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This paper introduces a correlation-polarization potential for vibrational excitation in electron-molecule
scattering. This potential generalizes a recently proposed model for elastic scaBerifigrguenest al., Phys.
Rev. A 59, 2712 (1999]. Our potential contains no adjustable parameters and reflects known qualitative
dependencies of correlation and polarization effects on the internuclear separation of the target molecule and
on the position coordinate of the scattering electron. We test our potential on vibrationally elastic and inelastic
scattering from N in an energy range that includes tﬁHg shape resonance. This resonance gives rise to
intricate oscillatory structures in integral and differential cross sections; these structures are very sensitive to
the correlation effects this potential is designed to model.€Np, cross sections agree well with experimental
and other theoretical cross sections except at energies above the resonance, where experimental differential
cross sections show a pronounced dip at scattering angles below about 60°. This dip is not present in the
theoretical cross sections.
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I. INTRODUCTION energy: the static, exchange, and correlation-polarization
terms[1,2]:
A major practical and conceptual challenge to the theoret-
ical study of low-energy electron scattering from atoms and Vini= Vet Vext Vp. 1)

molecules is the inherently many-body nature of the Schro

dinger equation for these systems. Except in the asymptotic _ ) ) _

region, where the scattering electron is detected, this electron 1he Static termV arises from Coulomb interactions be-
is indistinguishable from target electrons. This quantumWeen the projectile and the constituents of the target. The
mechanical feature has two consequences, both of Whicﬂxghange term/e, arises from the antisymmetrization re-

come into play when the scattering electron is inside th&luirement. The correlation-polarization telf, arises from

target charge cloud. First, the system wave function must brenany-bpdy corre_latu_)n and mt_juced po!arlzat!on effects. The
’ : o . L correlation contribution tdV/, is a manifestation oghort-
antisymmetric under pairwise electron interchange; this re- P

Lirement aives rise to “exchange effects” on Cross Sectionsrange bound-free electron-electron correlations. The polar-
9 9 9 ization contribution is a manifestation @itermediate- and

Second, instantaneous electron-electron Coulomb '”tera?éng-rangeinduced polarization effects that come into play

tions render the independent particle model invalid. Thisoutside the target charge cloud. At energies below about 20

many-body aspect of the electron-target system gives rise Qv | three terms in Eq(1) significantly influence electron-
“correlation effects.” scattering cross sections and must somehow be incorporated
The quantum-mechanical requirement that all electrong, any theoretical method.
must be treated equitably prohibits formal partitioning of the  puring the past few decades, great progress has been
electron-target interaction potentid, into a sum of single- made towards accurate treatment of all three contributions in
interaction terms. Nevertheless, an approximate partitioningq. (1). Inclusion of electrostatic effects by averaging the
is a useful guide to devising practical strategies for scatterin@oulomb potential energy over a Hartree-Fock probability
calculations and to understanding the physics implied by theensity for the target is routing3,4]; more accuratde.g.,
resulting cross sections. This partitioning is especially usefutonfiguration interactiontarget densities can be used if nec-
in formulations that transform the many-electron-scatteringessanf5]. One can include exchange effects at various levels
equation into sets of coupled single-particle equations. Irof rigor depending on the complexity of the system, the
these equations, exchange and correlation effects appear aawilability of computational resources, and the required ac-
nonlocal, energy-dependent optical potential. Thus one oftenuracy of the desired scattering quantities. For example, ex-
discusses three “contributions” to the interaction potentialchange can be treated rigorously via solution of the nonlocal
coupled integro-differential equations that result from the ac-
tion of the antisymmetrization operatf#], via basis set ex-

