maximum rad
Rmax is chosen and the intervalr P@0,Rmax# is mapped onto a
new variablexP@21,1# by a nonlinear mapping optimize
for the Coulomb singularity. Within this interval we emplo
N collocation points. The mapped Hamiltonian is calcula
06340
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numerically using the Legendre pseudospectral method.
example of the energy spectra«nl of the unperturbed Hamil-
tonian is shown in Fig. 1 forl 50. The lowest«nl values for
n,nb are independent ofl and agree with hydrogenic ene
gies in up to 15 digits. The corresponding eigenfunctio
agree with hydrogenic wave functions in up to 8 digits. Th
is true as long aŝr &n,Rmax where^r &n52n2 is the radius
of the corresponding hydrogenic state. We thus have a cu
for exact hydrogenic states,nb&ARmax/2. Thereafter, the
pseudospectral energies«nl bend upwards, corresponding t
the hard wall boundary conditions atRmax. The eigenfunc-
tions for n.nb represent states within the finite box with
wavelength of approximately 2Rmax/n and «nl

'(pn/Rmax)2/2. This is true forn up ton'N/2 leading to a
cutoff in energy,Ec , of the order of (pN/Rmax)2/8. The
pseudostates withn.nb provide a discretized representatio
of the continuum. Since their density~for a given l ) is
r(E)5pAE/2/Rmax, the density of discretized states in th
continuum can be controlled. The pseudospectral metho
able to give a reliable representation of the states of the
cretized continuum using as little as two grid points per h
wave. Another advantage is that the transformation betw
energy basis and radial coordinate basis employs a Lege
quadrature, which can be performed to machine precis
This allows us to follow the long-time evolution with ver
good accuracy~10 000 kicks with a relative error less tha
0.1%). The typical parameters for the calculations presen
in this publication areRmax52.53105 a.u. andN51800
leading toEc5631025 a.u. We include a maximum numbe
of angular momenta in the calculations typically of the ord
of l max5100.

The numerical time propagation of wave functions th
contain a significant admixture of continuum states alwa
faces the difficulty of spurious reflections~see Ref.@41# and
references therein!. The present method allows to simulta
neously control two types of reflections. The hard w
boundary conditions introduced atr 5Rmax can cause spuri-
ous reflections in coordinate space. We therefore employ

FIG. 1. Pseudospectrum forRmax52000 a.u.,N5250, and l
50, which yields a cutoff energyEc'0.019~see text!.
6-3
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PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
sorbing boundary conditions by multiplying the wave fun
tion in the local coordinate representationgl(t,r ) with the
masking function

Mr~r !5
1

11exp@~r 2Rc!/RM#
~2.19!

after each kick@42#. Rc and RM are typically 0.8Rmax and
0.01Rmax, respectively. In addition, there is a second class
reflections to be considered. As the kicks accelerate the e
tron to high positive energies,E can approach the cutof
energy Ec . After transformation to the energy basis, w
therefore use an additional masking function for the ps
dospectral basisunl&,

ME~E!5
1

11exp@~E2E8!/EM#
~2.20!

by which the wave function in the energy representation
multiplied after each time-evolution step. Typically,E8
'0.8Ec and EM'0.02Ec . In our case of unidirectiona
kicks, the results are virtually independent of the shape of
masking functions, since any small portion of the wave fu
tion being spuriously reflected will be accelerated back
wards the boundary by the following kicks. As a result of t
masking in both coordinate and energy spaces, the time
lution ceases to be unitary. It is nevertheless possible
achieve a proper representation of the part of the Hilb
space relevant for the localization, since the masking eli
nates only the outgoing continuum wave packet without
fecting the bound-state or localized portion of the wa
packet@29#. Note that apart form the discretization errors f
finite N and cutoffs inRmax and l max, the method does no
contain any further approximations. In particular, large v
ues of the kick amplitude can be handled. This differs fro
the Cayley form of the boost operator, exp(izDp)'(1
1izDp/2)/(12 izDp/2) used in Ref.@26#, which is limited to
small values ofDp.

In the following sections we will frequently use scale
units ~i.e., all variables are measured in units of the init
Rydberg state!, which we denote by the subscript ‘‘0.’’ Thes
units are defined ast05t/(2pni

3), n052pni
3/T, r 05r /ni

2 ,
p05p ni , andE05E ni

2 .

III. RELATION BETWEEN THE 1D AND 3D MODELS

In our earlier studies of quantum localization we e
ployed a 1D model@29,35# with the Hamiltonian

H1D5
p2

2
2

1

q
2qF~ t !, ~3.1!

whereq.0 andp denote the position and momentum of t
electron, respectively. The relation between the 3D dynam
and the 1D model has been also studied for the Rydb
atom driven by a microwave field@3,10,15,43,44#. It was
observed that the agreement between the 1D and the
dynamics improves if a static electrical field is added in
direction of the initial state@44#, a situation somewhat close
06340
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to unidirectional kicks. Unlike the harmonic driving field, th
unidirectional fieldF(t) defined by Eq.~2.5! allows for a
distinction between the fields parallel (Dp.0) and antipar-
allel (Dp,0) to the elongated initial state. For the unidire
tionally kicked atom, a close correspondence between the
and real 3D dynamics is only expected forDp.0 @45#.

