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Cross sections for low-energy inelastic H-Li collisions
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We report calculations for the low-energy near-threshold inelastic collision cross sections between the
Li(2s,2p,3s,3p) + H(1s) states. Results are obtained by solving the coupled-channel equations. Order-of-
magnitude estimates for higher states have been made with the multichannel Landau-Zener model. Potentials
and couplings from H. Crofét al [J. Phys. B32, 81(1999] are employed. The calculated cross sections are
much smaller than ones predicted by the classical Thomsom atom formula currently employed in astrophysics.
This result is important for the interpretation of stellar spectra.
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[. INTRODUCTION Steenbock and Holwegét] first pointed out the possible

Abundances of the chemical elements in stellar atmoimportance of inelastic collisions with hydrogen in the ther-
spheres are a key observational parameter in understandingglizing of Li, particularly in metal-poor dwarfs. They esti-
the universe. They provide clues about nucleosynthesis, stehated the collisional excitation rates f&r-H by modifying
lar evolution, and mixing processes, and are tracers in galaxg formula from Drawin2] for H+H which is itself a modi-
formation and evolution, to name just a few examples. Thdication of the classical Thomson formula for excitation by
determination of these abundances is based on the interprelectrons(cf. [3]). In recent years some progress has been
tation of absorption lines observed in high resolution spectranade for the H-Na system. Low-energy experimental data
and thus the equation of state of the gas in the stellar atmdave been obtained] and calculations performed down to
sphere in which the spectrum is formed. the threshold5]. However, these results are for only the very

The efficiency of inelastic collision processes determinedowest states of this one system. For statistical equilibrium
if local thermodynamic equilibriundLTE) is valid, and thus calculations, estimates are required for transitions between
if the Boltzmann distribution adequately describes the atomi@ll states which might affect the population of the states of
energy level populations. If one cannot assume LTE then thiterest. It is for this reason that the modified Drawin for-
atomic energy level populations forming the stellar spectrunimula is still in use amongst the astrophysics community de-
are determined by the rates of population and depopulatiospite that it is known to overestimate thet+tla(3s)—H
of the energy levels by radiative and collisional procegaes + Na(3p) collision rate by several orders of magnituidg.
so-called non-LTE problemIn the atmospheres of hot stars  In this paper we present quantum dynamical calculations
(roughly >7500 K) where hydrogen is ionized, the colli- for the H+Li low-energy inelastic cross sections between
sional processes are dominated by electrons. However, ilow-lying states. The calculations are of high accuracy at the
cooler stellar atmospheres collisions with neutral hydrogerthreshold. For higher states up to and including the ionic
atoms may be significant as they outnumber electrons biimit we have obtained estimates using the Landau-Zener
typically four orders of magnitude. If electron collisions model, noting that order-of-magnitude estimates will be suf-
alone are not sufficient to establish thermodynamic equilibficient to determine if the process is important astrophysi-
rium, it is important to determine the effect of the collisions cally. Interpreted together, these data provide a coherent pic-
with hydrogen. For such cool stars whét&~0.2—-0.6 eV it ture of the excitation, ion-ion neutralization, and ion-pair
is the low-energy collisions at and just above the thresholdormation for Li+H and Li"+H™ collisions required for
which are of importance in determining the rate coefficient.non-LTE modeling of Li in stellar atmospheres.

The abundance of Li is of particular significance. Since Li
was produced in the Big Bang its abundance in the most
metal-poor dwarf stars, which presumably preserve the
chemical composition of the interstellar gas in the early uni- The present quantum treatment of a collision process em-
verse, is an important constraint for models of Big Bangploys the most widely used approach in atomic collision
nucleosynthesis, and may be used to constrain the baryaheory based on the Born-Oppenheimer separation of the
density of the universe. Furthermore, since Li is destroyed aglectronic and nuclear motid], that is, the so-called stan-
relatively low temperatures, it is a very important probe ofdard adiabatic approach in an adiabatic representation. The
mixing processes during stellar evolution. general description of the standard adiabatic approach is dis-

cussed in Refs[7-10 (and references therginso the
method used in the present work is only briefly outlined
*Email address: andrey.belyaev@ch.tum.de below.
"Email address: barklem@astro.uu.se After the separation of the kinetic-energy operator for the
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center of mass of the entire system, the Hamiltonian for a 52 P
diatomic molecule can be written in the form i|— k) ===(j| == k). 5
(-1 =gglil g1k (5)
2 2
_ R o ~ 4 Hy(r,R), (1) In order to calculate the scattering matrix and then transi-
- 2M IR? © tion probabilities, cross sections, and rate constants, one

