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R-matrix implementation giving well-behaved quantum defect matrices of molecular hydrogen
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The ab initio variationalR-matrix method is combined with generalized quantum-defect theory to calculate
quantum defect matrices for1Su

1 and 1Pu symmetries of molecular hydrogen. The calculations take account
of doubly excited channels and are optimized so as to minimize the dependence of the quantum-defect matrix
elements as functions of energy and internuclear distance. The matrices are used to calculate the lowest
clamped-nuclei Rydberg potential energy curves as well as doubly excited resonance positions and widths near
the first excited state of H2

1 . The results are in good agreement with previousab initio results. Owing to their
smoothness, the quantum-defect matrices are well suited for rovibronic multichannel quantum-defect applica-
tions. This opens up the possibility of a fullyab initio quantitative theoretical description of excited H2,
including ionization and dissociation.
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I. INTRODUCTION

Multichannel quantum defect theory~MQDT! @1,2# no
doubt is the most successful method able to describe
complicated rovibronic multichannel phenomena arising
molecules near ionization or photodetachment thresho
Rovibronic channel interactions mediate the conversion
electronic energy into energy of nuclear motion~or vice
versa!, and hence are the source of nonadiabatic chem
dynamics in excited molecules. Manifestations of such
namics range from anion formation in molecular clusters
slow electron collisions@3#, to dissociative recombination
processes important for interstellar chemistry@4#.

One of the attractive features of multichannel quantu
defect theory is the way it accounts for resonant phenom
by adding closed fragmentation channels explicitly to
system of open scattering~continuum! channels arising in
the standard formulation of scattering theory. The relev
scattering information is then represented by additional ro
and columns of the thus ‘‘extended’’ scattering~or equivalent
quantum-defect! matrices. These vary smoothly with energ
as the resonances have been eliminated, and they do
exhibit the often near-random resonant behavior due to
details of the spectroscopy of the molecule under study.
other central element of molecular MQDT is that by mea
of suitable transformations of the frame of reference
the colliding partners~so-called frame transformations!,
MQDT relates the rovibronic collision matrices to corr
sponding fixed-nuclei quantities—typically energy- a
nuclear-geometry-dependent quantum-defect matr
m(E,R)—from which the nuclear dynamics has been
moved, but which nevertheless contain the relevant sca
ing information necessary to account for nonadiabatic tra
fer of energy between the electrons and nuclei.

From the point of view of theory, it appears desirable
be able to calculate the extended body frame quantum
fects directly in anab initio procedure, just as the potentia
energy curves or surfaces of a molecule are obtained by
of standard quantum-chemical codes. In order to be usefu
practice in the framework of quantum defect theory, theseab
1050-2947/2003/68~6!/062704~14!/$20.00 68 0627
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initio quantum-defects should vary rather smoothly with e
ergy and molecular geometry. The double smoothness is
essary because~i! the inclusion of the vibrational degree~s!
of freedom requires the evaluation of vibrational integr
with the phase shift or quantum-defect functions as kern
and ~ii ! the validity of the frame-transformation method r
quires ~see, e.g., Ref.@5#! that the phase shifts or quantu
defects depend only mildly on the energy. If we disrega
nuclear motion entirely ~by bypassing the frame
transformation procedure!, we can still use MQDT~i.e.,
solve the extended collision problem! for fixed geometry and
negative energies, to obtain the clamped-nuclei bound R
berg potential-energy curves. A further quality requireme
for the quantum-defect matrices then is that these poten
curves should be of reasonable accuracy, giving a real
account of the lowest molecular states over an adeq
range of geometries.

While a vast amount ofab initio work has been devoted
to molecular photoionization processes and low-energy e
tron collisions in general, only few papers have been p
lished where the body frame quantum defects were ca
lated directly in the continuum as well as in the bound-st
energy range. As far as neutral molecular~Rydberg! systems
are concerned, the pioneering calculations are those
Stephens and McKoy@6# who used Schwinger’s variationa
principle to obtain quantum defects for H2 for the bound-
state range. Their work was restricted to the independ
electron approximation however, and took account only
the ground-state ion core. A few years later Greene and
@7# presented calculations also for H2, which took account of
electron correlation and included core-excited channels
plicitly. These authors treated bound and continuum sta
using the variational eigenchannelR-matrix method@8,9#
which is based on Kohn’s original ideas@10#. Their work
was similar in spirit to that of Ross and Jungen@11# except
that these latter authors derived the quantum-defect matr
from existing quantum-chemical potential-energy curv
rather than carrying out their ownab initio calculations.

The use of the variationalR-matrix theory for molecular
problems has been initiated by Raseev and Le Ro
©2003 The American Physical Society04-1
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@12,9,13#. The Wigner-EisenbudR-matrix formulation has
been used by Tennyson, Noble, and Salvini@14#, Tennyson
and Noble@15#, and Shimamura, Noble, and Burke@16# to
calculate continuum resonances in H2. Other applications of
the Wigner-Eisenbud formalism include Rydberg and
lence excitations in molecules such as CH@17#, HeH @18#,
and NO @19#. An important paper to be mentioned here
that by Hiyama and Child@20# who combined the Wigner
Eisenbud formalism with multichannel quantum-defe
theory to calculate diabatic Rydberg and valence-state po
tial energy curves of NO. The Schwinger variational pr
ciple has been used by Lucchese and co-workers@21# in an
approach that also accounts for electron correlation, bot
the description of the interchannel interactions and in
representation of the target ions. The applications of
method to the photoionization of CO, N2 , and NO have been
very successful. However, only open channels appear ex
itly in the coupled-channels treatment carried out in this
proach. While electronic interchannel coupling is taken in
account, it leads to the occurrence of electronic autoion
tion resonances, i.e., strongly energy-dependent contin
phase shifts, which are undesirable from the present poin
view.

Despite the fact that theR-matrix method today is basi
cally a well-established theoretical tool for calculating high
excited bound as well as continuum states of atoms and m
ecules, applications to molecules have often been plague
practical problems of various sorts, and therefore have un
tunately remained limited to few systems and few symm
tries. The central purpose of our present work is to elimin
two major drawbacks of some of the earlier work, name
the unsatisfactory accuracy of the purelyab initio results
and/or the excessive variations with internuclear distance
energy of the quantum-defect matrices obtained in the ca
lations. For example, the calculations of Stephens
McKoy @6# yielded quite smooth quantum defect function
However, since these calculations were restricted to the
dependent electron approximation they produced clamp
nuclei potential-energy curves of reasonable accuracy o
near equilibrium~with an error of about 3000 cm21), while
becoming entirely unrealistic at larger internuclear distanc
Greene and Yoo@7# on the other hand were able to obta
clamped-nuclei quantum defects correct to better than a
0.05 over a considerable range of geometries. This accu
corresponds to an error of the clamped-nuclei electro
potential-energy curves of less than 1500 cm21 for n52 or
50 cm21 for n56. Their quantum-defect matrices, howev
exhibit such strong variations with energy and internucl
distance that they cannot be used in the framework of ro
bronic quantum-defect theory.

Our present approach is in many ways similar to the w
of Greene and Yoo@7#. We combine the elliptical effective
one-electron treatment applied to dipolar diatomic molecu
by Arif et al. @22#, with the effective two-electron approac
developed for atomic applications by Aymar andet al. @23#,
and we also make use of the phase-amplitude descriptio
strongly closed core-excited electron channels implemen
in Ref. @24#. Specifically we shall show how careful consi
eration of the ellipticalR-matrix boundaryj0, together with
06270
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an optimized choice of the regular and irregular (sin and
type! radial reference scattering functions for the co
excited closed channels, allows the energy and nucl
coordinate dependences of the quantum-defect matrices
largely removed.