To clarify the relation between the dynamics generated
the 3D Hamiltonian@Eq. ~2.2!# and the 1D model@Eq. ~3.1!#,
we express the 3D Hamiltonian in parabolic coordinates
fined byj5r 1z, h5r 2z, and tanf5y/x,

H~j,h,f!52
1

2 H 4

j1h

d

dj S j
d

dj D1
4

j1h

d

dh S h
d

dh D
1

1

jh

d2

df2J 2
2Z

j1h
1

j2h

2
F~ t !. ~3.2!

Here,Z51 is the nuclear charge. In the following we co
sider onlym50 and drop allm andf dependent terms.

The static part of Eq.~3.2! is separable in parabolic coor
dinates and yields the well-known parabolic statesfP(rW)
5u1(j) u2(h) @46#, examples of which for high Rydberg
states (n5100) are displayed in Fig. 2 and which will b
employed in the following as initial states att50. Parabolic
states can be labeled by the principal quantum numbern, and
the parabolic quantum numbersn1 ,n2 with the constraintn
5n11n21umu11. We consider in the followingn andn2 to
be the independent variables by which we label the sta
The factor functionsu1,2 are solutions to the equation

F2
d

dg S g
d

dgD2
Eg

2
2Z1,2Gu1,2~g!50. ~3.3!

Here,g stands forj andh, respectively,E521/(2n2), and
the separation constants areZ15(n2n221/2)/n and Z2
5(n211/2)/n. We focus in the following on elongated ini
tial states withn2

i !ni , for which a close connection to th
1D problem is expected to emerge.

Let us assume for a moment that the separation an
C(j,h,t)5u1(j,t)u2(h,t) valid at t50 for parabolic initial
states remains valid also fort.0. Using this ansatz, the
time-dependent Schro¨dinger equation multiplied by (j
1h)/(2u1u2) becomes

i
j1h

2
F u̇1

u1
1

u̇2

u2
G52

1

u1

d

dj S j
d

dj D2
1

u2

d

dh S h
d

dh D2Z1~ t !

2Z2~ t !1
~j22h2!

4
F~ t !. ~3.4!

Here, Z1(t) and Z2(t) are the time-dependent separati
constants subject to the conditionZ1(t)1Z2(t)5Z.

The initial expectation values ofj andh at t50 are

^u1ujuu1&5ni~n1
i 11/2!5ni~ni2n2

i 21/2!, ~3.5a!

^u2uhuu2&5ni~n2
i 11/2!. ~3.5b!
6-4
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QUANTUM LOCALIZATION IN THE THREE- . . . PHYSICAL REVIEW A 68, 063406 ~2003!
We consider first the equation of motion foru1(j,t) which,
in the limit of n2

i /ni→0, accounts for the motion in th
direction of the kicks. In this limit,̂ h&!^j& and we can
neglect terms proportional toh on the left-hand side of Eq
~3.4!. Collecting terms in Eq.~3.4! containingj andu1 and
usingZ1(t)'Z1(0)'1 andZ2(t)!Z1 we arrive at

i u̇1~j,t !5F22
d2

dj2
2

2

j

d

dj
2

2

j
1

j

2
F~ t !Gu1~j,t !.

~3.6!

Noting that in the limit of an elongated statej5r 1z'2z for
z.0, Eq. ~3.6! reduces to

i u̇1~z,t !5F2
1

2

d2

dz2
2

1

2z

d

dz
2

1

z
1zF~ t !Gu1~z,t !.

~3.7!

After transforming the wave function according tou1(z,t)
5c1(z,t)/Az we find the effective Schro¨dinger equation

FIG. 2. Contour plots of the probability density of parabo
states in then5100 shell of hydrogen for~a! n250 corresponding
to the extreme parabolic state with maximal elongation, and~b!
n259 corresponding to a strongly polarized state. The figure
drawn in scaled cylindrical coordinatesz0 andr05Ax0

21y0
2.
06340
ic 1̇~z,t !5F2
1

2

d2

dz2
1

l̃2

2z2
2

1

z
1zF~ t !Gc1 , ~3.8!

with the pseudoangular momentuml̃2521/2. Forni>100
the spatial extension of the wave function is of the order
104 a.u. and the Coulomb term is 104 times larger than the
‘‘centrifugal’’ term. Consequently, neglecting the ‘‘centrifu
gal’’ term l̃2/2z2, the 1D kicked Rydberg atom@Eq. ~3.1!# is
recovered.

We turn now to the motion in theh degree of freedom. In
order for the separation ansatz to remain approxima
valid, the excursion inh should remain small compared t
that of j. We explore the condition under which the sepa
bility remains valid. To this end, we collect all terms in E
~3.4! containingu2 andh to arrive at

i
11j/h

2
u̇25F22

d2

dh2
2

2

h

d

dh
2

2Z2~ t !

h
2

h

2
F~ t !Gu2 .

~3.9!

Replacingj/h by their initial expectation valueŝj&/^h&
5b215(ni2n2

i 21/2)/(n2
i 11/2)@1, substituting h52s,

and proceeding in analogy to Eq.~3.8!, we find

i
dc2~ t !

d~bt !
5F2

1

2

d2

ds2
1

l̃2

2s2
2

Z2~ t !

s
2sF~ t !Gc2~ t !.

~3.10!

In order to transform Eq.~3.10! again into the standard form
of the 1D kicked hydrogen atom we assumeZ2(t)'Z2(0)
and rescale variables as

s̃5sZ2 ,

p̃5p/Z2 ,

t̃ 5bZ2
2t, ~3.11!

leading to

i
d

d t̃
c2~ t̃ ,s̃!5F2

1

2

d2

ds̃2
1

l̃

2s̃2
2

1

s̃
2 s̃F̃~ t̃ !Gc2~ t̃ ,s̃!

