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Cross sections for low-energy inelastic H¿Li collisions
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We report calculations for the low-energy near-threshold inelastic collision cross sections between the
Li(2s,2p,3s,3p)1H(1s) states. Results are obtained by solving the coupled-channel equations. Order-of-
magnitude estimates for higher states have been made with the multichannel Landau-Zener model. Potentials
and couplings from H. Croftet al @J. Phys. B32, 81 ~1999!# are employed. The calculated cross sections are
much smaller than ones predicted by the classical Thomsom atom formula currently employed in astrophysics.
This result is important for the interpretation of stellar spectra.
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I. INTRODUCTION

Abundances of the chemical elements in stellar atm
spheres are a key observational parameter in understan
the universe. They provide clues about nucleosynthesis,
lar evolution, and mixing processes, and are tracers in ga
formation and evolution, to name just a few examples. T
determination of these abundances is based on the inte
tation of absorption lines observed in high resolution spec
and thus the equation of state of the gas in the stellar at
sphere in which the spectrum is formed.

The efficiency of inelastic collision processes determin
if local thermodynamic equilibrium~LTE! is valid, and thus
if the Boltzmann distribution adequately describes the ato
energy level populations. If one cannot assume LTE then
atomic energy level populations forming the stellar spectr
are determined by the rates of population and depopula
of the energy levels by radiative and collisional processe~a
so-called non-LTE problem!. In the atmospheres of hot sta
~roughly .7500 K! where hydrogen is ionized, the coll
sional processes are dominated by electrons. Howeve
cooler stellar atmospheres collisions with neutral hydrog
atoms may be significant as they outnumber electrons
typically four orders of magnitude. If electron collision
alone are not sufficient to establish thermodynamic equi
rium, it is important to determine the effect of the collisio
with hydrogen. For such cool stars wherekT'0.2–0.6 eV it
is the low-energy collisions at and just above the thresh
which are of importance in determining the rate coefficie

The abundance of Li is of particular significance. Since
was produced in the Big Bang its abundance in the m
metal-poor dwarf stars, which presumably preserve
chemical composition of the interstellar gas in the early u
verse, is an important constraint for models of Big Ba
nucleosynthesis, and may be used to constrain the ba
density of the universe. Furthermore, since Li is destroye
relatively low temperatures, it is a very important probe
mixing processes during stellar evolution.

*Email address: andrey.belyaev@ch.tum.de
†Email address: barklem@astro.uu.se
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Steenbock and Holweger@1# first pointed out the possible
importance of inelastic collisions with hydrogen in the the
malizing of Li, particularly in metal-poor dwarfs. They est
mated the collisional excitation rates forX1H by modifying
a formula from Drawin@2# for H1H which is itself a modi-
fication of the classical Thomson formula for excitation
electrons~cf. @3#!. In recent years some progress has be
made for the H1Na system. Low-energy experimental da
have been obtained@4# and calculations performed down t
the threshold@5#. However, these results are for only the ve
lowest states of this one system. For statistical equilibri
calculations, estimates are required for transitions betw
all states which might affect the population of the states
interest. It is for this reason that the modified Drawin fo
mula is still in use amongst the astrophysics community
spite that it is known to overestimate the H1Na(3s)→H
1Na(3p) collision rate by several orders of magnitude@5#.

In this paper we present quantum dynamical calculati
for the H1Li low-energy inelastic cross sections betwe
low-lying states. The calculations are of high accuracy at
threshold. For higher states up to and including the io
limit we have obtained estimates using the Landau-Ze
model, noting that order-of-magnitude estimates will be s
ficient to determine if the process is important astrophy
cally. Interpreted together, these data provide a coherent
ture of the excitation, ion-ion neutralization, and ion-pa
formation for Li1H and Li11H2 collisions required for
non-LTE modeling of Li in stellar atmospheres.

II. THEORY

The present quantum treatment of a collision process
ploys the most widely used approach in atomic collisi
theory based on the Born-Oppenheimer separation of
electronic and nuclear motion@6#, that is, the so-called stan
dard adiabatic approach in an adiabatic representation.
general description of the standard adiabatic approach is
cussed in Refs.@7–10# ~and references therein!, so the
method used in the present work is only briefly outlin
below.

After the separation of the kinetic-energy operator for t
©2003 The American Physical Society03-1
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center of mass of the entire system, the Hamiltonian fo
diatomic molecule can be written in the form

H52
\2

2M

]2

]R2
1Hel~r ,R!, ~1!

where M5MAMB /(MA1MB) is the reduced mass of th
nucleiA andB with corresponding massesMA andMB , R is
the vector connecting the nuclei,r denotes the set of th
electronic coordinates measured from the center of nuc
mass, andHel(r ,R) is the so-called electronic Hamiltonian
which contains operators of the kinetic energy for the el
trons and all interactions. The mass-polarization terms
neglected. The electronic Hamiltonian parametrically d
pends onR, and its eigenstates form the fixed-nuclei ad
batic electronic basis statesu j &

Hel~r ,R!f j~r ,R!5Vj~R!f j~r ,R! ~2!

with the eigenfunctionŝr u j &5f j (r ,R) and the adiabatic po
tential energiesVj (R).

