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The ab initio variationalR-matrix method is combined with generalized quantum-defect theory to calculate
quantum defect matrices fd | and 11, symmetries of molecular hydrogen. The calculations take account
of doubly excited channels and are optimized so as to minimize the dependence of the quantum-defect matrix
elements as functions of energy and internuclear distance. The matrices are used to calculate the lowest
clamped-nuclei Rydberg potential energy curves as well as doubly excited resonance positions and widths near
the first excited state of ] . The results are in good agreement with previabisnitio results. Owing to their
smoothness, the quantum-defect matrices are well suited for rovibronic multichannel quantum-defect applica-
tions. This opens up the possibility of a fulBb initio quantitative theoretical description of exciteg,H
including ionization and dissociation.
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[. INTRODUCTION initio quantum-defects should vary rather smoothly with en-
ergy and molecular geometry. The double smoothness is nec-
Multichannel quantum defect theof§1QDT) [1,2] no  essary becausg) the inclusion of the vibrational degresg
doubt is the most successful method able to describe thef freedom requires the evaluation of vibrational integrals
complicated rovibronic multichannel phenomena arising inwith the phase shift or quantum-defect functions as kernels,
molecules near ionization or photodetachment thresholdsind (ii) the validity of the frame-transformation method re-
Rovibronic channel interactions mediate the conversion ofjuires(see, e.g., Refl5]) that the phase shifts or quantum
electronic energy into energy of nuclear motiéor vice  defects depend only mildly on the energy. If we disregard
versg, and hence are the source of nonadiabatic chemicaluclear motion entirely (by bypassing the frame-
dynamics in excited molecules. Manifestations of such dytransformation procedurewe can still use MQDT(.e.,
namics range from anion formation in molecular clusters bysolve the extended collision problegfior fixed geometry and
slow electron collisiond3], to dissociative recombination negative energies, to obtain the clamped-nuclei bound Ryd-
processes important for interstellar chemigiy. berg potential-energy curves. A further quality requirement
One of the attractive features of multichannel quantumfor the quantum-defect matrices then is that these potential
defect theory is the way it accounts for resonant phenomenaurves should be of reasonable accuracy, giving a realistic
by adding closed fragmentation channels explicitly to theaccount of the lowest molecular states over an adequate
system of open scatterin@ontinuum) channels arising in range of geometries.
the standard formulation of scattering theory. The relevant While a vast amount oéb initio work has been devoted
scattering information is then represented by additional row$o molecular photoionization processes and low-energy elec-
and columns of the thus “extended” scatterifay equivalent tron collisions in general, only few papers have been pub-
guantum-defegtmatrices. These vary smoothly with energy lished where the body frame quantum defects were calcu-
as the resonances have been eliminated, and they do nlated directly in the continuum as well as in the bound-state
exhibit the often near-random resonant behavior due to thenergy range. As far as neutral moleculBydberg systems
details of the spectroscopy of the molecule under study. Anare concerned, the pioneering calculations are those of
other central element of molecular MQDT is that by meansStephens and McKof6] who used Schwinger’s variational
of suitable transformations of the frame of reference ofprinciple to obtain quantum defects for, Hor the bound-
the colliding partners(so-called frame transformations state range. Their work was restricted to the independent
MQDT relates the rovibronic collision matrices to corre- electron approximation however, and took account only of
sponding fixed-nuclei quantities—typically energy- andthe ground-state ion core. A few years later Greene and Yoo
nuclear-geometry-dependent  quantum-defect  matricel/] presented calculations also fop,Hvhich took account of
w(E,R)—from which the nuclear dynamics has been re-electron correlation and included core-excited channels ex-
moved, but which nevertheless contain the relevant scatteplicitly. These authors treated bound and continuum states
ing information necessary to account for nonadiabatic transdsing the variational eigenchannBtmatrix method[8,9]
fer of energy between the electrons and nuclei. which is based on Kohn's original ide§40]. Their work
From the point of view of theory, it appears desirable towas similar in spirit to that of Ross and Junddi] except
be able to calculate the extended body frame quantum dehat these latter authors derived the quantum-defect matrices
fects directly in amab initio procedure, just as the potential- from existing quantum-chemical potential-energy curves
energy curves or surfaces of a molecule are obtained by usather than carrying out their owab initio calculations.
of standard quantum-chemical codes. In order to be useful in The use of the variationd®-matrix theory for molecular
practice in the framework of quantum defect theory, tredse problems has been initiated by Raseev and Le Rouzo
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[12,9,13. The Wigner-EisenbudR-matrix formulation has an optimized choice of the regular and irregular (sin and cos
been used by Tennyson, Noble, and Salyi], Tennyson type) radial reference scattering functions for the core-
and Noble[15], and Shimamura, Noble, and Burk&6] to  excited closed channels, allows the energy and nuclear-
calculate continuum resonances in. HDther applications of coordinate dependences of the quantum-defect matrices to be
the Wigner-Eisenbud formalism include Rydberg and vadargely removed.
lence excitations in molecules such as CH], HeH [18], In a later step we plan to combine thb initio quantum-
and NOJ[19]. An important paper to be mentioned here isdefect matrices with rovibronic quantum-defect theory and
that by Hiyama and Child20] who combined the Wigner- frame-transformation theory, so as to be able to make accu-
Eisenbud formalism with multichannel quantum-defectrateab initio predictions for the spectra and dynamietec-
theory to calculate diabatic Rydberg and valence-state potetconic, vibrational, and rotational autoionization competing
tial energy curves of NO. The Schwinger variational prin-with predissociation, multiphoton excitationsn the scale of
ciple has been used by Lucchese and co-workgtsin an  rotational energy resolution. In the present paper we limit
approach that also accounts for electron correlation, both inurselves to the dipole-allowet® and *I1, channels of
the description of the interchannel interactions and in theH,. Unless specified otherwise, energies will be expressed
representation of the target ions. The applications of thishroughout the paper in rydbergs, and lengths in bohrs.
method to the photoionization of CO,Nand NO have been
very successful. However, only open channels appear explic- II. THEORY
itly in the coupled-channels treatment carried out in this ap-
proach. While electronic interchannel coupling is taken into The nuclei are assumed located at the fixed pdaadB
account, it leads to the occurrence of electronic autoionizaseparated by the internuclear distaf;e@nd prolate spheroi-
tion resonances, i.e., strongly energy-dependent continuuatal coordinates, »,¢) are used for the electrons,
phase shifts, which are undesirable from the present point of
view. ratre