needs to solve the coupled channel equatidhsvith proper
where M=M Mz /(M s+ M3) is the reduced mass of the boundary conditions. The boundary conditions are set in two
nucleiA andB with corresponding masséé, andMg, Ris  parts: atR—0 and atR—. At R—0 the solutions of the
the vector connecting the nuclei, denotes the set of the coupled equations must obey the boundary conditions:
electronic coordinates measured from the center of nuclear
mass, anH(r,R) is the so-called electronic Hamiltonian, Fi(R)—0 as R—0. ©®)
which contains operators of the kinetic energy for the elec,, boundary conditions for the totalelectronic and

trons and all interactions. The mass-polarization terms arﬁuclea} wave function in the asymptoticRi—) region
neglected. The electronic Hamiltonian parametrically de eads

pends onR, and its eigenstates form the fixed-nuclei adla—
batic electronic basis staté
Vo, (R) =2 Ky V4@ ¥ +a, ), 7
Hel(r,R)¢;(r,R)=V;(R) ¢;(r,R) 2 :
with K;=y2M[E—V(«)]/A being the channel wave num-
with the eigenfunctionsr|j)= ¢;(r,R) and the adiabatic po- pers, a being the amplltudes of the incoming and outgoing

tential energies/j(R). , currents for the channg¢) and
The wave function for the total syste can be written

as a sum of termSIfJM (r,R) characterized by the total an- . exp(EiK;Ry)
gular momentum quantum numbefsand M ; (M ;=0). i R
the theoretical treatment can be restricted tetates onl>(|n

particular, the rotational couplings are neglegtesihich is  being the incoming and outgoing asymptotic wave function_s.
the case at low collision energi&sfor the process in ques- The vectorR; connects the centers of mass of the atoms, in

tion, then each wave functioW ,y (r,R) can be expanded contrast toR, which connects the nuclei
as

Yim,(0,P) ¢ (8)
i

m.
Ri=R+% 14 (r=%R). (9)
Vo (R =Y (0,003 2 v R). (3
MMt MM i R " The scalar factory; depend on with which nucleus the elec-
trons travel in the asymptotic region and are defined by

Y;wm, are the spherical harmonics, wheeand ® are the

spherical co_ordinate angles Qf the vecRr Th(_e functic_)ns_ _ L electron traveling with nucleus
F;(R) describe the radial motion of the nuclei. Substituting B Mat+Mg
the expansion3) into the stationary Schdinger equation YiT M A
(H=Eto) VM, =0 [Etor=E+Vip() being the total en- + Mat Mg electron traveling with nucleus.
ergy], multiplying it by ¢ (r,R), and integrating over the (10)
electronic coordinates, one obtains a set of coupled channel
equations in the adiabatic representafi8ri0] m; is the reduced mass of the electr@ound to a corre-
sponding atomin the channej: m;=mgMa/(m+M,), if
72 g2 A2 J(J+ 1) the electron is bound to nucleus and mj=m.Mg/(m
— +Vj(R)+ —Etot|Fj(R) +Mg), if the electron is bound to nucle® m, being the
M dR? 2™ electron mass. Comparison of E¢3) and(7) gives the fol-

lowing form for the radial wave functions:
_ﬁZZ 9 . dFk(R) ﬁ2 E OE(R
=w < Ul5RI0 =R <J|—| YFU(R).

(4)

Fi(R)= E Ki YA agt), expiKR)

_ _ _ . o . . +ay tyexp —iKR)] for R—o, (11
The adiabatic potentials and first derivative nonadiabatic
matrix elements are usually calculated by quantum chemicakhere the elements of the matrices andt™ represent the
programs. The double derivative couplings are not usuallyeprojection coefficients between the incoming and the out-
calculated explicitly. In the adiabatic basis they cannot begoing correct asymptotic wave functions and the incoming
neglected entirely, as they are required for current conservand the outgoing asymptotic functions of the homogeneous
tion. They are modeled by settif§] coupled channel equations. At low collision energies these
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matrix elements can be evaluated via the correspondinghere the elements of the matrice&, K2 and
atomic dipole moment matrix elemer{i,9]: exp(—iKRy) are the channel wave numbers, the square roots
of these wave numbers, and the corresponding exponents,
(12) respectively. o . _
In the practical implementation of th&matrix calcula-
tions numerical integration can be reduced by using the
wherez?! is the projection of the active electron coordinate\wkpg approximation, that is, the coupled equatiof®
onto the molecular axis. The= matrices mix the channel sphould be solved numerically between a smiakro dis-
radial wave functions in order to achieve the boundary contgnce and a largébut finite) value Ro,q<R,, where all non-
ditions atR—o and, hence, obtain the correct asymptoticadiabatic couplings and potential§ are sufficiently con-
incoming and outgoing wave functions from the solutions ofstant. The properties of the numerical solution are expressed

the coupled channel equations. o _ _ by theR matrix atR,,4 and theS matrix is then computed as
On the other hand, radial nonadiabatic coupling matrixfg|iows:

elements also correspond to the same atomic dipole moment

matrix elements. The point is that the derivative coupling S=(—1)exp—i®)k’( 7" —iRT k) ?
matrix elements used in the coupled equati@hsshould be L _12 )

calculated with the origin of the electron coordinateat the X(z iRt W)k Texp—id), (19)

center of mass of the nuclei. In these coordinates, the orbit%here the diagonal matrices and exp(i®), respectively

wave functions for the active electron in the asymptotic re- ist of the local b
gion take the form consist of the local wave numbers