The wave function for the total systemC can be written
as a sum of termsCJMJ

(r ,R) characterized by the total an

gular momentum quantum numbersJ and MJ (MJ>0). If
the theoretical treatment can be restricted toS states only~in
particular, the rotational couplings are neglected!, which is
the case at low collision energiesE for the process in ques
tion, then each wave functionCJMJ

(r ,R) can be expanded
as

CJMJ
~r,R !5YJMJ

~Q,F!(
j

F j~R!

R
f j~r ,R!. ~3!

YJMJ
are the spherical harmonics, whereQ and F are the

spherical coordinate angles of the vectorR. The functions
F j (R) describe the radial motion of the nuclei. Substituti
the expansion~3! into the stationary Schro¨dinger equation
(H2Etot)CJMJ

50 @Etot5E1Vin(`) being the total en-

ergy#, multiplying it by fk* (r ,R), and integrating over the
electronic coordinates, one obtains a set of coupled cha
equations in the adiabatic representation@8,10#

F2
\2

2M

d2

dR2
1Vj~R!1

\2

2M

J~J11!

R2
2EtotGF j~R!

5
\2

M (
k

^ j u
]

]R
uk&

dFk~R!

dR
1

\2

2M (
k

^ j u
]2

]R2
uk&Fk~R!.

~4!

The adiabatic potentials and first derivative nonadiab
matrix elements are usually calculated by quantum chem
programs. The double derivative couplings are not usu
calculated explicitly. In the adiabatic basis they cannot
neglected entirely, as they are required for current conse
tion. They are modeled by setting@5#
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^ j u
]2

]R2
uk&5

d

dR
^ j u

]

]R
uk&. ~5!

In order to calculate the scattering matrix and then tran
tion probabilities, cross sections, and rate constants,
needs to solve the coupled channel equations~4! with proper
boundary conditions. The boundary conditions are set in
parts: atR→0 and atR→`. At R→0 the solutions of the
coupled equations must obey the boundary conditions:

F j~R!→0 as R→0. ~6!

The boundary conditions for the total~electronic and
nuclear! wave function in the asymptotic (R→`) region
reads

CJMJ
~r ,R!5(

j
K j

21/2~aj
1C j

11aj
2C j

2!, ~7!

with K j5A2M @E2Vj (`)#/\ being the channel wave num
bers,aj

6 being the amplitudes of the incoming and outgoi
currents for the channelj, and

C j
65

exp~6 iK jRj !

Rj
YJMJ

~Q,F!f j ~8!

being the incoming and outgoing asymptotic wave functio
The vectorRj connects the centers of mass of the atoms
contrast toR, which connects the nuclei

Rj5R1g j

mj

M
~r2g jR!. ~9!

The scalar factorsg j depend on with which nucleus the ele
trons travel in the asymptotic region and are defined by

g j5H 2
MB

MA1MB
electron traveling with nucleusA

1
MA

MA1MB
electron traveling with nucleusB.

~10!

mj is the reduced mass of the electron~bound to a corre-
sponding atom! in the channelj: mj5meMA /(me1MA), if
the electron is bound to nucleusA, and mj5meMB /(me
1MB), if the electron is bound to nucleusB; me being the
electron mass. Comparison of Eqs.~3! and~7! gives the fol-
lowing form for the radial wave functions:

F j~R!5(
k

Kk
21/2@ak

1t jk
1 exp~ iK kR!

1ak
2t jk

2 exp~2 iK kR!# for R→`, ~11!

where the elements of the matricest=2 and t=1 represent the
reprojection coefficients between the incoming and the o
going correct asymptotic wave functions and the incom
and the outgoing asymptotic functions of the homogene
coupled channel equations. At low collision energies th
3-2
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matrix elements can be evaluated via the correspond
atomic dipole moment matrix elements@8,9#:

tk j
65dk j6 iK jg j

m

M
^kuzatu j &uR→` , ~12!

wherezat is the projection of the active electron coordina
onto the molecular axis. Thet6 matrices mix the channe
radial wave functions in order to achieve the boundary c
ditions at R→` and, hence, obtain the correct asympto
incoming and outgoing wave functions from the solutions
the coupled channel equations.

On the other hand, radial nonadiabatic coupling ma
elements also correspond to the same atomic dipole mom
matrix elements. The point is that the derivative coupli
matrix elements used in the coupled equations~4! should be
calculated with the origin of the electron coordinatesr at the
center of mass of the nuclei. In these coordinates, the or
wave functions for the active electron in the asymptotic
gion take the form

^r u j &5f j~r2g jR! as R→`. ~13!