Despite the fact that thR-matrix method today is basi- &R (§e[l+e]) @)
cally a well-established theoretical tool for calculating highly
excited bound as well as continuum states of atoms and mol- B
ecules, applications to molecules have often been plagued by n= A B (pe[—1,+1])
practical problems of various sorts, and therefore have unfor- R
tunately remained limited to few systems and few symme-
tries. The central purpose of our present work is to eliminatVith ¢ € [0,27] being the azimuthal angle, andrg are the
two major drawbacks of some of the earlier work, namely,distances of an electron from each nucleus.
the unsatisfactory accuracy of the purelp initio results The electron configuration space is divided into an inner
and/or the excessive variations with internuclear distance ang@action zone and an outer asymptotic zone. The reaction
energy of the quantum-defect matrices obtained in the calcuolume is defined by max(,&)<&, and&, will be chosen
lations. For example, the calculations of Stephens anéRrge enough so that one may assume that only one electron
McKoy [6] yielded quite smooth quantum defect functions.at a time is allowed to leave this internal region. Strictly
However, since these calculations were restricted to the inspeaking, the reaction volume is a five-dimensional hyper-
dependent electron approximation they produced c|amped‘>urface which may be visualized as an ellipsoid with the two
nuclei potential-energy curves of reasonable accuracy 0n|9UC|ei placed at its focal points. Inside the reaction zone all
near equilibrium(with an error of about 3000 cnt), while ~ of the interactions between the two electrons will be taken
becoming entirely unrealistic at larger internuclear distancegnto account, i.e., the full multipolar expansion of the
Greene and Yo¢7] on the other hand were able to obtain €lectron-electron Coulomb interaction 2/and exchange in-
clamped-nuclei quantum defects correct to better than abodgractions. The asymptotic or external region includes all of
0.05 over a considerable range of geometries. This accuradfe remaining spacef, must be large enough so that the
corresponds to an error of the clamped-nuclei electroni@scaping electron comes across just a two-center Coulomb
potentia|-energy curves of less than 1500 énfor n=2 or field p|US a medium-range polarization field, with the screen-
50 cm ! for n=6. Their quantum-defect matrices, however, ing charge of the internal electron being shared equally be-
exhibit such strong variations with energy and internucleafween the two nuclei.
distance that they cannot be used in the framework of rovi-
bronic quantum-defect theory. A. One-electron functions in the internal zone

Our present approach is in many ways similar to the work . . .
P iy ywey We start by defining one-electron basis functions for

of Greene and Yo¢7]. We combine the elliptical effective _ h spheroidal orbital di ) |
one-electron treatment applied to dipolar diatomic molecules™ $o- Each spheroidal orbital corresponding to a given value

by Arif et al.[22], with the effective two-electron approach \ of the orl_aitgl angular momentum projection onto the inter-
developed for atomic applications by Aymar agidal. [23], ~ huclear axis is written as a product:
and we also make use of the phase-amplitude description of

strongly closed core-excited electron channels implementedd)(g @)= X(¢) Y(n,0)= X&) L) 1 elhe.
in Ref.[24]. Specifically we shall show how careful consid- Y Jea—1 7 VE—1 1-7? 27
eration of the ellipticaR-matrix boundaryé,, together with 2
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Each function is a solution of the Sclidinger equation for we are using signed quantum numbérshere, so that the
the two-center problem which has been discussed manlasis functionsy;; do not necessarily transform as or —
times in the literature. The identity on the right-hand side ofunder the symmetry operatiarn, corresponding to a reflec-
Eq. (2) serves to precisely relate the radial functigns) tion at a plane containing the nuclei. This means ¥hatand
and angular functiong(») used in the present work, to the 3~ channels are not distinguished in our calculations, but in
equivalent radial function(¢) and elliptical harmonics ~Practice this is of no consequence sixce channels become
Y(7.¢) defined and discussed in detail in Appendix B of relevant in H at energies far higher t.han the range consid-
Ref. [22]. Note that the elliptical harmonics depend on theered_here. Two-electron overlap matrix elements will also be
energy, but that for given energy they form an orthonormaf€duired later and take the form
subset of functions with volume elemethyde.

As in Ref. [22], both y(£) and (%) are obtained by O )ire
direct numerical integration of the appropriate differential Ay VNN
equations[Egs. (B7) and (B8) of Ref. [22] with Z,=Z¢'f
=7,=75""=1,0,=0a,=0]. We impose a regular behavior Equation(6) shows that the basis functiolg are normal-
on ¢ for y==1 and ony for é&=1 [{(+1)=0,x(1)=0], ized to unity.
whereas, as will be specified later, &= &, we impose a
fixed boundary condition on eagh b= —x'/x (where the C. Bielectronic integrals
indicates the derivative with respect to the radial coordinate
£). This procedure yields a discrete set of functions with

[0ii:0jj: +(—1)%0;,0i/i].  (6)

The evaluation of the bielectronic integrals is a delicate
! ) ) ~ - ) matter and represents a crucial step in the calculation. Fol-
eigenenergie€;, wherei=(nI\), n—I—1 is the number |oying earlier work[25,26,7,27, we expand the electron-
of nodes of the radial function, anld-\ is the number of electron distance 4, in terms of associated Legendre func-
nodes of the angular functiofias in Ref.[22]. Note thatl  tions as
reduces to the familiar spherical angular momentum quan- |
tum number whenR— 0 [22]. 1 2 S S (CpH@+1)

One-electron overlap matrix elements will be required be- ro R{=0 .55
low and are calculated with the volume elemeR{2)3(&2

— 72 I —|u|)t)?
T)dedde & || Qe P
R\3 ¢ 1 4(m) g N
ow=3) 5mi,| [Pxon@ae[ de <PlH(P(pemteed, (@)

o whereé. andé_ are the larger and the smaller §f and &,
foxi(&)xir(§) d (e (md 3)  as usual. The functionB|“!(£) and Q|*!(¢) are the associ-
+ > £ Li(p)&i(mdan . ) . . : .

1 -1 -1 ated Legendre functions of the first kind and the second kind,
respectively. Their numerical evaluation is described in the
Appendix.

