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Quantum localization in the three-dimensional kicked Rydberg atom
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We study the three-dimension&D) unidirectionally kicked Rydberg atom. For parabolic initial states
elongated in the direction of the kicks we show that the ionization of the quantum system is suppressed as
compared to the classical counterpart and that the quantum wave function is localized along all degrees of
freedom, whereas the classical system is globally diffusive. We discuss the connection to the previously studied
one-dimensionallD) model of the kicked Rydberg atom and verify that the 1D model is a good approximation
to the 3D quantum case in the limiting case of the most elongated initial states. We further study the quantum
phase-space distributiofiHusimi distribution) of the eigenstates of the period-one time-evolutibioque}
operator and show that the eigenstates are localized in phase space. For the most elongated parabolic initial
state, we are able to identify the unstable periodic orbits around which Floquet states localize. We discuss the
possibility of observing quantum localization in high Rydberg states>#100.
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I. INTRODUCTION berg atom and the kicked rotor is the presence of a con-
tinuum of the unperturbed atomic system, leading to the
The classical-quantum correspondence in the long-tim@ossibility of decay of the system. On the other hand, the
evolution of classically chaotic few degrees of freedom sysiain differences to the harmonically driven atom are the
tems has become one of the intensively investigated issues presence of higher harmonics in the periodic perturbation,
the field of “quantum chaos[1-3], i.e., the quantum dy- which prevents a direct mapping onto a photonic localization
namics of classically chaotic systems. One key feature iglescription[3,12], and the unidirectionality of the field lead-
termed “quantum localization,” i.e., the localization of the ing to a preferred direction in space. Moreover, the experi-
wave function while the corresponding classical distributionmental studies of the periodically kicked Rydberg atom have
shows diffusion[2,3]. Primarily two model systems have peen performed at much higher principal quantum number
provided considerable insights into this phenomenon: the pgn=350), i.e., much further into thesem) classical regime.
riodically kicked rotor[4—8] and the Rydberg atom in a pggth experimental and theoretical observation of quantum
harmonic electric driving field3,9-19. Recently, a third  gtects such as localization or revival in such a system re-
model s‘)‘/s_tem bas become expenm_entally acces$ilfe mains a challenge.
18], the “kicked” Rydberg atom, that is, the hydrogen atom The aim of the present paper is the identification of quan-

perturbed by a periodic sequence of ultrashort unidirectiona) P T : ) i
pulses. The experimental study of this previously theoretﬁum localization in the three-dimensiondD) kicked Ryd

cally investigated systeffl9—24 generated a large number berg atom and the investigation of the prospect of its experi-
of investigations, see, e.g., Ref25—30. One common fea- mental verification. Classical simulations within the

ture of these periodic systems is the discordance betwedf2Mework of the classical-trajectory Monte Carlo method
quantum and classical dynamitdl] when the classical dy- have proven remarkably successful in describing experimen-

namics is strongly diffusive. The quantum suppression of@ data for alkali Rydberg atoms prepared ip atate with
diffusive motion in classical phase space for finfieis ~ Principal quantum numbens>350 [17]. Distinct quantum
caused by a variety of mechanisms, only some of which ar&ffects have so far been elusive. Quantum localization, i.e.,
well understood. For the kicked rotor, it could be shown thatthe suppression of classical diffusion and ionization, would
a one-to-one mapping onto the Anderson localization probbe one clear signature qf classical-quantum discordance. An-
lem [5,32,33 in disordered solids exists. Localization has Other one would be revival6]. Both of these features re-
also been extensively analyzed for the microwave driven Ryduire the maintenance of phase coherence over many orbital
dberg atom[3,10-15. In this case, different localization PeriodsTe, and, therefore, tight control of stray fields in the
mechanisms have been identified, such as Anderson localiz&xperimental setup. We will in the following delineate the
tion [11], “scarring” of the Floquet states by unstable peri- gxperlmental parameter regime for which quantum localiza-
odic orbits[12—14), and suppression of quantum phase flowtion should be observable. On amore fundamental level, the
by cantori[34], i.e., broken tori. dependence of quantum localization on the number of de-
Recently we found first evidence of quantum localizationdrees of freedom is of intrinsic interest. For the kicked atom
for the unidirectionally and periodically kicked Rydberg at- with impulsive momentum transferﬁﬁ along a fixed &)
oms by studying a one-dimensiondD) model [35]. The axis thel, projection of the angular momentum is con-
present system differs from previously studied ones in sevserved. The system is therefore a time-dependent two degree
eral aspects. The main difference between the kicked Rydsf freedom system. Quantum localization is usually detected
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as a suppression of ionization, i.e., the suppression of diffu- V(t)=r-F(1). (2.4
sive motion along the energy axis. The phase flow of the
wave packet along a second degree of freedom, such as, e.fh, this paper we focus on the unidirectionally kicked atom

the angular spread, is thus an open question. By contra§}vith constant kick strength, i.eAf):Apz and Ap>0. In

when localization is detected in the recurrence probabilities ;¢ case, one can writé(t) = zF(t) where
simultaneous freezing out of the diffusion in all degrees of

freedom is implied. In fact, a recent study of the recurrence K
probability for the 3D atonj26] gave some indication of the F(t)=—Ap>, S(t+T/2—KT). (2.5
occurrence of localization in low Rydberg statas~(10). k=1

However, an extension to much higherin order to make ] ) . .

contact with the experiment as well as a comparative analytiereT is the period of the kicks, anid the number of kicks.

sis of the classical phase-space structure in order to diseVe place the kicks at the midpoint of the periddi.e., the

tangle localization from stabilization on surviving tori, ap- first kick comes at=T/2. The frequency of the perturba-

pears missing_ We will in the fo”owing present an tion is defined agy=1/T. The Hamlltonlar’(ZZ) is Cylindri-

unequivocal characterization of the quantum localization irfally symmetric about the axis and the magnetic quantum

3D in terms of three alternative measures: suppression dfumber is conserved. Throughout this paper we restrict our-

ionization, stability of the recurrence probability, and ab-selves tom=0 and drop the indexn.

sence of quantum diffusion in a globally chaotic phase-space We solve the time-dependent Sctiimger equation

region. Moreover, we will identify Floquet states with a 5

small imaginary part of the quasienergies scarred by unstable .0 _

periodic orbits. |¢9t|l’/j(t)> HO[$ (D) (2.6
The plan of the paper is as follows: We start by presenting

the method used for our numerical studies in Sec. Il. Thédy means of the pseudospectral metfig€l]. Since the per-

relation between the 3D kicked Rydberg atom and the previturbationV(t) [Eq. (2.4)] is periodic in time, the operatdy

ously studied 1D model is discussed in Sec. llI. In Sec. Ivdescribing the time evolution of the state afteperiods,
we work through the different measures for quantum local-
ization and identify a region in parameter space for an ex- [(KT))=U(KT)|4(0)), 2.7)

perimental verification of quantum localization. We present,
Floquet states and the “scarring” around unstable periodidS © )
orbits in Sec. V followed by a short summary. Atomic units OPeratoru(T), i.e.,
are used unless otherwise stated.