*Electronic address: ddsteed@computermail.net pansions in which the nonlocal exchange potential is ap-
"Electronic address: wgsun@mail.sc.cninfo.net proximated by a separable expans|[@a-9] or via a variety
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the most difficult of these contributions to include accuratelycreased collision time enhances the effects of exchange and
is the correlation-polarization terrw,, the focus of the correlation on cross sections. Among vibrational excitations,
present research. the most sensitive to correlation effects are “intermediate
The easy part oV, is the intermediate- and long-range duration” resonances such as tﬁﬂg shape resonance in
polarization potential. One can understand this second-ordex-N, scattering[25—30. Although the energy of this reso-
(induced interaction via a semiclassical picture. In this pic- nance is about 2.4 eV, its influence dominates scattering at
ture, the polarization potential is the decrease in the totagnergies from about 1.5 to 4.0 ¢91]. At these energies, the
energy of the system due to the fact that the scattering eledelicate interplay of projectile and vibrational dynamics in-
tron interacts with a target that has been polarized by theluces dense, complicated oscillations in vibrationally elastic
electric field of this electron. Outside the target charge cloud(0—0) and inelastic (6-v) cross sections. Not only the
the (local) velocity of the projectile is low enough such that resonance energy and width but also the particulars of these
the bound electrons resporad though the projectile were oscillatory structures depend critically on the short-range
fixed in spaceHere the projectile’s motion can be treated electron-molecule interaction. Because of this heightened
adiabaticallyin calculations of the polarization potential. As- sensitivity, resonant vibrational excitation of such a system is
ymptotically, the resulting adiabatic polarization potential re-a particularly challenging test case for the§82)].
duces to a well-known analytic form that contains the polar- The cornucopia of difficulties posed by correlation effects
izability tensor of the target. has spawned searches for alternative approaches that seek to
Proper guantum-mechanical treatment of correlation andnimic these many-body effects via a local model potential.
polarization effects is formally straightforward but impos- Such strategies strive to treat the local, adiabatic polarization
sible to implement without approximation. Within the con- potential that prevails outside the target as accurately as pos-
text of eigenfunction-expansion methods, one can treat cossible, and to incorporate short-range many-electron correla-
relation and polarization effects rigorously by expanding thetion approximately via a physically motivateahsatz Ide-
system wave function in the complete set @Born-  ally, such model potentials should be founded on defensible
Oppenheimertarget electronic wave functions, includiag theoretical approximations and free of parameters that would
bound and continuum states. In the resulting coupled scattehave to be determined from experimental cross sections.
ing equations, virtual excitations of energetically inacces- Early model potentials in this class allowéctudely) for
sible (closed target electronic states give rise asymptoticallycorrelation effects by multiplying the known asymptotic
to the polarization potentidll4]. If desired, one can dump form of the polarization potential by a parameter-dependent,
this infinity of closed states into an optical potential. Unfor- spherical cutoff function that weakened the asymptotic po-
tunately, the optical potential is energy dependent, nonlocatential in the near-target regid83]. More recently, advances
and, at scattering energies above the first electronically inin the polarized-orbital method have led to potentials based
elastic threshold, complex. Approximations are mandatorypn the nonpenetrating approximati84], which implements
and a variety of approximate treatments have been exploretthe extreme but effective expedient of “switching off” the
in recent year$15]. In the widely used class of variational bound-free electron-electron Coulomb interaction whenever
scattering theories—which include tfematrix, Schwinger the radial coordinate of the projectile is less than that of any
multichannel, and complex Kohn methods—virtual excita-of the bound electrons. The resulting model potential con-
tions are incorporated by including configuration state functains no adjustable parameters and, for systems on which it
tions in the trial wave function of the electron-molecule sys-has been tested, gives cross sections in good-to-excellent
tem [16—21]. An alternative gambit is to encapsulate this agreement with results from experiment and more rigorous
infinity of states in a few deftly chosen pseudost§®%23.  theory. In electron-molecule scattering, Gibson and Morrison
Notwithstanding their appeal, such potentially rigorous[35,36 developed this philosophy into the “better-than-
treatments make exceptional computational demands, requiealiabatic dipol§BTAD) potential,” the calculation of which
great skill in choosing the excited statés pseudostat¢s entails linear variational calculations on the electron-
and introduce a problem of correlation balance. In any suclmolecule system in the field of a fixed projec{i&6,37. The
approach, whether or not one explicitly invokes an opticaBTAD potential has been used successfully in calculations of
potential, one must ensure a consistent treatment of boundesonant and nonresonant elastic, rotational, and rovibra-
bound correlation(amongst electrons in the targeand tional cross sections for low-energy electron impact on mo-
bound-free correlation; an imbalance of these two types ofecular hydrogen and nitrog¢6,38—43. Although far less
correlation can lead to wildly inaccurate results, as has beedemanding computationally than, say, calculations based on
demonstrated in Ref$15,18§. coupled electronic states or an accurate optical potential,
All of these difficulties become much more acute if the computation of the BTAD potential is somewhat awkward
target contains a large number of electrons and/or is nonlinbecause the nonpenetrating approximation forces truncation
ear. Additional problems arise if the scattering process obf electron-electron matrix elements at a finite upper radial
interest is a rearrangement process such as dissociative #itnit. Moreover, this approximation, while intuitively appeal-
tachmen{24] or vibrational excitation, both of which entail ing, is hard to contextualize theoretically.
significant nonadiabatic energy transfer between the energy The final class of widely used model correlation-
of the projectile and the target. polarization potentials treats short-range correlation effects
One can make the problem even harder by focusing owia density-functional correlation potentials that were origi-
resonant scattering. At near-resonant energies, the greatly inally derived for the target. First applied to electron-rare-gas
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scattering by O’Connell and Langl4], this strategy was The difference between these two energies is(#teactive
applied to electron-molecule scattering by Norcross and coladiabatic polarization potentifb5]

laborators(see, for example, Ref45]). The most extensive A

use of such potentials has been by Gianturco and collabora- VA(re,R)=Ef(re,R)—Eq(re,R), @

tors[46—48, who have applied them to an impressive vari- . .
ety (Ef elecgon-polyatomigesystenljétQ—SZ. P whereR=|R; —R,| denotes the internuclear separatiée

Density-functional-based correlation-polarization poten—conSlder only diatomic targe}sQuantum mechanically, the

tials have the advantages of being real, local, independent grgi(_es in this definition are expectat_ion yalues of the adia-
the scattering energy, and calculable from the target char atic (fixed-e) electron-molecule Hamiltonian

density. They have the disadvantage of being short range and
of not joining smoothly to the long-range polarization poten-
fcie_ll. Hence their construqtion requires that one artificia_llywith respect to the unpolarized and polarized target wave
join s_hort—re}nge cqrrelat|on_ and asymptotic pOIa”Zat'onfunctionsljzo and ¢, respectively:

potentials via the introduction of an empirically chosen
“matching radius” (Ref. [53], and references therginFi- _ A

nally, studies of the application of such a density-functional Bo(re.R)= (ol o), 43
correlation-polarization potential tabrational excitation of b DLIAL 1

molecular hydrogen have shown it to yield considerably less Ef(re.R)=(yglH |¢0>Te' (4b)
accurate results than the BTAD mod8tL]. ] ]

Recently, Bouferguenet al.[54] introduced a new model In these equations, the_ subscript O denotes the g_round Born-
correlation-polarization potential that incorporates bound-OPPenheimer electronic state of the target, which for the
free correlation in a way that is distinctly different from all (unpolarized N, molecule is XX ;. The symbolr, denotes
the approaches discussed thus far. Their initial application oihe coordinates of all bound electrons and appears as a sub-
this model was to elastic scattering from molecular hydroger$Cript on the expectation values in Eg8) to signify inte-
with the internuclear separation fixed at equilibrium. In thisgration over all these coordinates. The two terms in the adia-
application, their correlation-polarization potential involved batic Hamiltonian(3) are the Born-Oppenheimer electronic
an adjustable parameter that they determined by matchingamiltonian?;, of the target and the electrostatic Coulomb
their potential to thee-H, BTAD potential of Gibson and potential energy/ ¢, . If the target consists dfl, electrons
Morrison [36]. andN, nuclei with charge€,,, then the Coulomb potential

We here report a generalization of this model that is freeenergy is
of adjustable parameters and that incorporates known quali-
tative features of the dependence of correlation effects on the e n
angular position of the scattering electron and on the inter- VCoul(Tevre’R):iZl Vee(|re_ri|)+nZl Ved|re—Ral),
nuclear separation. To test our model, which we calldise - - (58)
tributed spherical Gaussiamorrelation-polarization poten-
tial, we have calculated differential and integral crosswhere (in atomic unit3 the electron-electron and electron-
sections for resonant and nonresonant vibrationally elastiqucleus terms are
and inelastice-N, scattering.