As a consequence, the^ j u]/]Ruk& do not automatically go to
zero at infinity. It can be shown@8–10# that their asymptotic
values are equal to

^ j u
]

]R
uk&5gk

m

\2
~Vj2Vk!^ j uzatuk&U

R→`

. ~14!

Finally, for nondegenerate states and low collision en
gies thet6 matrix elements can be evaluated via the pot
tials and the nonadiabatic couplings calculated in the Ja
coordinates where electron coordinates are measured
the center of nuclear mass

tk j
65dk j6

iK j\
2

M ~Vk2Vj !
^ku

]

]R
u j &U

R→`

. ~15!

It is seen that the elements of thet6 matrices are energy
dependent. In the zero-energy limit thet6 matrices become
the unit matrix, which allows one to neglect the electr
translation effect at ultralow energies.

The scattering matrixS is defined by the relation betwee
the incoming and the outgoing channel amplitudes

a15~21!J11S a2, ~16!

where a6 denote the column vectors constructed from
corresponding amplitudes. If the solution of the coup
equations is presented by the matrixR at the~infinitely! large
internuclear distanceR0

F5R F8, ~17!

then Eq.~11! allows one to calculate the scattering matrix
means of the following formula@8,9#:

S5~21!J exp~2 i KR0!K1/2~ t12 iR t1K !21

3~ t21 iRt2K !K21/2exp~2 i KR0!, ~18!
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where the elements of the matricesK, K1/2 and
exp(2iKR0) are the channel wave numbers, the square ro
of these wave numbers, and the corresponding expone
respectively.

In the practical implementation of theS-matrix calcula-
tions numerical integration can be reduced by using
WKB approximation, that is, the coupled equations~4!
should be solved numerically between a small~zero! dis-
tance and a large~but finite! valueRend,R0, where all non-
adiabatic couplings and potentialsVj are sufficiently con-
stant. The properties of the numerical solution are expres
by theR matrix atRend and theSmatrix is then computed a
follows:

S5~21!J exp~2 iF!k1/2~t12 iRt1k!21

3~t21 iRt2k!k21/2exp~2 iF!, ~19!

where the diagonal matricesk and exp(2iF), respectively,
consist of the local wave numbers

k j~R!5A2M

\2
@Etot2Vj~R!#2

J~J11!

R2
~20!

and the elements exp(2iFj) are the usual WKB phases o
F j (R). The t6-matrices have the same meaning as thet6

matrices, but at the smaller internuclear distanceRend. Their
elements are defined

tk j
6~R!5dk j6

ik j~R!\2

M @Vk~R!2Vj~R!#
^ku

]

]R
u j &. ~21!

The values of these quantities must be taken atR5Rend.
The background of the relation~19! is that one has to mix

the computed radial functionsF j (R) in order to account cor-
rectly for the electron translation effects in the asympto
wave functions@8,9#. This is done via the matricest6. When
the matricest6 are replaced by the unit matrix, Eq.~19!
becomes the usual relation betweenR andSmatrices, which
is valid in the absence of asymptotic couplings. Equat
~19! is further based on the construction of a WKB-typ
solution to the coupled equations beyondRend. The WKB
approximation is important only for computational conv
nience. It might be removed by extending the numerical c
culation to a distance, which is so large that not only var
tions of both the adiabatic potentials and couplings, but a
the centrifugal potentials are negligible.

Once the scattering matrix is known, the nonadiaba
transition probabilities can be then calculated from the c
respondingS-matrix elements

Pjk5uSjku2. ~22!

Except for very low energies, a large number ofJ values
contribute to the cross sections, givingJ the character of a
quasicontinuous variable. In this case, the quantum numbJ
can be replaced by the impact parameterb, defined as

b5AJ~J11!

2ME
, ~23!
3-3
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and the cross sections can be computed as integrals ove
impact parameter

s jk~E!52ppj
statE

0

`

Pjk~b,E!bdb, ~24!

wherepj
stat51/gj is the statistical probability for populatio

of the initial channelj (gj being the statistical weight of th
channel!.

Thus, the standard adiabatic approach allows one to
form a theoretical study of a collision process into two ste
~i! to calculate the adiabatic potential energies and the n
adiabatic couplings in the fixed-nuclei approximation~the
so-called quantum chemical part! and~ii ! to treat the nuclear
motion by solving the coupled channel equations~4! making
use of the quantum chemical data calculated in the first s

It should be noted that besides the method descri
above there are other methods treating collision proce
within or beyond the standard adiabatic approach. T
former are typically based on the inclusion of electron
common translation factors, see Ref.@11# for a review, ref-
erences, and applications to the He211H collision test case.
An example of the latter is the hyperspherical close-coup
method recently described and applied to the same test
in Ref. @12#. A discussion of these methods is outside t
score of the present paper, but it is interesting to note tha
results of the different methods agree well with each othe
the energy range roughly between 100 eV and 1 keV, w
discrepancies were found at both low and high energies