The interaction matrix elemenfsl/r1,];; i/;» are calcu-

Normalized two-electron basis functions are constructedated by numerical integration. Note that as the symbolic
as Slater-type products of one-electron functions as follows¢oordinatest. and £ are replaced by, and &, respec-
tively, the divergence at the origin of the functio@#’“‘(g) in
Eq. (7) turns out to be compensated by the regular behavior

B. Two-electron basis functions in the internal zone

Yii(§1,m1,01.€2,m2,¢2)

1 of the functionsPl"'(g) and of the single-electron radial ba-
=—=1¢i(&1, 71, (62,72, sis functions .
\/W”{Qﬂ(fl 71 <P1)¢J(§z 72,%2) X (€)
+(— 1)5¢j(§l,7]1,¢1)¢i(g2,7,2,¢2)}, (4) D. Variational R-matrix calculation

Once a suitable basis set has been chosen, a Hamiltonian

where matrix can be set up in the reaction volume:

Nij=0;;05; +(—1)%0;0;; - (5

Hijyi,j,=(Ei/+Ej/)Oij'i,j,-i-Z |’12

®

Each basis functioy;; is thus specified by the six quantum iy

numbers asi; | 1A 1Nzl 515, where in the following, antisym- - pjaqonalization of this matrix yields eigenvalues and eigen-

metrization with respect to the exchange operation accordinﬂmctions of the two-electron Hamiltonian in the reaction

to Eq. (4) will be implied. Gerade (g)and ungerade (U) \oyme. These eigenenergies and eigenfunctions depend on
functions are obtained by selectigvalues such that, &, and also on the value b(&,) imposed on the logarithmic
+T, is evenor odd, respectively\ ; and\, are selected such derivative of each basis function &t. b(&y) may be taken

as to correspond to the desired valie=\;+\,. Note that to be the same for all basis functions and its value may be

062704-3



M. TELMINI AND C. JUNGEN PHYSICAL REVIEW A 68, 062704 (2003

varied iteratively. The eigenvalues of the Hamiltonian matrixand angular functions of the single electron present in the
will then vary correspondingly. If an eigenvalueldfcan be  external zone are evaluated numerically in an analogous
made to coincide with the preselected total endeg(&y) manner as the one-electron basis functions discussed in Sec.
can be considered to be an eigenvabyeof the boundary Il A with the following differences.
condition compatible with that energy. This is the iterative (i) We setZ;=7%""=7,=78"=1 a;=a,=}a(R) in
eigenchannel procedure of Fano and [28]. Egs.(B7) and (B8) of Ref.[22] in order to account for the

In the variationaR-matrix scheme such as formulated by partial screening of the protons by the core electron and to
Greeng[8], one uses simultaneously a whole “basis” of dif- include the dipole polarization field of the cor@(R) is the
ferent boundary conditions(¢,), to be specified later’ and spherical component of the dipole polarization tensor of H

one solves a generalized eigenvalue system of the form (see Ref[22]) which we take to be the same in thed and

> > 2po core states.
I'c=b(E,&y)Ac, 9 ; . . . .
(E.é0) © (i) The numerical propagation of the radial function must
which directly yields the set of eigenvalueb,=  be carried to an appropriately large value (in principle

—W /¥, for the boundary condition on the reaction sur- infinity). . _
face £, compatible withE. The associated set of coefficients (i) We evaluate radial channel functions for channel en-

¢/ serves to construct the eigenfunctions valid in the reactioi§9/€Sec=E—E., whereE s the arbitrarily preselected total
volume in terms of the basis functions of Hd): energy. For each energy and each core state we evaluate

solutions that are regular at the origify(e.,£), as well as
s solutions that are irregulag,(e.,£).
‘I’B:Z CijYij - (10) Specifically, we calculate the radial channel functions in
. phase-amplitude form

For a given preselected total enef§yhe matrix elements of

I and A of Eq. (9) are defined as follows: 1 (¢ 1 ,
g.(9 i S wSs fi(€c,&)= \/;ak(ec,g)smjl de (14)
(€,
Fij,i’j’zz(Eoij,i’j’_Hij,i’j’_Lij,i’j’) (11) k ¢
and and an analogous expression (€. ,£) with sin replaced

by —cos. The normalization in Eq14) corresponds to a

Ao 255 0y (Eo) o (€ )f” §j(77)§jr(7))d value of the WronskialV(f, ,g,) = 1/ (see Ref[24]). Note

1117177 Oy P Xjleo) Xjriso) | T 7 K thatf, g, anda depend on the channel electron eneegyas
(120 well as onT and \. ay(e.,&) is the amplitude function
which is smooth, i.e., does not have the nodes characterizing
f and g, and it obeys Milne’s inhomogeneous differential
equation[30]. Recipes for its numerical integration for arbi-
trary energy are discussed, e.g., in H@#]. The amplitude

with Hj; i+; as given in Eq(8), and with the elements of the
Bloch matrixL given by

Li s :E . S — de function «,(e.,¢) is asymptotically divergent for negative
iji’j’ XJ(§O) )\.)\.,Onr)(j,(fo) 2 7 . . LS
2 I 1-9 channel energies., i.e., below the ionization thresholgl.,
and the same is therefore generally true for the channel func-
_1)Ss , 1 () &i(m) g tionsf andg. However, we see from E@14) that theaccu-
(=1 )‘i)‘i’oij’)(i'(go) 11— 2 Us mulated phaseBy(e.) =7 ay *(e.,£)d¢ is finite, so that

asymptotically we have
(13

The primes on the radial functiong in Eq. (13) refer here 1 )

again to the derivative with respect to the radial coordinate fulec.é)~ \/;ak( €c,&)sinBy(€c) (15
¢, The surface element used for the integrations in Egs.

(12 and (13) is [29] do=dv.do- with do- ) )
=(R/2)2\/E(2)—_1\/E(2)—_772d7;dgo anddv_ as indicated before and an analogous expression (e.,£). The numerical

Eq. (3). Note that the angular integral in Eq4.2) and (13) e_valuation of the amplitude functiam(e;,£) and the asso-
does not reduce td;;. in the present elliptical formulation ciated accumulated phagg(ec) _becomes a somewhat deli-
because the(#n) functions are orthogonal only if corre- cate matter at very low energies when a channel beco”.‘es
sponding to the same energy, “strongly closed,” i.e., below the lowest eigenvalue associ-

ated with the radial potential whe@(e.)/ w=<1. This situ-
ation has been considered in detail in H&#] and is indeed

encountered in Kl asR—0, the energy of the Ro repul-

For £ values larger thady, the two-electron problem re- sjyve core is rising, and the core-excited channels associated
duces to a one-electron problem which is separable in prolaigith it therefore become increasingly strongly closed in the
spheroidal(elliptical) coordinates. Each channel can be la-energy region where the Rydberg spectrum associated with
beled in the external zone &s=(n;l;\;)€el,\,. The radial the ground state core occurs.