We commence in Sec. Il by reviewing relevant aspects of
the potential proposed by Bouferguesieal. and describing Ved|re—rih= [re—ril
our generalization of it. We then summarize the scattering
theory we used to calculate vibrational excitation cross sec- Z,
tions. In Sec. Il we compare our integral and differential Ve |re— Rn|):—m- (50
cross sections for resonaetN, scattering to cross sections e
from other calculations and from experiment. In Sec. IV WeEThese, of course, are the Coulomb potentia| energies of in-
summarize the present work and its implications, and discusgraction between the scattering electréat re) and the
briefly prospects for future related research. Except whergound electrons r() and the nuclei R,)—all treated as
noted, we use atomic units throughout this paper. point particles All coordinates are defined in a body-fixed

reference frame with the axis along the internuclear axis;
these coordinates are measured with respect to the center of
Il. THEORY mass of the molecule.

The purelyadiabatic polarization potential2) neglects
two important effects. First, the projectile is not actually

In the adiabatic model of polarization, a projectile fixed atfixed; rather, it moves with a “local velocity” that increases
ro (measured from the center of mass of the tgrgetarizes  as it nears the target and feels the strong electrostatic attrac-
the charge distribution of bound target electrons. The meation of the nucleus. Hence at small to intermediate values of
energy Ef of the polarized system, which consists of ther,, polarization becomes a dynamic, rather than a static,
scattering electron and thmlarizedtarget, is lower than the phenomenon. In the semiclassical picture, we imagine that as
mean energyg, of the corresponding unpolarized system.the scattering electron nears the target, its speed becomes so

HA (7o e, RI=TE(70;R) + Veou( 7o, Te R ()

N N

: (5b)

A. Adiabatic polarization
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TABLE I. Spherical and nonspherical polarizabilities foy &lv- B. The spherical Gaussian correlation-polarization potential
eraged over the ground vibrational state. The BTAD and DSG val-
ues were extracted from the respective correlation-polarization po, Yo
tentials atr,=10a,. Experimental values are from the work of

Newell and Baird[75] and Orcutt and Col¢76] for the spherical ) . . ;
polarizability and from the work of Miller and Beders¢7] for charge density that decays with radial distance frgmin

the nonspherical polarizability. Structure theory values are from thdh€ir model, the rate of decay of this charge distribution de-
configuration interactior{CI) calculations of Langhofet al. [74] ~ Pends linearly o, in such a way that as the electron ap-

and coupled-clustefCC) calculations of Marouli§57]. proaches the targetr{—0) the density becomes increas-
ingly diffuse, while as the electron leaves the targef (

o ) —) the density becomes increasingly localized around
(ad) (ad) Explicitly, Bouferguene et al. proposed a spherical
Gaussian charge densityf the form

The innovation introduced by Bouferguereal. [54] is
modelthe scattering electrgrwhich in the adiabatic po-
larization potential is a fixed point charge, by a spherical

Experiment 11.744 0.004 3.08-0.002

BTAD potential 10.980 3.09 £\32 "

DSG potential 11.369 3.58 p(n=—|—| e ° @
Structure theory(Cl) [74] 11.616 3.1103

Structure theoryCC) [57] 11.7709 3.0716 wherer=x—r, is a source point defined relative to the po-

sition of the electrom, in the body frame and is the same

point defined relative to the origin of the body frame. This

large that the bound target electrons can no longer resportknsity is normalized to correspond to a total charge- tf

instantaneouslyo changes in the electric field produced by (in atomic unit3. The exponential factoé depends on the

the scattering electron. Near the target, therefore, the induceddial coordinate of the scattering electron as

polarization potential should depend on the velocity of the

electron as well as its position,. (The higher the incident &= Pre. (8)

kinetic energy of the electron, the more important is this

velocity dependenceSecond, for values af, comparable to  To ensure that the exponent in Eq) is dimensionlessB

or smaller than the “size” of the target, indistinguishability must have dimensions of inverse length cubed. In their ap-

of the Ne+1 electrons in the system causes the adiabatiglication to fixed-nucleie-H, scattering at the equilibrium

approximation, which singles out the projectile as fixed andnternuclear separation, Bouferguereal. treated 8 as a

therefore distinguishable, to break down completely. As thesemiempirical parameter, considering values from<Q3l

scattering electroentersthe target charge cloud, bound-free <0.5[79].

correlation effects become important. Their neglect renders To implement this model, one modifies the Coulomb po-

the adiabatic polarization potential far too strong at shorttential energy(5) by replacing the elementary electron

and intermediate-electron coordinatgs charge of the projectilee——1 in atomic unit by the
As the electronleavesthe target charge cloud, with,  charge density(r) to obtain

increasing to values larger than a few bohr, the adiabatic

approximation of Eq(2) becomes quite accuratésymptoti- Ne Nn

cally, asr,—=, the adiabatic polarization potential reduces Vo 7e.lo,R)= Z Ved |Fe—Ti |)+2 VedIre—Rul),

to its analytlc asymptotlc form

9
ao(R)  ax(R) where the electron-electron and electron-nuclei electrostatic
VA(rg,R) ~ — T ot P,(cosf,),  (6)  potentials due tg(r) are
re—® e
— p(r)
Vee(|re_ri|)5fmdxa (10a
where ay(R) and a,(R) are the spherical and nonspherical e !
polarizabilities of the targetf, is the (body-frame polar
angle of_ the scattering glectron with respect to t_he internu- Ven(|re_ Ry)=— p(r) dx (10b)
clear axis, andP,(cosé,) is the Legendre polynomial of or- [re— Ry

der 2.(In practice, the value of, at which this form accu-

rately represents the polarization potential depends stronglyThroughout this paper we use an overbar to signify quanti-
on the target; for small diatomic moleculesz 10a, is typi-  ties calculated using the Gaussian charge de((gjtyAs the

cal [56].) In the asymptotic region, theoretically calculated radial coordinate of the projectile,— (i.e., as the Gauss-
polarization potentials can touch base with reality, throughian exponeng—), Egs.(10) reduce to the potential ener-
measured values of the averagesag{R) and a,(R) over gies (5) for point charges. For smaller, these potential

the ground vibrational state and of the first derivatives ofenergies argveakerthan those of their point-charge counter-
these polarizabilities with respect®(see Table | below and parts. Moreover, afr,—r;|—0 and|r,—R,|—0, these po-

the discussion and references in Hé&f7]). tential energies approach finite constants. In these respects,
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the potential of Bouferguenet al. effectively mirrors quali- is easily seen in the fundamental properties of the target; e.g.,
tative aspects of electron-electron correlation effects in molit appears in theR dependence of the spherical and non-
ecules[59-61. spherical polarizabilitie$63] in Eq. (6), and is reflected in