ompletely determined by the period-one time-evolution

U(KT)=U(T)X, (2.9
II. METHOD where

The experimental realization of the kicked Rydberg atom T = ~iH.T/? iA CiHLT/?
has been achieved by exposing alkali atoms with initial prin- U(T)=exp(—iHaT/2)exp(iApZ)exp —iH aT/2). 2.9
cipal quantum numbem;~ 350 to a train of up to about one '
hundred equispaced half-cycle pul$8§,30,37. The pulses e note that Eq(2.9) resembles the split operator algorithm

in the electric fieldF(t) have a widthT, which is much  which is, however, exact in the present case of delta-shaped
shorter than the period of the unperturbed classical orbitakicks rather than an approximation to ordet.

motion, Tp<T0,b=27rni3. Each ultrashort pulse therefore  The free evolution operator
transfers a net momentum or “kick” to the electrfdg],
exp(—iH 4T/2) (2.10

Ap= —f F(tdt. (2.)  is calculated in the energy representation, the eigenbasis of
H,, as

The kicked atom is described by the Hamiltonian expl —iH T2 |nly=exgl —iey T2)nl)  (2.19)

H(t)=H, +V(t), (2.2 with
where (ro|nly=up(r)Y,(cosb)/r. (2.12
H _E_i 2.3 Here Y,=Y|m:° are the spherical harmonics ang, and
a2 |f| ' un(r) are the eigenvalues and eigenfunctions of the radial

Schralinger equation,

is the unperturbed atomic Hamiltoniagm.andr are the mo- £ 1 I+l
mentum and position of the electron, respectively. The time- _ _= ( )
dependent perturbation is 2dr2 r 2r2

Uni(r)=enupn(r). (2.13
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Solving Eq.(2.13 in a finite domain in coordinate space, 0.03 3
uy(r) coincides with the hydrogenic bound states with prin- ;
cipal quantum numben for the lower portion of the spec- 0.02 .
trum n<n, (for a numbern, to be estimated below ) Ec-/

whereas the eigenstates fq}; with n>n,, provide a discrete
representation of the continuum. In generals referred to
as the pseudostate number.

0.01 e

Pseudo spectru

_—

Energy [a.u.]

Evaluation of the boost operator 0.00 - i
’ Yaull Hydrogenic spectrum
B=expizAp) (2.149
-0.01
in an atomic energy eigenbasis for high Rydberg states ant .
continuum states has proven to be numerically difficult and 0.02

unstable[40]. The operator is, however, diagonal in the co-
ordinate representation. We therefore transform the time- 20 40 60 80 100 120 140
evolved statg W (t)) to a coordinate space representation Pseudostate number

[r=1ré), FIG. 1. Pseudospectrum f&®™®*=2000 a.u.,N=250, andl
=0, which yields a cutoff energf.~0.019(see texk
(roly(v)=2 gi(tr)Yi(coso), (219
numerically using the Legendre pseudospectral method. An
where example of the energy specttg, of the unperturbed Hamil-
tonian is shown in Fig. 1 for=0. The lowest,, values for
gi(t,r) =2, (rénl)(nl]¥ (). (216  N<ny are independent dfand agree with hydrogenic ener-

n gies in up to 15 digits. The corresponding eigenfunctions
agree with hydrogenic wave functions in up to 8 digits. This
is true as long agr),<R™> where(r),=2n? is the radius
of the corresponding hydrogenic state. We thus have a cutoff

g1/ (t7,r)=2 gi(t",n[I'|explir Ap coso)|I], for exact hydrogenic statesy,<R™2. Thereafter, the
! 2.17) pseudospectral energies, bend upwards, corresponding to
the hard wall boundary conditions B"® The eigenfunc-
wheret~ andt® denote the time right before and right after tions for n>n, represent states within the finite box with a

B mixes, however, the angular momemta

a kick, respectively, and wavelength  of approximately R"n and &,
) ~(7n/R™)2/2. This is true fom up ton~N/2 leading to a
[I"[exp(ir Ap cos6)|1] cutoff in energy,E., of the order of N/R™)%8. The
1 , pseudostates with>n,, provide a discretized representation
=f0 d(cosh) Y| (cosh)e' 4P Y (cosh) of the continuum. Since their densitifor a given|) is

p(E)=mE/2IR™ the density of discretized states in the
(218  continuum can be controlled. The pseudospectral method is

. : .able to give a reliable representation of the states of the dis-
denotes a matrix element in angular momentum space whilé

being still a local function irr. We evaluate the integréiEq. Cretized continuum using as little as two grid points per half

(2.18] by a Gauss-Legendre quadrature. Subsequently wyave. Another advantage is that the transformation between

perform an inverse transformation back to the energy repre@nergy basis and radial coordinate basis employs a Legendre

sentation in order to evaluate the free evolution for the secduadrature, which can be performed to machine precision.
ond half of the periodsee Eq(2.9)]. This allows us to follow the ang—'ume eyolu'uon with very
This scheme for solving the Scitiager equation faces good accuracy10 000 kicks with a relative error less than
two numerical difficulties: the first one is to solve B8.13 ~ 0-1%). The typical parameters for the calculations presented
for a large number of states subtending the continuum. Th# this publication areR™=2.5x10° a.u. andN=1800
second difficulty is to calculate the transformation betweerleading toE.=6X 10~° a.u. We include a maximum number
the energy basis and the local radial coordinate basis effief angular momenta in the calculations typically of the order
ciently for a large number of kicks without accumulating of I™®=100.
numerical errors. Both problems can be solved by means of The numerical time propagation of wave functions that
the pseudospectral method. contain a significant admixture of continuum states always
Within the pseudospectral method a maximum radiugaces the difficulty of spurious reflectiorisee Ref[41] and
R™is chosen and the intervak [ 0,R™®] is mapped onto a references therein The present method allows to simulta-
new variablex e[ —1,1] by a nonlinear mapping optimized neously control two types of reflections. The hard wall
for the Coulomb singularity. Within this interval we employ boundary conditions introduced et R™® can cause spuri-
N collocation points. The mapped Hamiltonian is calculatedous reflections in coordinate space. We therefore employ ab-

063406-3



PERSSONet al. PHYSICAL REVIEW A 68, 063406 (2003

sorbing boundary conditions by multiplying the wave func- to unidirectional kicks. Unlike the harmonic driving field, the
tion in the local coordinate representatigy(t,r) with the  unidirectional fieldF(t) defined by Eq.(2.5 allows for a

masking function distinction between the fields paralleh p>0) and antipar-
allel (Ap<0) to the elongated initial state. For the unidirec-
M.(r)= 1 (2.19 tionally kicked atom, a close correspondence between the 1D
(r)= .

and real 3D dynamics is only expected fop>0 [45].

