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Parameter-free nonadiabatic correlation-polarization potential for vibrational excitation
in electron-molecule scattering: Application toe-N2 collisions
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This paper introduces a correlation-polarization potential for vibrational excitation in electron-molecule
scattering. This potential generalizes a recently proposed model for elastic scattering@Boufergueneet al., Phys.
Rev. A 59, 2712 ~1999!#. Our potential contains no adjustable parameters and reflects known qualitative
dependencies of correlation and polarization effects on the internuclear separation of the target molecule and
on the position coordinate of the scattering electron. We test our potential on vibrationally elastic and inelastic
scattering from N2 in an energy range that includes the2Pg shape resonance. This resonance gives rise to
intricate oscillatory structures in integral and differential cross sections; these structures are very sensitive to
the correlation effects this potential is designed to model. Oure-N2 cross sections agree well with experimental
and other theoretical cross sections except at energies above the resonance, where experimental differential
cross sections show a pronounced dip at scattering angles below about 60°. This dip is not present in the
theoretical cross sections.
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I. INTRODUCTION

A major practical and conceptual challenge to the theo
ical study of low-energy electron scattering from atoms a
molecules is the inherently many-body nature of the Sch¨-
dinger equation for these systems. Except in the asymp
region, where the scattering electron is detected, this elec
is indistinguishable from target electrons. This quantu
mechanical feature has two consequences, both of w
come into play when the scattering electron is inside
target charge cloud. First, the system wave function mus
antisymmetric under pairwise electron interchange; this
quirement gives rise to ‘‘exchange effects’’ on cross sectio
Second, instantaneous electron-electron Coulomb inte
tions render the independent particle model invalid. T
many-body aspect of the electron-target system gives ris
‘‘correlation effects.’’

The quantum-mechanical requirement that all electr
must be treated equitably prohibits formal partitioning of t
electron-target interaction potentialVint into a sum of single-
interaction terms. Nevertheless, an approximate partition
is a useful guide to devising practical strategies for scatte
calculations and to understanding the physics implied by
resulting cross sections. This partitioning is especially use
in formulations that transform the many-electron-scatter
equation into sets of coupled single-particle equations.
these equations, exchange and correlation effects appea
nonlocal, energy-dependent optical potential. Thus one o
discusses three ‘‘contributions’’ to the interaction potent
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energy: the static, exchange, and correlation-polariza
terms@1,2#:

Vint5Vst1Vex1Vcp. ~1!

The static termVst arises from Coulomb interactions be
tween the projectile and the constituents of the target. T
exchange termVex arises from the antisymmetrization re
quirement. The correlation-polarization termVcp arises from
many-body correlation and induced polarization effects. T
correlation contribution toVcp is a manifestation ofshort-
range bound-free electron-electron correlations. The pol
ization contribution is a manifestation ofintermediate- and
long-range-induced polarization effects that come into pla
outside the target charge cloud. At energies below abou
eV, all three terms in Eq.~1! significantly influence electron
scattering cross sections and must somehow be incorpor
in any theoretical method.

During the past few decades, great progress has b
made towards accurate treatment of all three contribution
Eq. ~1!. Inclusion of electrostatic effects by averaging t
Coulomb potential energy over a Hartree-Fock probabi
density for the target is routine@3,4#; more accurate~e.g.,
configuration interaction! target densities can be used if ne
essary@5#. One can include exchange effects at various lev
of rigor depending on the complexity of the system, t
availability of computational resources, and the required
curacy of the desired scattering quantities. For example,
change can be treated rigorously via solution of the nonlo
coupled integro-differential equations that result from the
tion of the antisymmetrization operator@6#, via basis set ex-
pansions in which the nonlocal exchange potential is
proximated by a separable expansion@7–9# or via a variety
of well-established local model potentials@10–13#. Arguably
©2003 The American Physical Society09-1
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the most difficult of these contributions to include accurat
is the correlation-polarization termVcp, the focus of the
present research.

The easy part ofVcp is the intermediate- and long-rang
polarization potential. One can understand this second-o
~induced! interaction via a semiclassical picture. In this pi
ture, the polarization potential is the decrease in the t
energy of the system due to the fact that the scattering e
tron interacts with a target that has been polarized by
electric field of this electron. Outside the target charge clo
the ~local! velocity of the projectile is low enough such th
the bound electrons respondas though the projectile were
fixed in space. Here the projectile’s motion can be treate
adiabaticallyin calculations of the polarization potential. As
ymptotically, the resulting adiabatic polarization potential
duces to a well-known analytic form that contains the pol
izability tensor of the target.

Proper quantum-mechanical treatment of correlation
polarization effects is formally straightforward but impo
sible to implement without approximation. Within the co
text of eigenfunction-expansion methods, one can treat
relation and polarization effects rigorously by expanding
system wave function in the complete set of~Born-
Oppenheimer! target electronic wave functions, includingall
bound and continuum states. In the resulting coupled sca
ing equations, virtual excitations of energetically inacc
sible ~closed! target electronic states give rise asymptotica
to the polarization potential@14#. If desired, one can dump
this infinity of closed states into an optical potential. Unfo
tunately, the optical potential is energy dependent, nonlo
and, at scattering energies above the first electronically
elastic threshold, complex. Approximations are mandato
and a variety of approximate treatments have been expl
in recent years@15#. In the widely used class of variationa
scattering theories—which include theR-matrix, Schwinger
multichannel, and complex Kohn methods—virtual exci
tions are incorporated by including configuration state fu
tions in the trial wave function of the electron-molecule sy
tem @16–21#. An alternative gambit is to encapsulate th
infinity of states in a few deftly chosen pseudostates@22,23#.

Notwithstanding their appeal, such potentially rigoro
treatments make exceptional computational demands, req
great skill in choosing the excited states~or pseudostates!,
and introduce a problem of correlation balance. In any s
approach, whether or not one explicitly invokes an opti
potential, one must ensure a consistent treatment of bo
bound correlation~amongst electrons in the target! and
bound-free correlation; an imbalance of these two types
correlation can lead to wildly inaccurate results, as has b
demonstrated in Refs.@15,18#.