. L m o _at;
tkj:5kj—'KJ7’iM<k|z |]>|RH°°’

J(JI+1)

(rliy=¢(r=R) as R—w. 13 K1<R>=\/2—“S[Em—vj<R>]—T (20

As a consequence, th¢|d/dR|k) do not automatically go to
zero at infinity. It can be showf8-10] that their asymptotic 54 the elements exp(®;) are the usual WKB phases of
values are equal to ®;(R). The 7=-matrices have the same meaning as tthe

matrices, but at the smaller internuclear distaRggy. Their

i (14) elements are defined

- m .
(il aR|k>: ?’kﬁ(vj = Vi)(ilz* k)

R ik (R)2
. . T(R) = 8+ !
Finally, for nondegenerate states and low collision ener- ki ki
gies thet™ matrix elements can be evaluated via the poten- N
tials and the nonadiabatic couplings calculated in the Jacobfih€ values of these quantities must be takeRaReng.
coordinates where electron coordinates are measured from The background of the relatidd9) is that one has to mix

a .
M[Vk(R)—VJ-(R)]<k|(9_R|J>- (21)

the center of nuclear mass the computed radial functiorfs;(R) in order to account cor-
rectly for the electron translation effects in the asymptotic
. iK ;%2 J . wave functiong8,9]. This is done via the matrices . When
tkizﬁkiim <k|ﬁ|l> o 19 the matricesr™ are replaced by the unit matrix, E¢L9)

becomes the usual relation betweRand S matrices, which
It is seen that the elements of thé matrices are energy IS valid in the absence of asymptotic couplings. Equation
dependent. In the zero-energy limit thé matrices become (19) is further based on the construction of a WKB-type
the unit matrix, which allows one to neglect the electronsolution to the coupled equations beyoRg,q. The WKB

translation effect at ultralow energies. approximation is important only for computational conve-
The scattering matri$ is defined by the relation between nience. It might be removed by extending the numerical cal-
the incoming and the outgoing channel amplitudes culation to a distance, which is so large that not only varia-
tions of both the adiabatic potentials and couplings, but also
at=(-1)y"sa", (16)  the centrifugal potentials are negligible.

Once the scattering matrix is known, the nonadiabatic

wherea™ denote the column vectors constructed from theyansition probabilities can be then calculated from the cor-
corresponding amplitudes. If the solution of the coupledrespondingSmatrix elements

equations is presented by the matbat the(infinitely) large
internuclear distanc®, Pi=1Sikl?. (22)

E:

7o

E’, a7 Except for very low energies, a large number Jofalues
) ] contribute to the cross sections, gividghe character of a
then Eq.(11) allows one to calculate the scattering matrix by gyasicontinuous variable. In this case, the quantum nuthber

means of the following formul§8,9): can be replaced by the impact paramdtedefined as
S=(—1) exp( —iKRo)KM(t" —iR t"K)* 30+1)
X(t™+iRt"K)K Y2exp —iKRy), (18) =N 2mE @3
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and the cross sections can be computed as integrals over the 6 ; @
impact parameter L

J

O'J-k(E)=27Tp-Statf Pix(b,E)bdb, (24)
0

Potential energies (eV)

wherep'®'=1/g; is the statistical probability for population =l
of the initial channe] (g; being the statistical weight of the
channe).

Thus, the standard adiabatic approach allows one to per-
form a theoretical study of a collision process into two steps:
() to calculate the adiabatic potential energies and the non-
adiabatic couplings in the fixed-nuclei approximatithe
so-called quantum chemical prand(ii) to treat the nuclear
motion by solving the coupled channel equati¢hismaking
use of the quantum chemical data calculated in the first step.