~3.12!

with

F̃~ t̃ !5bD p̃(
k

d~ t̃ 2kT̃1T̃/2!. ~3.13!

The strength of the field@Eq. ~3.13!# is very small due to the
factorb!1 and further, the direction of the kicks is inverte
compared to Eq.~3.8! and pointstowards s̃50. For kicks
towards the nucleus, classical stabilization takes place.
classical phase space is mixed and the classical as well a
quantum system can be either stable and nondiffusive or
otic @25,30#. We therefore expect the dynamics correspon
ing to the Hamiltonian Eq.~3.12! to be either stable or dif-

s

6-5
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PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
fusive at a small rate. Depending on the parameters cho
the motion in theh degree of freedom may therefore rema
confined and the approximate separability of the 3D sys
may be preserved for some time. In this case, chaotic di
sion proceeds mainly in thej coordinate of the 3D system
closely resembling the corresponding 1D system. In gene
however, the motion in theh degree of freedom is chaoti
and the separation ansatz will break down for long tim
There are two scenarios for this: Either the initial sta
c2( t̃ 50) resides in the chaotic sea from the onset, or
motion in thej coordinate induces a parametric time depe
dence ofZ2 andb allowing trajectories initially residing in
islands that are stable as long as the dynamics inj andh are
decoupled to diffuse into the chaotic sea of the coupled
namics in analogy to Arnold diffusion and escape to infin
Quantum localization, if operational, must therefore suppr
classical diffusion in both degrees of freedom. Note tha
the opposite caseDp,0, the kicks in Eq.~3.12! are directed
away from the nucleus and a much less good agreemen
tween the 1D model and the real 3D dynamics can be
pected @45#. We will numerically investigate the scenar
Dp.0 for the full 3D classical and quantum dynamics b
low.

IV. NUMERICAL EVIDENCE FOR QUANTUM
LOCALIZATION

In this section we probe different measures of quant
localization for the 3D kicked Rydberg atom. In order
identify quantum localization instead of trapping in stab
islands, the initial state should be located in the chaotic
gion of phase space. We therefore start by analyzing the c
sical dynamics.

A. Classical dynamics and the initial state

In Fig. 3 we show classical stroboscopic Poincare´ surface
of sections forn054 andDp050.0314. (r05Ax01y0 is a
cylindrical coordinate.! Negativez0 values correspond to th
side of the nucleus where the kicks are directed towards
nucleus. On this side we find many stable islands@Fig. 3~a!#
similar to the stable islands found in the 1D model for ne
tive kicks ~leading to classical stabilization!. In 3D these
islands have a finite width inr0 and pr0

@Fig. 3~b!#. For

positivez0, on the other hand, we find no stable islands at
@Figs. 3~a! and 3~c!#. To study quantum localization w
therefore will choose initial conditions corresponding
states located atz0.0.

The parabolic eigenstates, as discussed in Sec. III
shown in Fig. 2, are good candidates for locating the ini
state outside any stable islands. We note that the expect
value of the polar angle of the position vectorrW, cosû5ẑ/r̂,
for a parabolic state is given via the hypervirial theorem@47#
by

^fn,n2

P ucosûufn,n2

P &52^fn,n2

P ucosûRLufn,n2

P &. ~4.1!

Here, ûRL5cos21(Az/uAW u) is the polar angle of the Runge
Lenz vectorAW ,
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AW 5pW 3LW 2rW/urWu, ~4.2!

which points to the perihelion of a Kepler orbit. Note that t
operator equivalence~4.1! holds for all states of a givenn
shell. Likewise, it holds for classical ensemble averages fo

FIG. 3. Classical stroboscopic Poincare´ surfaces of section for
the 3D kicked atom withDp050.0314 andn054. Cuts at~a! r0

50.1 and pr0
50, ~b! z0522.0 and pz0

520.05, and ~c!

z0512.0 andpz0
520.05. The cuts in time are taken half a perio

after each kick.
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QUANTUM LOCALIZATION IN THE THREE- . . . PHYSICAL REVIEW A 68, 063406 ~2003!
given energy shell. The right-hand side of Eq.~4.1! can be
further expressed as

^fn,n2

P ucosuRLufn,n2

P &5~2n211!/n21. ~4.3!

Consequently, we can select subensembles of classical in
conditions representing orbits of a given parabolic state
selectingAz from within the bin

~n2
i 20.5!/ni,~11Az!/2,~n2

i 10.5!/ni . ~4.4!

The extreme parabolic state withn2
i 50 is strongly local-

ized near thez axis with ^cosu&5121/ni . States with larger
n2

i , on the other hand, correspond to ‘‘true’’ 3D states sho
ing a larger spread inr0. In view of the Poincare´ surface of
section~Fig. 3! we will choose a parabolic initial state elon
gated in the direction of the kicks withn2

i !ni in order to
ensure that the initial state lies completely inside the cha
sea. In the following we focus onni5100 andn2

i 50 or n2
i

59. The second choice is motivated by recent experime
realization of highly elongated ‘‘parabolic’’ states in ve
high n ('350) by photoexciting Rydberg atoms in the pre
ence of a small dc field. Values of^cosu&*0.8 have been
reached@48#.