III. QUANTUM CHEMICAL DATA

In this work we study low-energy Li1H collisions and,
hence, neglect rotational couplings and consider only
1S1 states of the LiH system. We therefore require the ad
batic 1S1 potentialsVj (R) and radial couplings betwee
1S1 states^ j u]/]Ruk&, as input for the coupled channe
equations~4!. The LiH system has been quite extensive
investigated, e.g., Refs.@13–15#. The LiH 1S1 adiabatic po-
tentials show a series of avoided crossings between cova
states and the ionic state H21Li1, as seen in other alkali
hydrides ~e.g., @16,17#!. Previous work@4,5# has demon-
strated that for lower states of the H1Na system, at low-
energy these crossings between the ionic and covalent s
represent the most important mechanism in the inelastic
cess in question.

In this work we use the adiabatic potential data for t
singlet system of@15# which is an improved version of th
data from@13,14#. The radial couplings were computed by
by direct numerical differentiation~see@14#! of the theCjk
matrices provided to us by these authors. As the quan
chemical data of@15# do not include data for separation
smaller thanR52 a.u., we have performed additional calc
lations of the adiabatic potentials and the radial nonadiab
couplings for the low-lying LiH(1S1) states using the
MOLPRO code @18#, to estimate these at very short intern
clear distance.

The quantum chemical data relevant to the excitation p
cess treated are shown in Fig. 1. The adiabatic potentials
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the LiH(1S1) states are plotted in Fig. 1~a!, while the radial
nonadiabatic couplings are shown in Figs. 1~b! and 1~c!. It
should be pointed out that due to the method used in
quantum chemical calculations in@15# all nonadiabatic cou-
plings asymptotically (R→`) go to zero, although some o
them must have nonvanishing values at infinity, see Eq.~14!.
Estimates made in the present work show that nonvanish
values are small, and as the collision energies treated are
(E<10 eV), the neglection of the electron translation effe
gives an uncertainty not more than a couple of percent in
cross sections.

Figure 1~a! shows that there are a number of nonadiaba
regions. The most important for the excitation processes
der consideration are: at the internuclear distancesR'6.75
a.u. between theX 1S1 and A 1S1 molecular states; atR
'10.75 a.u. between theA 1S1 and C 1S1 states; atR
'21.5 a.u. between theC 1S1 andD 1S1 states. At these
distances the adiabatic potentials indicate avoided crossi
Indeed the radial coupling matrix elements^ j u]/]Ruk& de-
picted in Figs. 1~b! and 1~c! show peaks at the same di
tances confirming the avoided crossing interpretation. T
area under each of the peaks is close top/2, and the situation
is expected to correspond closely to the Landau-Ze
model. These crossings appear due to interactions of
ionic H21Li1 state with the covalent states, the situati
typical for alkali-hydrides~see, e.g.,@4,5,13–17#!. In addi-
tion to the above mentioned avoided crossings there
some extra nonadiabatic regions, for example, atR'0.775
a.u. between theX 1S1 and A 1S1 states, atR'5.25 a.u.
andR'1.0 a.u. betweenC 1S1 andD 1S1. They also af-
fect the nuclear dynamics mainly by redistributing the c

FIG. 1. Quantum chemical data for the LiH(1S1) quasimole-
cule.~a! The adiabatic potentials for the four lowest1S1 states;~b!
and ~c!, the nonadiabatic radial coupling matrix elemen
^ j u]/]Ruk& between the states.
3-4
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rents between molecular states leading, for instance
Rosenthal oscillations.

IV. QUANTUM DYNAMICAL CALCULATIONS

The program used in the present work for numerical in
gration of the coupled channel equations~4! is described in
Ref. @5#. In the present work the numerical calculations we
carried out with a four-state basis for the singlet system~the
molecular statesX 1S1, A 1S1, C 1S1, and D 1S1 as-
ymptotically correlated to the H1Li(2s,2p,3s,3p) atomic
states! for the collision energies from the energy thresho
till 10 eV.

The choice to restrict the calculations to the four-st
basis has the following justification. Firstly, for collisions
the atoms in their ground states at collision energies nea
Li(2 p) excitation threshold there are only two open cha
nels, so even a two-state basis is sufficient. At higher,
still low energies the H1Li(3s,3p) channels become ope
and the four-state basis is sufficient for the study of
Li(2 p) and Li(3s) state excitation near threshold. Extensi
of the basis does not change the nonadiabatic transition p
abilities from the ground state to the two nearest states.