The modified electrostatic potential energy.,, is used all polarization potentials, including the adiabatic potential
in place ofV¢,, in the calculation of the polarized and un- (2). Moreover, the polarizability of the target and the corre-
polarized system energies of E@4). In practice, evaluation SPonding potentials depend on the “angle of approach” of
of these energies reduces to the evaluation of matrix elehe projectile. This dependence 6pis evident in the strong
ments of\7C0u| in the basis used to expand the polarizedd diffe_:r_ence be_tween the paralle_l and _perp_endicular polariz-
unpolarized molecular orbits of the targef36]. Using abilities and in the corresponding adiabatic potentiae). .
Gaussian basis functions greatly facilitates evaluation of thd '€ €xtremes of this dependence appear when the projec-

required matrix elementg54]. The correlation-polarization t|“Ies ||r|10||dent Wa\lf]e vector ISI tal?rr]].g th‘? “|nternu$jllearl axis
potential is then calculated by subtraction as (‘parallel approach) or normal to this axig*perpendicular
approach’): the polarization potential for the parallel ap-

Vi _Tp = proach ismuchstronger than for the perpendicular approach.
VeplTe,RI=Eq(re,R) = Eo(re,R). (1D At short range, thék and 6, dependencies of correlation
The role of the quantity8 is now clear: it controls the rate fil\r/]g gglzghzo?etfgeegfe(e:tlzcatlrrgn(-eglléilt%rllmcpoc;rrgg;o-lr;hzﬁzl::?sm;
at which the charge density goes to zeroragx—rg| in- pe ;
these variables is known from molecular structure calcula-

creases fromr =0 atre. As Bis decreased, the charge den'ti ns (see Vol. 2 of Ref[60], and references thergirisee
sity of the scattering electron becomes less concentrate

(more diffuse aroundr,; this weakens the correlation- aso Cttwaps. S 7‘faﬂd %}5 ?]'; R@ﬁg], and.referencesfthr(]arem
polarization potential. Because the Gaussian exporent First, because of the highly anisotropic nature of the target

«r,, this effect is greatest for smal, (near the targat asr charge distribution, bound-free correlation effects depend on
inceréases the We%kenin of the correlation- olgrizatioen Oge: e.g., the correction to the adiabatic polarization potential
tential din%inishes until ir?the —oo limit, the grojectile is P%hould be different for the parallel approach than for the

again a point electron’ movina adiabati,cally in the field °f'torir'??Tglciltaéhzrr)p?ggﬁbi?ig%ngﬁgr;cf:ss ee; 1nfgree%rf“20;1ce
the (polarized molecule. In the limit, then, the model P 9 g P pace.

correlation-polarization potential(11) reduces to the Therefore correctio_ns to the adiabatic potential to allow for
asymptotic limit(6) of the adiabatic potential) b_ound-frge correlation _should dependRmThe_se dgpenden—
’ cies are incorporated into the BTAD potential via the non-
o _ _ _ penetrating approximation. In our generalization of the po-
C. A parameter-free distributed spherical Gaussian potential tential of Boufergueneet al. [54], we introduce them by
The model correlation-polarization potential of Boufer- Making 8 a function off, andR.
gueneet al.[54] offers several advantages over model poten- To devise a correlation-polarization potentig, whose
tials based on the nonpenetrating approximation. Most imdependence oR and 6. reflects these properties, we estab-
portantly, the integrals required to evaluate this potential aréished three criteria. First, & increasesp should decrease.
not cut off. Moreover, these integrals entail Gaussian funcThis criterion ensures that aR increases, the projectile
tions and so can easily be evaluated using quantum chemigharge distribution will become more diffuse, strengthening
try codes[59,62. In application, however, the model pro- Vep- Second, a®, decreases3 should decrease. This crite-
posed by Bouferguenet al. suffers from two disadvantages. rfion ensures tha¥/, is strongest for the parallel configura-
First, the quantityg is an adjustableparameter. In their tion and thatV, becomes less attractive & increases to-
studies ofe-H, scattering, Bouferguenet al. chose a value Wwards the perpendicular configuration. Thirg, should
for B to make their potential qualitatively resemble the reflect the size of the target molecule. After testing several
BTAD model for this systeri36]. Moreover, their calculated functional forms forg(6.,R) to enforce these criteria, we
cross sections showed considerable sensitivitg:too value ~ settled on a function that enforces the first criterion by being
of this parameter produced accurate cross sections over tfgoportional to 1R, the second by depending on the scatter-
energy range they studied. The problem of treajihgs an  ing angle as (% siné,), and the third by depending on the
adjustable parameter becomes more acute when no BTABquilibrium internuclear separatioR,, of the target. The
potential is available or when vibrational motion is taken intovalue of R¢, is not subject to adjustment; once a target is
account. chosen, its value is fixed, e.g., from tables of spectroscopic
Second,8 does not depend on the internuclear separatiolata orab initio structure calculations.
R or on the scattering angl,. This problem is exacerbated  The following functional form for3( 6, ,R) satisfies these
for scattering from targets that are more anisotropic than H criteria, is simple analytically, and was the most successful at
especially when the scattering dynamics become morgroducing accurate vibrational cross sections:
complicated—as in vibrational excitation of,N In such

cases, both the long- and short-range aspects of the B(6.,R)= 1 (1+sind,). (12
correlation-polarization potential should dependrand 6, . Rqu €
[31,59,6Q.

At long range, the extent to which the molecule is polar-With this definition, the electron-electrotand electron-
izable depends on its internuclear geometry. This dependencricle) Coulomb potentials in Eqg10) depend on the dis-
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tance between, andr; (or betweerr, andR,) and onr,,
0., andR, through the dependence on these variables of the
exponential factor

g(re,ee,R)=ﬂ(ae,R)re=F;—F%(l+sin0e). (13) 0.3
q lg(eeaR) 0.2 24

The factor of 1R§ ensures thap is species dependent and 01l
dimensionally correct. We shall call this generalization the 0
distributed spherical GaussidbSG) potential[80].