E. One-electron channel wave functions in the external zone
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F. Matching procedure on the surface of the reaction volume It remains to spell out the integral of EGL9) explicitly,
Each variational solutio?’ ; of Eq. (10) may be contin-  PY expressingV 5(E, &) in terms of the two-electron basis
; ; g T functi i of EQ. (4) with th fficientc? defined b
ued in the asymptotic zone, i.e. for radii larger tignas a  functionsyj; of Eq. (4) with the coefficientsci; defined by
linear combination of the regular and irregular radial channeFd- (9). We find
functions and as a sum over channel components

. +1 () Li(n)
q’B(anrg):Ek ®(E,0) 3'_ ukB(Evgo):; CﬁXj(go)écié)\j)\kJA_ll_—nzd

7.
Vel (22

X[f(€c,E)lig—Ok(€c,€)Igl,  (16)

h denot I dinat The angular integral in Eq22) does not reduce exactly to
where o enotes all coordinates except, o djx unless the/(#) functions are calculated at the same en-
=(&1,m1,91,72,92). The sum overk extends over the erav. i o
“ . . . gy, i.e.,Ej=E=e.+E..

physically relevant” channels, i.e., those that are weakly
closed in the usual sense of quantum-defect theory. The ma-
trices| andJ consist of matching coefficients which we shall IIl. DETAILS OF CALCULATIONS
now determine by requiring that E¢L6) and its derivative
with respect tc¢ be continuous af= &, i.e., the outer-zone
solution Eq.(16) must join on smoothly to the inner-zone  Our present application concerns an energy range extend-

variational solution Eq(10). The short-range reaction matrix jng from the lowest'S bound state of Kl up to the Do

A. Asymptotic channels andR-matrix radius

K'is then obtained as excited ionization threshold. Therefore we explicitly include
» in the external zone all channels built on thesland 2o
Kkk’zg ‘]kﬁlk’ﬁ' 17 ions WithT$3, namely, the EO‘GBO’, 1’50'6?0', 250'650,

and Do edo channels for's © symmetry, and thedoepr,

In an initial step we expand the inner-zone variationaly’sy¢f 7, and ooeds channels for'Il, symmetry.
solution'¥ 5 on the reaction surface in terms of the so-called The choice of theR-matrix radiusé, is subject to two
“surface harmonics” conflicting requirements. First of all, we must choo&g

€ large enough so that the two lowest states of khat arise
§~,2A2( 72) gih2e2 explicitly in the channel treatment are enclosed within it. At
P(E, @)= de(é1,m1,01)—=—= —==- (18  the same time we wish to take tRematrix radius as small as
1=7 ‘/ﬁ possible in order to avoid a situation where the innermost
For each given total energs and channek, the full set of !obeT qf thg Rydberg electron func'Fion is fully included within
surface harmonicé (E) is orthogonal and complete on the it, giving rise to a resonant behavior of the quantgm defect at
surface,, although in practice the expansion will be re- Iow energy. To say it pointedly, we wish, e.g., thee core
stricted to the physically relevant channels. This is sufficienpbf the configuration Rolso to be contained withirg,, and
because i, is chosen large enough, the expansion @@  at the same time thepr Rydberg orbital of the configura-

will no longer contain the physically “irrelevant” channels tion 13020 to extend beyond,. In practice a compromise
presre]:nt at shorter ran?f.e.. . L could be found for eacR value after some experimenting,
The expansion coefficients are obtained by projection, ., requiring thati) the eigenenergies of the lowest two one-
electron functions within the reaction volume should differ
ukB(E,go):f DO(E,0)V¥4(E,0,&)do, (190  from the exact eigenvalues of,H by no more than about
2 103 Ry, and(ii) the bound states calculated fos Ksee Sec.
IV) should not vary significantly wheég, is varied. Theg,
values adopted finally are the smallest satisfying both re-

UL A(E, &)= — b o(E)Ura(E, &), 20 quirements, and correspond approximately §g~—2.5
(o) #(E)Uis(E. £o) 20 +3.5¢.(R) whereé (R) is the classical reflection point for

where the prime again indicates to differentiation with re-the core electron in thefr orbital at internuclear distance

and we also have

spect toé. _ S R. The values of the spherical polarizabilityR) of H,"
Subtraction of Eq(20) from Eq.(19) after multiplication  have been taken from Bishop and CheUsd] and were
by g, andgy, or f; andf,, respectively, leads to used according to the prescription given in Hef].
lg=mW(Ukg,9k), (2D B. One-electron and two-electron functions
Jig= TW(Uyg, i), The variationalR-matrix approach requires basis func-

tions corresponding to at least two distinct boundary condi-
where we have used the fact that the Wronski(f, ,g,) is  tions on the boundary of the reaction volume. Following ear-
equal to 1. lier applications of the variation&-matrix scheme, we use a
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FIG. 1. Ab initio eigenquantum defects fof>, symmetry as functions of internuclear distarRén atomic units and energg in
rydbergs. The zero of energy corresponds to thé Bso threshold.(a) a=1, (b) =2, (c) =3, (d) @=4. Note the different origin of
the quantum defect scale employed for 1. See text for details.

large set of “closed” functions corresponding {6(&é= &) functionsy?j are selected to be those with energies closest to
=0, as well as a small additional set of “open” functions the total energ{. Le Rouzo and Rase¢9] have shown that
X°(&) with x°'/x°(é=&o) = &0/ (£3—1). the number of nontrivial solutiond,; of the generalized
For each value oR, we consider the following symme- eigenvalue system Eq&) and(10) corresponds to the rank
triesT\: so, po, do, fo, pmr, d, T, d5, andfs, and for ~ of the A matrix. In atomic problems this number equals the
each of these we include the ten lowest radial states in theumber of asymptotic channels taken into account explicitly.
closed one-electron basis, thus obtaining a total of 90 closedFhis is not strictly true in the molecular case because of the
type one-electron functions. F&=5 we have found it nec- nonorthogonality of the elliptical harmonid¢see Eq.(12)]
essary to include alsb=4 functions. For both thé> " and  [32]. However, when open two-electron basis functigtis
the 11, symmetry we use a closed-type two-electron basigire chosen whose energies are close to the total energy, the
including about 200 configurations constructed from the mononorthogonality is quite small. In practice we have always
noelectronic functions. A selection criterion involving a cut- found the correct number of nontrivial solutions. Conver-
off energy is used to extract these from the much larger set gjence of each variation&-matrix calculation was checked
two-electron functiong/f; that can be constructed with the by recalculating each, from the eigenfunction¥ ; accord-
one-electron closed-type basis. The open two-electron basisg to [8]

062704-6



R-MATRIX IMPLEMENTATION GIVING WELL-BEHAVED . .. PHYSICAL REVIEW A 68, 062704 (2003

FIG. 2. Ab initio eigenquantum defects fdil, symmetry.(a) =1, (b) a=2, (c) a=3. (Cf. caption for Fig. 1).