Secondly, as will be shown, the nonadiabatic transitio
between the lowest-lying states must be treated quantum
chanically, while other transitions can be treated in
framework of the Landau-Zener model. Although the no
adiabatic regions between the low-lying states have an
under the nonadiabatic coupling function close top/2 and
thus might be expected to be close to the Landau-Zener c
other features~like broad, dense, and overlapping nonad
batic regions, Rosenthal oscillations, grazing incidence, e!
affect the nonadiabatic transitions between the low-ly
states. The transitions between the states higher than
including the H1Li(3 p) state can be treated by means of t
Landau-Zener model since the nonadiabatic regions are
ter localized and separated@see Figs. 1~b! and 1~c!#, which
leads to a situation where the Landau-Zener model prere
sites are better fulfilled, and, hence, the Landau-Zener m
gives reasonable estimates. Similar results have been fo
by @19# for LiH and @20# for the similar NaH system. Thus
the four-state basis is sufficient for an accurate treatmen
the nonadiabatic transitions which must be treated quan
mechanically at collision energies near threshold.

Within the four-state approximation used in the pres
quantum dynamical calculations no excitation of states ab
Li(3 p), including the ionic Li11H2 state, is taken into ac
count, although these states are indeed populated, if the
lision energy is high enough. For this reason the result for
population of the Li(3p) state should be in fact redistribute
between the Li(3p) and upper states. In this section what
called ‘‘the excitation of the Li(3p) state’’ should be treated
as the total excitation of the Li(3p) state and all higher~en-
ergetically allowed! states. The redistribution has been es
mated by means of a multichannel Landau-Zener model
proach ~see the Appendix!, from which we find that once
other channels are open the real Li(3p) excitation is ex-
pected to be only a few percent of this total excitation. T
Landau-Zener calculations indicate that the system pa
06270
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the higher ionic avoided crossings practically diabatica
even at the low energies considered here and thus most o
population is expected to go to the ionic state~when this
channel is open!, in agreement with@19#. This indicates that
the inclusion of higher states would have negligible effect
the results.

It should be also pointed out that all adiabatic potenti
are attractive at large internuclear distances, and this res
in the appearance of so-called orbital resonances. These
nances were found in the corresponding process for Na1H
collisions@5#. Although the resonant peaks are as much a
orders of magnitude larger than the nonresonant cross
tions, the resonant cross sections are very narrow@5# and,
hence, give less than a 10% contribution to the correspo
ing rate constant. For this reason the orbital resonances
neglected in the present work.

The calculated cross sections for the excitation from
ground Li(2s) state are presented in Fig. 2, for the excitati
from the Li(2p) state in Fig. 3, and for the excitation from
the Li(3s) state in Fig. 4. In each case the cross sections
population to the Li(3p) state are also shown where th
distribution between the Li(3p) and ionic states has bee
estimated from the Landau-Zener calculations~see the Ap-
pendix!.

It is seen from Fig. 2 that inelastic Li(2s)1H collisions
lead mainly to the excitation of the Li(2p) state, although
this cross section is quite small, between 10222 and
10218 cm2. The Li(3s) and the Li(3p) excitation cross sec
tions are typically 2 to 4 orders of magnitude smaller. T
basic mechanism for the Li(2p) excitation is nonadiabatic
transitions at the avoided crossing between theX 1S1 and
A 1S1 states aroundR'6.75 a.u., although the nonadiabat
region aroundR'0.775 a.u. also contributes but affects pr

FIG. 2. The calculated cross sections for the excitation proc
Li(2s)1H→Li(2 p,3s,3p)1H as a function of the collision energ
in the four-state approximation. The thick solid line is the cro
section for the excitation of Li(2p); the dotted curve is for Li(3s);
and the short-dashed line is for the Li(3p) state. The thin solid line
is the cross section for the excitation of Li(2p) from the Landau-
Zener model. The dot-dashed and long-dashed lines show the
tation of the Li(3p) and the ionic states respectively, where t
quantal Li(3p) result has been redistributed based on the Land
Zener model estimates.
3-5
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dominantly the oscillations of the cross sections. It has b
checked that in the absence of nonadiabatic couplingsR
,2 a.u. the cross section oscillations are shifted in collis
energy, but retain more or less the same average va
though at a particular collision energy the cross section
change by up to a factor of 2. The oscillation of the Li(2s)
2Li(2 p) excitation cross section is due to the Stu¨ckelberg
and Rosenthal phases.

In addition to the quantal results, Fig. 2 shows the cr
sections for excitation of the Li(3p) state and for population
of the ionic H21Li1 state obtained by redistribution of th
quantal four-state Li(3p) cross section based on the mul
channel Landau-Zener model described in the Appendix.

FIG. 3. The calculated cross sections for the excitation proc
Li(2 p)1H→Li(3s,3p)1H as a function of the collision energy i
the four-state approximation. The dotted line is the cross section
the excitation of Li(3s), while the short-dashed line is for th
Li(3 p) state. The dot-dash and long-dashed lines show the ex
tion of the Li(3p) and the ionic states, respectively, where t
quantal Li(3p) result has been redistributed based on the Land
Zener model estimates.