In a later step we plan to combine theab initio quantum-
defect matrices with rovibronic quantum-defect theory a
frame-transformation theory, so as to be able to make ac
rateab initio predictions for the spectra and dynamics~elec-
tronic, vibrational, and rotational autoionization competi
with predissociation, multiphoton excitations! on the scale of
rotational energy resolution. In the present paper we li
ourselves to the dipole-allowed1Su

1 and 1Pu channels of
H2. Unless specified otherwise, energies will be expres
throughout the paper in rydbergs, and lengths in bohrs.

II. THEORY

The nuclei are assumed located at the fixed pointsA andB
separated by the internuclear distanceR, and prolate spheroi-
dal coordinates (j,h,w) are used for the electrons,

j5
r A1r B

R
~jP@1,1`#! ~1!

h5
r A2r B

R
~hP@21,11# !

with wP@0,2p# being the azimuthal angle.r A andr B are the
distances of an electron from each nucleus.

The electron configuration space is divided into an inn
reaction zone and an outer asymptotic zone. The reac
volume is defined by max(j1,j2)<j0, andj0 will be chosen
large enough so that one may assume that only one elec
at a time is allowed to leave this internal region. Stric
speaking, the reaction volume is a five-dimensional hyp
surface which may be visualized as an ellipsoid with the t
nuclei placed at its focal points. Inside the reaction zone
of the interactions between the two electrons will be tak
into account, i.e., the full multipolar expansion of th
electron-electron Coulomb interaction 2/r 12 and exchange in-
teractions. The asymptotic or external region includes al
the remaining space.j0 must be large enough so that th
escaping electron comes across just a two-center Coul
field plus a medium-range polarization field, with the scree
ing charge of the internal electron being shared equally
tween the two nuclei.

A. One-electron functions in the internal zone

We start by defining one-electron basis functions forj
<j0. Each spheroidal orbital corresponding to a given va
l of the orbital angular momentum projection onto the int
nuclear axis is written as a product:

f~j,h,w!5
X̃~j!

Aj221
Ỹ~h,w![

x~j!

Aj221

z~h!

A12h2

1

A2p
eilw.

~2!
4-2
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Each function is a solution of the Schro¨dinger equation for
the two-center problem which has been discussed m
times in the literature. The identity on the right-hand side
Eq. ~2! serves to precisely relate the radial functionsx(j)
and angular functionsz(h) used in the present work, to th
equivalent radial functionsX̃(j) and elliptical harmonics
Ỹ(h,w) defined and discussed in detail in Appendix B
Ref. @22#. Note that the elliptical harmonics depend on t
energy, but that for given energy they form an orthonorm
subset of functions with volume elementdhdw.

As in Ref. @22#, both x(j) and z(h) are obtained by
direct numerical integration of the appropriate different
equations@Eqs. ~B7! and ~B8! of Ref. @22# with Z15Z1

e f f

5Z25Z2
e f f51,a15a250]. We impose a regular behavio

on z for h561 and onx for j51 @z(61)50,x(1)50#,
whereas, as will be specified later, forj5j0 we impose a
fixed boundary condition on eachx, b52x8/x ~where the
indicates the derivative with respect to the radial coordin
j). This procedure yields a discrete set of functions w
eigenenergiesEi , where i[(n l̃l), n2 l̃ 21 is the number
of nodes of the radial function, andl̃ 2l is the number of
nodes of the angular functionz as in Ref.@22#. Note that l̃
reduces to the familiar spherical angular momentum qu
tum numberl whenR→0 @22#.

One-electron overlap matrix elements will be required
low and are calculated with the volume element (R/2)3(j2

2h2)djdhdw as

oii 85S R

2 D 3

dl il i 8H E1

j0
x i~j!x i 8~j!djE

21

11 z i~h!z i 8~h!

12h2
dh

1E
1

j0x i~j!x i 8~j!

j221
djE

21

11

z i~h!z i 8~h!dhJ . ~3!

B. Two-electron basis functions in the internal zone

Normalized two-electron basis functions are construc
as Slater-type products of one-electron functions as follo

yi j ~j1 ,h1 ,w1 ,j2 ,h2 ,w2!

5
1

A2Ni j

$f i~j1 ,h1 ,w1!f j~j2 ,h2 ,w2!

1~21!Sf j~j1 ,h1 ,w1!f i~j2 ,h2 ,w2!%, ~4!

where

Ni j 5oii oj j 1~21!Soi j oji . ~5!

Each basis functionyi j is thus specified by the six quantu
numbers asn1 l̃ 1l1n2 l̃ 2l2, where in the following, antisym-
metrization with respect to the exchange operation accord
to Eq. ~4! will be implied. Gerade (g)and ungerade (u)

functions are obtained by selectingl̃ values such thatl̃ 1

1 l̃ 2 is evenor odd, respectively.l1 andl2 are selected such
as to correspond to the desired valueL5l11l2. Note that
06270
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we are using signed quantum numbersL here, so that the
basis functionsyi j do not necessarily transform as1 or 2
under the symmetry operationsv corresponding to a reflec
tion at a plane containing the nuclei. This means thatS1 and
S2 channels are not distinguished in our calculations, bu
practice this is of no consequence sinceS2 channels become
relevant in H2 at energies far higher than the range cons
ered here. Two-electron overlap matrix elements will also
required later and take the form

Oi j ,i 8 j 85
1

ANi j Ni 8 j 8

@oii 8oj j 81~21!Soi j 8oi 8 j #. ~6!

Equation~6! shows that the basis functionsyik are normal-
ized to unity.

C. Bielectronic integrals

The evaluation of the bielectronic integrals is a delica
matter and represents a crucial step in the calculation.
lowing earlier work @25,26,7,27#, we expand the electron
electron distance 1/r 12 in terms of associated Legendre fun
tions as

1

r 12
5

2

R (
l 50

`

(
m52 l

l

~21! umu~2l 11!

3S ~ l 2umu!!
~ l 1umu!! D

2

Ql
umu~j.!Pl

umu~j,!

3Pl
umu~h1!Pl

umu~h2!eim(w12w2), ~7!

wherej. andj, are the larger and the smaller ofj1 andj2

as usual. The functionsPl
umu(j) and Ql

umu(j) are the associ-
ated Legendre functions of the first kind and the second k
respectively. Their numerical evaluation is described in
Appendix.

The interaction matrix elements@1/r 12# i j ,i 8 j 8 are calcu-
lated by numerical integration. Note that as the symbo
coordinatesj. and j, are replaced byj1 and j2, respec-
tively, the divergence at the origin of the functionsQl

umu(j) in
Eq. ~7! turns out to be compensated by the regular beha
of the functionsPl

umu(j) and of the single-electron radial ba
sis functionsx(j).

D. Variational R-matrix calculation

Once a suitable basis set has been chosen, a Hamilto
matrix can be set up in the reaction volume:

Hi j ,i 8 j 85~Ei 81Ej 8!Oi j ,i 8 j 812F 1

r 12
G

i j ,i 8 j 8

. ~8!

Diagonalization of this matrix yields eigenvalues and eige
functions of the two-electron Hamiltonian in the reactio
volume. These eigenenergies and eigenfunctions depen
j0 and also on the value2b(j0) imposed on the logarithmic
derivative of each basis function atj0 . b(j0) may be taken
to be the same for all basis functions and its value may
4-3
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varied iteratively. The eigenvalues of the Hamiltonian mat
will then vary correspondingly. If an eigenvalue ofH can be
made to coincide with the preselected total energyE, b(j0)
can be considered to be an eigenvaluebb of the boundary
condition compatible with that energy. This is the iterati
eigenchannel procedure of Fano and Lee@28#.