To clarify the relation between the dynamics generated by
after each kic42]. R and Ry are typically 0.8™* and  the 3D HamiltoniariEq. (2.2)] and the 1D moddIEg. (3.1)],
0.01R™ respectively. In addition, there is a second class ofye express the 3D Hamiltonian in parabolic coordinates de-
reflections to be considered. As the kicks accelerate the elegined by ¢=r +z, »=r—z, and tanmp=y/x,
tron to high positive energie€ can approach the cutoff
energy E.. After transformation to the energy basis, we 1 4 d/ d 4 d d
therefore use an additional masking function for the pseu- H(¢,7,¢)=— 5[ (5 ) ( )

1+exd (r—Re)/Ry]

dospectral basigl), E+ndé\>dé) E+pdy) Tdy
1 d? 2Z ¢
1 — o= s 7
Me(E)= (2.20 e d¢2] gy 2 T 3.2

1+exd (E—E")/Ey]

by which the wave function in the energy representation id1€7€:Z=1 is the nuclear charge. In the following we con-
multiplied after each time-evolution step. Typicallg’  Sider onlym=0 and drop alimand ¢ dependent terms.
~0.8E, and Ey,~0.02E.. In our case of unidirectional The static part of Eq(3.2) is separable in parabolic coor-
kicks, the results are virtually independent of the shape of thélinates and yields the well-known parabolic stat¥r)
masking functions, since any small portion of the wave func-=U1(§) Ux(7) [46], examples of which for high Rydberg
tion being spuriously reflected will be accelerated back tostates (=100) are displayed in Fig. 2 and which will be
wards the boundary by the following kicks. As a result of theemployed in the following as initial statestat 0. Parabolic
masking in both coordinate and energy spaces, the time evétates can be labeled by the principal quantum numpand
lution ceases to be unitary. It is nevertheless possible tthe parabolic quantum numbemg,n, with the constrainn
achieve a proper representation of the part of the Hilbert=n;+n,+|m|+1. We consider in the following andn; to
space relevant for the localization, since the masking elimibe the independent variables by which we label the states.
nates only the outgoing continuum wave packet without af-The factor functionsi, , are solutions to the equation
fecting the bound-state or localized portion of the wave
packet[29]. Note that apart form the discretization errors for
finite N and cutoffs inR™ and |™® the method does not
contain any further approximations. In particular, large val-
ues of the kick amplitude can be handled. This differs fromHere,g stands for¢ and », respectivelyE=—1/(2n?), and
the Cayley form of the boost operator, epdp)~(1 the separation constants afg=(n—n,—1/2)/n and Z,
+izAp/2)/(1—-izAp/2) used in Ref[26], which is limited to = (n,+1/2)/n. We focus in the following on elongated ini-
small values ofA p. tial states withn,<n;, for which a close connection to the

In the following sections we will frequently use scaled 1D problem is expected to emerge.
units (i.e., all variables are measured in units of the initial et us assume for a moment that the separation ansatz
Rydberg statg which we denote by the subscript “0.” These W (& 5,t)=uy(€,1)uy(n,t) valid att=0 for parabolic initial
units are defined ag=t/(27n?), vo=2mn7/T, ro=r/n?,  states remains valid also fae>0. Using this ansatz, the
po=p n;, andEy=E niz. time-dependent Schdinger equation multiplied by &

+ 7)/(2u,u,) becomes

d d Eg Z =0 3.3
@ 9@ o 412 U 9)=0. (3.3

Ill. RELATION BETWEEN THE 1D AND 3D MODELS

: . o Etplup U, 1d{ d| 1d/ d
In our earlier studies of quantum localization we em- |——| —+ —|=— — — | é—|—— —| n=—| —Z;(1)
2 (u; u u, de\ °d¢) u, dy\ 7d !
ployed a 1D mode]29,35 with the Hamiltonian 1t 1 &/ Uzdnl| "dy
p?2 1 20+ E T e (3.4
ib_"~ _ T2 . .
H*= 2 g qF(t), (3.2 4

Here, Z,(t) and Z,(t) are the time-dependent separation
gonstants subject to the conditi@dn(t) +Z,(t) =Z.
The initial expectation values &f and » att=0 are

whereq>0 andp denote the position and momentum of the
electron, respectively. The relation between the 3D dynamic
and the 1D model has been also studied for the Rydberg
atom driven by a microwave fielf3,10,15,43,4% It was

observed that the agreement between the 1D and the 3D
dynamics improves if a static electrical field is added in the _
direction of the initial stat¢44], a situation somewhat closer (Up| 7uz)=ni(ny+1/2). (3.5b

(uy|€lup)=ni(ni+1/2)=ni(ni—ny—1/2), (3.53
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1.5 ; - - - - . 1d2 X2 1
i (z,t)=| — 5 EJFE_ EJrzF(t) Y, (3.8
(@) n=100, n,=0
10 ¢t - with the pseudoangular momentind= —1/2. Forn;=100

the spatial extension of the wave function is of the order of
10* a.u. and the Coulomb term is 4@imes larger than the
“centrifugal” term. Consequently, neglecting the “centrifu-

05} 1 gal” term \?/2z%, the 1D kicked Rydberg atofiEq. (3.1)] is

Po

recovered.
| @ We turn now to the motion in the degree of freedom. In
order for the separation ansatz to remain approximately

0.0 ! ' ' ' valid, the excursion iny should remain small compared to
05 0. 05 10 15 20 25 that of £&. We explore the condition under which the separa-
Z, bility remains valid. To this end, we collect all terms in Eq.

15 (3.4) containingu, and # to arrive at

i 2 U2:

j (3.9

1+ &l y. d> 2 .d  2Zyt) 7
(b) -

1.0 1

Replacingé/n by their initial expectation valuesé)/( 7)
=B 1=(n—n,—1/2)/(ny+1/2)>1, substituting = 2s,
and proceeding in analogy to E@.8), we find

Po

05
1 A2 Zy(t)
2ds2 282 S

idl/fz(t) _
d(st)

—SF(t) | o(t).

(3.10

In order to transform Eq.3.10 again into the standard form
of the 1D kicked hydrogen atom we assu@gt)~Z,(0)

FIG. 2. Contour plots of the probability density of parabolic and rescale variables as
states in then=100 shell of hydrogen fofa) n,=0 corresponding

-05 00 05 10 15 20 25
2y

to the extreme parabolic state with maximal elongation, éwnd S=S2p,

n,=9 corresponding to a strongly polarized state. The figure is _

drawn in scaled cylindrical coordinateg and po= \/x02+ yoz. p=p/Z,,

We consider first the equation of motion fog(¢,t) which, Tz,BZ%t, (3.11)

in the limit of ny/n,—0, accounts for the motion in the
direction of the kicks. In this limit{7)<(¢) and we can leading to
neglect terms proportional tg on the left-hand side of Eq.