It should be noted that besides the method described
above there are other methods treating collision processes
within or beyond the standard adiabatic approach. The i L
former are typically based on the inclusion of electron or ot ;<CW3R'D> i
common translation factors, see REf1] for a review, ref- 1 10 100
erences, and applications to the?He-H collision test case. internuclear distance R (2.4
An example of the latter is the hyperspherical close-coupling FIG. 1. Quantum chemical data for the LAY ™) quasimole-

method recently described and applied to the same test caggle.(a) The adiabatic potentials for the four lowe& * states|b)
in Ref. [12]. A discussion of these methods is outside theand (c), the nonadiabatic radial coupling matrix elements

score of the present paper, but it is interesting to note that thg|d/9R|k) between the states.
results of the different methods agree well with each other in

the energy range roughly between 100 eV and 1 keV, while . N . .
discrepancies were found at both low and high energies. the LiH('X ") states are plotted in Fig(d), while the radial
nonadiabatic couplings are shown in Figgb)land Xc). It

should be pointed out that due to the method used in the
quantum chemical calculations j&5] all nonadiabatic cou-

In this work we study low-energy HiH collisions and, plings asymptotically R— ) go to zero, although some of
hence, neglect rotational couplings and consider only théhem must have nonvanishing values at infinity, see(E4).
13+ states of the LiH system. We therefore require the adiaEstimates made in the present work show that nonvanishing
batic 1> * potentialsV;(R) and radial couplings between values are small, and as the collision energies treated are low
13" states(j|a/dR|k), as input for the coupled channel (E<10 eV), the neglection of the electron translation effects
equations(4). The LiH system has been quite extensivelygives an uncertainty not more than a couple of percent in the
investigated, e.g., Refg13—15. The LiH 13" adiabatic po-  cross sections.
tentials show a series of avoided crossings between covalent Figure Xa) shows that there are a number of nonadiabatic
states and the ionic state H Li*, as seen in other alkali- regions. The most important for the excitation processes un-
hydrides (e.g., [16,17)). Previous work[4,5] has demon- der consideration are: at the internuclear distariRes.75
strated that for lower states of theH#la system, at low- a.u. between th& IS+ and A '3 molecular states; a®
energy these crossings between the ionic and covalent statesl0.75 a.u. between tha 'S* and C '3 * states; atR
represent the most important mechanism in the inelastic pro=21.5 a.u. between thé '>* andD 37 states. At these
cess in question. distances the adiabatic potentials indicate avoided crossings.

In this work we use the adiabatic potential data for thelndeed the radial coupling matrix elemeriigas/dR|k) de-
singlet system of15] which is an improved version of the picted in Figs. 1b) and Xc) show peaks at the same dis-
data from[13,14]. The radial couplings were computed by us tances confirming the avoided crossing interpretation. The
by direct numerical differentiatiofsee[14]) of the theCj, area under each of the peaks is closert®, and the situation
matrices provided to us by these authors. As the quanturis expected to correspond closely to the Landau-Zener
chemical data of15] do not include data for separations model. These crossings appear due to interactions of the
smaller tharR=2 a.u., we have performed additional calcu-ionic H™+Li" state with the covalent states, the situation
lations of the adiabatic potentials and the radial nonadiabatitypical for alkali-hydrides(see, e.g.[4,5,13—17). In addi-
couplings for the low-lying LiH{S ™) states using the tion to the above mentioned avoided crossings there are
MOLPRO code[18], to estimate these at very short internu- some extra nonadiabatic regions, for exampleRat0.775
clear distance. a.u. between th&X 13" andA 13+ states, aR~5.25 a.u.

The quantum chemical data relevant to the excitation proandR~1.0 a.u. betwee 3" andD !3*. They also af-
cess treated are shown in Fig. 1. The adiabatic potentials fdect the nuclear dynamics mainly by redistributing the cur-
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rents between molecular states leading, for instance, to 1072
Rosenthal oscillations. <
(6]
To10
IV. QUANTUM DYNAMICAL CALCULATIONS ©
The program used in the present work for numerical inte- &
gration of the coupled channel equatidds$ is described in 5 10761
Ref.[5]. In the present work the numerical calculations were é . 4
carried out with a four-state basis for the singlet systédm 3 b T
molecular stateX 13, A3t C 3%, andD 3" as- . 10781 }/:/’ 1
ymptotically correlated to the HLi(2s,2p,3s,3p) atomic 3 [
state$ for the collision energies from the energy threshold © [0-10 . ! : | |
till 10 eV. 0 5 A 5 5 0

The choice to restrict the calculations to the four-state
basis has the following justification. Firstly, for collisions of
the atoms in their ground states at collision energies near the FIG. 2. The calculated cross sections for the excitation process
Li(2p) excitation threshold there are only two open chan-Li(2s)+H—Li(2p,3s,3p) +H as a function of the collision energy
nels, so even a two-state basis is sufficient. At higher, buin the four-state approximation. The thick solid line is the cross
still low energies the HLi(3s,3p) channels become open section for the excitation of Li(R); the dotted curve is for Li(8);
and the four-state basis is sufficient for the study of theand the short-dashed line is for the Li{Bstate. The thin solid line
Li(2p) and Li(3s) state excitation near threshold. Extensionis the cross section for the excitation of LiP from the Landau-
of the basis does not change the nonadiabatic transition prog€ener model. The dot-dashed and long-dashed lines show the exci-
abilities from the ground state to the two nearest states.  tation of the Li(3) and the ionic states respectively, where the