In the variationalR-matrix scheme such as formulated b
Greene@8#, one uses simultaneously a whole ‘‘basis’’ of di
ferent boundary conditionsb(j0), to be specified later’ and
one solves a generalized eigenvalue system of the form

GcW5b~E,j0!LcW , ~9!

which directly yields the set of eigenvaluesbb5
2Cb8 /Cb , for the boundary condition on the reaction su
facej0 compatible withE. The associated set of coefficien
ci j

b serves to construct the eigenfunctions valid in the reac
volume in terms of the basis functions of Eq.~4!:

Cb5(
i j

ci j
b yi j . ~10!

For a given preselected total energyE the matrix elements o
G andL of Eq. ~9! are defined as follows:

G i j ,i 8 j 852~EOi j ,i 8 j 82Hi j ,i 8 j 82Li j ,i 8 j 8! ~11!

and

L i j ,i 8 j 85
R

2
dl jl j 8

oii 8x j~j0!x j 8~j0!E
21

11 z j~h!z j 8~h!

12h2
dh,

~12!

with Hi j ,i 8 j 8 as given in Eq.~8!, and with the elements of th
Bloch matrixL given by

Li j ,i 8 j 85
R

2
x j~j0!H dl jl j 8

oii 8x j 8
8 ~j0!E

21

11z j~h!z j 8~h!

12h2
dh

1~21!Sdl jl i 8
oi j 8x i 8

8 ~j0!E
21

11 z j~h!z i 8~h!

12h2
dhJ .

~13!

The primes on the radial functionsx in Eq. ~13! refer here
again to the derivative with respect to the radial coordin
j. The surface element used for the integrations in E
~12! and ~13! is @29# ds5dv,ds. with ds.

5(R/2)2Aj0
221Aj0

22h2dhdw anddv, as indicated before
Eq. ~3!. Note that the angular integral in Eqs.~12! and ~13!
does not reduce tod j j 8 in the present elliptical formulation
because thez(h) functions are orthogonal only if corre
sponding to the same energy.

E. One-electron channel wave functions in the external zone

For j values larger thanj0, the two-electron problem re
duces to a one-electron problem which is separable in pro
spheroidal~elliptical! coordinates. Each channel can be
beled in the external zone ask[(n1 l̃ 1l1)e l̃ 2l2. The radial
06270
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and angular functions of the single electron present in
external zone are evaluated numerically in an analog
manner as the one-electron basis functions discussed in
II A with the following differences.

~i! We set Z15Z1
e f f5Z25Z2

e f f5 1
2 ,a15a25 1

2 a(R) in
Eqs. ~B7! and ~B8! of Ref. @22# in order to account for the
partial screening of the protons by the core electron and
include the dipole polarization field of the core.a(R) is the
spherical component of the dipole polarization tensor of H2

1

~see Ref.@22#! which we take to be the same in the 1s̃s and
2p̃s core states.

~ii ! The numerical propagation of the radial function mu
be carried to an appropriately largej value ~in principle
infinity!.

~iii ! We evaluate radial channel functions for channel e
ergiesec5E2Ec , whereE is the arbitrarily preselected tota
energy. For each energy and each core state we eva
solutions that are regular at the origin,f k(ec ,j), as well as
solutions that are irregular,gk(ec ,j).

Specifically, we calculate the radial channel functions
phase-amplitude form

f k~ec ,j!5A1

p
ak~ec ,j!sinE

1

j 1

ak
2~ec ,j8!

dj8 ~14!

and an analogous expression forgk(ec ,j) with sin replaced
by 2cos. The normalization in Eq.~14! corresponds to a
value of the WronskianW( f k ,gk)51/p ~see Ref.@24#!. Note
that f, g, anda depend on the channel electron energyec as
well as on l̃ and l. ak(ec ,j) is the amplitude function
which is smooth, i.e., does not have the nodes characteri
f and g, and it obeys Milne’s inhomogeneous differenti
equation@30#. Recipes for its numerical integration for arb
trary energy are discussed, e.g., in Ref.@24#. The amplitude
function ak(ec ,j) is asymptotically divergent for negativ
channel energiesec , i.e., below the ionization thresholdEc ,
and the same is therefore generally true for the channel fu
tions f andg. However, we see from Eq.~14! that theaccu-
mulated phasebk(ec)5*1

`ak
22(ec ,j)dj is finite, so that

asymptotically we have

f k~ec ,j!;A1

p
ak~ec ,j!sinbk~ec! ~15!

and an analogous expression forgk(ec ,j). The numerical
evaluation of the amplitude functionak(ec ,j) and the asso-
ciated accumulated phasebk(ec) becomes a somewhat del
cate matter at very low energies when a channel beco
‘‘strongly closed,’’ i.e., below the lowest eigenvalue asso
ated with the radial potential wherebk(ec)/p<1. This situ-
ation has been considered in detail in Ref.@24# and is indeed
encountered in H2: as R→0, the energy of the 2p̃s repul-
sive core is rising, and the core-excited channels associ
with it therefore become increasingly strongly closed in t
energy region where the Rydberg spectrum associated
the ground state core occurs.
4-4
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F. Matching procedure on the surface of the reaction volume

Each variational solutionCb of Eq. ~10! may be contin-
ued in the asymptotic zone, i.e. for radii larger thanj0, as a
linear combination of the regular and irregular radial chan
functions and as a sum over channel componentsi:

Cb~E,v,j!5(
k

Fk~E,v!
1

Aj221

3@ f k~ec ,j!I kb2gk~ec ,j!Jkb#, ~16!

where v denotes all coordinates exceptj, v
[(j1 ,h1 ,w1 ,h2 ,w2). The sum overk extends over the
‘‘physically relevant’’ channels, i.e., those that are weak
closed in the usual sense of quantum-defect theory. The
tricesI andJ consist of matching coefficients which we sha
now determine by requiring that Eq.~16! and its derivative
with respect toj be continuous atj5j0, i.e., the outer-zone
solution Eq.~16! must join on smoothly to the inner-zon
variational solution Eq.~10!. The short-range reaction matri
K is then obtained as

Kkk85(
b

JkbI k8b
21 . ~17!

In an initial step we expand the inner-zone variation
solutionCb on the reaction surface in terms of the so-cal
‘‘surface harmonics’’

Fk~E,v!5fc~j1 ,h1 ,w1!

z
l̃ 2l2

ec ~h2!

A12h2

eil2w2

A2p
. ~18!

For each given total energyE and channelk, the full set of
surface harmonicsFk(E) is orthogonal and complete on th
surfaceS, although in practice the expansion will be r
stricted to the physically relevant channels. This is suffici
because ifj0 is chosen large enough, the expansion Eq.~10!
will no longer contain the physically ‘‘irrelevant’’ channel
present at shorter range.

The expansion coefficients are obtained by projection

ukb~E,j0!5E
S
Fk~E,v!Cb~E,v,j0!dv, ~19!

and we also have

ukb8 ~E,j0!52bb~E!ukb~E,j0!, ~20!

where the prime again indicates to differentiation with
spect toj.

Subtraction of Eq.~20! from Eq. ~19! after multiplication
by gk8 andgk , or f k8 and f k , respectively, leads to

I kb5pW~ukb ,gk!, ~21!