(3.4). Collecting terms in Eq(3.4) containingé andu,; and d o 1d> XN 1 .. ~—
usingZ,(t)~Z,(0)~1 andZ,(t)<Z, we arrive at ' 'ﬁ‘h(t’s): 2 §+2732*~;*5F(t) Ya(t.s)
(3.12
B d> 2d 2 ¢ _
iug(§t)= —denggdfg—gﬁLEF(t) us(é,t). with
(3.6) . B L
F( )=,8Ap2k ST—KT+T/2). (3.13

Noting that in the limit of an elongated stafe-r + z~ 2z for

z>0, Eq.(3.6) reduces to The strength of the fielfEq. (3.13] is very small due to the

factor B<1 and further, the direction of the kicks is inverted

= - }+2F(t) uy(z,t). compared to Eq(3.8) and pointstowards s=0. For kicks
2d2 2zdz z towards the nucleus, classical stabilization takes place. The
3.7 classical phase space is mixed and the classical as well as the
guantum system can be either stable and nondiffusive or cha-
After transforming the wave function according tg(z,t)  otic [25,30. We therefore expect the dynamics correspond-
=,(z,t)/\z we find the effective Schinger equation ing to the Hamiltonian Eq(3.12 to be either stable or dif-
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fusive at a small rate. Depending on the parameters choser
the motion in then degree of freedom may therefore remain
confined and the approximate separability of the 3D systerr
may be preserved for some time. In this case, chaotic diffu-
sion proceeds mainly in thé coordinate of the 3D system
closely resembling the corresponding 1D system. In general
however, the motion in they degree of freedom is chaotic Qr:?
and the separation ansatz will break down for long times.
There are two scenarios for this: Either the initial state

,(t=0) resides in the chaotic sea from the onset, or the
motion in the¢ coordinate induces a parametric time depen-
dence ofZ, and B allowing trajectories initially residing in
islands that are stable as long as the dynamigsand » are
decoupled to diffuse into the chaotic sea of the coupled dy- 20 -10 0.0 1.0 2.0
namics in analogy to Arnold diffusion and escape to infinity.
Quantum localization, if operational, must therefore suppress
classical diffusion in both degrees of freedom. Note that in
the opposite casép<0, the kicks in Eq(3.12 are directed
away from the nucleus and a much less good agreement be
tween the 1D model and the real 3D dynamics can be ex-
pected[45]. We will numerically investigate the scenario
Ap>0 for the full 3D classical and quantum dynamics be-
low.

(=X
(o}

IV. NUMERICAL EVIDENCE FOR QUANTUM
LOCALIZATION

In this section we probe different measures of quantum
localization for the 3D kicked Rydberg atom. In order to
identify quantum localization instead of trapping in stable
islands, the initial state should be located in the chaotic re-
gion of phase space. We therefore start by analyzing the clas
sical dynamics.

A. Classical dynamics and the initial state

In Fig. 3 we show classical stroboscopic Poincsueface
of sections forvg=4 andApy=0.0314. pg=XgtYo iS @
cylindrical coordinatg.Negativez, values correspond to the
side of the nucleus where the kicks are directed towards theQC_?
nucleus. On this side we find many stable islajfdg. 3a)]
similar to the stable islands found in the 1D model for nega-
tive kicks (leading to classical stabilizatipnin 3D these
islands have a finite width imy and p, [Fig. 3(b)]. For

positivezy, on the other hand, we find no stable islands at all
[Figs. 3a) and 3c)]. To study quantum localization we
therefore will choose initial conditions corresponding to 0.0 0.2 0.4 0.6
states located at;>0. Po

The parabolic eigenstates, as discussed in Sec. Illl ana ]
shown in Fig. 2, are good candidates for locating the initial FIG. 3. Classical stroboscopic Poincaerfaces of section for
state outside any stable islands. We note that the expectatidpe 3D kicked atom withAp,=0.0314 andvo=4. Cuts at(a) po

value of the polar angle of the position vecforcosd=2f, 01 a1d P,,=0, (B) 2=-20 and p,,=-0.05, and (c

for a parabolic state is given via the hypervirial theofatyi] ~ 2o~ *2:0 andp;;=—0.05. The cuts in time are taken half a period
by after each kick.

(dh o |cOSBl b ) =—(h, [cOSTRL| B ). (4. A=pxL-rl|r], 4.2

A . L which points to the perihelion of a Kepler orbit. Note that the
Here, fr = COS (A/|A]) is the polar angle of the Runge- gperator equivalencé.1) holds for all states of a given
Lenz vectorA, shell. Likewise, it holds for classical ensemble averages for a
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given energy shell. The right-hand side of E4.1) can be 1.0
further expressed as

($hn,|cOSOR #7, )= (20,4 1)in-1. (4.3 0.8

Consequently, we can select subensembles of classical initic 5 0.6
conditions representing orbits of a given parabolic state bync_n

selectingA, from within the bin 0.4
(Nh—0.5/n;<(1+A,)/2<(n,+0.5/n;. (4.4 Bl \
) 0.2 \\ ‘-f "\“..
The extreme parabolic state witty=0 is strongly local- 1 I‘ s.‘_
ized near the axis with(cos#)=1—1/n; . States with larger 0.0 Classic = o SN
n5, on the other hand, correspond to “true” 3D states show- 0.02 0.04 0.06 0.08 0.1
ing a larger spread ip,. In view of the Poincarsurface of _ng
section(Fig. 3) we will choose a parabolic initial state elon-
gated in the direction of the kicks with,<n; in order to FIG. 4. Quantum and classical survival probabilities aker

ensure that the initial state lies completely inside the chaotie=500 kicks as a function of average fiekg’ = — Apgvo/2m for
sea. In the following we focus on,=100 andn,=0 ornl,  »o=4, n;=100, andn;=0.
=9. The second choice is motivated by recent experimental _ ) _ )
realization of highly elongated “parabolic” states in very critical field strength for the harmonically driven classical
high n (~350) by photoexciting Rydberg atoms in the pres-System to be globally diffusive i2F§"|~1/(50v5") [3]. For
ence of a small dc field. Values ¢tos6)=0.8 have been the frequency range of the present study this would corre-
reached 48]. spond toF§"'~0.013. By contrast, the 1D positively kicked
Rydberg atom is chaotic for an arbitrarily small field
B. Survival probability strength. Similarly, as the localization theory for the har-
monically driven quantum system explicitly invokes the
We explore now the parameter rangesigf, andvo for — hresence of only a single harmonic component in the driving
the (_)bservatlon of quantum localization. Based on previougg|q corresponding to a nearest-neighbor coupling in the
studies on the 1D kicked atoifi29,35 as well as on the  Anderson model, quantum localization in the kicked atom
harmonically driven 1D and 3D Rydberg atd8110,15, 10-  yith a1l harmonics present at equal strengtbrresponding
calization is expected in the high-frequency domaig, {5 an all-site coupling of the lattigavill be in general more
>2. The range of experimentally available high frequenme%ommexl
is limited by the condition tha}t adjacent_ pulses must be well  \\e now study the classical and quantum survival prob-
separated from each other, i.e., the width of the pulses  gpjjities for the kicked Rydberg atom as a function of the

must be smaller than the periot= T,/ vo Of the kicks.  ¢-g1eq average ﬁeld:gvzl:auni‘l_ The quantum survival