All of these difficulties become much more acute if t
target contains a large number of electrons and/or is non
ear. Additional problems arise if the scattering process
interest is a rearrangement process such as dissociativ
tachment@24# or vibrational excitation, both of which enta
significant nonadiabatic energy transfer between the en
of the projectile and the target.

One can make the problem even harder by focusing
resonant scattering. At near-resonant energies, the great
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creased collision time enhances the effects of exchange
correlation on cross sections. Among vibrational excitatio
the most sensitive to correlation effects are ‘‘intermedi
duration’’ resonances such as the2Pg shape resonance i
e-N2 scattering@25–30#. Although the energy of this reso
nance is about 2.4 eV, its influence dominates scatterin
energies from about 1.5 to 4.0 eV@31#. At these energies, the
delicate interplay of projectile and vibrational dynamics i
duces dense, complicated oscillations in vibrationally ela
(0→0) and inelastic (0→v) cross sections. Not only the
resonance energy and width but also the particulars of th
oscillatory structures depend critically on the short-ran
electron-molecule interaction. Because of this heighte
sensitivity, resonant vibrational excitation of such a system
a particularly challenging test case for theory@32#.

The cornucopia of difficulties posed by correlation effec
has spawned searches for alternative approaches that se
mimic these many-body effects via a local model potent
Such strategies strive to treat the local, adiabatic polariza
potential that prevails outside the target as accurately as
sible, and to incorporate short-range many-electron corr
tion approximately via a physically motivatedansatz. Ide-
ally, such model potentials should be founded on defens
theoretical approximations and free of parameters that wo
have to be determined from experimental cross sections

Early model potentials in this class allowed~crudely! for
correlation effects by multiplying the known asymptot
form of the polarization potential by a parameter-depende
spherical cutoff function that weakened the asymptotic
tential in the near-target region@33#. More recently, advance
in the polarized-orbital method have led to potentials ba
on the nonpenetrating approximation@34#, which implements
the extreme but effective expedient of ‘‘switching off’’ th
bound-free electron-electron Coulomb interaction whene
the radial coordinate of the projectile is less than that of a
of the bound electrons. The resulting model potential c
tains no adjustable parameters and, for systems on whic
has been tested, gives cross sections in good-to-exce
agreement with results from experiment and more rigor
theory. In electron-molecule scattering, Gibson and Morris
@35,36# developed this philosophy into the ‘‘better-tha
adiabatic dipole~BTAD! potential,’’ the calculation of which
entails linear variational calculations on the electro
molecule system in the field of a fixed projectile@36,37#. The
BTAD potential has been used successfully in calculations
resonant and nonresonant elastic, rotational, and rovi
tional cross sections for low-energy electron impact on m
lecular hydrogen and nitrogen@36,38–43#. Although far less
demanding computationally than, say, calculations based
coupled electronic states or an accurate optical poten
computation of the BTAD potential is somewhat awkwa
because the nonpenetrating approximation forces trunca
of electron-electron matrix elements at a finite upper rad
limit. Moreover, this approximation, while intuitively appea
ing, is hard to contextualize theoretically.

The final class of widely used model correlatio
polarization potentials treats short-range correlation effe
via density-functional correlation potentials that were ori
nally derived for the target. First applied to electron-rare-g
9-2
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scattering by O’Connell and Lane@44#, this strategy was
applied to electron-molecule scattering by Norcross and
laborators~see, for example, Ref.@45#!. The most extensive
use of such potentials has been by Gianturco and collab
tors @46–48#, who have applied them to an impressive va
ety of electron-polyatomic systems@49–52#.

Density-functional-based correlation-polarization pote
tials have the advantages of being real, local, independe
the scattering energy, and calculable from the target ch
density. They have the disadvantage of being short range
of not joining smoothly to the long-range polarization pote
tial. Hence their construction requires that one artificia
join short-range correlation and asymptotic polarizat
potentials via the introduction of an empirically chos
‘‘matching radius’’ ~Ref. @53#, and references therein!. Fi-
nally, studies of the application of such a density-functio
correlation-polarization potential tovibrational excitation of
molecular hydrogen have shown it to yield considerably l
accurate results than the BTAD model@31#.

Recently, Boufergueneet al. @54# introduced a new mode
correlation-polarization potential that incorporates bou
free correlation in a way that is distinctly different from a
the approaches discussed thus far. Their initial applicatio
this model was to elastic scattering from molecular hydrog
with the internuclear separation fixed at equilibrium. In th
application, their correlation-polarization potential involve
an adjustable parameter that they determined by matc
their potential to thee-H2 BTAD potential of Gibson and
Morrison @36#.

We here report a generalization of this model that is f
of adjustable parameters and that incorporates known q
tative features of the dependence of correlation effects on
angular position of the scattering electron and on the in
nuclear separation. To test our model, which we call thedis-
tributed spherical Gaussiancorrelation-polarization poten
tial, we have calculated differential and integral cro
sections for resonant and nonresonant vibrationally ela
and inelastice-N2 scattering.

We commence in Sec. II by reviewing relevant aspects
the potential proposed by Boufergueneet al. and describing
our generalization of it. We then summarize the scatter
theory we used to calculate vibrational excitation cross s
tions. In Sec. III we compare our integral and different
cross sections for resonante-N2 scattering to cross section
from other calculations and from experiment. In Sec. IV
summarize the present work and its implications, and disc
briefly prospects for future related research. Except wh
noted, we use atomic units throughout this paper.

II. THEORY

A. Adiabatic polarization

In the adiabatic model of polarization, a projectile fixed
re ~measured from the center of mass of the target! polarizes
the charge distribution of bound target electrons. The m
energy E0

p of the polarized system, which consists of t
scattering electron and thepolarizedtarget, is lower than the
mean energyE0 of the corresponding unpolarized syste
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The difference between these two energies is the~attractive!
adiabatic polarization potential@55#

VA~re ,R![E0
p~re ,R!2E0~re ,R!, ~2!

whereR[uR12R2u denotes the internuclear separation.~We
consider only diatomic targets.! Quantum mechanically, the
energies in this definition are expectation values of the a
batic ~fixed-re) electron-molecule Hamiltonian

ĤA~te ,re ,R![Ĥm
e ~te ;R!1VCoul~te ,re ,R! ~3!

with respect to the unpolarized and polarized target w
functionsc0 andc0

p , respectively:

E0~re ,R!5^c0uĤAuc0&te
, ~4a!