B. Survival probability

We explore now the parameter ranges ofDp0 andn0 for
the observation of quantum localization. Based on previ
studies on the 1D kicked atom@29,35# as well as on the
harmonically driven 1D and 3D Rydberg atom@3,10,15#, lo-
calization is expected in the high-frequency domain,n0
.2. The range of experimentally available high frequenc
is limited by the condition that adjacent pulses must be w
separated from each other, i.e., the widthTp of the pulses
must be smaller than the periodT5Torb/n0 of the kicks.
Consequently we requiren0!Torb/Tp . The experimentally
realizedTp is of the order of 0.5 ns andTorb52pni

3 is for
ni5350 of the order of 6 ns, which implies thatn0 should be
limited to n0&4 if we require that the spacing between t
pulses is at least the threefold width (Torb/n0.3Tp), in or-
der to approximately fulfill the requirement of success
impulsive perturbations.

For the choice of kick strengths, we note that unidire
tional kicks build up an average field withFav52Dp/T.
Hence the Hamiltonian@Eq. ~2.2!# can be cast into the time
independent Stark Hamiltonian

HStark5Hat1zFav ~4.5!

plus an infinite series of higher harmonics of equal streng

H~ t !5HStark12Favz(
m51

`

cosF2pm/TS t2
T

2D G . ~4.6!

The Hamiltonian@Eq. ~4.6!# can be reduced to the one for th
harmonically driven Rydberg atom with field strength 2Fav

by keeping only them51 term. Equation~4.6! suggests both
similarities and differences between the kicked Rydb
atom and the harmonically driven system. For example,
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critical field strength for the harmonically driven classic
system to be globally diffusive isu2F0

critu'1/(50n0
1/3) @3#. For

the frequency range of the present study this would co
spond toF0

crit'0.013. By contrast, the 1D positively kicke
Rydberg atom is chaotic for an arbitrarily small fie
strength. Similarly, as the localization theory for the ha
monically driven quantum system explicitly invokes th
presence of only a single harmonic component in the driv
field corresponding to a nearest-neighbor coupling in
Anderson model, quantum localization in the kicked ato
with all harmonics present at equal strength~corresponding
to an all-site coupling of the lattice! will be in general more
complex.

We now study the classical and quantum survival pro
abilities for the kicked Rydberg atom as a function of t
scaled average fieldF0

av5Favni
4 . The quantum survival

probability ~Fig. 4! is determined from

Psur~ t !5 (
n(bound)

(
l

u^nluc~ t !&u2, ~4.7!

while classical survival probabilities are deduced from t
fraction of electrons being bound at timet. The average field
in the Stark Hamiltonian@Eq. ~4.5!# leads to a decay via
classical field ionization even without the time-depend
perturbation present whenuFavu is larger than the Stark
threshold at uF0

avu51/1650.0625. The classical surviva
probability for the kicked atom decays within the first fe
hundred kicks close to and above the threshold. Rapid c
sical ionization is convenient for the observation of quant
localization, implying that we should chooseuF0

avu.0.01. A
first indication of quantum localization is that the quantu
survival probability exceeds the classical one, since this
plies a suppression of diffusion towards the threshold. T
quantum survival probability afterK5500 is, unlike the
classical survival probability, fluctuating as a function ofF0

av

~Fig. 4!. However, in the region 0.01,uF0
avu,1/16, it is con-

sistently much larger than the classical value. For our st
ies, we will choose field strengthsF0

av'20.02. Note that for

FIG. 4. Quantum and classical survival probabilities afterK
5500 kicks as a function of average fieldF0

av52Dp0n0/2p for
n054, ni5100, andn2

i 50.
6-7
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PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
our parameters (n054 andni5100), the energy difference
between the initial state and the energy of the Stark barrie
22A2F0

av is equal to the energy of about six photons (E0
g

5n0 /ni) for the fundamental harmonic. The time evolutio
of the quantum and classical survival probabilities, as sho
in Fig. 5, also displays quantum values well above the c
sical ones. In addition, the 1D results and the 3D results
the most elongated parabolic state (n2

i 50) closely resemble
each other, as expected from our analysis in Sec. III.

It is of particular interest that the suppression of ioniz
tion prevails when we increasen2

i to cases where already th
initial state explores the transverse degree of freedom. A
for n2

i 59 @Fig. 5~b!#, a clear signature of quantum localiz
tion can be seen. Further, both the classical and the quan
survival probabilities are larger forn2

i 59 as compared to
n2

i 50. The latter observation can be understood from
fact that ionization proceeds mainly along the ‘‘reaction c
ordinate’’z. States that have a larger spread perpendicula
z ~i.e., largern2

i ) are therefore more stable against ionizati

FIG. 5. Survival probabilitiesPsur for F0
av520.02, n054, and

ni5100 for the classical and quantum kicked Rydberg atoms. In~a!
we show 3D results forn2

i 50 ~full lines! and 1D model results
~dashed lines!. In ~b! the 3D results forn2

i 50 ~full lines! and for
n2

i 59 ~dashed lines! are shown. The arrows mark the number
kicks KL where the quantum survival probability is larger than t
classical one by 0.1 and localization sets in. Insets: long-time
havior.
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as they are less likely to visit the saddle point region@43#. To
verify that the suppression of ionization as seen for our p
ticular choice of parameters is not accidental, we study
survival probability as a function of bothn0 and n2

i . We
define an empirical measure in terms of the number of ki
KL where the quantum survival probability exceeds the cl
sical one by 10%,PSur

Quant(KL)2PSur
Classic(KL)5DPSur50.1 ~in

Fig. 5 KL is indicated by arrows!. This measure may be
useful to guide the experiment for identifying localizatio
Figure 6 reveals thatKL , on average, increases withn0. This
is due to the fact that for a fixed average fieldF0

av , Dp05

22pF0
av/n0 decreases asn0 increases. This implies longe

lifetimes in the units ofK. We further see thatKL increases
with n2

i . This increase is a direct reflection of the fact th
the system becomes more stable asn2

i increases, as discusse
above.