Jkb5pW~ukb , f k!,

where we have used the fact that the WronskianW( f k ,gk) is
equal to 1/p.
06270
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It remains to spell out the integral of Eq.~19! explicitly,
by expressingCb(E,j0) in terms of the two-electron basi
functionsyi j of Eq. ~4! with the coefficientsci j

b defined by
Eq. ~9!. We find

ukb~E,j0!5(
i j

ci j
b x j

o~j0!dcidl jlk
E

21

11zk
ec~h!z j~h!

12h2
dh.

~22!

The angular integral in Eq.~22! does not reduce exactly t
d jk unless thez(h) functions are calculated at the same e
ergy, i.e.,Ej5E[ec1Ec .

III. DETAILS OF CALCULATIONS

A. Asymptotic channels andR-matrix radius

Our present application concerns an energy range ext
ing from the lowest1Su

1 bound state of H2 up to the 2p̃s
excited ionization threshold. Therefore we explicitly includ
in the external zone all channels built on the 1s̃s and 2p̃s

ions with l̃ <3, namely, the 1s̃se p̃s, 1s̃se f̃ s, 2p̃se s̃s,
and 2p̃sed̃s channels for1Su

1 symmetry, and the 1s̃se p̃p,

1s̃se f̃ p, and 2p̃sed̃p channels for1Pu symmetry.
The choice of theR-matrix radiusj0 is subject to two

conflicting requirements. First of all, we must choosej0

large enough so that the two lowest states of H2
1 that arise

explicitly in the channel treatment are enclosed within it.
the same time we wish to take theR-matrix radius as small as
possible in order to avoid a situation where the innerm
lobe of the Rydberg electron function is fully included with
it, giving rise to a resonant behavior of the quantum defec
low energy. To say it pointedly, we wish, e.g., the 2p̃s core
of the configuration 2p̃s1s̃s to be contained withinj0, and
at the same time the 2p̃s Rydberg orbital of the configura
tion 1s̃s2p̃s to extend beyondj0. In practice a compromise
could be found for eachR value after some experimenting
by requiring that~i! the eigenenergies of the lowest two on
electron functions within the reaction volume should diff
from the exact eigenvalues of H2

1 by no more than abou
1023 Ry, and~ii ! the bound states calculated for H2 ~see Sec.
IV ! should not vary significantly whenj0 is varied. Thej0
values adopted finally are the smallest satisfying both
quirements, and correspond approximately toj0'22.5
13.5jcl(R) wherejcl(R) is the classical reflection point fo
the core electron in the 2p̃s orbital at internuclear distanc
R. The values of the spherical polarizabilitya(R) of H2

1

have been taken from Bishop and Cheung@31# and were
used according to the prescription given in Ref.@22#.

B. One-electron and two-electron functions

The variationalR-matrix approach requires basis fun
tions corresponding to at least two distinct boundary con
tions on the boundary of the reaction volume. Following e
lier applications of the variationalR-matrix scheme, we use
4-5
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FIG. 1. Ab initio eigenquantum defects for1Su
1 symmetry as functions of internuclear distanceR in atomic units and energyE in

rydbergs. The zero of energy corresponds to the H2
1 1ss threshold.~a! a51, ~b! a52, ~c! a53, ~d! a54. Note the different origin of

the quantum defect scale employed fora51. See text for details.
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large set of ‘‘closed’’ functions corresponding toxc(j5j0)
50, as well as a small additional set of ‘‘open’’ function
xo(j) with xo8/xo(j5j0)5j0 /(j0

221).
For each value ofR, we consider the following symme

tries l̃ l: s̃s, p̃s, d̃s, f̃ s, p̃p, d̃p, f̃ p, d̃d, and f̃ d, and for
each of these we include the ten lowest radial states in
closed one-electron basis, thus obtaining a total of 90 clos
type one-electron functions. ForR55 we have found it nec-
essary to include alsol̃ 54 functions. For both the1Su

1 and
the 1Pu symmetry we use a closed-type two-electron ba
including about 200 configurations constructed from the m
noelectronic functions. A selection criterion involving a cu
off energy is used to extract these from the much larger se
two-electron functionsyi j

c that can be constructed with th
one-electron closed-type basis. The open two-electron b
06270
e
d-

is
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functionsyi j
o are selected to be those with energies closes

the total energyE. Le Rouzo and Raseev@9# have shown that
the number of nontrivial solutionsCb of the generalized
eigenvalue system Eqs.~9! and~10! corresponds to the ran
of the L matrix. In atomic problems this number equals t
number of asymptotic channels taken into account explici
This is not strictly true in the molecular case because of
nonorthogonality of the elliptical harmonics@see Eq.~12!#
@32#. However, when open two-electron basis functionsyi j

o

are chosen whose energies are close to the total energy
nonorthogonality is quite small. In practice we have alwa
found the correct number of nontrivial solutions. Conve
gence of each variationalR-matrix calculation was checke
by recalculating eachbb from the eigenfunctionsCb accord-
ing to @8#
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FIG. 2. Ab initio eigenquantum defects for1Pu symmetry.~a! a51, ~b! a52, ~c! a53. ~Cf. caption for Fig. 1.!
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E
S
Cb~v!Cb8 ~v!dv

E
S
Cb~v!Cb~v!dv

, ~23!

and ensuring that theb value thus obtained was close to th
corresponding value obtained in the solution of the gene
ized eigenvalue system Eq.~9!. The calculations have bee
carried out on a coarse grid of internuclear distances~1 bohr!
and on an intermediate grid of energies~about 0.02 Ry!.

IV. RESULTS AND DISCUSSION

A. E and R dependence of quantum defects

A convenient and compact way of visualizing the resu
is to plot the eigenquantum defectsma defined as
06270
l-

s

ma~E,R!5
p

tan21(
kk8

Uak
21Kkk8Uk8a ~24!

as functions ofR andE, whereU is the eigenvector matrix o
K. This is done in Figs. 1 and 2 which represent the1Su

1

and 1Pu symmetries, respectively.
Inspection of the eigenvector matrixU(E,R) ~not shown!

indicates that the1Su
1 eigensolutions 2 and 4 in Fig. 1 co

respond quite closely to the 1s̃se f̃ s and 2p̃sed̃s channels:
we see that these eigenquantum defects are nearly zero i
low-energy range for allR values as one would expect o
physical grounds because of the nearly nonpenetrating na
of the d̃ and f̃ electrons. These quantum defects begin
deviate significantly from zero only for higher energies~es-
sentially above the 1s̃s threshold! and largerR values,
4-7
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M. TELMINI AND C. JUNGEN PHYSICAL REVIEW A 68, 062704 ~2003!
again in line with physical expectations. By contrast, t
eigenquantum defectsa51 and 3 are more ‘‘active’’. As a
consequence of strong configuration interaction they co
spond to approximate 1:1 antisymmetric and symme
mixtures of the 1s̃se p̃s and 2p̃se s̃s channels throughou
the R range shown. We see in particular that at the lo
energy edge thea51 eigenquantum defect increases qu
significantly betweenR52 andR53, although this increase
is attenuated for higher energies. This behavior is the co
quence of the fact that for low energy and for increasingR
the 1Su

1 symmetry converts to the ionic channel (H1

1H2) @33#. The 1Pu eigenquantum defects shown in Fig.
are basically similar but on the whole less dependent oR
and E. The eigensolutionsa51,2,3 correspond approxi
mately to 1s̃se p̃p, 1s̃se f̃ p, and 2p̃sed̃p except for larger
R where increasing configuration mixing causesa52 and 3
to become mixtures of 1s̃se f̃ p and 2p̃sed̃p. The data dis-
played in Figs. 1 and 2 demonstrate that the quantum def
will be amenable to the interpolation procedures requi
when one desires to take account of the nuclear degree
freedom.