E0
p~re ,R!5^c0

puĤAuc0
p&te

. ~4b!

In these equations, the subscript 0 denotes the ground B
Oppenheimer electronic state of the target, which for
~unpolarized! N2 molecule is X1Sg

1 . The symbolte denotes
the coordinates of all bound electrons and appears as a
script on the expectation values in Eqs.~4! to signify inte-
gration over all these coordinates. The two terms in the a
batic Hamiltonian~3! are the Born-Oppenheimer electron
HamiltonianĤm

e of the target and the electrostatic Coulom
potential energyVCoul. If the target consists ofNe electrons
andNn nuclei with chargesZn , then the Coulomb potentia
energy is

VCoul~te ,re ,R!5(
i 51

Ne

Vee~ ure2r i u!1 (
n51

Nn

Ven~ ure2Rnu!,

~5a!

where ~in atomic units! the electron-electron and electron
nucleus terms are

Vee~ ure2r i u!5
1

ure2r i u
, ~5b!

Ven~ ure2Rnu!52
Zn

ure2Rnu
. ~5c!

These, of course, are the Coulomb potential energies of
teraction between the scattering electron~at re) and the
bound electrons (r i) and the nuclei (Rn)—all treated as
point particles. All coordinates are defined in a body-fixe
reference frame with thez axis along the internuclear axis
these coordinates are measured with respect to the cent
mass of the molecule.

The purelyadiabatic polarization potential~2! neglects
two important effects. First, the projectile is not actua
fixed; rather, it moves with a ‘‘local velocity’’ that increase
as it nears the target and feels the strong electrostatic at
tion of the nucleus. Hence at small to intermediate values
r e , polarization becomes a dynamic, rather than a sta
phenomenon. In the semiclassical picture, we imagine tha
the scattering electron nears the target, its speed becom
9-3
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large that the bound target electrons can no longer resp
instantaneouslyto changes in the electric field produced
the scattering electron. Near the target, therefore, the indu
polarization potential should depend on the velocity of
electron as well as its positionre . ~The higher the inciden
kinetic energy of the electron, the more important is t
velocity dependence.! Second, for values ofr e comparable to
or smaller than the ‘‘size’’ of the target, indistinguishabili
of the Ne11 electrons in the system causes the adiab
approximation, which singles out the projectile as fixed a
therefore distinguishable, to break down completely. As
scattering electronentersthe target charge cloud, bound-fre
correlation effects become important. Their neglect rend
the adiabatic polarization potential far too strong at sho
and intermediate-electron coordinatesr e .

As the electronleavesthe target charge cloud, withr e
increasing to values larger than a few bohr, the adiab
approximation of Eq.~2! becomes quite accurate.Asymptoti-
cally, asr e→`, the adiabatic polarization potential reduc
to its analytic asymptotic form

VA~re ,R! ;
r e→`

2
a0~R!

2r e
4 2

a2~R!

2r e
4 P2~cosue!, ~6!

wherea0(R) anda2(R) are the spherical and nonspheric
polarizabilities of the target,ue is the ~body-frame! polar
angle of the scattering electron with respect to the inter
clear axis, andP2(cosue) is the Legendre polynomial of or
der 2.~In practice, the value ofr e at which this form accu-
rately represents the polarization potential depends stro
on the target; for small diatomic molecules,r e*10a0 is typi-
cal @56#.! In the asymptotic region, theoretically calculate
polarization potentials can touch base with reality, throu
measured values of the averages ofa0(R) and a2(R) over
the ground vibrational state and of the first derivatives
these polarizabilities with respect toR ~see Table I below and
the discussion and references in Ref.@57#!.

TABLE I. Spherical and nonspherical polarizabilities for N2 av-
eraged over the ground vibrational state. The BTAD and DSG
ues were extracted from the respective correlation-polarization
tentials atr e510a0 . Experimental values are from the work o
Newell and Baird@75# and Orcutt and Cole@76# for the spherical
polarizability and from the work of Miller and Bederson@77# for
the nonspherical polarizability. Structure theory values are from
configuration interaction~CI! calculations of Langhoffet al. @74#
and coupled-cluster~CC! calculations of Maroulis@57#.

a0

(a0
3)

a2

(a0
3)

Experiment 11.74460.004 3.0860.002
BTAD potential 10.980 3.09
DSG potential 11.369 3.58
Structure theory~CI! @74# 11.616 3.1103
Structure theory~CC! @57# 11.7709 3.0716
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B. The spherical Gaussian correlation-polarization potential

The innovation introduced by Boufergueneet al. @54# is
to modelthe scattering electron, which in the adiabatic po-
larization potential is a fixed point charge, by a spheri
charge density that decays with radial distance fromre . In
their model, the rate of decay of this charge distribution d
pends linearly onr e in such a way that as the electron a
proaches the target (r e→0) the density becomes increa
ingly diffuse, while as the electron leaves the targetr e
→`) the density becomes increasingly localized aroundre .

Explicitly, Bouferguene et al. proposed a spherical
Gaussian charge densityof the form

r~r !52S 2j

p D 3/2

e22jux2reu2, ~7!

wherer[x2re is a source point defined relative to the p
sition of the electronre in the body frame andx is the same
point defined relative to the origin of the body frame. Th
density is normalized to correspond to a total charge of21
~in atomic units!. The exponential factorj depends on the
radial coordinate of the scattering electron as

j5br e . ~8!

To ensure that the exponent in Eq.~7! is dimensionless,b
must have dimensions of inverse length cubed. In their
plication to fixed-nucleie-H2 scattering at the equilibrium
internuclear separation, Boufergueneet al. treatedb as a
semiempirical parameter, considering values from 0.1<b
<0.5 @79#.

To implement this model, one modifies the Coulomb p
tential energy ~5! by replacing the elementary electro
charge of the projectile (e→21 in atomic units! by the
charge densityr~r ! to obtain

V̄Coul~te ,re ,R!5(
i 51

Ne

V̄ee~ ure2r i u!1 (
n51

Nn

V̄en~ ure2Rnu!,

~9!

where the electron-electron and electron-nuclei electrost
potentials due tor~r ! are

V̄ee~ ure2r i u![E r~r !

ure2r i u
dx, ~10a!