’ 1 —1 -1
Vsl V() do ro(ER) = —tan 2 U Ko Ui (24)
by~ , (23 “

E‘I’ﬁ(w)‘l’ﬁ(w)dw as functions oR andE, whereU is the eigenvector matrix of
K. This is done in Figs. 1 and 2 which represent g,

and ensuring that thie value thus obtained was close to the and 11, symmetries, respectively.
corresponding value obtained in the solution of the general- Inspection of the eigenvector matiix(E,R) (not shown
ized eigenvalue system E(p). The calculations have been indicates that thé=," eigensolutions 2 and 4 in Fig. 1 cor-
carried out on a coarse griq of internu'clear distar{éesohy respond quite closely to th&trefo and 250650 channels:
and on an intermediate grid of energiedout 0.02 Ry. we see that these eigenquantum defects are nearly zero in the
low-energy range for alR values as one would expect on
physical grounds because of the nearly nonpenetrating nature

IV. RESULTS AND DISCUSSION

A. E and R dependence of quantum defects of the'd andT electrons. These quantum defects begin to
A convenient and compact way of visualizing the resultsdeviate significantly from zero only for higher energies-
is to plot the eigenquantum defeqis, defined as sentially above the 4o threshold and largerR values,
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again in line with physical expectations. By contrast, the 50

eigenquantum defecie=1 and 3 are more “active”. As a

consequence of strong configuration interaction they corre- 40

spond to approximate 1:1 antisymmetric and symmetric /
mixtures of the $oepo and Poeso channels throughout ol

the R range shown. We see in particular that at the low- 9

energy edge thee=1 eigenquantum defect increases quite g v v v W
significantly betweeiR=2 andR=3, although this increase = *°f ]
is attenuated for higher energies. This behavior is the conse / /

guence of the fact that for low energy and for increadihg 10F

the ', symmetry converts to the ionic channel {H

+H™) [33]. The 11, eigenquantum defects shown in Fig. 2 0ol

are basically similar but on the whole less dependenRon //

and E. The eigensolutionsa=1,2,3 correspond approxi- 10 X

mately to lSoepm, Isoefa, and Doedm except for larger o0 " 20 % 40 50 80

R where increasing configuration mixing causes 2 and 3
to becolme 'mlxtures ofswefw and Poedw. The data dis- as functions of the effective principal quantum numbers
played in Figs. 1 and 2 demonstrate that the quantum defect§(76)71/z for 1=0—3 and\=0. Thick lines. numerical values

will be amenable to the interpolation procedures requiréqyicyjated in Sec. Il E. The thin lines correspond to the phase pa-
when one desires to take account of the nuclear degrees pimneterg/ =11 for a Coulomb field, used in ordinary quantum-

FIG. 3. Accumulated phase parametgrsn units of 7 plotted

freedom. defect theory. The squares and triangles indicate the positions with
respect to each channel of the four lowest states obtained by solving
B. Potential-energy curves and “halfium” model the full Eq. (25 (cf. the texi.

The accuracy and the predictive power of the quantumunphysical levels at low energies corresponding to a zero or
defect surfaces of Figs. 1 and 2 can be tested in variougsegative accumulated phase. These unphysical levels are
ways. First we use them to calculate several of the lowesavoided in the Milne approach since the numeriBg{e;)
bound levels and to compare the resulting energlgéR)  tend asymptotically to zero for low energies.

with the corresponding accuras initio potential-energy ~_ The difference between numeridalliptical) and analytic
curves for theB, B’, andB” and three higher'S, states, (Coulombig accumulated phase values is seen to be nearly
and theC andD and two higher'Il,, states. constant for eacl value and all but the lowest values.

Generalized quantum-defect theory yields the positions of his difference therefore amounts to an energy-independent

bound states as the solutions of the MQDT secular equatiofontribution to the quantum defect which arises outside the
[1,2] reaction boundary, and is due to the combined effects of

the quadrupolédplus higher multipole moments created by
deftanB(€.) S + K (E)[=0 (25)  the two half-chargecf. Sec. 11 B on each center as well as
the polarization field. Mulliken[34], several decades ago,

for eachR value individually, where the accumulated phasePioneered similar ideas when he developed his “Deri-H
S, is evaluated using the recipes given in R&#] (cf. Sec. model for the Rydberg states of,HHe showed that the

IlE). Equation(25) yields the full spectrum of eigenvalues duantum defects near equilibrium could be interpreted as
U,(R) from n=2 to high values. These eigenvalues arecorrespondmg to the sum of a “core-splitting” contribution

equivalent to the molecular potential energies once thélncluded in the present work in the elliptical accumulated

i : : . phases and a “penetration” contributior(included here in
ggggg proton interaction term 2/R (in rydbergs has been the K matrix). The half-charged ion H with an associated

Before discussing the actual results, we shall commen/€Ctron thus emerges as a hypothetical neutral *particle’—
on the accumulated phase parametgige.) [Eq. (15)] which one might be tempt_ed to call ‘_‘halflum"—whlch in
which appear in Eq(25). Figure 3 displays these quantities Rydberg states of symmetrical diatomic molecules plays the

_ 15+ role of the hydrogen atom in atomic physics. Obviously, as
calculated forR=2 and “%,, overall symmetry. The data Mulliken [33] already pointed out, this type of one-electron

refer to the radial channel functiongpo, efo and €, model may be expected to be realistic in even-electron mol-
edo, respectively, and are displayed for each channel ascules only up to two or three times the equilibrium internu-
functions of the Coulombic effective principal quantum clear distance.

numberv,=(—e;) 2 (thick lines in the figurg In the ab- Tables | and Il list the lowest few bound states &,
sence of a core, bound levels would occur in each channel &hd 11, symmetries, obtained by solution of the full equa-
the energies for whiclB,(e.) is equal to an integer. The tion (25) including theK matrix, and compare them with the
straight diagonal(thin) lines in Fig. 3 correspond to the pest currently available quantum-chemiedl initio calcula-
phase parameters for a pure Coulomb fief°"(e.)  tions (Staszewska and Wolniewid85,36). Tables | and Ii
=m(v.—I), and are shown for comparison. They illustrategive the calculated effective principal quantum numbers
the well-known fact that the Rydberg equatigif") yields  »(R) evaluated by using
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TABLE I. Clamped-nuclei effective Rydberg principal quantum numbers'Ejf states of H. Ris the internuclear distance in amis
the effective principal quantum number, Eg6). Ab initio valuesevaluated from the energies given by Staszewska and Wolni¢@6c26.
The indicated orbital designations are valid for snialfalues only.