Consequently we require,<T,,/T,. The experimentally probability (Fig. 4) is determined from

realizedT, is of the order of 0.5 ns antly,=27n? is for

n;= 350 of the order of 6 ns, which implies thag should be 5

limited to vo=<4 if we require that the spacing between the Psur(t):n(%nd)El [(nllg(1))]2, 4.7
pulses is at least the threefold widti,/vo>3T), in or-

der to approximately fulfill the requirement of successiveyhijle classical survival probabilities are deduced from the
impulsive perturbations. ~ fraction of electrons being bound at tiheThe average field
_ For t_he ch0|_ce of kick strength;, we note that unidirec-in the Stark Hamiltonia{Eq. (4.5)] leads to a decay via
tional kicks build up an average field with®*=—Ap/T.  cjassical field ionization even without the time-dependent
Hence the Hamiltonia[E_q.(Z_.Z)] can be cast into the time- pertyrbation present whe[F®] is larger than the Stark
independent Stark Hamiltonian threshold at|F§‘|=1/16=0.0625. The classical survival
Hew=H.+ 7 F (4.5 probability for the kicked atom decays within the first few
Stark™ " Tat hundred kicks close to and above the threshold. Rapid clas-
plus an infinite series of higher harmonics of equal strengthsical ionization is convenient for the observation of quantum
localization, implying that we should choogd>0.01. A
first indication of quantum localization is that the quantum
- (4.9 survival probability exceeds the classical one, since this im-
plies a suppression of diffusion towards the threshold. The
The Hamiltoniar{Eq. (4.6)] can be reduced to the one for the quantum survival probability aftek=500 is, unlike the
harmonically driven Rydberg atom with field strengtf®  classical survival probability, fluctuating as a functionFgf
by keeping only then=1 term. Equatior{4.6) suggests both (Fig. 4. However, in the region 0.64|F§"|<1/186, it is con-
similarities and differences between the kicked Rydbergistently much larger than the classical value. For our stud-
atom and the harmonically driven system. For example, thées, we will choose field strengtt&'~ —0.02. Note that for

- T
H(t)=Hgnt 2F?’z E cos{Zwm/T( t— E)
m=1
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1.0 350
300
09 | 250
_, 200 -
Z !
08 | 150 L3244
n_% ) . 100
0.7 o %
0
06 -
0 250 500 750 1000 FIG. 6. Localization number of kick&, at which the quantum
0.5 . : survival probability becomes larger than the classical one by 0.1 as
0 100 200 300 a function of frequency, for F§'=—0.02, n;=100, and different

Number of kicks na.

as they are less likely to visit the saddle point redié8]. To
verify that the suppression of ionization as seen for our par-
ticular choice of parameters is not accidental, we study the
survival probability as a function of both, and n,. We
define an empirical measure in terms of the number of kicks
K. where the quantum survival probability exceeds the clas-
sical one by 10%P3'"(K | ) — PS2(K | ) = APg,=0.1(in

Fig. 5 K_ is indicated by arrows This measure may be
useful to guide the experiment for identifying localization.
Figure 6 reveals tha, , on average, increases with. This

PSur

0 250 500 750 1000 is due to the fact that for a fixed average fi€l§, Apo=
0.5 : : —2wF§’/vy decreases asg, increases. This implies longer
0 100 200 300 lifetimes in the units oK. We further see tha, increases
Number of kicks with niz. This increase is a direct reflection of the fact that
the system becomes more stablaaincreases, as discussed

FIG. 5. Survival probabilitie®,, for F3'=—0.02, vo=4, and
n;= 100 for the classical and quantum kicked Rydberg atomé&)in
we show 3D results fon,=0 (full lines) and 1D model results
(dashed lines In (b) the 3D results fon,=0 (full lines) and for

above.

We note that the decay rate of the quantum system is still
fairly large. This is a consequence of the presence of high
ni2=9 (dashed lingsare shown. The arrows mark the number of hf’;lrmonics in the driving fieI@Eq.. (4.6)]. The. Iatf[er allows a
kicks K_ where the quantum survival probability is larger than thed.IreCt oEe-g.hotonia Wel.” as mrliltlphotphlonlzstlop. \1Ve FI‘;S'
classical one by 0.1 and localization sets in. Insets: long-time befglm_ate _t e direct coupiing to the continuum )y singie-p oton
havior. ionization by applying first-order perturbation theofthe

golden rulg to calculate the decay rates. The Stark Hamil-
our parametersi,=4 andn;=100), the energy difference tonian[Eq. (4.5] in the 1D model is diagonalized on a finite
between the initial state and the energy of the Stark barrier &rid using the pseudospectral method and we sum the decay
—2-F&is equal to the energy of about six photorig}(  rates over all harmonic components in the driving field with
=1o/n;) for the fundamental harmonic. The time evolution " energy large enough to couple the Stark state with the
of the quantum and classical survival probabilities, as showlrgest overlap to the initial Rydberg state to the Stark con-
in Fig. 5, also displays quantum values well above the clastinuum. The sum of the decay rates leads to a lifetime in
sical ones. In addition, the 1D results and the 3D results fopcaled units ofro=760. AtK=1000 this corresponds to a
the most elongated parabolic staté € 0) closely resemble Survival probability of Pg,=0.720, which is practically
each other, as expected from our analysis in Sec. IIl. identical to the valuePs,(K=1000)=0.725 numerically

It is of particular interest that the suppression of ioniza-found for thekickedRydberg atom. We thus conclude that

tion prevails when we increass to cases where already the ionizatic()jn dug_ to diffﬁsive ;preadipg of the v:/lavebpacﬂeg
initial state explores the transverse degree of freedom. Als pposed to direct photoabsorptjois practically absent in

for ni2:9 [Fig. Sb)], a clear signature of guantum localiza- t elnklvciz?/\(/joi%it:mr.esence of the direct ionization channel, it
tion can be seen. Further, both the classical and the quantum. . pres ) N

. o i IS instructive to consider an alternative measure for localiza-
survival probabilities are larger fan,=9 as compared to