Evaluation of the DSG potentials in E¢LO) is straight- /4
forward. Evaluating integrals over spherical Gaussians is & Oe
standard part of evaluating one- and two-electron moleculal /2
integrals in electronic structure calculations based on
Gaussian-type orbital basis functiofsee Chap. 9 of Ref. ~ FIG. 1. Dependence on internuclear separaand scattering
[59)). In particular, the integrals we must evaluate are jus@nglefe of the functionB(6e,R) in the definition(11) of the dis-
Coulomb-interaction integrals over Gaussian distributionstributed charge density for the scattering electron in the DSG po-

For example, to evaluaté.{|r.—r;|) we first write 1f; as tential.
an integral over a Gaussian function, then invoke the Gaus

ian product rule to reduce the result to the one-dimensiong
integral[62]

2 R (bohr)
1.8

1.6

hus, in this model the correction to the adiabatic polariza-
on potential for bound-free correlation is greater for larger
R and/or smalle®,. The latter point is especially important:
B 8Z (1 it ensures thaffor values ofr, near the target charge cloud
Ved|le—ril)= \ﬁf e 2ére—ri1%u%q . (14) the correction to the adiabatic potential will be greater in the
m™Jo perpendicular configurationdf=m/2) than in the parallel

The integral in Eq.(14) is the familiar Boys functiorisee configuration §=0). This point is illustrated in Fig. 3.

Sec. 9.8 of Ref[59]] F,(7) of ordern=0 with the argu-
ment 7=2&|r.—r;|%. This function is related to the incom-
pleteT” function and thence to the error function In scattering calculations based on a model correlation-
polarization potential, the full electron-molecule interaction
- X 2 potential energy in the Schldinger equation is given by Eq.
erf(x)=\/—; o dt. (19 (1) with the correlation-polarization potential, approxi-
mated by the DSG potential of E¢L1). In a previous re-
In particular, for ordem=0, the Boys function is search ore-N, scattering, Suret al. [40] developed a free-
electron-gas exchange potential that yielded resonant

Fo(7)= \/%erf( . (16) o

D. Scattering theory

2

Hence the electron-electron potential energy; atue top(r) -
is simply =
8
v : 2 o
Vee(|re_ri|)=Terf(\/Z—ﬂre_riD- (1739 [
Ire—ril CICJ
©
Similar machinations for the electron-nucleus potential en- o
ergy yield =
ey
o zZ, S -0.2
Ve [re=Rol) == g rerf(V2élre=Ryl). (170
Ire=Ry|
Several features B that are important to the physics of 0 05 1 1.5 2 25
% P Phy r (bohr)

the DSG potential are illustrated in Fig. 1. The corresponding
projectile charge distributions are illustrated at various inter- g~ 5 Charge distributions for the DSG potential for thé\,

nuclear separation® for fixed scattering angl®, in Fig. 2 gystem as a function of the radial distancérom the scattering
and at various for fixed R in Fig. 3. . _ electron’s coordinate,. The radial and angular positions of the

Figure 1 shows thats the internuclear separation R in- scattering electron are fixed ag=2.0a, and 6,= /2 (perpendicu-
creases or the scattering anglg decreases, the quantify  |ar configuration. Distributions are shown for three internuclear
decreasesAs illustrated in Figs. 2 and 3his decrease ifB  separationsR=1.53, (solid curve, 2.02a, (dashed curve and
causes the DSG charge density to become more diffuse.6a, (dotted curve:
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0 N, of vibrational stategincluding closed states if necessary
to converge the cross sections to the desired accuracy. Then
- we must solve a finite set ™, X N2* coupled radial scatter-
S ing equations. Denoting the entrance channel by the sub-
@; script 0, we can write these equations as
>
= 1d> €+1) o] o
% -0.1 _Ed_rg+ zre? +VU€,U€(r9)_§kv uv(,vo(fo(re)
©
8) _ 2 A A
a = VU(,UI(r(re)uvrgryvogo(re)- (18)
o v’ #u,
o '
~7;/2 R=2.02a Herek?/2 is the exit-channel energy, determined by energy
conservation as
-0.2
0 0.5 1 15 2 25 12132 (. _
r (bohr) 2 kU 2 I‘(O (611 60)1 (19)

FIG. 3. Projectile charge distributions for the DSG potential forW_here €, Is the energy of th_@’th V|brat|_0nal state. The ma-
the e-N, system as a function of the radial distancdrom the X €lements of the interaction potential energy,
scattering electron’s coordinatg at fixed internuclear separation A
R=2.02a,. The radial coordinate of the scattering electron is fixed v

atr,=2.0a,. Distributions are shown for the following scattering ) o ) )
angles: the parallel configuratio,=0° (solid curve, 6,=m/4  are easily evaluated from the coefficients in an expansion of

(dashed curve and the perpendicular configuratish==/2 (dot-  the interaction potentiglat fixedR) in Legendre polynomi-

r(/(re):<U'€;A|Vint|v,’er;A>R,Fer (20)

vl,v

ted curve. als,
differential cross sections in excellent agreement with data Vi(re,R) = 2’ 0, (r'e,R)P,(COSH,), (21
from state-of-the-art crossed-beam experiments. This poten- A=0

tial, which has proved equally successful for vibrationally
elastic and inelastic excitation efH, [31,64], is used in the where the prime signifies that for homonuclear targets this
present calculations. sum includes only even values af The Legendre projec-
The collision dynamics are treated using the body-frameions v,(r.,R) include static, exchange, and correlation-
vibrational close-couplingBFVCC) method[see Ref[65],  polarization contributions to sufficient maximum ordef,y
and references therdinThis “hybrid theory” [30,66 is  to converge the desired scattering quantities. For compara-
based on the fixed-nuclear-orientation approximation. In thigively small molecules such as,None need retain only two
approximation, one neglects the rotational kinetic-energy optermsin the correlation-polarization potential in \{; as-
erator in the system Hamiltonian and allows for target rotaymptotically, these terms approach the spherical and non-
tion asymptotically, either by averaging over molecular ori-spherical terms in the analytical for@). One must retain far
entations or via the adiabatic nuclear rotation approximationrmore terms in the short-range part of the interaction poten-
[67—69. By contrast, the vibrational dynamics of the targettial, because the Coulomb potential energy of the scattering
are fully incorporated by converging the expansion of theelectron and the nuclei is strongly anisotropic.
system wave function in vibrational states. The angular integration in the potential matrix elements
To derive the scattering equations, we first project thg20) is now easily performed using the Gaunt formula, leav-
electron-molecule Schdinger equation onto the ground ing
Born-Oppenheimer electronic state of the target. We then
. . . . A
expand the resulting scattering function in the complete set A ALk , N
{¢,(R)Y¢ A(Te)}, Where ¢,(R) are the vibrational wave va,v'e'(re)zzo (€5 M)w, i (re), (229
functions of the target, and the spherical harmovigg ()
are the angular functions of the scattering electron. The lattefhere the angular coupling coefficients, written in terms of

are labeled by quantum numbefsfor the orbital angular Clebsch-Gordan coefficients with the conventions of Rose
momentum of the projectile andl for the projection of this  [70], are simply[65]
angular momentum on the internuclear axis. In the fixed-

nuclear-orientation approximation) is a good quantum , 1\ ,

number, so the resulting coupled radial equations separate 9(€: ¢ A)=| 57| CL'AMEAD)C(E7NE;00).