B. Potential-energy curves and ‘‘halfium’’ model

The accuracy and the predictive power of the quantu
defect surfaces of Figs. 1 and 2 can be tested in var
ways. First we use them to calculate several of the low
bound levels and to compare the resulting energiesUn(R)
with the corresponding accurateab initio potential-energy
curves for theB, B8, and B9 and three higher1Su

1 states,
and theC andD and two higher1Pu states.

Generalized quantum-defect theory yields the position
bound states as the solutions of the MQDT secular equa
@1,2#

detutanbk~ec!dkk81Kkk8~E!u50 ~25!

for eachR value individually, where the accumulated pha
bc is evaluated using the recipes given in Ref.@24# ~cf. Sec.
II E!. Equation~25! yields the full spectrum of eigenvalue
Un(R) from n52 to high values. These eigenvalues a
equivalent to the molecular potential energies once
proton-proton interaction term12/R ~in rydbergs! has been
added.

Before discussing the actual results, we shall comm
on the accumulated phase parametersbk(ec) @Eq. ~15!#
which appear in Eq.~25!. Figure 3 displays these quantitie
calculated forR52 and 1Su

1 overall symmetry. The data

refer to the radial channel functionse p̃s, e f̃ s and e s̃s,
ed̃s, respectively, and are displayed for each channe
functions of the Coulombic effective principal quantu
numbernc5(2ec)

21/2 ~thick lines in the figure!. In the ab-
sence of a core, bound levels would occur in each chann
the energies for whichbk(ec) is equal to an integer. The
straight diagonal~thin! lines in Fig. 3 correspond to th
phase parameters for a pure Coulomb field,bk

coul(ec)
5p(nc2 l ), and are shown for comparison. They illustra
the well-known fact that the Rydberg equation (bk

coul) yields
06270
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unphysical levels at low energies corresponding to a zero
negative accumulated phase. These unphysical levels
avoided in the Milne approach since the numericalbk(ec)
tend asymptotically to zero for low energies.

The difference between numerical~elliptical! and analytic
~Coulombic! accumulated phase values is seen to be ne
constant for eachl̃ value and all but the lowestn values.
This difference therefore amounts to an energy-independ
contribution to the quantum defect which arises outside
reaction boundaryj0 and is due to the combined effects
the quadrupole~plus higher multipole! moments created by
the two half-charges~cf. Sec. II E! on each center as well a
the polarization field. Mulliken@34#, several decades ago
pioneered similar ideas when he developed his ‘‘Demi-H2

1’’
model for the Rydberg states of H2. He showed that the
quantum defects near equilibrium could be interpreted
corresponding to the sum of a ‘‘core-splitting’’ contributio
~included in the present work in the elliptical accumulat
phases! and a ‘‘penetration’’ contribution~included here in
the K matrix!. The half-charged ion H2

1 with an associated
electron thus emerges as a hypothetical neutral ‘‘particle’
which one might be tempted to call ‘‘halfium’’—which in
Rydberg states of symmetrical diatomic molecules plays
role of the hydrogen atom in atomic physics. Obviously,
Mulliken @33# already pointed out, this type of one-electro
model may be expected to be realistic in even-electron m
ecules only up to two or three times the equilibrium intern
clear distance.

Tables I and II list the lowest few bound states of1Su
1

and 1Pu symmetries, obtained by solution of the full equ
tion ~25! including theK matrix, and compare them with th
best currently available quantum-chemicalab initio calcula-
tions ~Staszewska and Wolniewicz@35,36#!. Tables I and II
give the calculated effective principal quantum numb
n(R) evaluated by using

FIG. 3. Accumulated phase parametersb in units of p plotted
as functions of the effective principal quantum numbersn
5(2e)21/2 for l 5023 andl50. Thick lines, numerical values
calculated in Sec. II E. The thin lines correspond to the phase
rameterb/p5n2 l for a Coulomb field, used in ordinary quantum
defect theory. The squares and triangles indicate the positions
respect to each channel of the four lowest states obtained by so
the full Eq. ~25! ~cf. the text!.
4-8
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TABLE I. Clamped-nuclei effective Rydberg principal quantum numbers for1Su
1 states of H2 . R is the internuclear distance in a.u.n is

the effective principal quantum number, Eq.~26!. Ab initio valuesevaluated from the energies given by Staszewska and Wolniewicz@35,36#.
The indicated orbital designations are valid for smallR values only.

R51 R52 R53 R54 R55
State nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn

1 2psB 1.965 1.971 20.006 1.829 1.85420.025 1.690 1.72020.030 1.625 1.64720.022 1.620 1.64820.028
2 3psB8 2.966 2.969 20.003 2.821 2.84720.026 2.636 2.68120.045 2.422 2.47420.052 2.212 2.21920.007
3 4psB9 3.966 3.973 20.007 3.817 3.84420.027 3.620 3.66020.040 3.368 3.36610.002 3.171 3.16610.005
4 4f s 3.996 3.997 20.001 3.986 3.99020.004 3.965 3.95610.009 3.914 3.94220.028 3.640 3.72620.086
5 5ps 4.966 4.972 20.006 4.815 4.84220.027 4.612 4.64820.036 4.333 4.29910.034 4.070 4.08820.018
6 5f s 4.996 4.997 20.001 4.986 4.99020.004 4.964 4.97520.011 4.903 4.93720.034 4.434 4.44720.014
7 6ps 5.972 5.840 5.641 5.255 4.943
8 6f s 5.997 5.989 5.974 5.933 5.300
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Un~R!5U1~R!2
1

n2~R!
. ~26!

Equation~26! assumes that the electronic energies here ar
rydbergs and thatU1(R) is the lowest H2

1 (1s̃s) clamped-
nuclei potential energy. Where a quantum-chemicalab initio
potential curve is available, the differenceDn ~ab initio
present! is given in the third column for eachR value. Re-
member that an error ofDn50.05 corresponds to an energ
shift of about 1300 cm21 for n52, of 90 cm21 for n55,
and of 10 cm21 for n510. The calculations of Refs.@35#
and @36# on the other hand are accurate to within one o
few wave-number units (1025 Ry), and therefore may be
considered as being exact for the present purposes. Th
rors displayed in Tables I and II range up to about 0.05
the 1Su

1 and 1Pu states. Exceptions are the1Su
1 and 1Pu

states withn'3.7 forR55 where the deviation is somewh
larger. We have found that an increase of the variational b
always leads to an improved agreement as should, of cou
be expected.

In Table III we compare the differencesD5nab initio
2nR-matrix of this work ~Table I! with those obtained by
Greene and Yoo@7,29# for 1Su

1 symmetry. It can be see
that in spite of the very different quantum defects resulting
the two sets of calculations~compare our Fig. 1 with Fig. 18
of Ref. @29#!, the predictions for bound states are by a
large of the same quality. While the earlier calculations
pear to account a little better for thep manifold of states than
our computations, ourf states come closer to theab initio
06270
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values than theirs, no doubt because of our inclusion of
larization in the asymptotic region. For example, the 4f s
state has a quantum-defect ofm5n2n50.035 for R53,
both according the quantum-chemical calculations and
periment~see Fig. 4 below!. This value compares more fa
vorably with the present value 0.044 than with the val
0.009 derived from Ref.@29# ~Table III!.