V̄en~ ure2Rnu![2E r~r !

ure2Rnu
dx. ~10b!

@Throughout this paper we use an overbar to signify qua
ties calculated using the Gaussian charge density~7!.# As the
radial coordinate of the projectiler e→` ~i.e., as the Gauss
ian exponentj→`), Eqs.~10! reduce to the potential ener
gies ~5! for point charges. For smallerr e these potential
energies areweakerthan those of their point-charge counte
parts. Moreover, asure2r i u→0 and ure2Rnu→0, these po-
tential energies approach finite constants. In these resp
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the potential of Boufergueneet al. effectively mirrors quali-
tative aspects of electron-electron correlation effects in m
ecules@59–61#.

The modified electrostatic potential energyV̄Coul is used
in place ofVCoul in the calculation of the polarized and un
polarized system energies of Eqs.~4!. In practice, evaluation
of these energies reduces to the evaluation of matrix
ments ofV̄Coul in the basis used to expand the polarized~and
unpolarized! molecular orbits of the target@36#. Using
Gaussian basis functions greatly facilitates evaluation of
required matrix elements@54#. The correlation-polarization
potential is then calculated by subtraction as

V̄cp~re ,R!5Ē0
p~re ,R!2Ē0~re ,R!. ~11!

The role of the quantityb is now clear: it controls the rate
at which the charge density goes to zero asr 5ux2reu in-
creases fromr 50 at re . As b is decreased, the charge de
sity of the scattering electron becomes less concentr
~more diffuse! around re ; this weakens the correlation
polarization potential. Because the Gaussian exponenj
}r e , this effect is greatest for smallr e ~near the target!; asr e
increases, the weakening of the correlation-polarization
tential diminishes until, in ther e→` limit, the projectile is
again a point electron moving adiabatically in the field
the ~polarized! molecule. In the limit, then, the mode
correlation-polarization potential~11! reduces to the
asymptotic limit~6! of the adiabatic potential~2!.

C. A parameter-free distributed spherical Gaussian potential

The model correlation-polarization potential of Boufe
gueneet al. @54# offers several advantages over model pot
tials based on the nonpenetrating approximation. Most
portantly, the integrals required to evaluate this potential
not cut off. Moreover, these integrals entail Gaussian fu
tions and so can easily be evaluated using quantum che
try codes@59,62#. In application, however, the model pro
posed by Boufergueneet al. suffers from two disadvantages

First, the quantityb is an adjustableparameter. In their
studies ofe-H2 scattering, Boufergueneet al. chose a value
for b to make their potential qualitatively resemble t
BTAD model for this system@36#. Moreover, their calculated
cross sections showed considerable sensitivity tob: no value
of this parameter produced accurate cross sections ove
energy range they studied. The problem of treatingb as an
adjustable parameter becomes more acute when no B
potential is available or when vibrational motion is taken in
account.

Second,b does not depend on the internuclear separa
R or on the scattering angleue . This problem is exacerbate
for scattering from targets that are more anisotropic than2 ,
especially when the scattering dynamics become m
complicated—as in vibrational excitation of N2 . In such
cases, both the long- and short-range aspects of
correlation-polarization potential should depend onR andue
@31,59,60#.

At long range, the extent to which the molecule is pol
izable depends on its internuclear geometry. This depend
06270
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is easily seen in the fundamental properties of the target; e
it appears in theR dependence of the spherical and no
spherical polarizabilities@63# in Eq. ~6!, and is reflected in
all polarization potentials, including the adiabatic potent
~2!. Moreover, the polarizability of the target and the corr
sponding potentials depend on the ‘‘angle of approach’’
the projectile. This dependence onue is evident in the strong
difference between the parallel and perpendicular pola
abilities and in the corresponding adiabatic potentials@36#.
The extremes of this dependence appear when the pro
tile’s incident wave vector is along the internuclear ax
~‘‘parallel approach’’! or normal to this axis~‘‘perpendicular
approach’’!: the polarization potential for the parallel ap
proach ismuchstronger than for the perpendicular approac

At short range, theR andue dependencies of correlatio
and polarization effects are equally important. The qual
tive dependence of electron-electron correlation effects
these variables is known from molecular structure calcu
tions ~see Vol. 2 of Ref.@60#, and references therein! ~see
also Chaps. 5, 7, and 15 of Ref.@59#, and references therein!.
First, because of the highly anisotropic nature of the tar
charge distribution, bound-free correlation effects depend
ue : e.g., the correction to the adiabatic polarization poten
should be different for the parallel approach than for t
perpendicular approach. Second, asR increases, the aniso
tropic target charge distribution encompasses more of sp
Therefore corrections to the adiabatic potential to allow
bound-free correlation should depend onR. These dependen
cies are incorporated into the BTAD potential via the no
penetrating approximation. In our generalization of the p
tential of Boufergueneet al. @54#, we introduce them by
makingb a function ofue andR.

To devise a correlation-polarization potentialVcp whose
dependence onR andue reflects these properties, we esta
lished three criteria. First, asR increases,b should decrease
This criterion ensures that asR increases, the projectile
charge distribution will become more diffuse, strengthen
Vcp. Second, asue decreases,b should decrease. This crite
rion ensures thatVcp is strongest for the parallel configura
tion and thatVcp becomes less attractive asue increases to-
wards the perpendicular configuration. Third,b should
reflect the size of the target molecule. After testing seve
functional forms forb(ue ,R) to enforce these criteria, we
settled on a function that enforces the first criterion by be
proportional to 1/R, the second by depending on the scatt
ing angle as (11sinue), and the third by depending on th
equilibrium internuclear separationReq of the target. The
value of Req is not subject to adjustment; once a target
chosen, its value is fixed, e.g., from tables of spectrosco
data orab initio structure calculations.

The following functional form forb(ue ,R) satisfies these
criteria, is simple analytically, and was the most successfu
producing accurate vibrational cross sections:

b~ue ,R![
1

RReq
2 ~11sinue!. ~12!