Secondly, as will be shown, the nonadiabatic transitioné‘uantal Li(3) re_sult has been redistributed based on the Landau-
between the lowest-lying states must be treated quantum mé&ener model estimates.
chanically, while other transitions can be treated in the
framework of the Landau-Zener model. Although the non-the higher ionic avoided crossings practically diabatically
adiabatic regions between the low-lying states have an areaven at the low energies considered here and thus most of the
under the nonadiabatic coupling function closest?2 and  population is expected to go to the ionic stdtehen this
thus might be expected to be close to the Landau-Zener casghannel is open in agreement witti19]. This indicates that
other featureglike broad, dense, and overlapping nonadia-the inclusion of higher states would have negligible effect on
batic regions, Rosenthal oscillations, grazing incidence) etcthe results.
affect the nonadiabatic transitions between the low-lying It should be also pointed out that all adiabatic potentials
states. The transitions between the states higher than amde attractive at large internuclear distances, and this results
including the H+ Li(3 p) state can be treated by means of thein the appearance of so-called orbital resonances. These reso-
Landau-Zener model since the nonadiabatic regions are betances were found in the corresponding process foria
ter localized and separatégee Figs. (b) and Xc)], which  collisions[5]. Although the resonant peaks are as much as 4
leads to a situation where the Landau-Zener model prerequérders of magnitude larger than the nonresonant cross sec-
sites are better fulfilled, and, hence, the Landau-Zener modé&ions, the resonant cross sections are very nafi®wand,
gives reasonable estimates. Similar results have been fourgnce, give less than a 10% contribution to the correspond-
by [19] for LiH and [20] for the similar NaH system. Thus, ing rate constant. For this reason the orbital resonances are
the four-state basis is sufficient for an accurate treatment ofeglected in the present work.
the nonadiabatic transitions which must be treated quantum The calculated cross sections for the excitation from the
mechanically at collision energies near threshold. ground Li(2s) state are presented in Fig. 2, for the excitation

Within the four-state approximation used in the presenfrom the Li(2p) state in Fig. 3, and for the excitation from
guantum dynamical calculations no excitation of states abovthe Li(3s) state in Fig. 4. In each case the cross sections for
Li(3p), including the ionic L +H™ state, is taken into ac- population to the Li(p) state are also shown where the
count, although these states are indeed populated, if the cadistribution between the Li(8) and ionic states has been
lision energy is high enough. For this reason the result for thestimated from the Landau-Zener calculatidgese the Ap-
population of the Li(®) state should be in fact redistributed pendix.
between the Li(®) and upper states. In this section what is It is seen from Fig. 2 that inelastic Li€+H collisions
called “the excitation of the Li(®) state” should be treated lead mainly to the excitation of the Li{® state, although
as the total excitation of the Li8 state and all highefen-  this cross section is quite small, between %0 and
ergetically allowedl states. The redistribution has been esti-10™ 1 cn?. The Li(3s) and the Li(3) excitation cross sec-
mated by means of a multichannel Landau-Zener model agions are typically 2 to 4 orders of magnitude smaller. The
proach(see the Appendjx from which we find that once basic mechanism for the Lif® excitation is nonadiabatic
other channels are open the real Lpj3excitation is ex- transitions at the avoided crossing between Xh& * and
pected to be only a few percent of this total excitation. TheA 13" states aroun®~6.75 a.u., although the nonadiabatic
Landau-Zener calculations indicate that the system passesgion aroundR~0.775 a.u. also contributes but affects pre-

Collision energy E (eV)

062703-5



A. K. BELYAEV AND P. S. BARKLEM PHYSICAL REVIEW A 68, 062703 (2003

1071E ' ' ' PN seen that the pure Li(® population becomes only a few
< i ST e percent of the four-state quantal result for collision energies
O 1072k //"/ 3 where the next channgH+Li(3d)] is open. This result
"9 i // ] confirms that above and including theti(3p) channel
~ 0_3;_ (/ /\_/,.-1; the no.nadiabatic regions between the ionic and the covalgnt
) ; A e E diabatic molecular states are passed by the system mainly
: i A P ] diabatically, which is in agreement with the previous results
S 107*F S ,./"' E from mutual neutralization calculatiof$5,19. As the states
9 g :l,.xf’ above the ionic H+Li ™" state are not coupled with the ionic
@ 10-51 P i state, once the ionic channel becomes open the dominant part
o [ E of the outgoing current goes into that channel. Thus, the
© 10-5: : : . . . ] cross section for the ionic state population practically coin-

o 5 4 6 8 10 cides with the quantal four-state cross section for population

Collision energy E (eV) of the H+Li(3p) channel for the energies above the ionic
threshold. At the collision energies between the H(3 p)

FIG. 3. The calculated cross sections for the excitation procesand the ionic state threshold the redistribution of the quantal
Li(2p)+H—Li(3s,3p) +H as a function of the collision energy in four-state Li(3) excitation cross section results in dominant
the four-state approximation. The dotted line is the cross section fopopulation of the highest energetically allowed state, and this
the excitation of Li(3), while the short-dashed line is for the population becomes small as soon as the next channel opens.
Li(3p) state. The dot-dash and long-dashed lines show the excitarhis result holds for population of the states up to and in-
tion of the Li(3p) and the ionic states, respectively, where the c|yding the ionic state from other initial channels, see, e.g.,
quantal Li(3) result has been redistributed based on the LandauFigS_ 3 and 4.