R=1 R=2 R=3 R=4 R=5

State vap initio Vpresent AV Vapinitio Vpresent AV Vap initio Vpresent AV Vapinitio Vpresent AV Vapinitio Vpresent Av

1 2poB 1965 1.971-0.006 1.829 1.854—0.025 1.690 1.720—0.030 1.625 1.647—0.022 1.620 1.648—0.028
2 3pogB’ 2966 2.969 —0.003 2.821 2.847—-0.026 2.636 2.681-0.045 2.422 2.474-0.052 2.212 2.219-0.007
3 4poB” 3.966 3.973-0.007 3.817 3.844-0.027 3.620 3.660—0.040 3.368 3.366+0.002 3.171 3.166+0.005
4 4fo 3,996 3.997 —0.001 3.986 3.990—0.004 3.965 3.956+0.009 3.914 3.942—-0.028 3.640 3.726—0.086

5 5poc 4.966 4.972-0.006 4.815 4.842—0.027 4.612 4.648—0.036 4.333 4.299+0.034 4.070 4.088-0.018
6 5fc 4996 4.997 —0.001 4.986 4.990—0.004 4.964 4.975—-0.011 4.903 4.937—-0.034 4.434 4.447-0.014
7 6po 5.972 5.840 5.641 5.255 4.943
8 6fo 5.997 5.989 5.974 5.933 5.300

values than theirs, no doubt because of our inclusion of po-
5 (26) larization in the asymptotic region. For example, thier4
v“(R) state has a quantum-defect pf=n—»=0.035 for R=3,
) i , both according the quantum-chemical calculations and ex-
Equation(26) assumes that the electronic energies here are IBeriment(see Fig. 4 below This value compares more fa-
rydbergs and thdt * (R) is the lowest H (1so) clamped- vorably with the present value 0.044 than with the value
nuclei potential energy. Where a quantum-chematalnitio  0.009 derived from Ref.29] (Table IlI).
potential curve is available, the differencer (ab initio Returning once again to the accumulated phase values, we
present is given in the third column for eacR value. Re-  consider once more Fig. 3 where the positions of the four
member that an error & »=0.05 corresponds to an energy lowest states from Table | fdR=2 are indicated by squares

shift of about 1300 cm' for »=2, of 90 cm'* for »=5,  anq triangles with respect to each channel. Therédo

~1 _ H ~ ~
and of 10 cm ™ for »=10. The calculations of Ref$35] channel(for all four stategand the Boef o channel(for the

?ew [\/?/g]\/g?nlﬂrr]r?bgtrhﬁai?sarzi(‘?rs ;ic?nrgt?hgev;gtgnmo;e t())(; 4wo lowest stateisare seen to be strongly closed at the cor-
Y), y responding energies withB,(e;) close to zero, while

considered as being exact for the present purposes. The et="" - ,
rors displayed in Tables | and Il range up to about 0.05 forlSo€Po is weakly closed withB,(ec)~1 or larger. The
the 13 and 1, states. Exceptions are tH& ,* and 1[I,  core-excited Poeso channel corresponds to an intermedi-
states withv~3.7 forR=5 where the deviation is somewhat ate situation sincgy(e;)<1 but not<1. It turns out that
larger. We have found that an increase of the variational basi#lis latter channel indeed contributes strongly to BaeB’,
always leads to an improved agreement as should, of coursandB” states.

be expected.

In Table Il we compare the differenceS=v.p initio
—vrmatrix Of this work (Table ) with those obtained by
Greene and Yo7,29] for '3, " symmetry. It can be seen ~ Another test of the quantum defects is provided by com-
that in spite of the very different quantum defects resulting inParison with the quantum-defect curves used previously in
the two sets of calculationigompare our Fig. 1 with Fig. 18 rovibronic multichannel quantum defect calculations for H
of Ref. [29]), the predictions for bound states are by andAmong the most recent curves of this type are those pub-
large of the same quality. While the earlier calculations aplished by Jungen and RoB37], who determined energy and
pear to account a little better for tipemanifold of states than R dependent quantum-defect curveéE,R) defined by Eq.
our computations, ouf states come closer to thab initio  (26) with u=n—v (v intege) for the 1scepo and Iscepm

Un(R)=U"(R)—

C. Effective single-core quantum defects

TABLE II. Clamped-nuclei effective Rydberg principal quantum numbers'idy, states of H. See caption for Table I.

R=1 R=2 R=3 R=4 R=5

State vap initio Vpresent AV Vapinitio Vpresent AV Vapinitio Vpresent AV Vapinitio Vpresent AV Vapinitio Vpresent Av

1 2pwC 2.035 2.037 -0.002 2.080 2.075+0.005 2.116 2.112+0.004 2.126 2.127—0.001 2.107 2.104+0.003
2 3pwmD 3.037 3.042-0.005 3.080 3.087—0.007 3.115 3.123—-0.008 3.125 3.118+0.007 3.106 3.049+0.057
3 4fwV  3.997 3.996 +0.001 3.989 3.992—0.003 3.972 3.977-0.005 3.931 3.945—-0.014 3.790 3.853—0.063
4 4pwD’ 4.037 4.039 -0.002 4.080 4.090—0.010 4.113 4.121-0.008 4.123 4.109+0.014 4.105 4.053+0.052
5 b5fxw 4.995 4.992 4.975 4.939 4.792
6 5pm 5.037 5.090 5.119 5.105 5.058
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TABLE lIl. Comparison of R-matrix calculated effective principal quantum numbers tar} states of H. Ab initio values from
Table I.