With this definition, the electron-electron~and electron-
nuclei! Coulomb potentials in Eqs.~10! depend on the dis-
9-5
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tance betweenre and r i ~or betweenre andRn) and onr e ,
ue , andR, through the dependence on these variables of
exponential factor

j~r e ,ue ,R!5b~ue ,R!r e5
r e

RReq
2 ~11sinue!. ~13!

The factor of 1/Re
2 ensures thatb is species dependent an

dimensionally correct. We shall call this generalization t
distributed spherical Gaussian~DSG! potential@80#.

Evaluation of the DSG potentials in Eq.~10! is straight-
forward. Evaluating integrals over spherical Gaussians
standard part of evaluating one- and two-electron molec
integrals in electronic structure calculations based
Gaussian-type orbital basis functions~see Chap. 9 of Ref
@59#!. In particular, the integrals we must evaluate are j
Coulomb-interaction integrals over Gaussian distributio
For example, to evaluateV̄ee(ure2r i u) we first write 1/r i as
an integral over a Gaussian function, then invoke the Ga
ian product rule to reduce the result to the one-dimensio
integral @62#

V̄ee~ ure2r i u!5A8j

p E
0

1

e22jure2r i u
2u2

du. ~14!

The integral in Eq.~14! is the familiar Boys function@see
Sec. 9.8 of Ref.@59## Fn(h) of order n50 with the argu-
menth52jure2r i u2. This function is related to the incom
pleteG function and thence to the error function

erf~x![
2

Ap
E

0

x

e2t2dt. ~15!

In particular, for ordern50, the Boys function is

F0~h!5A p

4h
erf~Ah!. ~16!

Hence the electron-electron potential energy atr i due tor~r !
is simply

V̄ee~ ure2r i u!5
1

ure2r i u
erf~A2jure2r i u!. ~17a!

Similar machinations for the electron-nucleus potential
ergy yield

V̄en~ ure2Rnu!52
Zn

ure2Rnu
erf~A2jure2Rnu!. ~17b!

Several features ofb that are important to the physics o
the DSG potential are illustrated in Fig. 1. The correspond
projectile charge distributions are illustrated at various int
nuclear separationsR for fixed scattering angleue in Fig. 2
and at variousue for fixed R in Fig. 3.

Figure 1 shows thatas the internuclear separation R in
creases or the scattering angleue decreases, the quantityb
decreases. As illustrated in Figs. 2 and 3,this decrease inb
causes the DSG charge density to become more diff.
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Thus, in this model the correction to the adiabatic polari
tion potential for bound-free correlation is greater for larg
R and/or smallerue . The latter point is especially importan
it ensures that~for values ofr e near the target charge cloud!
the correction to the adiabatic potential will be greater in
perpendicular configuration (ue5p/2) than in the parallel
configuration (ue50). This point is illustrated in Fig. 3.

D. Scattering theory

In scattering calculations based on a model correlati
polarization potential, the full electron-molecule interacti
potential energy in the Schro¨dinger equation is given by Eq
~1! with the correlation-polarization potentialVcp approxi-
mated by the DSG potential of Eq.~11!. In a previous re-
search one-N2 scattering, Sunet al. @40# developed a free-
electron-gas exchange potential that yielded reson

FIG. 1. Dependence on internuclear separationR and scattering
angleue of the functionb(ue ,R) in the definition~11! of the dis-
tributed charge density for the scattering electron in the DSG
tential.

FIG. 2. Charge distributions for the DSG potential for thee-N2

system as a function of the radial distancer from the scattering
electron’s coordinatere . The radial and angular positions of th
scattering electron are fixed atr e52.0a0 andue5p/2 ~perpendicu-
lar configuration!. Distributions are shown for three internucle
separationsR51.5a0 ~solid curve!, 2.02a0 ~dashed curve!, and
2.6a0 ~dotted curve!.
9-6
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differential cross sections in excellent agreement with d
from state-of-the-art crossed-beam experiments. This po
tial, which has proved equally successful for vibrationa
elastic and inelastic excitation ofe-H2 @31,64#, is used in the
present calculations.

The collision dynamics are treated using the body-fra
vibrational close-coupling~BFVCC! method@see Ref.@65#,
and references therein#. This ‘‘hybrid theory’’ @30,66# is
based on the fixed-nuclear-orientation approximation. In
approximation, one neglects the rotational kinetic-energy
erator in the system Hamiltonian and allows for target ro
tion asymptotically, either by averaging over molecular o
entations or via the adiabatic nuclear rotation approxima
@67–69#. By contrast, the vibrational dynamics of the targ
are fully incorporated by converging the expansion of
system wave function in vibrational states.

To derive the scattering equations, we first project
electron-molecule Schro¨dinger equation onto the groun
Born-Oppenheimer electronic state of the target. We t
expand the resulting scattering function in the complete
$fv(R)Y,,L( r̂e)%, where fv(R) are the vibrational wave
functions of the target, and the spherical harmonicsY,,L( r̂e)
are the angular functions of the scattering electron. The la
are labeled by quantum numbers, for the orbital angular
momentum of the projectile andL for the projection of this
angular momentum on the internuclear axis. In the fix
nuclear-orientation approximation,L is a good quantum
number, so the resulting coupled radial equations sepa
into independent sets for eachL ~and, for a homonuclea
target, for each inversion parity!. Scattering channels are la
beled by (v,,;L).

We can truncate the expansion of the scattering funct
retaining a sufficient numberN,

L of spherical harmonics an

FIG. 3. Projectile charge distributions for the DSG potential
the e-N2 system as a function of the radial distancer from the
scattering electron’s coordinatere at fixed internuclear separatio
R52.02a0 . The radial coordinate of the scattering electron is fix
at r e52.0a0 . Distributions are shown for the following scatterin
angles: the parallel configurationue50° ~solid curve!, ue5p/4
~dashed curve!, and the perpendicular configurationue5p/2 ~dot-
ted curve!.
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Nv of vibrational states~including closed states if necessar!
to converge the cross sections to the desired accuracy. T
we must solve a finite set ofNv3N,

L coupled radial scatter
ing equations. Denoting the entrance channel by the s
script 0, we can write these equations as

F2
1

2

d2

dre
2 1

,~,11!