Zener model estimates. The Li(2p)-Li(3s,3p) excitation cross sections in Fig. 3
are typically an order of magnitude larger than the

dominantly the oscillations of the cross sections. It has beepj(2s)-Li(2p) results[the Li(2p)-Li(2s) deexcitation cross

checked that in the absence of nonadiabatic couplind® at section can be easily calculated from the Ls{2.i(2p)

<2 a.u. the cross section oscillations are shifted in collisiorone]. The basic mechanism here is due to the nonadiabatic

energy, but retain more or less the same average valugegion between theA % and C 3" states aroundR
though at a particular collision energy the cross section car-10.75 a.u.

change by up to a factor of 2. The oscillation of the Lsf2 Li(3s) +H collisions result in the large Li(8) excitation
—Li(2p) excitation cross section is due to the &elberg  cross sectionFig. 4) due to the nonadiabatic regions be-
and Rosenthal phases. tweenC 3" andD 3" states aroun®®R~21.5 a.u. andR

In addition to the quantal results, Fig. 2 shows the cross<5 25 a.u. Though the potential splittings are small in these
sections for excitation of the Li(3) state and for population regions and the system passes the regions mainly diabati-
of the ionic H +Li " state obtained by redistribution of the cally, the nonadiabatic regions are at large internuclear dis-
quantal four-state Li(B) cross section based on the multi- tances, and hence a wide range of impact parameters contrib-
channel Landau-Zener model described in the Appendix. It igite to the cross section. But again only a small fraction of

this population really goes to the Lif3 state, while the
100.00F T ‘ ‘ T T ] main part of the outgoing current goes to the ionic state.
F ] A comparison of the four-state quantal and the multichan-
e ! nel Landau-Zener results shows that the Landau-Zener
10.00F /Tl 3 model fails to describe the nonadiabatic transitions between
i |
|
|

the ground H-Li(2s) and the H-Li(2p) states at the near-
threshold collision energigsee Fig. 2, but provides reason-
L 3 able results(within an order of magnitudefor transitions
C T between the states higher than and including the H
[ +Li(2p) state. Based on this, as well as the fact that the
: E nonadiabatic regions are better localized for the states higher
|
|
|

Cross section o(E) (107" cm?)
o
o
|

than H+Li(3s), the multichannel Landau-Zener model is
expected to provide reasonable estimates for population of
the states above and including thetHi(3 p) channel, in-
cluding the ionic state.

0 2 4 6 8 10
Collision energy E (eV)

FIG. 4. The calculated cross sectishort-dashed linefor the V. DISCUSSION AND CONCLUSIONS
excitation process Li(§ + H—Li(3p) +H as a function of the col- ) ) )
|isi0n energy in the four-state approximation. The dot_dash and We Calculated the |ntegra| Cross sections fOI‘ the electror“c

long-dashed lines show the excitation of the Ipj3and the ionic ~ €xcitation of Li atoms by H atom impact for energies be-
states, respectively, where the quantal lnf3esult has been redis- tween the thresholds and 10 eV by means of the full quantum
tributed based on the Landau-Zener model estimates. approach. We have employed® * potentials and nonadia-
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batic radial couplings from the literatuf#3—15. It has been triplet system the rotational coupling provides the dominant
shown that in the'S * system for the states up to Lip3 the  mechanism, but the corresponding cross section has a signifi-
avoided crossing between the ionic and the covalent molecwsant size only at energies around 10 eV. As the approach of
lar LIH(S ") states is the dominant mechanism for thethea 3 andb ®II states takes place at the highly repulsive
nonadiabatic transitions. part of the potentials, the energy dependence ofai&

We will now discuss the accuracy of the calculated cross—b °I1 cross section is stronger than that of te'S
sections. In general, there are two principal possible origins—A '3 cross section. Tha 33 —b 3II cross section will
for uncertainty in the numerical results: The limited precisionbe practically zero at the energy threshold, yet similar to the
of the quantum chemical data and the truncation of the basiX > —A '3 cross section at arounl=10 eV. Thus, the
used in the dynamical treatment, including neglection of roneglect of singletII states results in an uncertainty of a few
tational couplings and other symmetri@s particular, triplet  percent for the excitation cross sections in ls{2 H colli-
molecular statgs sions, while the neglect of the triplet system results in prac-