R=1 R=2 R=3 R=4 R=5
Ref. Ref. Ref. Ref. Ref.
Vabinitio AV®  [29P vapiniio AP* [29° vapinitio AV [29P° Vapinio AV [29° vapiniio AV® [29P

1 2poc 1.965 —0.006—-0.004 1.829 —0.025-0.011 1.690 —0.030—0.013 1.625 —0.022—-0.013 1.620 —0.028 -0.014
2 3poc 2.966 —0.003—-0.008 2.821 —0.026—-0.020 2.636 —0.045—0.030 2.422 —0.052—-0.022 2.212 —0.007—0.022
3 4po 3.966 —0.007—-0.008 3.817 —0.027—-0.018 3.620 —0.040—0.022 3.368 0.002-0.012 3.171 0.005 0.003
4 4fo 3.996 —0.001-0.003 3.986 —0.004—0.011 3.965 0.009-0.026 3.914 —0.028-0.059 3.640 —0.086—0.182
5 5poc 4.966 —0.006—0.008 4.815 —0.027—-0.017 4.612 —0.036—0.020 4.333 0.034 0.000 4.070-0.018 0.018
6 5fc 4.996 —0.001-0.004 4.986 —0.004—0.010 4.964 —0.011—-0.023 4.903 —0.034—-0.054 4.434 —0.014-0.044

%Present work.
b _
YO00. AV= vap initio ™ YR-matrix Values.

channels. When combined with the rovibrational frame-
transformation quantum-defect approach, these quantum de-
fects reproduce the high Rydberg levels withup to ~30

[38] observed in the absorption spectrum of With an ac-
curacy of about 1 cm!, and they have been used success-
fully in a number of applications, including, e.g., wave-
packet motion in preionized and predissociated states,of H
[39]. These quantum-defect curves are based, on the one L
hand, on the five lowesab initio potential-energy curves, 050 |-
and on the other hand, on the experimental observations for
v~7. Figure 4 displays the values obtained in R&f7] for
near-threshold energiéhill and dashed lings Similarly, Uy
et al. [40] presented analogous quantum-defect curves for

the isoefA (A=0-3) channels of K which were evalu-
ated theoretically in the framework of a long-range force
model for the electron-core interaction and which reproduce
the observea f levels of H, to within a fraction of 1 cm®.

1.00

H(R)

0.00

These curves are also shown in Fig. 4 X0 and 1 by full 050 ottt
and dashed lines, respectively. Theand X symbols in Fig. R
4(a) correspond to théX ! and 11, values obtained in the 100 : : e : :

present approach with E@26) for »~7 (not included in
Tables | and I). Figure 4b) contains the corresponding data
obtained forv~4 from Tables | and II.

We see that the agreement is excellent in Fig) féear
equilibrium (R=2), whereas large deviations occur fBr
=4 andR=5 for both the'X and 11, channels. Figure
4(b) on the other hand displays much better overall agree-%
ment, although near equilibrium our values deviate some- L
what more from the empirical curves than in Figa$ The 0.00 %
reason for these deviations is the following: the quantum- -
defect determinations in Ref37] used the near-threshold
absorption spectrum near the =0, 1, and 2 vibrational
thresholds of the K™ ground state. Levels in this range cor- L
responding to high vibrational quantum numbeéshere the >0 1.0 20 3.0 40 5.0 6.0 7.0
nuclei explore separations beyoRe-=3) correspond to rela-
tively low electronic excitationy~4, whereas levels corre- FIG. 4. Effective one-channel quantum defects fox and
sponding to low vibrational quantum numkerhere nuclear ) (x=0,1) Rydberg series converging to the Hground state.
motion remains restricted to the equilibrium regiarorre-  Fy|l lines represerpo andf o quantum defects from Ref&37] and
Spond to hlgher electronic excitation. We conclude that thq40]7 respectively. Dashed lines: correspondingandf = quantum
empirical quantum-defect curves of REB7] are thus prob- defects. Symbols+ (x) correspond, respectively, to the present
ably moreeffectivethan had previously been thought, be- potential curve calculations from TablgTable 1)) for 13! (1)
cause in fact they represent a compromise since they correaymmetry.(a) for v~7, (b) for v~4.

(b)
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TABLE IV. Positions and widths of the lowest doubly excité®; resonances in H

260'230’ 250'350' 250'3?10’
R? EP Vpresentc Ref.[47] Ref.[7] E Vpresent ReF.[47] Ref.[29] E Vpresent Ref.[47]  Ref.[7]
1.0 1.4810 1.847 1.821 1.819 1.6482  2.820 2.807 2.798 1.6660 3.043
2.0 0.6226 2.010 2.016 1.996 0.7611  3.028 3.032 3.021 0.7585 2.991
3.0 0.1946 2111 2.249 2.246  0.3167 3.128 0.3043 2.954 3.021 2.987
4.0 0.0624 2.685 2.634 2371 0.1288 3.719 0.0829 2.909 3.070 2.907
R Fpresemd Ref.[47] Ref.[7] [present Ref.[47] Ref.[29] [present  Ref.[47]  Ref.[29]
1.0 0.020 0.018 0.022 0.005 0.004 0.005 0.0004
2.0 0.048 0.049 0.054 0.002 0.002 0.004 0.002
3.0 0.059 0.065 0.090 0.028 0.009 0.004 0.004
4.0 0.040 0.013 0.030 0.024 0.021

4nternuclear distance in bohr.

bPresent work. Energy abovesd in rydbergs, evaluated by eliminating the open channels from(Z5y.
“Effective principal quantum number with respect to thes2ion threshold.

dwidth (rydbergs.
®Overlapping resonance.

spond to highv values nearR~2 but to much lowery

1saef\ for A\=0 or 1 are open, so that the corresponding

values forR=4 and 5. The first-principles calculations fur- accumulated phaseg(e.) must be replaced by the negative
ther indicate that nedR=4 and 5 the doubly excited states yf the eigenphaser7,(E) which we are looking for. Equa-
2po2so and Po3dm cross the ion ground-state curve andtion (25) then in effect becomes a generalized eigenvalue
cause a series of avoided crossings in the bound-state mapjroblem as detailed in the QDT literatuf&]. The eigen-
fold (cf. Tables IV and V of the present paper and Fig. 2 ofphase sunr,_,+ 7, obtained in this way increases by one

Ref. [7] where the'X perturbations are illustratgdit is
these avoided crossings that cause the disrupted behavior

the theoretical defects in Fig(a for R=4.

D. Doubly excited resonances

tions and widths corresponding to th@@ni\ lowest dou-
bly excited '3, and 1, configurations with previougab

u(rg]it near the Poni\ resonances. The resonance position
é rresponds to the energy where the energy derivative of the

eigenphase sum has a maximum, while the width corre-

sponds to the half-width of this rise. The resonance positions

can alternatively be calculated as bound-state positions by
A final test of the quantum-defect matrices calculated ineliminating the open channels from Eg5). We have found

the present work consists in comparing the resonance posihat as long as the resonances are narrow and well isolated

the two ways of calculating the positions give identical re-
sults, showing that the resonance shifts are small in these

initio work. The calculation is made again by solving Eqg.cases. However, when the resonances are broad and begin to
(25) with the K matrices calculated in this work. The only overlap, we observe differences. At the same time the con-

difference is that now the two channelssdep\ and

cept of the position and width of an individual resonance

TABLE V. Positions and widths of the lowest], doubly excited resonances k,, See caption for Table IV.