We note that the decay rate of the quantum system is
fairly large. This is a consequence of the presence of h
harmonics in the driving field@Eq. ~4.6!#. The latter allows a
direct one-photon~a well as multiphoton! ionization. We es-
timate the direct coupling to the continuum by single-phot
ionization by applying first-order perturbation theory~the
golden rule! to calculate the decay rates. The Stark Ham
tonian@Eq. ~4.5!# in the 1D model is diagonalized on a finit
grid using the pseudospectral method and we sum the d
rates over all harmonic components in the driving field w
an energy large enough to couple the Stark state with
largest overlap to the initial Rydberg state to the Stark c
tinuum. The sum of the decay rates leads to a lifetime
scaled units oft05760. At K51000 this corresponds to
survival probability of PSur50.720, which is practically
identical to the valuePSur(K51000)50.725 numerically
found for thekickedRydberg atom. We thus conclude th
ionization due to diffusive spreading of the wave packet~as
opposed to direct photoabsorption! is practically absent in
the kicked system.

In view of the presence of the direct ionization channel
is instructive to consider an alternative measure for locali
tion which is more directly focused on the initial stat
namely, the recurrence probability,

Prec~K !5u^c~0!uc~KT!&u2. ~4.8!

e-

FIG. 6. Localization number of kicksKL at which the quantum
survival probability becomes larger than the classical one by 0.
a function of frequencyn0 for F0

av520.02, ni5100, and different
n2

i .
6-8
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QUANTUM LOCALIZATION IN THE THREE- . . . PHYSICAL REVIEW A 68, 063406 ~2003!
The classical recurrence probability is the probability for t
electron to be in an energy and angle bin correspondin
the initial state. The quantum recurrence probabilities
both the 1D and the 3D cases~Fig. 7! are strongly fluctuat-
ing, which is a signature of quantum beats. Their aver
value is, however, much larger than the classical value, in
cating the suppression of diffusion away from the init
state. Further note that the decay of the classical recurre
probability is stronger forn2

i 59 than forn2
i 50, indicating a

stronger diffusion in the parabolic degree of freedom for
less elongated classical state.

Since current experiments are primarily performed at v

FIG. 7. Quantum and classical recurrence probabilities for~a!
the 1D model and the full 3D system with~b! n2

i 50 and ~c! n2
i

59. The full line indicates a fit of the quantum data to a third-ord
polynomial (n054, F0

av520.02, andni5100).
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high ni'350, we analyze the dependence ofKL on ni in
order to assess the chance for experimental observatio
quantum localization~Fig. 8!. Apart from some fluctuations
KL remains more or less constant as a function ofni
within the range ofni currently computationally accessibl
(ni&150). The remarkably weak dependence onni can be
understood from the fact that the rapid classical decay
scale invariant while the residual quantum decay, as
result of quantum localization, is governed by direct phot
coupling to the continuum. Calculating, as described abo
the lifetime t0 assuming only the direct single-photo
ionization from the initial state through the higher-ord
components of the driving field to be relevant, we fin
for n054 that t0(ni550)5520, t0(ni5100)5760, and
t0(ni5150)5825. Assuming an exponential decay wi
these lifetimes for the quantum system and comparing to
classical survival probability, the localization times areKL
5135, 125, and 124 forni550, 100, and 150, respectively
These variations are much smaller than the fluctuations w
n0 seen in Fig. 8.

The most important point is that quantum localization e
ists over a wide range ofn0 , ni , andn2

i . Extrapolating the
weakni dependence to higherni leads to the prediction tha
the suppression of classical ionization by quantum locali
tion should be measurable forn0'4 andF0

av'20.02 within
200–300 kicks even atni'350 provided the initial state in
the experiment is prepared in a strongly elongated state
^cosu&*0.8. This parameter range appears to be access
in current experiments.

C. Spreading of the wave function

Quantum localization implies that the quantum wa
packet remains well localized whereas the correspond
classical density distribution diffuses strongly. This is e
pected to hold forall degrees of freedom. We first consid
the reduced density as a function of energy which meas
the spread in energy and, in the present case, also the sp
along the reaction coordinatez ~or j),

r

FIG. 8. Localization number of kicksKL as a function of fre-
quencyn0 for F0

av520.02 and differentni for initial states with a
width in the angular degree of freedom̂cosu&5121/ni22n2

i /ni

'0.8.
6-9



r0„~En!0 ,K…5

(
n28

u^n n28uc~K !&u2/D~En!0 ~quantum! ~4.9a!

PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
5 E
(Ẽn)0,(En)0,(Ẽn11)0

drWdpW f ~rW,pW ,K !/D~En!0 ~classical!, ~4.9b!
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where (Ẽn)05@(En21)01(En)0#/2, D(En)05@(En11)0

2(En21)0#/2, andf (rW,pW ,K) is the classical phase-space d
tribution afterK kicks. Note that the initial density in both
the quantum and the classical cases has a narrow pe
scaled energyE0520.5. The densities shown in Fig. 9 pea
at aroundE0520.5 and clearly reveal that the quantum d
tribution in energy is much narrower than the classical o
after a large number of kicksK for all cases. We find local-
ization in the 3D case along the energy coordinate forn2

i

50 as well as forn2
i 59. Moreover, the energy distributio

of the 1D kicked Rydberg atom mimics the distribution
3D.