into independent sets for each (and, for a homonuclear (22b)

target, for each inversion parjtyScattering channels are la-

beled by ¢,¢;A). We evaluate the vibrational coupling matrix elements
We can truncate the expansion of the scattering function, N

retaining a sufficient numben? of spherical harmonics and W, (Fe) =(¢,(R)[v\(re,R)[ ¢y (R))r (220
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0.0 TABLE Il. DSG integral cross sections for vibrationally elastic
(og0) @and inelastic ¢y, scattering of electrons from N In the
DSG resonance _reg_ion, gnergies are cho_sen to represent the peaks and
01 e 1 dips of oscillations in the cross sections. The “grand total” cross
. I sectionso'® are sums of cross sections for all energetically acces-
™ P sible rotational and vibrational excitations.
o -02 | )/ -
= N A=0 I Energy oo To1 o)
= / ev) (A?) (A?) (R?)
2 -03 | ) AD .
;! 0.02 1.609 0 1.609
/ 0.20 5.444 0 5.444
04 / . 0.55 8.137 0.003 8.140
7 | 1.00 9.455 9.455 9.462
[~ 1.50 10.858 0.072 10.940
05 ' 2 ' . ' s 2.00 14.299 3.604 22.872
r, (bohr) 2.10 16.760 0.821 22.030
2.20 25.837 3.837 34.710
2.30 15.806 5.705 25.544
DSG ) ' ) 2.48 26.815 1.480 35.491
0.0 —— 2.50 25.575 1.904 33.468
\\ i __ = ,,—"" 2.70 19.386 4.268 28.180
\  BTAD & ' 3.00 17.189 3.543 23.395
. Y ,’/ ] 3.10 18.303 1.572 22.174
g Y J 3.20 15.849 1.238 18.804
E ‘\‘ o A=2 ] 3.42 15.896 1.214 18.136
< ! X 4.00 13.593 0.510 14.366
5 021 \ /) AD 1 4.50 12.714 0.234 13.029
4 / 5.00 12.193 0.129 12.323
\ /,’ ] 6.00 11.632 0.058 11.698
03k g i 7.00 11.291 0.034 11.328
v 8.00 11.029 0.023 11.053
h . zl) . "‘ . s 9.00 10.801 0.017 10.820
10.00 10.594 0.014 10.609
re (bohr)

FIG. 4. Spherical(luppe) and nonsphericallower) Legendre . .

L ) ; Fock electronic wave function for the ground state gf M
projections Of. the ad|abat|(dott.ed curvee: BTAD (dashgd curve description of the basis used in these g(J:alculations gn assess-
and DSG(solid curve correlation-polarization potentials for the P !

e-N, system aR=2.02,. ment of the accuracy of the resulting wave functions, and
details of the calculation of the static and exchange potentials
from these functions appear in R¢40].

by integrating over the internuclear separatidusing Morse For the excitations of interest, the vibrational wave func-
vibrational wave functions, the parameters of which aretions required to converge the cross sections encompass a
given in Ref.[40]. range of internuclear distances from 1agGo 2.5G, [40].

Solution of the couplc_ed radial scattering _equations _subjecro construct the coupling matrix elements in EB2c), we
to real boundary conditions yields tiematrix from which  evaluated the interaction potential at the following 14 values
one can easily determine the correspondingnatrix and  of R 1.60,, 1.70,, 1.8(,, 1.8%,, 1.9(,, 1.9%,,
thence differential and integral vibrational excitation Cross) o, 2.02a, (the equilibrium internuclear separation for
sections; these steps are detailed in IR&5). Because vibra- our Hartree-Fock electronic wave function2.06&
tional states are included in the expansion basis, these Cros @y, 2.20,, 2.30y, 2.40,, and 2.5,. o

sections exphcnlymporporate th_e dy!‘am'c transfer of energy Solution of BFVCC radial equations proceeds via the
between the projectile and the vibrational degrees of freedom . : ; . i
; . . integral-equations algorithif65,71], in which we first con-
of the target, an effect that is especially important for near- ; . .
o o vert these equations to a set of coupled integral equations,
resonant vibrational excitation. . )
then reduce this set to Volterra form. We solve the resulting
equations by numerical propagation from the origin to the
asymptotic region, as detailed in Reff40,65,72. The latter
We calculate the static, exchange, and correlationfeference contains information concerning the convergence

polarization potentials from amR-dependent near-Hartree- of cross sections for this system: number of channels,

E. Implementation

062709-8
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28 T T T T T T T T T TABLE lIl. Differential cross sectiongin square bobrfor vi-
brational excitation of B as calculated using the DSG correlation-
polarization potential.

vo=0—v=0 vo=0—v=1

—_ Angle

RS (deg) 1.0eV 15eV 1.9eV 4.0eV 246eV 2.60eV
c

2 0 0598 1.491 9.197 7.936 1.203  3.437
@ 5 0.603 1.449 8955 8020 1.182  3.377
2 10 0630 1.355 8.301 8255 1.122  3.202
o 15 0.704 1279 7.415 8580 1.027  2.929
g 20 0.834 1280 6491 8870 0.906  2.582
£ 25 1.013 1378 5659 8978 0.771  2.193
30 1219 1555 4981 8.800 0.632  1.796
35 1.432 1785 4.474 8329 0501  1.425
40 1.647 2051 4146 7.641 0.390  1.109
45 1.867 2350 4.010 6.843 0.305 0.871
50 2096 2679 4.069 6.024 0252  0.722
40 — r - T - 1 55 2330 3.027 4.306 5239 0231  0.665
60 2561 3.375 4.674 4520 0239  0.690
65 2776 3695 5108 3.888 0.270  0.779
— 70 2963 3966 5534 3359 0.316  0.908
< 75 3.118 4170 5892 2941 0366  1.050
S 80 3238 4300 6132 2635 0412 1.176
E 85 3.325 4354 6224 2426 0446  1.266
8 90 3.377 4333 6151 2298 0461  1.303
5 95 3397 4240 5920 2229 0455 @ 1.282
g 100 3388 4.085 5556 2207 0430  1.207
T 105 3354 3.882 5107 2217 0391  1.091
8 110 3.302 3648 4631 2253 0343  0.956
115 3235 3398 4191 2314 0298  0.828
120 3.157 3.144 3842 2404 0264 0734