260'3877 250'4877

R E Vpresent Ref. [47] E Vpresent Ref. [47]
1.0 1.6609 2.974 3.198 1.7103 3.963 4.095
2.0 0.7589 2.998 3.048 0.8078 4,002 3.940
3.0 0.3056 2.969 3.014 0.3560 3.974 3.999
4.0 0.0878 2.957 3.070 0.1383 3.979 4.030
R Tpresent Ref. [47] Tpresent Ref. [47]
1.0 0.0002 0.0024 0.0001 0.0002
2.0 0.0012 0.0009 0.0008 0.0060
3.0 0.0048 0.0033 0.0027 0.0019
4.0 0.0102 0.0126 0.0053 0.0058
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loses its meaning and one can at best give estimates of thed®t the same configurations had to be used foRalblues

guantities. calculated. Note further that we will not need to calculate
Tables IV and V give the effective principal quantum quantum-defect matrices fdR values larger than about 6

numbersy of the resonance positions calculated with respect.u., because outside this range we will treas the disso-

to the Do first-excited potential-energy curve of,H, and ciation reaction coordinate in an approach that has been out-

also their widths. The lowest resonance has been calculatdd@ed. e.g., in Ref[49]. .

by many author§16,41—48. For comparison we include in ~ Another aspect of the present work is that our use of
the Tables IV and V the positions and widths given by Ten-€lliptical coordinates combined with inclusion of polariza-
nyson[47] and Greene and Yo,29]. We have found that tion in the external zone allows us to reduce Renatrix

the onse and Dondo resonances fon=3 are strongly rad_ltl)Js S|g|;n|f|cantly. Theref(_)re it hzz beer;] possllble to de-
overlapping and in fact cross over with increasRgThus ~ SCfbe valence-type states in a Rydberg-channel representa-

. . ~ tion, whereas, for example, in the work of RE20] on NO
according to our calculationdable V) the o resonance the R-matrix radius was taken roughly three times larger, and

lies above 3o up to R=2 but below it forR=2, and we  he yalence-type states are contained entirely inside the reac-
find that strong mixing occurs in theanti) crossing region.  tion volume and manifest themselvesRsnatrix poles.

An analogouso~do anticrossing is known to occur in the We finally wish to comment on the physical meaning of
*3 4 manifold of states associated with the ground-staté H the quantum-defect matrices such as illustrated by Figs. 1
core[48]. This phenomenon has apparently been overlookegnd 2. They have been optimized by a careful choice of the
in Refs.[47] and[29] where only the lower partner of the regylar and irregular basis functions in each of the “strongly
pair was calculated. Tables IV and V show that apart fromg|osed” channels, based on the considerations of [Rél. It

this aspect there is good agreement between the present agghy |4 be realized that depending on the optimization, dif-

the previous calculations. ferent sets of basically equivalent short-range quantum-
defect matrices can be obtained. Thus, for example, the ma-
V. CONCLUSION trices given by Greene and Y¢$®&,29] exhibit much stronger

We believe that the present work constitutes a decisive/ariations inR and E (and are therefore probably less
step towards the goal of calculating fulrmatrix ab initio ~ “Physically meaningful”), but are equally successful as ours
photoionization and photodissociation spectra of highly exin reproducing the lowest fixed-nuclei potential energies
cited H, at the rotational-vibrational level. What is needed toUn(R) which are quantum-mechanically strictly defined
achieve this goal isti) sufficiently accurate quantum defect quantities. The fact that an infinite number of physically
matrices and(ii) a smooth behavior of these matrices asequivalent quantum-defect matrices can be obtained is easily
functions ofR and E. The smoothness iR is necessary so understood from Eq(21), which expresses the matching of
that the quantum defects can be interpolated on aRimesh  the internal and external solutions of the Satinger equa-
as required for successful inclusion of the vibrational degredion. For each closed channel we may make the substitution
of freedom. The smoothness bothRmandE is necessary in  f=Cf, g=C~'g—Df, whereC and D are arbitrary con-
order to be able to use the frame-transformation scheme&giants which may be energy dependent. The base@ (
which is known to fail when the quantum defectskoma- s formally equivalent to the paif,g since the regular/
trices depend strongly on enerffy]. o irregular behavior neag=1 is preserved and the Wronskian

Before we can actually calcula initio photoionization s also unchanged. However the resultitgnd x matrices
and photodissociation spectra, two steps must be impleg;|| obviously be different. One therefore has to abandon the
mented. First, we must .transform the present elllptlcalconcept of a “unique” quantum defect. At the same time
quantum-defect matrices into a spherical representation byowever, vast possibilities of optimization open up such as
matching the variational solutionB ; of Eq. (16) to spheri- e have begun to implement in this work, and it turns out
cal asymptotic channel functions expressed in terms ofnat when well chosen, molecular quantum defects will still

spherical harmonic¥,,(6,¢). This work is underway and is  convey a comprehensive picture of the physics of Rydberg
required so that the vector coupling techniques for cougling gtates.

to the core rotational momentum can be carried out. A sec-
ond aspect to be considered in the near future concerns the

calcu'lqtlon of the moleculg—flxed components of the dipole ACKNOWLEDGMENTS
transition operator as functions BfandE, necessary for the
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rectly on a fineR mesh after th&-matrix treatment has been pects ofR-matrix theory. The project was supported in part
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APPENDIX

The associated Legendre functions of the first kind and
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2MA+m)! 1

Q'(&)~ 2+

TRt (A4)

the second kind are calculated by use of expansions over

confluent hypergeometric functioriRef. [50]). Note that a

factor w2 appears to be missing in the second part of
relation 8.1.5 of Ref[50].
(2|)| §I+m
PI(&)=; 2_ 4 m2
2'(I—m)!l! (&5—1)
F [+m 1-I-m 1-2] 1 Al
X - 2 7 2 1 2 1? 1 ( )
IH(+m)l (£-1)™2
m —(_ |
Ql(&)=(-1)"m2 21+1)1  grmet
2+14+m 1+1+m 3+21 1 A2
2 2 2 g (A2)

The confluent hypergeometric functiori&(a,b,c,1/£?)
(Landau and Lifschitz51]) are evaluated numerically by use
of the series expansion:

1 o0
F(a,b,c,?)=r§o U,, (A5)

where the series termd,, are given by the recurrence rela-
tion

Un (A6)

1
Un+1= ')’n( a,b,c,?

These functions have the appropriate asymptotic behaviagith U,=1, and

(é—x) given by[26]

21)!
PI'(&)~ zl( L) (A3)

(I=m)!!

1) 1 (a+n)(b+n) 1
n a,b,c,? T n+1l c+n &2

(A7)
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