2r e
2 1Vv,,v,

L ~r e!2
1

2
kv

2Guv,,v0,0

L ~r e!

5 (
v8,,8Þv,,

Vv,,v8,8
L

~r e!uv8,8,v0,0

L
~r e!. ~18!

Here kv
2/2 is the exit-channel energy, determined by ene

conservation as

1
2 kv

25 1
2 k0

22~ev2e0!, ~19!

whereev is the energy of thevth vibrational state. The ma
trix elements of the interaction potential energy,

Vv,,v8,8
L

~r e!5^v,,;LuVintuv8,,8;L&R, r̂e
, ~20!

are easily evaluated from the coefficients in an expansion
the interaction potential~at fixedR! in Legendre polynomi-
als,

Vint~re ,R!5 ( 8
l50

`

vl~r e ,R!Pl~cosue!, ~21!

where the prime signifies that for homonuclear targets
sum includes only even values ofl. The Legendre projec-
tions vl(r e ,R) include static, exchange, and correlatio
polarization contributions to sufficient maximum orderlmax
to converge the desired scattering quantities. For comp
tively small molecules such as N2, one need retain only two
terms in the correlation-polarization potential in Vint ; as-
ymptotically, these terms approach the spherical and n
spherical terms in the analytical form~6!. One must retain far
more terms in the short-range part of the interaction pot
tial, because the Coulomb potential energy of the scatte
electron and the nuclei is strongly anisotropic.

The angular integration in the potential matrix eleme
~20! is now easily performed using the Gaunt formula, lea
ing

Vv,,v8,8
L

~r e!5 (
l50

lmax

8 gl~,,,8;L!wv,v8
l

~r e!, ~22a!

where the angular coupling coefficients, written in terms
Clebsch-Gordan coefficients with the conventions of Ro
@70#, are simply@65#

gl~,,,8;L!5S 2,811

2,11 D 1/2

C~,8l,;L0!C~,8l,;00!.

~22b!

We evaluate the vibrational coupling matrix elements

wv,v8
l

~r e!5^fv~R!uvl~r e ,R!ufv8~R!&R ~22c!

r

9-7
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FENG, SUN, AND MORRISON PHYSICAL REVIEW A68, 062709 ~2003!
by integrating over the internuclear separationR using Morse
vibrational wave functions, the parameters of which a
given in Ref.@40#.

Solution of the coupled radial scattering equations sub
to real boundary conditions yields theK matrix from which
one can easily determine the correspondingT matrix and
thence differential and integral vibrational excitation cro
sections; these steps are detailed in Ref.@65#. Because vibra-
tional states are included in the expansion basis, these c
sections explicitly incorporate the dynamic transfer of ene
between the projectile and the vibrational degrees of freed
of the target, an effect that is especially important for ne
resonant vibrational excitation.

E. Implementation

We calculate the static, exchange, and correlati
polarization potentials from anR-dependent near-Hartree

FIG. 4. Spherical~upper! and nonspherical~lower! Legendre
projections of the adiabatic~dotted curve!, BTAD ~dashed curve!,
and DSG~solid curve! correlation-polarization potentials for th
e-N2 system atR52.02a0 .
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Fock electronic wave function for the ground state of N2 . A
description of the basis used in these calculations, an ass
ment of the accuracy of the resulting wave functions, a
details of the calculation of the static and exchange poten
from these functions appear in Ref.@40#.

For the excitations of interest, the vibrational wave fun
tions required to converge the cross sections encompa
range of internuclear distances from 1.60a0 to 2.50a0 @40#.
To construct the coupling matrix elements in Eq.~22c!, we
evaluated the interaction potential at the following 14 valu
of R: 1.60a0 , 1.70a0 , 1.80a0 , 1.85a0 , 1.90a0 , 1.95a0 ,
2.00a0 , 2.02a0 ~the equilibrium internuclear separation fo
our Hartree-Fock electronic wave function!, 2.068a0 ,
2.10a0 , 2.20a0 , 2.30a0 , 2.40a0 , and 2.50a0 .

Solution of BFVCC radial equations proceeds via t
integral-equations algorithm@65,71#, in which we first con-
vert these equations to a set of coupled integral equati
then reduce this set to Volterra form. We solve the result
equations by numerical propagation from the origin to t
asymptotic region, as detailed in Refs.@40,65,72#. The latter
reference contains information concerning the converge
of cross sections for this system: number of chann

TABLE II. DSG integral cross sections for vibrationally elast
(s00) and inelastic (s01) scattering of electrons from N2 . In the
resonance region, energies are chosen to represent the peak
dips of oscillations in the cross sections. The ‘‘grand total’’ cro
sectionss tot are sums of cross sections for all energetically acc
sible rotational and vibrational excitations.

Energy
~eV!

s00

~Å2!
s01

~Å2!
s (tot)

~Å2!

0.02 1.609 0 1.609
0.20 5.444 0 5.444
0.55 8.137 0.003 8.140
1.00 9.455 9.455 9.462
1.50 10.858 0.072 10.940
2.00 14.299 3.604 22.872
2.10 16.760 0.821 22.030
2.20 25.837 3.837 34.710
2.30 15.806 5.705 25.544
2.48 26.815 1.480 35.491
2.50 25.575 1.904 33.468
2.70 19.386 4.268 28.180
3.00 17.189 3.543 23.395
3.10 18.303 1.572 22.174
3.20 15.849 1.238 18.804
3.42 15.896 1.214 18.136
4.00 13.593 0.510 14.366
4.50 12.714 0.234 13.029
5.00 12.193 0.129 12.323
6.00 11.632 0.058 11.698
7.00 11.291 0.034 11.328
8.00 11.029 0.023 11.053
9.00 10.801 0.017 10.820
10.00 10.594 0.014 10.609
9-8
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PARAMETER-FREE NONADIABATIC CORRELATION- . . . PHYSICAL REVIEW A 68, 062709 ~2003!
maximum propagation radius, inclusion of Born completi
@73# for differential cross sections, etc.