Returning once again to the accumulated phase values
consider once more Fig. 3 where the positions of the f
lowest states from Table I forR52 are indicated by square
and triangles with respect to each channel. The 2p̃sed̃s

channel~for all four states! and the 1s̃se f̃ s channel~for the
two lowest states! are seen to be strongly closed at the c
responding energies withbk(ec) close to zero, while
1s̃se p̃s is weakly closed withbk(ec)'1 or larger. The
core-excited 2p̃se s̃s channel corresponds to an intermed
ate situation sincebk(ec),1 but not!1. It turns out that
this latter channel indeed contributes strongly to theB, B8,
andB9 states.

C. Effective single-core quantum defects

Another test of the quantum defects is provided by co
parison with the quantum-defect curves used previously
rovibronic multichannel quantum defect calculations for H2.
Among the most recent curves of this type are those p
lished by Jungen and Ross@37#, who determined energy an
R dependent quantum-defect curvesm(E,R) defined by Eq.
~26! with m5n2n (n integer! for the 1s̃se p̃s and 1s̃se p̃p
TABLE II. Clamped-nuclei effective Rydberg principal quantum numbers for1Pu states of H2. See caption for Table I.

R51 R52 R53 R54 R55
State nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn nab initio npresent Dn

1 2ppC 2.035 2.037 20.002 2.080 2.07510.005 2.116 2.11210.004 2.126 2.12720.001 2.107 2.10410.003
2 3ppD 3.037 3.042 20.005 3.080 3.08720.007 3.115 3.12320.008 3.125 3.11810.007 3.106 3.04910.057
3 4f pV 3.997 3.996 10.001 3.989 3.99220.003 3.972 3.97720.005 3.931 3.94520.014 3.790 3.85320.063
4 4ppD8 4.037 4.039 20.002 4.080 4.09020.010 4.113 4.12120.008 4.123 4.10910.014 4.105 4.05310.052
5 5f p 4.995 4.992 4.975 4.939 4.792
6 5pp 5.037 5.090 5.119 5.105 5.058
4-9
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TABLE III. Comparison of R-matrix calculated effective principal quantum numbers for1Su
1 states of H2. Ab initio values from

Table I.

R51 R52 R53 R54 R55

nab initio Dna
Ref.
@29#a nab initio Dna

Ref.
@29#b nab initio Dna

Ref.
@29#b nab initio Dna

Ref.
@29#b nab initio Dna

Ref.
@29#b

1 2ps 1.965 20.00620.004 1.829 20.02520.011 1.690 20.03020.013 1.625 20.02220.013 1.620 20.02820.014
2 3ps 2.966 20.00320.008 2.821 20.02620.020 2.636 20.04520.030 2.422 20.05220.022 2.212 20.00720.022
3 4ps 3.966 20.00720.008 3.817 20.02720.018 3.620 20.04020.022 3.368 0.00220.012 3.171 0.005 0.003
4 4f s 3.996 20.00120.003 3.986 20.00420.011 3.965 0.00920.026 3.914 20.02820.059 3.640 20.08620.182
5 5ps 4.966 20.00620.008 4.815 20.02720.017 4.612 20.03620.020 4.333 0.034 0.000 4.07020.018 0.018
6 5f s 4.996 20.00120.004 4.986 20.00420.010 4.964 20.01120.023 4.903 20.03420.054 4.434 20.01420.044

aPresent work.
bYoo. Dn5nab initio2nR2matrix values.
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channels. When combined with the rovibrational fram
transformation quantum-defect approach, these quantum
fects reproduce the high Rydberg levels withn up to '30
@38# observed in the absorption spectrum of H2 with an ac-
curacy of about 1 cm21, and they have been used succe
fully in a number of applications, including, e.g., wav
packet motion in preionized and predissociated states o2
@39#. These quantum-defect curves are based, on the
hand, on the five lowestab initio potential-energy curves
and on the other hand, on the experimental observations
n'7. Figure 4 displays the values obtained in Ref.@37# for
near-threshold energies~full and dashed lines!. Similarly, Uy
et al. @40# presented analogous quantum-defect curves
the 1s̃se f̃ l (l5023) channels of H2 which were evalu-
ated theoretically in the framework of a long-range for
model for the electron-core interaction and which reprod
the observedn f levels of H2 to within a fraction of 1 cm21.
These curves are also shown in Fig. 4 forl50 and 1 by full
and dashed lines, respectively. The1 and3 symbols in Fig.
4~a! correspond to the1Su

1 and 1Pu values obtained in the
present approach with Eq.~26! for n'7 ~not included in
Tables I and II!. Figure 4~b! contains the corresponding da
obtained forn'4 from Tables I and II.

We see that the agreement is excellent in Fig. 4~a! near
equilibrium (R52), whereas large deviations occur forR
54 andR55 for both the1Su

1 and 1Pu channels. Figure
4~b! on the other hand displays much better overall agr
ment, although near equilibrium our values deviate som
what more from the empirical curves than in Fig. 4~a!. The
reason for these deviations is the following: the quantu
defect determinations in Ref.@37# used the near-threshol
absorption spectrum near thev150, 1, and 2 vibrational
thresholds of the H2

1 ground state. Levels in this range co
responding to high vibrational quantum numbers~where the
nuclei explore separations beyondR'3) correspond to rela
tively low electronic excitation,n'4, whereas levels corre
sponding to low vibrational quantum number~where nuclear
motion remains restricted to the equilibrium region! corre-
spond to higher electronic excitation. We conclude that
empirical quantum-defect curves of Ref.@37# are thus prob-
ably moreeffectivethan had previously been thought, b
cause in fact they represent a compromise since they co
06270
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FIG. 4. Effective one-channel quantum defects forpl and
f l(l50,1) Rydberg series converging to the H2

1 ground state.
Full lines representps and f s quantum defects from Refs.@37# and
@40#, respectively. Dashed lines: correspondingpp and f p quantum
defects. Symbols1 (3) correspond, respectively, to the prese
potential curve calculations from Table I~Table II! for 1Su

1 (1Pu)
symmetry.~a! for n'7, ~b! for n'4.
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TABLE IV. Positions and widths of the lowest doubly excited1Su
1 resonances in H2 .

2p̃s2s̃s 2p̃s3s̃s 2p̃s3d̃s
Ra Eb npresent

c Ref. @47# Ref. @7# E npresent Ref. @47# Ref. @29# E npresent Ref. @47# Ref. @7#

1.0 1.4810 1.847 1.821 1.819 1.6482 2.820 2.807 2.798 1.6660 3.043
2.0 0.6226 2.010 2.016 1.996 0.7611 3.028 3.032 3.021 0.7585 2.991
3.0 0.1946 2.111 2.249 2.246 0.3167 3.128 0.3043 2.954 3.021 2.9
4.0 0.0624 2.685 2.634 2.371 0.1288 3.719 0.0829 2.909 3.070 2.9

R Gpresent
d Ref. @47# Ref. @7# Gpresent Ref. @47# Ref. @29# Gpresent Ref. @47# Ref. @29#

1.0 0.020 0.018 0.022 0.005 0.004 0.005 0.0004
2.0 0.048 0.049 0.054 0.002e 0.002 0.004 0.002e

3.0 0.059 0.065 0.090 0.028e 0.009e 0.004 0.004
4.0 0.040 0.013e 0.030 0.024 0.021

aInternuclear distance in bohr.
bPresent work. Energy above 1s̃s in rydbergs, evaluated by eliminating the open channels from Eq.~25!.
cEffective principal quantum number with respect to the 2p̃s ion threshold.
dWidth ~rydbergs!.
eOverlapping resonance.
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spond to highn values nearR'2 but to much lowern
values forR54 and 5. The first-principles calculations fu
ther indicate that nearR54 and 5 the doubly excited state
2p̃s2s̃s and 2p̃s3d̃p cross the ion ground-state curve a
cause a series of avoided crossings in the bound-state m
fold ~cf. Tables IV and V of the present paper and Fig. 2
Ref. @7# where the1Su

1 perturbations are illustrated!. It is
these avoided crossings that cause the disrupted behavi
the theoretical defects in Fig. 4~a! for R>4.