We consider now the reduced density as a function of
‘‘transverse’’ degree of freedom, i.e., as a function of t
scaled parabolic quantum number (n2)05n2 /ni ,

r0„~n2!0…55 ni (
n8n28

u^n8n28uc~K !&u2 ~quantum!

niE drWdpW f ~K,pW ,rW ! ~classical!

~4.10!

subject to the constraint

~n2!020.5/ni<n28/n8<~n2!010.5/ni ~quantum!,

~n28!020.5/ni<~11Az!/2<~n2!010.5/ni ~classical!.
~4.11!

To characterize the localized part of the wave function,
sum in Eq.~4.10! is taken over only bound states, and co
respondingly the integral is limited toE<0. The quantum
distribution r0„(n2)0… remains well localized for the maxi
mally elongated initial state which corresponds to a narr
peak at (n2

i )050 @Fig. 10~a!# as well as for the state with
moderate transverse excitation@(n2

i )050.09, Fig. 10~b!#. In
both cases, the quantum distributions remain consider
more confined compared to their classical counterparts.

As a byproduct, we find that quantum localization inn2
justifies the applicability of earlier 1D simulations sinc
quantum mechanics remains practically one dimensional.
the contrary, the classical system spreads in the parab
degree of freedom and explores the full three-dimensio
space. This indicates a stronger coupling between the
namics alongj andh ~in line with the discussion in Sec. III!.
Not only the diffusion alongj but also the coupling toh is
quantum mechanically suppressed. Thus quantum loca
tion in all dimensions is observed.
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V. FLOQUET STATES: WAVE FUNCTIONS AND HUSIMI
DISTRIBUTIONS

We consider now the Floquet states rather than the ti
evolved wave packet. They are the eigenstates of the per
one time-evolution operator@Eq. ~2.9!#. The Floquet states
ufF& satisfy the eigenvalue equation

U~T!uf j
F&5exp~2 iTEj !uf j

F& ~5.1!

with the complex quasienergiesEj5E j
R2 iE j

I . The time-
evolved wave packetuC(KT)& can be written as a coheren
superposition of Floquet states,

uc~KT!&5(
j

djexp~2 iKTEj !uf j
F&, ~5.2!

wheredj5^c(0)uf j
F&.

Due to the finite size used in our numerical calculatio
i.e., the cutoffs in radius and energy,U(T) is nonunitary and
the imaginary partE j

I describes a probability flux out of th
finite Hilbert subspace considered. Provided that the s
space is large enough to represent resonances and loca
states, the flux out of the finite Hilbert space corresponds
a physical flux away from the atom~rather than a numerica
artifact! and smallE j

I can be interpreted as the inverse lif
time of Floquet states, i.e.,G j /25E j

I @49#. Moreover,
Floquet-states with very smallG j can be candidates for state
representing quantum localization. Note that due to the p
ence of the direct one-photon ionization channel, a locali
state will have a nonvanishing value ofG j .

In the 1D case, we can obtain Floquet states by diago
izing a matrix representation ofU(T) in the pseudospectra
basis. Unfortunately, the matrixU(T) in the 3D case is a
very large matrix the size of which is (l max*N/2)
3( l max*N/2). Typically, (l max*N/2)'105 and the matrix is
not sparse since the kick mixes all energies and angular
menta. Direct diagonalization is thus out of reach. Inste
we extract the relevantEj from the autocorrelation function
by means of harmonic inversion@50#. The autocorrelation
function is defined as the projection of the evolved wa
packet onto the initial state,

a~KT!5aK5^c~0!uc~KT!&5^c~0!uU~T!Kuc~0!&

5(
j

dj
2exp~2 iK« jT!. ~5.3!

In order to calculate the relevant Floquet states,U(T) is
expanded in a reduced set with basis functionsubn&
5Unub0& whereub0&5uc(0)& is the initial state. Because o
6-10
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QUANTUM LOCALIZATION IN THE THREE- . . . PHYSICAL REVIEW A 68, 063406 ~2003!
the symmetryUt(T)5U(T), where the superscriptt stands
for transposition, we denotêbnu as the transpose ofubn&
~but not the Hermite conjugate!. Thus ^bnu5^b0u(Un) t

5^b0uUn, which leads to the matrix elements ofU(T),

Unn85^bnuU~T!ubn8&5an1n811 . ~5.4!

Since the set of statesubn& (n51,2,3, . . . ) is not anorthogo-
nal set, one must solve a generalized nonunitary eigenv
problem to obtain the Floquet states,

FIG. 9. Quantum and classical probability densities in ene
for ni5100 afterK51000 kicks withn054 andF0

av520.02 for
~a! the 1D model and the full 3D system with~b! n2

i 50 and ~c!
n2

i 59.
06340
ue

(
n8

Unn8bn8
( j )

5(
n8

e2 iT« jSnn8bn8
( j ) ~5.5!

with the overlap matrixSnn85an1n8 . The resulting eigen-
values and eigenfunctions in the restricted basis give
quasienergies and coefficientsdj only for those Floquet
states that have sizable overlap with the initial state. Ty
cally, less than 1000 Floquet states contribute to the auto
relation function, restricting the sizeNb of the basis setubn&
to less than 1000. Indeed, using too large a value ofNb , the
diagonalization becomes unstable since the null space o
matrix Unn8 becomes large~i.e., the rank of the matrix gets
much smaller thanNb). The number of time steps we mu
calculatea(KT) is only 2Nb11. Nevertheless, the deca
width can be accurately obtained even for states with l
times orders of magnitude longer than 2Nb11 @50#.