In the solution of these equations considerable saving
CPU time results from exploiting the fact that the electro
molecule interaction potential is severely anisotropic only
the near-target region, where the electron-nuclear elec
static potential energy dominates. Outside this region
can substantially truncate the solution matrix with no loss
accuracy@33,40,72#. In the present calculations, we use
N,

L511 for r e,15.0a0 and N,
L53 from r e515.0a0 to

85.0a0 , at which radius we determined the low-order e
ments of theK matrix. For r e.85.0a0 , we used Born
completion@73# to evaluate additional higher-order elemen
of the K matrix required to converge the differential cro
sections.

FIG. 5. Integral vibrationally elastic (0→0) and inelastic (0
→1) ~upper! and grand total~lower! e-N2 cross sections as calcu
lated using the DSG~solid curves! and BTAD ~dashed curves! po-
tentials. Experimental grand total cross sections are from cros
beam ~open circles! and time-of-flight ~open squares!
measurements, as reported by Sunet al. @40#.
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III. RESULTS

A. The DSG correlation-polarization potential

In Fig. 4 we show the spherical and nonspherical Le
endre projections@l50 andl52 in Eq. ~21!# of the DSG
e-N2 correlation-polarization potential atR52.02a0 . We
also compare these functions to the corresponding pro
tions of the adiabatic and BTAD potentials@40#. For projec-
tile coordinatesr e far from the target, the adiabatic, BTAD
and DSG polarization potentials all tend to zero, and
differences between them become negligible. But asr e de-
creases and the scattering electron nears the molecule
adiabatic potential is far stronger than either the BTAD
DSG potentials, especially near the nuclear cusp atr e
;1.0a0 . Inside the target charge cloud, the BTAD and DS
potentials are weaker than the adiabatic potential and g
zero asr e→0, as they should.

In Table I we compare the spherical and nonspherical
larizabilities extracted from our DSG potential with tho

d-

TABLE III. Differential cross sections~in square bohr! for vi-
brational excitation of N2 as calculated using the DSG correlatio
polarization potential.

Angle
~deg.!

v050→v50 v050→v51

1.0 eV 1.5 eV 1.9 eV 4.0 eV 2.46 eV 2.60 eV

0 0.598 1.491 9.197 7.936 1.203 3.437
5 0.603 1.449 8.955 8.020 1.182 3.377
10 0.630 1.355 8.301 8.255 1.122 3.202
15 0.704 1.279 7.415 8.580 1.027 2.929
20 0.834 1.280 6.491 8.870 0.906 2.582
25 1.013 1.378 5.659 8.978 0.771 2.193
30 1.219 1.555 4.981 8.800 0.632 1.796
35 1.432 1.785 4.474 8.329 0.501 1.425
40 1.647 2.051 4.146 7.641 0.390 1.109
45 1.867 2.350 4.010 6.843 0.305 0.871
50 2.096 2.679 4.069 6.024 0.252 0.722
55 2.330 3.027 4.306 5.239 0.231 0.665
60 2.561 3.375 4.674 4.520 0.239 0.690
65 2.776 3.695 5.108 3.888 0.270 0.779
70 2.963 3.966 5.534 3.359 0.316 0.908
75 3.118 4.170 5.892 2.941 0.366 1.050
80 3.238 4.300 6.132 2.635 0.412 1.176
85 3.325 4.354 6.224 2.426 0.446 1.266
90 3.377 4.333 6.151 2.298 0.461 1.303
95 3.397 4.240 5.920 2.229 0.455 1.282
100 3.388 4.085 5.556 2.207 0.430 1.207
105 3.354 3.882 5.107 2.217 0.391 1.091
110 3.302 3.648 4.631 2.253 0.343 0.956
115 3.235 3.398 4.191 2.314 0.298 0.828
120 3.157 3.144 3.842 2.404 0.264 0.734
130 2.967 2.660 3.602 2.700 0.263 0.741
140 2.758 2.271 4.141 3.174 0.382 1.094
150 2.578 2.030 5.371 3.800 0.609 1.753
160 2.452 1.921 6.873 4.459 0.876 2.525
170 2.375 1.889 8.095 4.956 1.091 3.144
180 2.348 1.884 8.565 5.138 1.173 3.380
9-9
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FIG. 6. Resonant vibrationally elastic differential cross sectio
for e-N2 scattering at 1.0 eV~top!, 1.5 eV ~middle!, and 1.9 eV
~bottom!. Theoretical results were calculated using the DSG~solid
curve! and BTAD ~dashed curve! potentials. Experimental data ar
from crossed-beam measurements, as reported by Sunet al. @40#.
06270
from the BTAD potential, from experimental data and fro
electronic structure theory calculations.@Maroulis @57# has
compared recent theoretical calculations of these~and other!
properties of N2 in its ground electronic state.# To enable a
meaningful comparison to experiment, we have averaged
theoretical polarizabilities over the ground vibrational sta
of the target. The DSG spherical polarizability agrees m
ginally better with the measured value than does the BT
spherical polarizability, while the DSG nonspherical polar
ability is larger than the experimental value. Sincea0.a2 ,
the spherical polarizability term in the asymptotic form~6!
dominates in the long-range region.

B. Integral cross sections

Integral vibrationally elastic and inelastic (v050→v
51) cross sections calculated using the DSG potential
tabulated at selected energies in Table II.~A full list of these

s

FIG. 7. Resonant vibrationally inelastic 0→1 differential cross
sections fore-N2 scattering at 2.46 eV~upper! and 2.6 eV~lower!.
Theoretical results were calculated using the DSG~solid curve! and
BTAD ~dashed curve! potentials. Experimental data are from
crossed-beam measurements, as reported by Sunet al. @40#.
9-10
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PARAMETER-FREE NONADIABATIC CORRELATION- . . . PHYSICAL REVIEW A 68, 062709 ~2003!
data are available from the authors on request.! We compare
these cross sections to those from BTAD calculations
from recent crossed-beam and time-of-flight measurem
in Fig. 5.

The agreement between integral cross sections calcu
with the BTAD and DSG models is striking, especially co
sidering the different ways in which these potentials tr
bound-free correlation effects. Both models yield cross s
tions that agree very well with experimental cross sectio
even at energies near the shape resonance, where these
sections are especially sensitive to correlation effects.