The accuracy of the quantum chemical data is limited bytically no error at the energy threshold for the same cross
(i) the precision of the calculated adiabatic potentials, whichsections, which is the main focus of the present paper, but at
for modernab initio or pseudopotential calculations is typi- the collision energy 10 eV an account of the triplet molecular
cally believed to be below-0.1 eV, (ii) the precision of the states can increase the cross sections up to a factor of 2.
single derivative coupling matrix elements, which is believedThus, as discussed in the preceding section, the size of the
to be =0.01 a.u., andiii) the use of the approximation in present basis is sufficient for +iH collisions in their ground
calculation of the double derivative coupling matrix elementsstates near threshold. For collisions of an excited Li atom
[Eq. (5)]. We estimate that the possible uncertainty in thewith hydrogen atoms the situation can be more complicated.
calculated cross sections from these sources does not excelddglect of other symmetries, rotational couplings, and or-
50%, 10%, and 10%, respectively. Due to the method used ibital resonances in this work means our results should be a
the quantum chemical calculation it is unlikely that all threelower limit to the actual cross sections. However, it would be
of these sources of error contribute strongly to the total errosurprising if our results were on average in error by more
in the calculated cross sections. than a factor of two for Li(2) + H collisions, and a factor of

The influence of the truncation of the basis set on thethree for collisions of excited statésoting that as discussed,
accuracy of the calculated cross sections depends on the ceésults at a given collision enerdy may change more sub-
lision energy and on the chosen initial state. For a giverstantially).
collision energy and initial state the following factors should In summary, it is expected that at the threshold the cross
be discussedi) spin symmetry of the molecular statesn-  sections are accurate to better than 50%, where the error is
glet and triplet statgs(ii) symmetry related to the projection dominated by uncertainty in the quantum chemical data. At
quantum number for the electronic orbital angular momenhigher energies, errors due to the limited basis set become
tum upon the molecular axihere only3, andIl molecular important and the total error may be as high as a factor of 3
stateg, and(iii ) the number of states of each symmetry takenat 10 eV. However, we emphasize that for the relevant tem-
into account. The error introduced by neglect of certain moperatures in the astrophysical problem of interest, the cross
lecular states can be estimated from the obvious fact that faections within 1 eV or so of the threshold dominate.
effective nonadiabatic transitions both a close approach of We found, as irj5] for H+Na low-energy collisions, that
potentials and a large nonadiabatic coupling are requiredhe Landau-Zener model fails to quantitatively model excita-
Note that rotational couplings enter the coupled channelion from the ground state, particularly at the collision ener-
equation with the factor R? [9], thus, nonadiabatic transi- gies treated here where the Landau-Zerer2p excitation
tions due to rotational couplings are typically effective atcross sectioribetween 1024 and 10 8 cn¥) is 1-2 orders
short internuclear distances. The main distinction betweenf magnitude smaller than that calculated by means of the
the singlet and triplet LiH states is the presence of theull quantum approackbetween 1022 and 10 '8 cn?). The
strongly attractive ionic (Li+H™) diabatic potential in the modified Drawin formulg1-3] commonly used by the as-
singlet system, while such a term is absent in the tripletrophysics community, predicts thes2 2p excitation cross
system. This leads to the series of avoided crossings for theection to be between 18" and 10 ° cn? over the same
singlet stategsee Fig. 1 As mentioned above, this series collision energy range, that is, it overestimates tise-2p
provides effective nonadiabatic transitions between the lowexcitation cross section by 3 to 5 orders of magnitude as
lying singlet states due to the radial couplings. In additioncompared with the obtained quantum cross section.
the lowest B Il state [asymptotically corresponding to Even this short comparison shows the importance of the
Li(2p)+H] is close not to the ground '3 state, but to the quantum calculations of the inelastic cross sections between
excitedA '3 state(and even degenerate in the united atomthe low-lying LiH states at low collision energies. On the
limit), while the lowest tripleb 3I1 state is close and degen- other hand, as discussed earlier, the Landau-Zener model
erate in the united atom limit with tha 33 asymptotically — gives reasonable results for higher states. We have compared
corresponding to Li(8)+H. This leads to the fact that for results from the multichannel Landau-Zener model calcula-
excitation from the ground Li(®) state the cross section due tions with the results here for the more excited states. The
to the rotational couplings in the singlet system is one or twaesults are in reasonable agreem@ttleast within an order
orders of magnitude smaller than that due to the radial couef magnitudé¢ even at the threshold. Order of magnitude es-
plings (except for the orbital resonance casashile in the timates are sufficient to determine if this process is important
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in stellar atmospheres, and if time and effort should be in- N
vested in more detailed calculations. Thus quantum dynami- Nt
cal results obtained in this paper can therefore be comple: Pret
mented by the Landau-Zener model estimations for the
excitation cross sections involving higher-lying states below
the ionic limit (these results can be obtained from the au-
thors. As we have seen from our Landau-Zener calculations,
when open the ionic state is significantly populated. Data
from accurate quantum mechanical calculations are alread
available for this procesgl5,21]. If necessary the expres-
sions for Rydberg states given by Kaulak2g] may be used
for states above the ionic limit. Together, this information
gives the opportunity to model the statistical equilibrium of
Li in cool stellar atmospheres, including the effect of inelas- g
tic collisions with H. Such modeling has been carried out,
and the results along with a complete set of rate coefficients R
will be published in the astrophysics literature.