: : tion which is more directly focused on the initial state,
n,=0. The latter observation can be understood from thehamely the recurrence probability
fact that ionization proceeds mainly along the “reaction co- ' '
ordinate”z. States that have a larger spread perpendicular to

z(i.e., Iargerniz) are therefore more stable against ionization Pred K)=[{(0)|s(KT))|2. (4.9
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1073 ‘ o 150 n=100, N=9 —v— 1
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0
10 Va
FIG. 8. Localization number of kick&, as a function of fre-
10.1 quencyv, for F§'= —0.02 and differenn; for initial states with a
o width in the angular degree of freedofuosé)=1—1/n;—2n5/n;
Dig ~0.8.
1072 high n;~350, we analyze the dependencekyf on n; in
P order to assess the chance for experimental observation of
Classical | quantum localizatioriFig. 8). Apart from some fluctuations,
3 y K, remains more or less constant as a function npf
10 ) 1'0 160 1600 within the range ofn; currently computationally accessible
(n;=150). The remarkably weak dependencemrcan be
Number of kicks understood from the fact that the rapid classical decay is
10° : scale invariant while the residual quantum decay, as a
Quantd oL result of quantum localization, is governed by direct photon
; coupling to the continuum. Calculating, as described above,
1 F the lifetime 7o assuming only the direct single-photon
10 ¢ ionization from the initial state through the higher-order
§ components of the driving field to be relevant, we find
o for vy=4 that 74(n;=50)=520, 79(n;=100)=760, and
102 70(N;=150)=825. Assuming an exponential decay with
i these lifetimes for the quantum system and comparing to the
n>=9 Classical classical survival probability, the localization times &g
103 =135, 125, and 124 fon; =50, 100, and 150, respectively.

1'000 These variations are much smaller than the fluctuations with
vy seen in Fig. 8.
The most important point is that quantum localization ex-
FIG. 7. Quantum and classical recurrence probabilities@@r  ists over a wide range afy, n;, andn’,. Extrapolating the
the 1D model and the full 3D system witlh) n,=0 and(c) n,  weakn; dependence to highe leads to the prediction that
=9. The full line indicates a fit of the quantum data to a third-orderthe suppression of classical ionization by quantum localiza-
polynomial (y=4, Fg'= —0.02, andn;=100). tion should be measurable fog~4 andF§'~ —0.02 within
200-300 kicks even at;~350 provided the initial state in

The classical recurrence probability is the probability for thethe experiment is prepared in a strongly elongated state with

electron to be in an energy and angle bin corresponding t6c0s6)=0.8. This parameter range appears to be accessible

the initial state. The quantum recurrence probabilities forn current experiments.

both the 1D and the 3D caséBig. 7) are strongly fluctuat- , .

ing, which is a signature of quantum beats. Their average C. Spreading of the wave function

value is, however, much larger than the classical value, indi- Quantum localization implies that the quantum wave

cating the suppression of diffusion away from the initial packet remains well localized whereas the corresponding

state. Further note that the decay of the classical recurrenegassical density distribution diffuses strongly. This is ex-

probability is stronger fon,=9 than forn,=0, indicatinga  pected to hold forll degrees of freedom. We first consider

stronger diffusion in the parabolic degree of freedom for thethe reduced density as a function of energy which measures

less elongated classical state. the spread in energy and, in the present case, also the spread
Since current experiments are primarily performed at veryalong the reaction coordinat(or &),

1 10 100
Number of kicks
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2 [(nnzl(K))Z/A(En)o - (quantum (4.9a

po((En)o K)={
drdpf(r,p,K)/A(E,)o (classical, (4.9b

(Eno<(En)o<(En+1o

where C~En)o:[(En71)o+(En)o]/2, A(En)oz[(En+1)0 V. FLOQUET STATES: WAVE FUNCTIONS AND HUSIMI

—(En_1)0l/2, andf(r,p,K) is the classical phase-space dis- DISTRIBUTIONS

tribution afterK kicks. Note that the initial density in both We consider now the Floquet states rather than the time-
the quantum and the classical cases has a narrow peak @folved wave packet. They are the eigenstates of the period-
scaled energ¥,= —0.5. The densities shown in Fig. 9 peak one time-evolution operatdiEq. (2.9]. The Floquet states
at aroundE,=— 0.5 and clearly reveal that the quantum dis-| ") satisfy the eigenvalue equation
tribution in energy is much narrower than the classical one
after a large number of kicki for all cases. We find local- U(T)|¢])=exp(—iTE)|¢) (5.9)
ization in the 3D case along the energy coordinate rfpr ) . ) R ol .
=0 as well as fon,=9. Moreover, the energy distribution With the complex quasienergie§ =&y —i&j. The time-
of the 1D kicked Rydberg atom mimics the distribution in €VOIved wave packet (KT)) can be written as a coherent
3D. superposition of Flogquet states,

We consider now the reduced density as a function of the
“transverse” degree of freedom, i.e., as a function of the |[p(KT))=2 djexp( —iKTE)|4P), (5.2
scaled parabolic quantum number,),=n,/n;, ]

whered;=(y(0)| #] ).

n >, [(n"nyl(K))H|? (quantum Due to the finite size used in our numerical calculations,
_ n’nj, i.e., the cutoffs in radius and enerdy(T) is nonunitary and
Pol(N2)o)= . . the imaginary part| describes a probability flux out of the
nif drdpf(K,p,r) (classical finite Hilbert subspace considered. Provided that the sub-
(4.10 space is large enough to represent resonances and localized
states, the flux out of the finite Hilbert space corresponds to
subject to the constraint a physical flux away from the atofnather than a numerical
artifac and small& j can be interpreted as the inverse life-
(N)o—0.5h;<nj/n"<(ny)o+0.5hn, (quantum, time of Floquet states, i.e.l';/2=&] [49]. Moreover,

Floquet-states with very smdll; can be candidates for states
N _ _ . representing quantum localization. Note that due to the pres-
(N2)o=0.5hi=<(1+A,)/2<(nz)o+0.5h; (classm?l 1y ence of the direct one-photon ionization channel, a localized
' state will have a nonvanishing value Bf.