FIG. 4. The calculated cross section~short-dashed line! for the
excitation process Li(3s)1H→Li(3 p)1H as a function of the col-
lision energy in the four-state approximation. The dot-dash
long-dashed lines show the excitation of the Li(3p) and the ionic
states, respectively, where the quantal Li(3p) result has been redis
tributed based on the Landau-Zener model estimates.
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seen that the pure Li(3p) population becomes only a few
percent of the four-state quantal result for collision energ
where the next channel@H1Li(3d)# is open. This result
confirms that above and including the H1Li(3 p) channel
the nonadiabatic regions between the ionic and the cova
diabatic molecular states are passed by the system ma
diabatically, which is in agreement with the previous resu
from mutual neutralization calculations@15,19#. As the states
above the ionic H21Li1 state are not coupled with the ioni
state, once the ionic channel becomes open the dominant
of the outgoing current goes into that channel. Thus,
cross section for the ionic state population practically co
cides with the quantal four-state cross section for popula
of the H1Li(3 p) channel for the energies above the ion
threshold. At the collision energies between the H1Li(3 p)
and the ionic state threshold the redistribution of the qua
four-state Li(3p) excitation cross section results in domina
population of the highest energetically allowed state, and
population becomes small as soon as the next channel op
This result holds for population of the states up to and
cluding the ionic state from other initial channels, see, e
Figs. 3 and 4.

The Li(2p)-Li(3s,3p) excitation cross sections in Fig.
are typically an order of magnitude larger than t
Li(2s)-Li(2 p) results@the Li(2p)-Li(2s) deexcitation cross
section can be easily calculated from the Li(2s)-Li(2 p)
one#. The basic mechanism here is due to the nonadiab
region between theA 1S1 and C 1S1 states aroundR
'10.75 a.u.

Li(3s)1H collisions result in the large Li(3p) excitation
cross section~Fig. 4! due to the nonadiabatic regions b
tweenC 1S1 andD 1S1 states aroundR'21.5 a.u. andR
'5.25 a.u. Though the potential splittings are small in the
regions and the system passes the regions mainly dia
cally, the nonadiabatic regions are at large internuclear
tances, and hence a wide range of impact parameters con
ute to the cross section. But again only a small fraction
this population really goes to the Li(3p) state, while the
main part of the outgoing current goes to the ionic state.

A comparison of the four-state quantal and the multich
nel Landau-Zener results shows that the Landau-Ze
model fails to describe the nonadiabatic transitions betw
the ground H1Li(2s) and the H1Li(2 p) states at the near
threshold collision energies~see Fig. 2!, but provides reason
able results~within an order of magnitude! for transitions
between the states higher than and including the
1Li(2 p) state. Based on this, as well as the fact that
nonadiabatic regions are better localized for the states hig
than H1Li(3s), the multichannel Landau-Zener model
expected to provide reasonable estimates for population
the states above and including the H1Li(3 p) channel, in-
cluding the ionic state.

V. DISCUSSION AND CONCLUSIONS

We calculated the integral cross sections for the electro
excitation of Li atoms by H atom impact for energies b
tween the thresholds and 10 eV by means of the full quan
approach. We have employed1S1 potentials and nonadia
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batic radial couplings from the literature@13–15#. It has been
shown that in the1S1 system for the states up to Li(3p) the
avoided crossing between the ionic and the covalent mole
lar LiH( 1S1) states is the dominant mechanism for t
nonadiabatic transitions.

We will now discuss the accuracy of the calculated cr
sections. In general, there are two principal possible orig
for uncertainty in the numerical results: The limited precisi
of the quantum chemical data and the truncation of the b
used in the dynamical treatment, including neglection of
tational couplings and other symmetries~in particular, triplet
molecular states!.

The accuracy of the quantum chemical data is limited
~i! the precision of the calculated adiabatic potentials, wh
for modernab initio or pseudopotential calculations is typ
cally believed to be below60.1 eV, ~ii ! the precision of the
single derivative coupling matrix elements, which is believ
to be 60.01 a.u., and~iii ! the use of the approximation i
calculation of the double derivative coupling matrix eleme
@Eq. ~5!#. We estimate that the possible uncertainty in t
calculated cross sections from these sources does not ex
50%, 10%, and 10%, respectively. Due to the method use
the quantum chemical calculation it is unlikely that all thr
of these sources of error contribute strongly to the total e
in the calculated cross sections.