O % 130 2967 2660 3.602 2700 0.263  0.741
140 2758 2271 4141 3174 0382  1.094
150 2578 2030 5371 3.800 0.609  1.753

FIG. 5. Integral vibrationally elastic (80) and inelastic (0 160 2452 1921 6.873 4.459 0.876 2.525
—1) (uppep and grand totalower) e-N, cross sections as calcu- 170 2375 1.889 8.095 4956 1.091  3.144

lated using the DSGsolid curve$ and BTAD (dashed curvespo- 180 2348 1.884 8565 5.138 1.173 3.380
tentials. Experimental grand total cross sections are from crossed-

beam (open circles and time-of-fight (open squargs
measurements, as reported by Sral. [40]. IIl. RESULTS

A. The DSG correlation-polarization potential

Energy (eV)

. . . . . . In Fig. 4 we show the spherical and nonspherical Leg-

maximum propagation radius, inclusion of Born completiongpgyre projection§\ =0 and\=2 in Eq.(21)] of the DSG
[73] for differential cross sections, etc. _.e-N, correlation-polarization potential &=2.02,. We

In the solution of these equations considerable savings igiso compare these functions to the corresponding projec-
CPU time results from exploiting the fact that the electron-tions of the adiabatic and BTAD potentigk0]. For projec-
molecule interaction potential is severely anisotropic only intile coordinates , far from the target, the adiabatic, BTAD,
the near-target region, where the electron-nuclear electraasnd DSG polarization potentials all tend to zero, and the
static potential energy dominates. Outside this region onelifferences between them become negligible. But ade-
can substantially truncate the solution matrix with no loss ofcreases and the scattering electron nears the molecule, the
accuracy[33,40,72. In the present calculations, we used adiabatic potential is far stronger than either the BTAD or
N}=11 for ro<15.08, and N;'=3 from r,=15.00 to DSG potentials, especially near the nuclear cusprat
85.0y, at which radius we determined the low-order ele-~1.0a,. Inside the target charge cloud, the BTAD and DSG
ments of theK matrix. For r,>85.0a, we used Born potentials are weaker than the adiabatic potential and go to
completion[73] to evaluate additional higher-order elementszero asr,— 0, as they should.
of the K matrix required to converge the differential cross In Table | we compare the spherical and nonspherical po-
sections. larizabilities extracted from our DSG potential with those

062709-9
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Differential Cross Section (units of a,2 sr™)

ob— ..,
0 20 40 60 80 100 120 140 160 180

olb— . v . v,
0O 20 40 60 80 100 120 140 160 180

Differential Cross Section (units of a,2 s'!)

Scattering Angle (deg)

10 —r——————r——r——r———

Differential Cross Section (units of a,2 sr”)

o b - v ...,
0O 20 4 60 80 100 120 140 160 180

Scattering Angle (deg)

FIG. 6. Resonant vibrationally elastic differential cross sections
for e-N, scattering at 1.0 e\(top), 1.5 eV (middle), and 1.9 eV
(bottom). Theoretical results were calculated using the DS@id

PHYSICAL REVIEW 468, 062709 (2003

Differential Cross Section (units of a,2 sr™)

0 20 40 60 80 100 120 140 160 180
Scattering Angle (deg)

4 — T T T T T T T T T T T 1
0 —>1
\ 26eV “

Differential Cross Section (units of a,2 sr')

0 20 40 60 80 100 120 140 160 180
Scattering Angle (deg)

FIG. 7. Resonant vibrationally inelastic-©1 differential cross
sections fore-N, scattering at 2.46 eVuppe) and 2.6 eV(lower).
Theoretical results were calculated using the DS@id curve and
BTAD (dashed curve potentials. Experimental data are from
crossed-beam measurements, as reported byeSah[40].

from the BTAD potential, from experimental data and from
electronic structure theory calculatiori$daroulis [57] has
compared recent theoretical calculations of th@sel other
properties of N in its ground electronic stafeTo enable a
meaningful comparison to experiment, we have averaged the
theoretical polarizabilities over the ground vibrational state
of the target. The DSG spherical polarizability agrees mar-
ginally better with the measured value than does the BTAD
spherical polarizability, while the DSG nonspherical polariz-
ability is larger than the experimental value. Sineg> a-,

the spherical polarizability term in the asymptotic fo(8)
dominates in the long-range region.

B. Integral cross sections

Integral vibrationally elastic and inelastico{=0—uv

curve and BTAD (dashed curjepotentials. Experimental data are =1) cross sections calculated using the DSG potential are

from crossed-beam measurements, as reported byeSain[40].

tabulated at selected energies in TablgAfull list of these
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FIG. 8. Nonresonant vibrationally elastic differential cross sec- —r - T T
tions for e-N, scattering at 0.55 eV from theoretical calculations
using the DSG(solid curve and BTAD (dashed curvepotentials.
Experimental data are from crossed-beam measurements, as r
ported by Suret al. [40].

data are available from the authors on requé¥e compare
these cross sections to those from BTAD calculations anc
from recent crossed-beam and time-of-flight measurement
in Fig. 5.

The agreement between integral cross sections calculate
with the BTAD and DSG models is striking, especially con-
sidering the different ways in which these potentials treat
bound-free correlation effects. Both models yield cross sec:
tions that agree very well with experimental cross sections
even at energies near the shape resonance, where these cr 8 ©
sections are especially sensitive to correlation effects.

" [ " [ " "
0 20 40 60 80 100 120 140 160 180

Differential Cross Section (units of a,2 sr™)

Scattering Angle (deg)

C. Differential cross sections FIG. 9. Nonresonant vibrationally elastic differential cross sec-

Differential cross sectiondDCS) pose a significantly —tions fore-N, scattering at 4.0 eVuppe) and 5.0 eMlower) from
greater challenge to theory than do their integrated countef€orefical calculations using the DS@olid curve and BTAD
parts. So we have calculategiN, DCS for vibrationally (dashed curvepotentials. Experimental data are from crossed-beam
elastic (0—0) and inelastic (6-1) scattering at several en- measurements, as reported by Sural. [40]
ergies, primarily in the resonance region from 1.5 to 4.0 eV.