To characterize the localized part of the wave function, the_. In the 1D.case, we can obtain ququet states by diagonal-
sum in Eq.(4.10 is taken over only bound states, and cor- 1Ing a matrix representation d!j(T) n the pseudospe_ctral
respondingly the integral is limited t&<0. The quantum basis. Unfortunately, the matri(T) in the 3D case is a

distribution pg((n,)o) remains well localized for the maxi- very large matrix the size of which is I'T**N2)

max i maxe ~ i i
mally elongated initial state which corresponds to a narrowx(I N/2). Typically, ( N/2)~10° and the matrix is

peak at 0i2)0=0 [Fig. 10@)] as well as for the state with not sparse since the kick mixes all energies and angular mo-

NN _ menta. Direct diagonalization is thus out of reach. Instead,
moderate transverse excitatipny)o=0.09, Fig. 10)]. In o exiract the relevard; from the autocorrelation function

both cases, the quantum distributions remain considerablgy means of harmonic inversiof50]. The autocorrelation

more confined Comparegl o their classical cou.nter.part.s. function is defined as the projection of the evolved wave
As a byproduct, we find that quantum localizationnp packet onto the initial state

justifies the applicability of earlier 1D simulations since
quantum mechanics remains practically one dimensional. On  a(KT)=ay={((0)|#(KT))=(4(0)|U(T)¥|4(0))
the contrary, the classical system spreads in the parabolic
degree of freedom and explores the full three-dimensional
space. This indicates a stronger coupling between the dy-
namics along and # (in line with the discussion in Sec. Il

Not only the diffusion alongt but also the coupling tay is  In order to calculate the relevant Floquet state$T) is
quantum mechanically suppressed. Thus quantum localiz&xpanded in a reduced set with basis functidiss,)
tion in all dimensions is observed. =U"|Bo) where|Bo)=|1(0)) is the initial state. Because of

=2 d?exp(—iKeT). (5.3
J
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FIG. 10. Classical and quantum probability densities as a func-
tion of the parabolic quantum numben,j, after K=1000 kicks
for (@) n,=0 and(b) n}=9 (vo=4, F§'= —0.02, andn;=100).

2 Upbl)=2 e 1o, b)) (5.5
n’ n’

with the overlap matrixS,,»=a,, . The resulting eigen-
values and eigenfunctions in the restricted basis give the
quasienergies and coefficient§ only for those Floquet
states that have sizable overlap with the initial state. Typi-
cally, less than 1000 Floquet states contribute to the autocor-
relation function, restricting the si2¢, of the basis sefi3,)

to less than 1000. Indeed, using too large a valul of the
diagonalization becomes unstable since the null space of the
matrix U, becomes largéi.e., the rank of the matrix gets
much smaller thamNg). The number of time steps we must
calculatea(KT) is only 2N+ 1. Nevertheless, the decay
width can be accurately obtained even for states with life-
times orders of magnitude longer thahl 2+ 1 [50].

FIG. 9. Quantum and classical probability densities in energy Overlap probzatbilitie:1;d1-|2 together with the quasienergies

for ;=100 afterK=1000 kicks withvy=4 and Fg‘f: —0.02 for
(a) the 1D model and the full 3D system witl) n,=0 and(c)
n,=9.

the symmetryU'(T)=U(T), where the superscriptstands
for transposition, we denotég,| as the transpose df3,,)
(but not the Hermite conjugate Thus {B,|={(Bol(UM"
=(Bo|U", which leads to the matrix elements 0{T),

Unn’:<:8n|U(T)|,8n’>:an+n’+1- (5.9

Since the set of statég,,) (n=1,2,3 .. .) is not arorthogo-

and lifetimes for the Floquet states with the largest?
values are given in Table I. They largely control the long-
time evolution of the wave packet. Note the very long life-
times signifying quantum localization, which are only lim-
ited by the small direct photoionization rates. We find good
agreement between Floquet states of the 3D Rydberg atom
with n,=0 and the 1D model. The energy distribution aver-
aged overAEy~0.04 for the 1D Floquet states is shown in
Fig. 11. One intriguing result in Table | is that the lifetimes
of the Floquet state No. 2 in 1D andm3=0 are about three
orders of magnitude longer than the other ones. The spectral
density in the continuum of this state is about three orders of

nal set, one must solve a generalized nonunitary eigenvaluaagnitude smaller than that of the other ones, in clear cor-

problem to obtain the Floquet states,

respondence to the long lifetime of the state. Similar results
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TABLE I. Overlap probability to the initial state, real part of the 102 . . .
quasienergies, and lifetimes for some Floquet staigs-¢, F§’ 102
=—0.02, andn;=100). ]
B 400
M (6 (o ole"
10 2.,
1 0.368 —1.96x10 2 5.9x 107 > 10° 1
1D 2 0.165 —-1.11x10 2 3.1x10° W 4 [.\-
3 0.148  —1.49x10°3 8.0X 102 & 000 o4
4 0062 —151x10%  8.7x1C? 102 | . (2o
5 0049  —9.58<10°3 2. 4% 102 (a) n'2=0
1 0.370 —1.93x10°2 5.1X 107
3D 2 0.163 —1.08x10 2 3.3x10°
n,=0 3 0.145 —-1.19x10°2 6.1x 107 104 *
4 0061  —1.47x10°2 6.6x 102 -2.0 -1.5
5 0.051 —9.29x10°3 2.2x 107
1 0.333 —1.40¢10°2 1.2x10°
3D 2 0.144 —3.58<10°° 9.5x10° 102 . - ;
nh=9 3 0.114  -552x103 9.4x 10 10 '
4 0.072 —4.17x10°3 2.9x10° = .0
5 0055  -267x102  4.4x1¢ ole™
—_ 10 -ém‘z -
hold for ni2=0. Note that the relative weight of a given @
Floguet state varies dd;|?exp(~t/7)), leading to a nonexpo- & 10"‘0.0 o1
nential decay of the systefiv1]. For 1D andn,=0, state 10-2 5 (o
No. 1 dominates for timek <2000 relevant for experiments (b)
whereas folK >2000, state No. 2 dominates. This leads to a i
much smaller decay rate for very long times than seen in Fig. n2=9
5(a). o S 10-4 . l
The energy distributiopy(Ey) and the distribution in the 2.0 -15 -1.0 -05 0.0

transverse degree of freedgm((n,),) for the Flogquet states
dominating at short times are shown in Fig. 12 gr=0 and
n'2= 9. Comparison with the distribution functions presented FIG. 12. Distributions in energy of the dominant Floquet state
in Figs. 9 and 10 clearly shows the direct correspondencgnumber 1 in Table)ifor (&) nb=0 and(b) n,=9. Insets: distribu-
between the localized wave functions and the dominant Flogons in (n,), (v,=4, F&=—0.02, andn,=100).

quet states.

Itis instructive to directly compare the spatial representa-  ap glternative means to view quantum localization is the

tion of the dominant Floquet statésig. 13 with the initial  5h5sis of the phase space rather than the coordinate space
states(Fig. 2). While the overall extent in coordinate space ronresentation of the Floquet states. We therefore calculate

remains unchanged the regular nodal pattern is destroyed dygs 1y,simi phase-space distribution of the Floguet states. In
to the coherent superposition of a large number of unpercg tesian coordinates. it is defined as

turbed states for the eigenstates of this nonseparable prob-
lem.