D. Doubly excited resonances

A final test of the quantum-defect matrices calculated
the present work consists in comparing the resonance p
tions and widths corresponding to the 2p̃sn l̃l lowest dou-
bly excited 1Su

1 and 1Pu configurations with previousab
initio work. The calculation is made again by solving E
~25! with the K matrices calculated in this work. The on
difference is that now the two channels 1s̃se p̃l and
06270
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1s̃se f̃ l for l50 or 1 are open, so that the correspondi
accumulated phasesbk(ec) must be replaced by the negativ
of the eigenphaseptr(E) which we are looking for. Equa-
tion ~25! then in effect becomes a generalized eigenva
problem as detailed in the QDT literature@2#. The eigen-
phase sumtr511tr52 obtained in this way increases by on

unit near the 2p̃sn l̃l resonances. The resonance positi
corresponds to the energy where the energy derivative of
eigenphase sum has a maximum, while the width co
sponds to the half-width of this rise. The resonance positi
can alternatively be calculated as bound-state positions
eliminating the open channels from Eq.~25!. We have found
that as long as the resonances are narrow and well isol
the two ways of calculating the positions give identical r
sults, showing that the resonance shifts are small in th
cases. However, when the resonances are broad and be
overlap, we observe differences. At the same time the c
cept of the position and width of an individual resonan
TABLE V. Positions and widths of the lowest1Pu doubly excited resonances inH2, See caption for Table IV.

2p̃s3d̃p 2p̃s4d̃p
R E npresent Ref. @47# E npresent Ref. @47#

1.0 1.6609 2.974 3.198 1.7103 3.963 4.095
2.0 0.7589 2.998 3.048 0.8078 4.002 3.940
3.0 0.3056 2.969 3.014 0.3560 3.974 3.999
4.0 0.0878 2.957 3.070 0.1383 3.979 4.030

R Gpresent Ref. @47# Gpresent Ref. @47#

1.0 0.0002 0.0024 0.0001 0.0002
2.0 0.0012 0.0009 0.0008 0.0060
3.0 0.0048 0.0033 0.0027 0.0019
4.0 0.0102 0.0126 0.0053 0.0058
4-11



he

m
ec

at

n

e

ke
e
om
t

iv

ex
to

ct
as

re

m

pl
ca

o

g
e
t

ol

th
-
n
i

l o

te
6

out-

of
a-

de-
nta-

nd
eac-

of
. 1
the
gly

dif-
m-
ma-

s
rs
ies
d

lly
sily
f

tion

n

the
e
as
ut
till
erg

as-
rt
p-
ch

M. TELMINI AND C. JUNGEN PHYSICAL REVIEW A 68, 062704 ~2003!
loses its meaning and one can at best give estimates of t
quantities.

Tables IV and V give the effective principal quantu
numbersn of the resonance positions calculated with resp

to the 2p̃s first-excited potential-energy curve of H2
1 , and

also their widths. The lowest resonance has been calcul
by many authors@16,41–46#. For comparison we include in
the Tables IV and V the positions and widths given by Te
nyson@47# and Greene and Yoo@7,29#. We have found that
the 2p̃sns̃s and 2p̃snd̃s resonances forn>3 are strongly
overlapping and in fact cross over with increasingR. Thus
according to our calculations~Table IV! the 3d̃s resonance
lies above 3s̃s up to R52 but below it forR>2, and we
find that strongl̃ mixing occurs in the~anti! crossing region.
An analogousss'ds anticrossing is known to occur in th
3Sg

1 manifold of states associated with the ground-state H2
1

core@48#. This phenomenon has apparently been overloo
in Refs. @47# and @29# where only the lower partner of th
pair was calculated. Tables IV and V show that apart fr
this aspect there is good agreement between the presen
the previous calculations.

V. CONCLUSION

We believe that the present work constitutes a decis
step towards the goal of calculating fullyR-matrix ab initio
photoionization and photodissociation spectra of highly
cited H2 at the rotational-vibrational level. What is needed
achieve this goal is:~i! sufficiently accurate quantum defe
matrices and~ii ! a smooth behavior of these matrices
functions ofR and E. The smoothness inR is necessary so
that the quantum defects can be interpolated on a fineR mesh
as required for successful inclusion of the vibrational deg
of freedom. The smoothness both inR andE is necessary in
order to be able to use the frame-transformation sche
which is known to fail when the quantum defects orK ma-
trices depend strongly on energy@5#.

Before we can actually calculateab initio photoionization
and photodissociation spectra, two steps must be im
mented. First, we must transform the present ellipti
quantum-defect matrices into a spherical representation
matching the variational solutionsCb of Eq. ~16! to spheri-
cal asymptotic channel functions expressed in terms
spherical harmonicsYlm(u,w). This work is underway and is
required so that the vector coupling techniques for couplinl
to the core rotational momentum can be carried out. A s
ond aspect to be considered in the near future concerns
calculation of the molecule-fixed components of the dip
transition operator as functions ofR andE, necessary for the
evaluation of photoabsorption cross sections.

A noteworthy feature of the present results is that
quantum-defect matrix elementsmkk8 can be interpolated di
rectly on a fineR mesh after theR-matrix treatment has bee
carried out. In this way the choice of the basis functions
the internal zone can be adjusted flexibly for eachR indi-
vidually. This was not the case in the previous work@7#
where the interpolation had to be carried out at the leve
the G and L matrices of Eqs.~11! and ~12!, which means
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that the same configurations had to be used for allR values
calculated. Note further that we will not need to calcula
quantum-defect matrices forR values larger than about
a.u., because outside this range we will treatR as the disso-
ciation reaction coordinate in an approach that has been
lined, e.g., in Ref.@49#.

Another aspect of the present work is that our use
elliptical coordinates combined with inclusion of polariz
tion in the external zone allows us to reduce theR-matrix
radius significantly. Therefore it has been possible to
scribe valence-type states in a Rydberg-channel represe
tion, whereas, for example, in the work of Ref.@20# on NO
theR-matrix radius was taken roughly three times larger, a
the valence-type states are contained entirely inside the r
tion volume and manifest themselves asR-matrix poles.

We finally wish to comment on the physical meaning
the quantum-defect matrices such as illustrated by Figs
and 2. They have been optimized by a careful choice of
regular and irregular basis functions in each of the ‘‘stron
closed’’ channels, based on the considerations of Ref.@24#. It
should be realized that depending on the optimization,
ferent sets of basically equivalent short-range quantu
defect matrices can be obtained. Thus, for example, the
trices given by Greene and Yoo@7,29# exhibit much stronger
variations in R and E ~and are therefore probably les
‘‘physically meaningful’’!, but are equally successful as ou
in reproducing the lowest fixed-nuclei potential energ
Un(R) which are quantum-mechanically strictly define
quantities. The fact that an infinite number of physica
equivalent quantum-defect matrices can be obtained is ea
understood from Eq.~21!, which expresses the matching o
the internal and external solutions of the Schro¨dinger equa-
tion. For each closed channel we may make the substitu
f̄ 5C f , ḡ5C21g2D f , whereC and D are arbitrary con-
stants which may be energy dependent. The base pair (f̄ ,ḡ)
is formally equivalent to the pairf ,g since the regular/
irregular behavior nearj51 is preserved and the Wronskia
is also unchanged. However the resultingK andm matrices
will obviously be different. One therefore has to abandon
concept of a ‘‘unique’’ quantum defect. At the same tim
however, vast possibilities of optimization open up such
we have begun to implement in this work, and it turns o
that when well chosen, molecular quantum defects will s
convey a comprehensive picture of the physics of Rydb
states.
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APPENDIX

The associated Legendre functions of the first kind a
the second kind are calculated by use of expansions
confluent hypergeometric functions~Ref. @50#!. Note that a
factor p21/2 appears to be missing in the second part
relation 8.1.5 of Ref.@50#.