For this system, the nature of nonresonant scattering differQualitatively, both theoretical DCS agree with the experi-

significantly from that of resonant scatteripg0]. Hence we mental data; quantitatively, the DSG results are in slightly

also calculated DCS at selected energies below and abowetter agreement with experiment, especially for scattering at
the resonance region. 1.9 eV at angles below about 50°. At this enerdywave

Specifically, in order to facilitate comparison with experi- scattering clearly dominates the cross section. This domi-
ment, we calculated -0 DCS at and near the first reso- nance is even clearer in the vibrationally inelastic resonant
nance peak, which occursB§=1.90 eV, and -1 DCS at DCS for E=2.46 eV andE=2.60 eV shown in Fig. 7. The
and near the resonance peakEgt=2.6 eV (see Table | of two theoretical DCS are quite close at 2.6 eV, while at 2.46
Ref.[40]). To illustrate scattering at energies below the reso€V the DSG cross section is marginally larger than its BTAD
nance, we chosgy=0.55, 1.0, and 1.5 eV. The upper end of counterpart, in better agreement with the data.
the resonance region is about 4.0 eV, so we considered this For nonresonant scattering, we find similar differences be-
energy and one clearly above this region, 5.0 eV. Our resulttveen BTAD and DSG cross sections and roughly the same
for both excitations and several energies at selected energitavel of agreement with experimeakcept at energies above
are tabulated in Table IlI. the resonance regiort energiesdelowthis region, as illus-

Figure 6 compares resonant-@ cross sections from our trated in Fig. 8, the DCS arises mainly frol electron-
DSG and BTAD calculations with data from recent crossed-molecule symmetries and show no trace of the resonance
beam experimentg40] at and near the first resonant peak. shapes seen in Fig. 6.
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Something quite different emerges from comparisons ofvith the data. However, a significadtsagreemenbetween
DCS in Fig. 9 at energieabovethe resonance region. At 4.0 experimental data anloth theoretical differential cross sec-
and 5.0 eV, at angles less than about 60°, both theoreticéions appears in Fig. 9 above the resonance region at angles
DCS are significantly larger than the experimental data. Thisess than about 60°. At present we have no explanation for
disagreement is especially unfortunate, since it renders exhis difference.
periment unable to discriminate between the two theoretical Some insight into the success of the DSG potential may
models, whose DCS differ from one another only in thisbe gleaned from the correlation hole formalism of electronic
angular region. It is noteworthy, however, that at these enerstructure theory59,78. The modified Coulomb potential of
gies the differences between the two theoretical DCS are ndigs. (10) successfully mimics three features of tfexac)
as great as the differences between the theoretical and ecoulomb hole about its “reference point,” which for electron
perimental DCS. scattering is the position, of the projectile. First, the DSG

charge distribution is localized around this point. Second,
IV. CONCLUSIONS this charge distribution follows the reference point as the
] ) coordinate of the scattering electron changes. Third, the DSG

The goal of this research was to devise a modekfiective potential isveakerthan the adiabatic polarization
correlation-polarization potential, building on the work of yotential. This weakening arises because the assumptions of
Boufergueneet al, that is free of adjustable parameters, thatihe DSG model diminish the probability of finding the scat-
reflects qualitatively known properties of correlation and PO-tering electron near one of the bound electrons. These as-
larization effects from structure and other electron Scatte”n@umptions thus mimic “left-right correlation[61].
studies, and that is suitable for scattering processes in which the accuracy of our integral and differential elastic and
changes in the internuclear separation are critical. The dijiprationale-N, cross sections supports the basic soundness
tributed spherical GaussidBSG) model potential described f the DSG model and argues for further investigation of
in Sec. |1 C satisfies these criteria. In addition, the DSG pogyrelation-polarization potentials derived from such models.
tential is dimensionally correct. Calculating the DSG poten-gne can view the DSG charge density of Etp) as a par-
fual is computationally eff|C|ent,_ becausg its functional form cular example of a general strategy for approximating
is simple and based on Gaussian functions. _ correlation-polarization effects in electron scattering by mod-

_ The key equations of the DSG model are Eg, which  gjing the projectile as a distributed density function. The
gives the charge density of the scattering electron;(E8.  present results warrant exploring such models in studies of
which gives the quantity3(R, 6,) in this density; and Eq. yjprational excitation of other molecules and of resonance-
(11), which shows how to use this density to calculate theyrjyen rearrangement processes such as dissociative attach-
correlation-polarization potential. Important qualitative fea-jent. We are therefore currently applying this model to a
_turg_s of ihig quantity and of the DSG density are illustratedyore diverse range of molecules and scattering processes.
in Figs. 1-3.

Although the ways in which the BTAD and DSG poten-
tials approximate bound-free correlation effects are quite dif- ACKNOWLEDGMENTS
ferent, the two models give strikingly similar cross sections.

No significant differences are evident between the BTAD We are grateful to Dr. Andrew N. Feldt for his careful
and DSG integral cross sections in Fig. 5: both models proreading of this manuscript and for suggestions that led to its
duce results within the error bars of recent crossed-beam aricthprovement. We would like to acknowledge the Chinese
time-of-flight data. Even the DSG and BTAD differential National Natural Science FoundatioGrant No. 10074048
cross sections in Figs. 6—8 manifest only slight differencesand the Science Foundation of the Chinese Educational Min-
In cases where the BTAD and DSG results differ enougkhistry for support of this project. This project was supported in
such that we can use experimental data to discriminate bgsart by the National Science Foundation under Grant No.
tween them, the DSG cross sections agree marginally bett&HY-0071031.
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tributed nucleus models such as the Gaussian and Fermi mod- basis functions on discretized grids. We use “distributed” to

els that have been used to take account of the finite size of the  refer to the fact that in this model the projectile’s charge dis-

nucleus in electron structure theory of atoms and molecules  tribution is “spread out” over space and “Gaussian” to allude
to the use of a Gaussian function in E@).

(Ref.[58] and references thergin
[80] This usage should not be confused with distributed Gaussian
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