The influence of the truncation of the basis set on
accuracy of the calculated cross sections depends on the
lision energy and on the chosen initial state. For a giv
collision energy and initial state the following factors shou
be discussed:~i! spin symmetry of the molecular states~sin-
glet and triplet states!, ~ii ! symmetry related to the projectio
quantum number for the electronic orbital angular mom
tum upon the molecular axis~here onlyS andP molecular
states!, and~iii ! the number of states of each symmetry tak
into account. The error introduced by neglect of certain m
lecular states can be estimated from the obvious fact tha
effective nonadiabatic transitions both a close approach
potentials and a large nonadiabatic coupling are requi
Note that rotational couplings enter the coupled chan
equation with the factor 1/R2 @9#, thus, nonadiabatic trans
tions due to rotational couplings are typically effective
short internuclear distances. The main distinction betw
the singlet and triplet LiH states is the presence of
strongly attractive ionic (Li11H2) diabatic potential in the
singlet system, while such a term is absent in the trip
system. This leads to the series of avoided crossings for
singlet states~see Fig. 1!. As mentioned above, this serie
provides effective nonadiabatic transitions between the l
lying singlet states due to the radial couplings. In additi
the lowest B 1P state @asymptotically corresponding t
Li(2 p)1H] is close not to the groundX 1S state, but to the
excitedA 1S state~and even degenerate in the united ato
limit !, while the lowest tripletb 3P state is close and degen
erate in the united atom limit with thea 3S asymptotically
corresponding to Li(2s)1H. This leads to the fact that fo
excitation from the ground Li(2s) state the cross section du
to the rotational couplings in the singlet system is one or t
orders of magnitude smaller than that due to the radial c
plings ~except for the orbital resonance cases!, while in the
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triplet system the rotational coupling provides the domin
mechanism, but the corresponding cross section has a sig
cant size only at energies around 10 eV. As the approac
the a 3S andb 3P states takes place at the highly repulsi
part of the potentials, the energy dependence of thea 3S
→b 3P cross section is stronger than that of theX 1S
→A 1S cross section. Thea 3S→b 3P cross section will
be practically zero at the energy threshold, yet similar to
X 1S→A 1S cross section at aroundE510 eV. Thus, the
neglect of singlet1P states results in an uncertainty of a fe
percent for the excitation cross sections in Li(2s)1H colli-
sions, while the neglect of the triplet system results in pr
tically no error at the energy threshold for the same cr
sections, which is the main focus of the present paper, bu
the collision energy 10 eV an account of the triplet molecu
states can increase the cross sections up to a factor o
Thus, as discussed in the preceding section, the size o
present basis is sufficient for Li1H collisions in their ground
states near threshold. For collisions of an excited Li at
with hydrogen atoms the situation can be more complica
Neglect of other symmetries, rotational couplings, and
bital resonances in this work means our results should b
lower limit to the actual cross sections. However, it would
surprising if our results were on average in error by mo
than a factor of two for Li(2s)1H collisions, and a factor of
three for collisions of excited states~noting that as discussed
results at a given collision energyE may change more sub
stantially!.

In summary, it is expected that at the threshold the cr
sections are accurate to better than 50%, where the err
dominated by uncertainty in the quantum chemical data.
higher energies, errors due to the limited basis set bec
important and the total error may be as high as a factor o
at 10 eV. However, we emphasize that for the relevant te
peratures in the astrophysical problem of interest, the cr
sections within 1 eV or so of the threshold dominate.

We found, as in@5# for H1Na low-energy collisions, tha
the Landau-Zener model fails to quantitatively model exci
tion from the ground state, particularly at the collision en
gies treated here where the Landau-Zener 2s→2p excitation
cross section~between 10224 and 10218 cm2) is 1–2 orders
of magnitude smaller than that calculated by means of
full quantum approach~between 10222 and 10218 cm2). The
modified Drawin formula@1–3# commonly used by the as
trophysics community, predicts the 2s→2p excitation cross
section to be between 10217 and 10215 cm2 over the same
collision energy range, that is, it overestimates the 2s→2p
excitation cross section by 3 to 5 orders of magnitude
compared with the obtained quantum cross section.

Even this short comparison shows the importance of
quantum calculations of the inelastic cross sections betw
the low-lying LiH states at low collision energies. On th
other hand, as discussed earlier, the Landau-Zener m
gives reasonable results for higher states. We have comp
results from the multichannel Landau-Zener model calcu
tions with the results here for the more excited states. T
results are in reasonable agreement~at least within an order
of magnitude! even at the threshold. Order of magnitude e
timates are sufficient to determine if this process is import
3-7
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in stellar atmospheres, and if time and effort should be
vested in more detailed calculations. Thus quantum dyna
cal results obtained in this paper can therefore be com
mented by the Landau-Zener model estimations for
excitation cross sections involving higher-lying states bel
the ionic limit ~these results can be obtained from the a
thors!. As we have seen from our Landau-Zener calculatio
when open the ionic state is significantly populated. D
from accurate quantum mechanical calculations are alre
available for this process@15,21#. If necessary the expres
sions for Rydberg states given by Kaulakys@22# may be used
for states above the ionic limit. Together, this informati
gives the opportunity to model the statistical equilibrium
Li in cool stellar atmospheres, including the effect of inela
tic collisions with H. Such modeling has been carried o
and the results along with a complete set of rate coefficie
will be published in the astrophysics literature.
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APPENDIX: MULTICHANNEL LANDAU-ZENER MODEL