C. Differential cross sections

Differential cross sections~DCS! pose a significantly
greater challenge to theory than do their integrated coun
parts. So we have calculatede-N2 DCS for vibrationally
elastic (0→0) and inelastic (0→1) scattering at several en
ergies, primarily in the resonance region from 1.5 to 4.0
For this system, the nature of nonresonant scattering dif
significantly from that of resonant scattering@40#. Hence we
also calculated DCS at selected energies below and a
the resonance region.

Specifically, in order to facilitate comparison with expe
ment, we calculated 0→0 DCS at and near the first reso
nance peak, which occurs atE051.90 eV, and 0→1 DCS at
and near the resonance peak atE052.6 eV ~see Table I of
Ref. @40#!. To illustrate scattering at energies below the re
nance, we choseE050.55, 1.0, and 1.5 eV. The upper end
the resonance region is about 4.0 eV, so we considered
energy and one clearly above this region, 5.0 eV. Our res
for both excitations and several energies at selected ene
are tabulated in Table III.

Figure 6 compares resonant 0→0 cross sections from ou
DSG and BTAD calculations with data from recent cross
beam experiments@40# at and near the first resonant pea

FIG. 8. Nonresonant vibrationally elastic differential cross s
tions for e-N2 scattering at 0.55 eV from theoretical calculatio
using the DSG~solid curve! and BTAD ~dashed curve! potentials.
Experimental data are from crossed-beam measurements, a
ported by Sunet al. @40#.
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Qualitatively, both theoretical DCS agree with the expe
mental data; quantitatively, the DSG results are in sligh
better agreement with experiment, especially for scatterin
1.9 eV at angles below about 50°. At this energy,d-wave
scattering clearly dominates the cross section. This do
nance is even clearer in the vibrationally inelastic reson
DCS for E52.46 eV andE52.60 eV shown in Fig. 7. The
two theoretical DCS are quite close at 2.6 eV, while at 2
eV the DSG cross section is marginally larger than its BTA
counterpart, in better agreement with the data.

For nonresonant scattering, we find similar differences
tween BTAD and DSG cross sections and roughly the sa
level of agreement with experimentexcept at energies abov
the resonance region. At energiesbelowthis region, as illus-
trated in Fig. 8, the DCS arises mainly fromS electron-
molecule symmetries and show no trace of the resona
shapes seen in Fig. 6.

-

re-

FIG. 9. Nonresonant vibrationally elastic differential cross s
tions fore-N2 scattering at 4.0 eV~upper! and 5.0 eV~lower! from
theoretical calculations using the DSG~solid curve! and BTAD
~dashed curve! potentials. Experimental data are from crossed-be
measurements, as reported by Sunet al. @40#.
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FENG, SUN, AND MORRISON PHYSICAL REVIEW A68, 062709 ~2003!
Something quite different emerges from comparisons
DCS in Fig. 9 at energiesabovethe resonance region. At 4.
and 5.0 eV, at angles less than about 60°, both theore
DCS are significantly larger than the experimental data. T
disagreement is especially unfortunate, since it renders
periment unable to discriminate between the two theoret
models, whose DCS differ from one another only in th
angular region. It is noteworthy, however, that at these e
gies the differences between the two theoretical DCS are
as great as the differences between the theoretical and
perimental DCS.

IV. CONCLUSIONS

The goal of this research was to devise a mo
correlation-polarization potential, building on the work
Boufergueneet al., that is free of adjustable parameters, th
reflects qualitatively known properties of correlation and p
larization effects from structure and other electron scatte
studies, and that is suitable for scattering processes in w
changes in the internuclear separation are critical. The
tributed spherical Gaussian~DSG! model potential described
in Sec. II C satisfies these criteria. In addition, the DSG
tential is dimensionally correct. Calculating the DSG pote
tial is computationally efficient, because its functional for
is simple and based on Gaussian functions.

The key equations of the DSG model are Eq.~7!, which
gives the charge density of the scattering electron; Eq.~12!,
which gives the quantityb(R,ue) in this density; and Eq.
~11!, which shows how to use this density to calculate
correlation-polarization potential. Important qualitative fe
tures of this quantity and of the DSG density are illustra
in Figs. 1–3.

Although the ways in which the BTAD and DSG pote
tials approximate bound-free correlation effects are quite
ferent, the two models give strikingly similar cross sectio
No significant differences are evident between the BTA
and DSG integral cross sections in Fig. 5: both models p
duce results within the error bars of recent crossed-beam
time-of-flight data. Even the DSG and BTAD differenti
cross sections in Figs. 6–8 manifest only slight differenc
In cases where the BTAD and DSG results differ enou
such that we can use experimental data to discriminate
tween them, the DSG cross sections agree marginally b
t.
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with the data. However, a significantdisagreementbetween
experimental data andboth theoretical differential cross sec
tions appears in Fig. 9 above the resonance region at an
less than about 60°. At present we have no explanation
this difference.

Some insight into the success of the DSG potential m
be gleaned from the correlation hole formalism of electro
structure theory@59,78#. The modified Coulomb potential o
Eqs. ~10! successfully mimics three features of the~exact!
Coulomb hole about its ‘‘reference point,’’ which for electro
scattering is the positionre of the projectile. First, the DSG
charge distribution is localized around this point. Seco
this charge distribution follows the reference point as
coordinate of the scattering electron changes. Third, the D
effective potential isweakerthan the adiabatic polarizatio
potential. This weakening arises because the assumption
the DSG model diminish the probability of finding the sca
tering electron near one of the bound electrons. These
sumptions thus mimic ‘‘left-right correlation’’@61#.

The accuracy of our integral and differential elastic a
vibrationale-N2 cross sections supports the basic soundn
of the DSG model and argues for further investigation
correlation-polarization potentials derived from such mode
One can view the DSG charge density of Eq.~12! as a par-
ticular example of a general strategy for approximati
correlation-polarization effects in electron scattering by mo
eling the projectile as a distributed density function. T
present results warrant exploring such models in studie
vibrational excitation of other molecules and of resonan
driven rearrangement processes such as dissociative at
ment. We are therefore currently applying this model to
more diverse range of molecules and scattering process
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