Overlap probabilitiesudj u2 together with the quasienergie
and lifetimes for the Floquet states with the largestudj u2
values are given in Table I. They largely control the lon
time evolution of the wave packet. Note the very long lif
times signifying quantum localization, which are only lim
ited by the small direct photoionization rates. We find go
agreement between Floquet states of the 3D Rydberg a
with n2

i 50 and the 1D model. The energy distribution ave
aged overDE0'0.04 for the 1D Floquet states is shown
Fig. 11. One intriguing result in Table I is that the lifetime
of the Floquet state No. 2 in 1D and inn2

i 50 are about three
orders of magnitude longer than the other ones. The spe
density in the continuum of this state is about three order
magnitude smaller than that of the other ones, in clear c
respondence to the long lifetime of the state. Similar res

y

FIG. 10. Classical and quantum probability densities as a fu
tion of the parabolic quantum number (n2)0 after K51000 kicks
for ~a! n2

i 50 and~b! n2
i 59 (n054, F0

av520.02, andni5100).
6-11
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PERSSONet al. PHYSICAL REVIEW A 68, 063406 ~2003!
hold for n2
i 50. Note that the relative weight of a give

Floquet state varies asudj u2exp(2t/tj), leading to a nonexpo
nential decay of the system@51#. For 1D andn2

i 50, state
No. 1 dominates for timesK,2000 relevant for experiment
whereas forK.2000, state No. 2 dominates. This leads to
much smaller decay rate for very long times than seen in
5~a!.

The energy distributionr0(E0) and the distribution in the
transverse degree of freedomr0„(n2)0… for the Floquet states
dominating at short times are shown in Fig. 12 forn2

i 50 and
n2

i 59. Comparison with the distribution functions present
in Figs. 9 and 10 clearly shows the direct corresponde
between the localized wave functions and the dominant F
quet states.

It is instructive to directly compare the spatial represen
tion of the dominant Floquet states~Fig. 13! with the initial
states~Fig. 2!. While the overall extent in coordinate spa
remains unchanged the regular nodal pattern is destroyed
to the coherent superposition of a large number of unp
turbed states for the eigenstates of this nonseparable p
lem.

TABLE I. Overlap probability to the initial state, real part of th
quasienergies, and lifetimes for some Floquet states (n054, F0

av

520.02, andni5100).

udj u2 (E j
R)0 (t j )0

1 0.368 21.9631022 5.93102

1D 2 0.165 21.1131022 3.13105

3 0.148 21.4931023 8.03102

4 0.062 21.5131022 8.73102

5 0.049 29.5831023 2.43102

1 0.370 21.9331022 5.13102

3D 2 0.163 21.0831022 3.33105

n2
i 50 3 0.145 21.1931023 6.13102

4 0.061 21.4731022 6.63102

5 0.051 29.2931023 2.23102

1 0.333 21.4031022 1.23103

3D 2 0.144 23.5831023 9.53103

n2
i 59 3 0.114 25.5231023 9.43102

4 0.072 24.1731023 2.93103

5 0.055 22.6731022 4.43102

FIG. 11. Energy distributions averaged overDE0'0.04 for sev-
eral Floquet states of the 1D model. The state labels correspon
those in Table I (n054, F0

av520.02, andni5100).
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An alternative means to view quantum localization is t
analysis of the phase space rather than the coordinate s
representation of the Floquet states. We therefore calcu
the Husimi phase-space distribution of the Floquet states
Cartesian coordinates, it is defined as

WH~rW0 ,pW 0!5U E d3rW08c~rW08!w* ~rW08 ,rW0 ,pW 0!U2

, ~5.6!

where

w~rW08 ,rW0 ,pW 0!5ANe2urW02rW08u2/2a0eini r
W
08•pW 0 ~5.7!

is a minimum-uncertainty Gaussian wave packet with n
malization constantN. We proceed by transforming to cylin
drical coordinates,x5r cosf, y5r sinf, andz5z. Due to
the cylindrical symmetry of the wave function, the result
independent off. Setting pf50, we obtain the function
WH(z0 ,pz0

,r0 ,pr0
) ~see Ref.@52#!. We choose the squeezin

parametera05\051/ni such that the width is symmetric in
scaled canonically conjugate coordinates (z0 ,r0) and mo-
to

FIG. 12. Distributions in energy of the dominant Floquet sta
~number 1 in Table I! for ~a! n2

i 50 and~b! n2
i 59. Insets: distribu-

tions in (n2)0 (n054, F0
av520.02, andni5100).
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menta (pz0
,pr0

). Consequently, the Gaussian wave pac

has a width 1/Ani in both z0 andpz0
and inr0 andrp0

.
The Husimi distribution of the 3D Rydberg atom d

scribes a four-dimensional distribution which is difficult
visualize. We therefore view the cross section in two pla
similar to classical Poincare´ surfaces of section. We first con
sider the most elongated parabolic initial state withn2

i 50.
To emphasize the similarity to the 1D case, we cut the H
simi distribution atr05pr0

50 and calculate a cross sectio

along thez0 andpz0
axes. We show contour plots of this c

together with the Husimi distribution for the 1D model
Figs. 14~a! and 14~b!. The two distributions are practicall
identical and display clearly the localization in phase sp
in the vicinity of, but not coincident with, the initial hydro
genic torus. One of several@34,53# mechanisms responsibl
for quantum localization is the ‘‘scarring’’ of the Floque
states around unstable periodic orbits@12,35#. In the 1D case,
it is easy to find the unstable periodic orbits~UPOs! @see Fig.
14~a!#. Note that the UPO which corresponds to the dom
nant Floquet state encircles the nucleus twice before ret
ing to the same point in phase space. The Husimi distribu
is localized near the classical unstable fixed points. The
of the distribution around the fixed points is in the order
\0. ~The area\0 is indicated by the size of the box!.