As for the quantum dynamical calculations, we consid
only the 1S1 system, ignoring other symmetries. The t
states up to and including the ionic state are conside
namely those asymptotically correlated
Li(2s,2p,3s,3p,3d,4s,4p,4d,4f )1H(1s) and Li11H2.
Only the nonadiabatic regions at the crossings between
ionic and covalent states are treated, and each crossin
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described using the standard Landau-Zener~LZ! model~e.g.,
@23,24#!.

The generalized multichannel model employed is sho
schematically in Fig. 5 in the diabatic representation. It co
sists of N21 covalent states labeled 1,2, . . . ,N21 each
crossed by the ionic stateN. Nonadiabatic regions are mod
eled at each curve crossing with a probabilityp that the sys-
tem traverses the crossing diabatically~i.e. stays on the sam
curve! and 12p that the crossing is traversed adiabatical
The probabilityp is the LZ probability given by

pi~v !5exp@22pHNi
2 /\v~HNN8 2Hii8 !# ~A1!

where v is the radial velocity of the colliding atoms, an
Hmn(R) are matrix elements of the electronic Hamiltonian
the diabatic basis as a function of internuclear distan
Primed quantities refer to derivatives with respect toR. All
values are evaluated atRc , the internuclear separation at th
crossing.

FIG. 5. Schematic diagram of the multichannel Landau-Ze
model in the diabatic representation for a series of ionic–cova
crossings.
TABLE I. Landau-Zener model parameters used for the H1Li1S1 system crossings of covalent statesi with the ionic stateN. Diabatic
energiesHii at the crossing are given with respect to the separated atom limitHii (`) which is given relative to the ground state.pi

stat is the
statistical probability for population of the initial channel. Notea(b)5a310b.

Covalent Rc HNi HNN5Hii HNN8 2Hii8 Hii (`) pi
stat

state ~a.u! ~a.u! ~a.u! ~a.u! ~cm21)

2s 7.3 0.022 0.014 0.021 0 0.2500
2p 11.3 0.011 0.0080 0.0098 14 904 0.0833
3s 22.1 0.0011 2.8~24! 0.0022 27 206 0.2500
3p 34.0 2.00~24! 2.4~25! 8.70~24! 30 925 0.0833
3d 36.0 5.25~25! 9.5~26! 8.20~24! 31 283 0.0500
4s 91.2 1.53~29! 0 1.10~24! 35 012 0.2500
4p 232.2 1.45~221! 0 1.76~25! 36 470 0.0833
4d 277.0 2.14~225! 0 1.30~25! 36 623 0.0500
4 f 279.5 1.32~225! 0 1.27~25! 36 630 0.0357
ionic 37 405 1.0000
3-8
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Expressions for the double-passage transition proba
ties for the multichannel system have been obtained, es
tially rewriting the expressions from@25,26#. For the system
with initial channeli, the probability of a final channelf in
the deexcitation case wheref , i is given by

Pi . f52pf~12pi !~12pf !H )
l 5 f 11

i 21

plJ
3H 11 (

m51

2( f 21)

)
k51

m

~2pf 2[(k11)/2]!J , ~A2!

where square brackets@ . . . # in the subscript here denote
the largest integer value. For the excitation casef . i the
probability is given by

Pi , f52pi~12pi !H 11 (
m51

2(i 21)

)
k51

m

~2pi 2[(k11)/2]!J .

~A3!

The probability for the elastic casef 5 i is given by
, J

e

ys

s

A

,

06270
li-
n-

Pi 5 f5pi
21~122pi1pi

2!

3H 112 (
m51

2(i 21)

)
k51

m

~2pi 2[(k11)/2]!J . ~A4!

The LZ model parameters for the inner five crossings
the LiH1S1 system have been estimated from the adiab
potential curves of@15#. For outer crossings this is not prac
tical, thus we make the assumption of a practically flat c
valent state and a purely Coulombic ionic state and t
estimate Rc536.125ni*

2/(18.06252ni*
2) and HNN8 2Hii8

51/Rc
2 , whereni* is the effective principle quantum numbe

of the Li state in the separated atom limit and results are
atomic units. The behavior withRc of the diabatic coupling
HNi values derived for the five inner crossings is well fit b
an exponential. TheHNi for the outer crossings have bee
estimated by extrapolation of this fit. The adopted mo
parameters are given in Table I.

Results have been obtained for this ten state model u
the method of partial waves~e.g.,@23,27#!. In order to make
meaningful comparisons with the results of the quantum
namical calculation we have also computed results in
four-state approximation.
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