Pl
m~j!5

~2l !!

2l~ l 2m!! l !

j l 1m

~j221!m/2

3FS 2
l 1m

2
;
12 l 2m

2
;
122l

2
;

1

j2D , ~A1!

Ql
m~j!5~21!m2l

l ! ~ l 1m!!

~2l 11!!

~j221!m/2

j l 1m11

3FS 21 l 1m

2
;
11 l 1m

2
;
312l

2
;

1

j2D . ~A2!

These functions have the appropriate asymptotic beha
(j→`) given by @26#

Pl
m~j!;

~2l !!

2l~ l 2m!! l !
j l , ~A3!
v

, J

R

06270
d
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f

or

Ql
m~j!;

2l l ! ~ l 1m!!

~2l 11!!

1

j l 11
. ~A4!

The confluent hypergeometric functionsF(a,b,c,1/j2)
~Landau and Lifschitz@51#! are evaluated numerically by us
of the series expansion:

FS a,b,c,
1

j2D 5 (
n50

`

Un , ~A5!

where the series termsUn are given by the recurrence rela
tion

Un115gnS a,b,c,
1

j2D Un ~A6!

with U051, and

gnS a,b,c,
1

j2D 5
1

n11

~a1n!~b1n!

c1n

1

j2
. ~A7!
ys.

n,

ge,

n-
@1# M.J. Seaton, Rep. Prog. Phys.46, 167 ~1983!.
@2# C.H. Greene and Ch. Jungen, Adv. At. Mol. Phys.21, 51

~1985!.
@3# J.M. Weber, E. Leber, M.-W. Ruf, and H. Hotop, Phys. Re

Lett. 82, 516 ~1999!.
@4# V. Kokoouline, C.H. Greene, and B.D. Esry, Nature~London!

412, 891 ~2001!.
@5# C.H. Greene and Ch. Jungen, Phys. Rev. Lett.55, 1066~1985!.
@6# J.A. Stephens and V. McKoy, J. Chem. Phys.97, 8060~1992!.
@7# C.H. Greene and B. Yoo, J. Phys. Chem.99, 1711~1995!.
@8# C.H. Greene, Phys. Rev. A28, 2209~1983!.
@9# H. Le Rouzo and G. Raseev, Phys. Rev. A29, 1214~1984!.

@10# W. Kohn, Phys. Rev.74, 1763~1948!.
@11# S.C. Ross and Ch. Jungen, Phys. Rev. A49, 4353~1994!.
@12# G. Raseev and H. Le Rouzo, Phys. Rev. A27, 268 ~1983!.
@13# G. Raseev, J. Phys. B18, 423 ~1985!.
@14# J. Tennyson, C.J. Noble, and S. Salvini, J. Phys. B17, 905

~1984!.
@15# J. Tennyson and C.J. Noble, J. Phys. B18, 155 ~1985!.
@16# I. Shimamura, C.J. Noble, and P.G. Burke, Phys. Rev. A41,

3545 ~1990!.
@17# J. Tennyson, J. Phys. B21, 805 ~1988!.
@18# B.K. Sarpal, S.E. Branchett, J. Tennyson, and L.A. Morgan

Phys. B24, 3685~1991!.
@19# I. Rabadan and J. Tennyson, J. Phys. B29, 3747 ~1996!; 30,

1975 ~1997!.
@20# M. Hiyama and M.S. Child, J. Phys. B35, 1337~2002!.
@21# R.E. Stratmann, G. Bandarage, and R.R. Lucchese, Phys.

A 51, 3756~1995!.
.

.

ev.

@22# M. Arif, Ch. Jungen, and A.L. Roche, J. Chem. Phys.106,
4102 ~1997!.

@23# M. Aymar, C.H. Greene, and E. Luc-Kœnig, Rev. Mod. Ph
68, 1015~1996!.

@24# F. Texier and Ch. Jungen, J. Phys. B33, 2495~2000!.
@25# F.E. Harris, J. Chem. Phys.32, 3 ~1960!.
@26# F. Robicheaux, J. Phys. B29, 779 ~1996!.
@27# Q. Zheng, A.K. Edwards, R.M. Wood, and M.A. Manga

Phys. Rev. A52, 3945~1995!.
@28# U. Fano and C.M. Lee, Phys. Rev. Lett.31, 1573~1973!.
@29# B. Yoo, Ph.D. thesis, Louisiana State University, Baton Rou

Louisiana~unpublished!.
@30# W.E. Milne, Phys. Rev.35, 863 ~1933!.
@31# D.M. Bishop and L.M. Cheung, J. Phys. B11, 3133~1978!.
@32# We thank J.-M. Lecomte for bringing this point to our atte

tion.
@33# R.S. Mulliken, J. Am. Chem. Soc.88, 1849~1966!.
@34# R.S. Mulliken, J. Am. Chem. Soc.91, 4615~1969!.
@35# G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc.212, 208

~2002!.
@36# G. Staszewska and L. Wolniewicz,

http://www.phys.uni.torun.pl/ftp/publications/ifiz/luwo/
@37# Ch. Jungen and S.C. Ross,Molecular Hydrogen in Space, ed-

ited by F. Combes and G. Pineau des Foreˆts ~Cambridge Uni-
versity Press, Cambridge, 2000!, p. 31.

@38# G. Herzberg and Ch. Jungen, J. Mol. Spectrosc.41, 425
~1972!.

@39# F. Texier, Ch. Jungen, and S.C. Ross, Faraday Discuss.115, 71
~2000!.
4-13



h

M. TELMINI AND C. JUNGEN PHYSICAL REVIEW A 68, 062704 ~2003!
@40# D. Uy, C.M. Gabrys, T. Oka, B.J. Cotterel, R.J. Stickland, C
Jungen, and A. Wu¨est, J. Chem. Phys.113, 10143~2000!.

@41# H. Takagi and H. Nakamura, J. Phys. B13, 2619~1980!.
@42# H. Takagi and H. Nakamura, Phys. Rev. A27, 691 ~1980!.
@43# A.U. Hazi, J. Phys. B8, L262 ~1975!.
@44# T. O’Malley, J. Chem. Phys.51, 322 ~1969!.
@45# S. Guberman, J. Chem. Phys.78, 1404~1983!.
@46# L.A. Collins and B.I. Schneider, Phys. Rev. A27, 101

~1983!.
06270
. @47# J. Tennyson, At. Data Nucl. Data Tables64, 253 ~1996!.
@48# C.B. Wakefield and E.R. Davidson, J. Chem. Phys.43, 834

~1965!.
@49# A. Matzkin, Ch. Jungen, and S.C. Ross, Phys. Rev. A62,

062511~2000!.
@50# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. Stegun~Dover, New York, 1970!.
@51# L. Landau and E. Lifschitz,Quantum Mechanics~Mir Edi-

tions, Moscow, 1966!.
4-14