N-2
'

1
L2

i+l

i)
3
0

Pis1 incoming channel

Py

FIG. 5. Schematic diagram of the multichannel Landau-Zener
model in the diabatic representation for a series of ionic—covalent
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The probabilityp is the LZ probability given by

APPENDIX: MULTICHANNEL LANDAU-ZENER MODEL pi(U):qu_ZWHﬁi/ﬁU(HI’\jN_Hili)] (A1)

As for the quantum dynamical calculations, we consider
only the 3" system, ignoring other symmetries. The tenwherev is the radial velocity of the colliding atoms, and
states up to and including the ionic state are considered{,,,(R) are matrix elements of the electronic Hamiltonian in
namely those asymptotically correlated to the diabatic basis as a function of internuclear distance.
Li(2s,2p,3s,3p,3d,4s,4p,4d,4f)+ H(1s) and Li*+H". Primed quantities refer to derivatives with respecRtAll
Only the nonadiabatic regions at the crossings between thealues are evaluated B, the internuclear separation at the
ionic and covalent states are treated, and each crossing @sossing.

TABLE |. Landau-Zener model parameters used for thell'S * system crossings of covalent statesith the ionic stateN. Diabatic
energiedH;; at the crossing are given with respect to the separated atormHiggit) which is given relative to the ground stafg™is the
statistical probability for population of the initial channel. Natgh) =ax 1(P.

stat

Covalent Re Hni Hyn=Hii Hun—Hij Hii () pi

state (a.u (a.u (a.u (a.u (cm™h

2s 7.3 0.022 0.014 0.021 0 0.2500
2p 11.3 0.011 0.0080 0.0098 14904 0.0833
3s 22.1 0.0011 2.8-4) 0.0022 27 206 0.2500
3p 34.0 2.00-4) 2.4-5) 8.70—4) 30925 0.0833
3d 36.0 5.2%-5) 9.5—6) 8.20—4) 31283 0.0500
4s 91.2 1.53-9) 0 1.10-4) 35012 0.2500
4p 232.2 1.45-21) 0 1.76-5) 36470 0.0833
4d 277.0 2.14-25) 0 1.3q-5) 36623 0.0500
4f 279.5 1.32—-25) 0 1.27-5) 36630 0.0357
ionic 37405 1.0000
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Expressions for the double-passage transition probabili- Pi:f:pi2+(1—2pi+Pi2)
ties for the multichannel system have been obtained, essen-
tially rewriting the expressions frofi25,26. For the system
with initial channeli, the probability of a final channdlin X11+2 mE:l kll (= Pi-((k+1)2) | - (A4)
the deexcitation case whefeli is given by

2(i—-1) m

The LZ model parameters for the inner five crossings in

1 the LiH'S ™ system have been estimated from the adiabatic
Pi~t=2p¢(1—pi)(1—py) IJ;IFl P potential curves of15]. For outer crossings this is not prac-
N tical, thus we make the assumption of a practically flat co-
2(f-1) m valent state and a purely Coulombic ionic state and thus
x[1+ > 11 (—pf[(m),z])], (A2)  estimate R,=36.12512%/(18.0625-n}?) and Hjy—H;
m=1 k=1 =1/R?, wheren? is the effective principle quantum number

) ] of the Li state in the separated atom limit and results are in
where square brackefs. . . ] in the subscript here denotes 4iomic units. The behavior witR. of the diabatic coupling
the largest integer value. For the excitation césel the  H . values derived for the five inner crossings is well fit by
probability is given by an exponential. Thédy; for the outer crossings have been
2(-1) m estimated by ext_rapolgti_(l)_nbcl)f Ithis fit. The adopted model

parameters are given in Table 1.
Picr=2pi(1- pi){ 1+ mZ'l kﬂl (= pi—[(k+1)/21)]' Results have been obtained for this ten state model using
the method of partial wave®.g.,[23,27). In order to make
(A3)  meaningful comparisons with the results of the quantum dy-
namical calculation we have also computed results in the

The probability for the elastic cade=i is given by four-state approximation.
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