The same UPO exists also in the 3D case, namely, in
limit r0→0 andpr0

→0, and is depicted in Fig. 14~b!. We

also show in Fig. 14~c! a cut along ther02pr0
plane taken

at z051.9 andpz0
520.2, which corresponds to a peak

Fig. 14~b!. The figure illustrates that the Husimi distributio
in the r0 and pr0

plane is concentrated nearr05pr0
50.

Taking into account the uncertainty inr0 andpr0
~indicated

FIG. 13. Contour plots of the spatial probability density of t
dominant Floquet states~state number 1 in Table I! for ~a! n2

i 50
and ~b! n2

i 59. (n054, F0
av520.02, andni5100).
06340
t

s

-

e

-
n-
n

ze
f

e
by the box!, we can interpret the structures seen in the f
3D Husimi distribution forn2

i 50 as being caused by ‘‘scar
ring’’ around the UPO atr05pr0

50 already found in 1D.
We are thus able to verify that the Floquet states in the
case for the most elongated initial state (n2

i 50) localize in
phase space around the UPOs.

An interesting question is whether the ‘‘scarring’’ of th
Husimi distribution around the UPO exists also for the le

FIG. 14. Contour plots of the Husimi distributions of the dom
nant Floquet states~state number 1 in Table I! for ~a! the 1D kicked
atom and~b, c! different cuts in the 3D case withn2

i 50 (n054,
F0

av520.02, andni5100). The boxes indicate in each case the s
of \0. In ~a! and~b!, the points denote the unstable fix points of t
corresponding unstable periodic orbit~UPO!. The numbers in~a!
indicate the time ordering within which the fix points are visite
The thick line in~c! denotes the contour for half of the maximu
value.
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elongated initial state withn2
i 59, which explores the four-

dimensional phase space. Since it is difficult to display
4D Husimi distribution, we display in Fig. 15 a three
dimensional Husimi distribution obtained by integrating ov
pr . Specifically, we show the surface taken at 1/4 of
maximum value. Note that the Husimi distribution is loca
ized close to the plane with tanr/z536°, where also the
initial state was situated. The localization observed in Fig.
is most likely due to unstable fixed points of UPOs explori
the 4D phase space. So far, we have not succeeded in
tifying the relevant UPOs but leave this challenging task
future studies.

VI. CONCLUSIONS AND OUTLOOK

We have shown that quantum localization takes place
the three-dimensional kicked Rydberg atom. The quan
survival and recurrence probabilities are significantly lar
than the classical values and the quantum diffusion b
along the energy axis and the parabolic quantum numben2

FIG. 15. ~Color online! Three-dimensional representation of th
Husimi distribution integrated overpr0

of the dominant Floquet
state~number 1 in Table I! for n2

i 59. We show the contour surfac
taken at 1/4 of the maximum value. Projection of the data onto
surfacez050 is indicated (n054, F0

av520.02, andni5100).
cs

ri
.
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n
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is suppressed. We have demonstrated localization for
different initial states:~a! the most elongated parabolic sta
for which we find close similarities to the earlier studied 1
model and~b! a less elongated parabolic state with^cosu&
'0.8, i.e., where already the initial state explores the full
dynamics. To our knowledge, this is the first detailed ver
cation of quantum localization in the 3D kicked Rydbe
atom.

We were able to extract the relevant Floquet states,
eigenstates of the period-one time-evolution operator, for
3D kicked Rydberg atom by harmonic inversion. Localiz
Floquet states directly correspond to the quantum local
tion observed in the time-dependent wave function. The H
simi distributions of the Floquet states are localized in ph
space both for the most elongated initial state as well as
less elongated initial states. For the most elongated parab
initial state, the Husimi distribution localizes around th
same unstable periodic orbits as in the corresponding
case.

Our analysis predicts that quantum localization should
observable in the survival probabilities for frequencies
low as n0'4 and average fieldF0

av'20.02 within 200 to
300 kicks atni'350 if the Rydberg atom is initially prepare
in an elongated parabolic state. This quantum effect sho
appear after a time oft*50Tn , which is earlier than the time
for the first full revival of a wave packet after subjecting th
atom to a single ultrashort half-cycle pulse expected atn
>(n/3)Tn'110Tn @36#, thus posing a less stringent requir
ment on quantum phase coherence in the experim
Clearly, quantum localization in the recurrence probabil
would be observable at even much shorter time scales
would partial revivals. The recurrence would, in turn, requ
a more sophisticated detection scheme such as resonan
ization of the recurrent initial state. On the theoretical si
identification of unstable periodic orbits that explore the f
4D phase space and are responsible for scarring in hig
dimensions remains a challenging task.
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