E

2
WH(ro,p0)=“d3r6¢(r6)go*(r6,r0,po) , (5.6

102
10° where
A
=) 2 >, > - _lF —F/|2/2 in-F/ -
u;'é 10 @(fo,ro.po)=\/ﬁe 0~ fol™7e@pg!Mifp-Po (5.7)
Q
v
1o is a minimum-uncertainty Gaussian wave packet with nor-

malization constanil. We proceed by transforming to cylin-
. . : . drical coordinatesx=p cos¢, y=p sin¢, andz=z. Due to
100 075 -0.50 -025 0.00 0.25 the cylindrical symmetry of the wave function, the result is
Eo independent of¢. Settingp,=0, we obtain the function
FIG. 11. Energy distributions averaged ove,~0.04 for sev-  WH(Z0,Pz:P0.P,,) (See Ref[52]). We choose the squeezing
eral Floquet states of the 1D model. The state labels correspond farametery=7%,=1/n; such that the width is symmetric in
those in Table | {o=4, F§'=—0.02, andn;=100). scaled canonically conjugate coordinateg,pg) and mo-

0-6
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1.5

10t

Po

FIG. 13. Contour plots of the spatial probability density of the
dominant Floquet statestate number 1 in Table for (a) n,=0
and(b) n,=9. (vo=4, F§'=—0.02, andn;=100).

menta (ozo,ppo). Consequently, the Gaussian wave packet

has a width 1{n; in both z, and Pz, and inpy and Ppy:

The Husimi distribution of the 3D Rydberg atom de-
scribes a four-dimensional distribution which is difficult to

visualize. We therefore view the cross section in two planes

similar to classical Poincamurfaces of section. We first con-
sider the most elongated parabolic initial state with=0.

To emphasize the similarity to the 1D case, we cut the Hu-

simi distribution atpo=p, =0 and calculate a cross section
along thez, and Pz, axes. We show contour plots of this cut

together with the Husimi distribution for the 1D model in
Figs. 14a) and 14b). The two distributions are practically

identical and display clearly the localization in phase space

in the vicinity of, but not coincident with, the initial hydro-
genic torus. One of severf®4,53 mechanisms responsible
for quantum localization is the “scarring” of the Floquet
states around unstable periodic orfitg,35. In the 1D case,
it is easy to find the unstable periodic orhit$PO39 [see Fig.
14(a)]. Note that the UPO which corresponds to the domi-
nant Floquet state encircles the nucleus twice before retur
ing to the same point in phase space. The Husimi distributio
is localized near the classical unstable fixed points. The siz
of the distribution around the fixed points is in the order of
fig. (The aredhi is indicated by the size of the bpx

The same UPO exists also in the 3D case, namely, in th
limit po—0 andp, —0, and is depicted in Fig. 1d). We
also show in Fig. 1) a cut along thepg— Poo plane taken
atz;=1.9 andpzoz —0.2, which corresponds to a peak in

Fig. 14b). The figure illustrates that the Husimi distribution
in the py and Po, plane is concentrated nepp=p, =0.

Taking into account the uncertainty j, and Py, (indicated

n
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FIG. 14. Contour plots of the Husimi distributions of the domi-
nant Floquet stateitate number 1 in Table for (a) the 1D kicked
atom and(b, o different cuts in the 3D case with,=0 (vo=4,
F§'=—0.02, anch;=100). The boxes indicate in each case the size
of fy. In (@) and(b), the points denote the unstable fix points of the
corresponding unstable periodic orlfifPO). The numbers ina)

indicate the time ordering within which the fix points are visited.

%he thick line in(c) denotes the contour for half of the maximum

alue.
by the boy, we can interpret the structures seen in the full
3D Husimi distribution fom,=0 as being caused by “scar-
ring” around the UPO apo=p,,=0 already found in 1D.

We are thus able to verify that the Floquet states in the 3D

case for the most elongated initial statg,£0) localize in
phase space around the UPOs.

An interesting question is whether the “scarring” of the
Husimi distribution around the UPO exists also for the less
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is suppressed. We have demonstrated localization for two
different initial states(a) the most elongated parabolic state
for which we find close similarities to the earlier studied 1D
model and(b) a less elongated parabolic state w{ttps6)
~0.8, i.e., where already the initial state explores the full 3D
dynamics. To our knowledge, this is the first detailed verifi-
cation of quantum localization in the 3D kicked Rydberg
atom.

We were able to extract the relevant Floquet states, i.e.,
eigenstates of the period-one time-evolution operator, for the
3D kicked Rydberg atom by harmonic inversion. Localized
Floquet states directly correspond to the quantum localiza-
tion observed in the time-dependent wave function. The Hu-
simi distributions of the Floquet states are localized in phase
space bhoth for the most elongated initial state as well as for
less elongated initial states. For the most elongated parabolic
initial state, the Husimi distribution localizes around the
same unstable periodic orbits as in the corresponding 1D

FIG. 15. (Color onling Three-dimensional representation of the ¢gse.

Husimi distribution integrated ovep, of the dominant Floquet Our analysis predicts that quantum localization should be
state(number 1 in Table)lfor n;=9. We show the contour surface observable in the survival probabilities for frequencies as
taken at 1/4 qf the .maximum value. Projection of the data onto thgg,y a5 vo~4 and average fieltﬂzg"% —0.02 within 200 to
surfacezo=0 is indicated ¢o=4, F5'=—0.02, andn;=100). 300 kicks ain;~ 350 if the Rydberg atom is initially prepared

o o ) in an elongated parabolic state. This quantum effect should
elongated initial state witim,=9, which explores the four- appear after a time af=50T,,, which is earlier than the time
dimensional phase space. Since it is difficult to display theoy the first full revival of a wave packet after subjecting the
4D Husimi distribution, we display in Fig. 15 a three- 5i0m 1o a single ultrashort half-cycle pulse expected,at
dimensional Husimi distribution obtained by integrating OVer= (p/3)T,~110T, [36], thus posing a less stringent require-
p,- Specifically, we show the surface taken at 1/4 of thement ‘on quantum phase coherence in the experiment.
maximum value. Note that the Husimi distribution is local- clearly, quantum localization in the recurrence probability
ized close to the plane with tafz=36°, where also the \oyid be observable at even much shorter time scales, as
initial state was situated. The localization observed in Fig. 15,04 partial revivals. The recurrence would, in turn, require
is most likely due to unstable fixed points of UPOs exploringg more sophisticated detection scheme such as resonant ion-
the 4D phase space. So far, we have not succeeded in idepation of the recurrent initial state. On the theoretical side,
tifying the relevant UPOs but leave this challenging task forigengification of unstable periodic orbits that explore the full
future studies. 4D phase space and are responsible for scarring in higher
dimensions remains a challenging task.

VI. CONCLUSIONS AND OUTLOOK

We havg shown that quantum localization takes place in ACKNOWLEDGMENTS
the three-dimensional kicked Rydberg atom. The quantum
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