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Hyperspherical elliptic coordinate treatment of muon transfer from muonic hydrogen
to atomic oxygen
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Quantum-mechanical calculations of muon transfer between muonic hydrogen and an oxygen nuclei fors
waves and collision energies in the range 1023–103 eV are presented. Close-coupling time-independent Schro¨-
dinger equations, written in terms of hyperspherical elliptic coordinates, were integrated along the hyperradius
to obtain the partial and total muon-transfer probabilities. The results show the expected Wigner-Bethe thresh-
old behavior up to collision energies of the order of 1022 eV and pronounced maxima at 102 eV which can be
interpreted in terms of crossings between potential energy curves corresponding to the entrance channel state
(mp)1s1O and two product channels which asymptotically correlate top1(Om)n55,6. The population of the
final states with different orbital angular momenta is found to be essentially independent of energy in the range
considered in this work. This can be attributed to a strong selection rule for the conservation of the quantum
number associated with one of the elliptic hyperangles.
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I. INTRODUCTION

Negative muon transfer between muonic atoms~muonic
hydrogen, for instance! and other atoms or molecules h
been extensively studied in the framework of muon ca
lyzed nuclear fusion~see Ref. @1# and literature cited
therein!. Also, the structural and spectroscopic properties
these species are of interest for metrology and in test
quantum electrodynamics@2,3#.

Recently, several theoretical@2,4–7# and experimental@8#
works have considered the problem of muon transfer fr
the muonic hydrogen to an oxygen molecule. Since
muonic hydrogen has to approach one of the oxygen nu
very close in order for the muon to be transferred@9#, the
process can be described as

~pm!1s1O81→p1~mO!n,
71 . ~1!

Although there have been several full three-dimensio
calculations of muon transfer rates at low energies betw
muonic-hydrogen and low-Z atoms ~see literature cited in
Ref. @6#!, there is none when the transfer involves nuclei w
Z.3 . Indeed, asZ increases there is a larger initial-chann
polarization and a stronger final-channel Coulomb inter
tion which make the full quantum calculation computatio
ally heavy. Thus up to now only approximate calculatio
have been performed for the muon-transfer rate betw
muonic-hydrogen and oxygen@4,7,9,10#. We present here the
numerically converged three-dimensional calculations for
action ~1! for s waves and collision energies in the ran
1023–103 eV. Since for the entrance channel the centrifu
barrier for J51 is about 0.1 eV, the calculations present
here can be considered as full three dimensional up to t
mal energies.

The calculations were performed as follows. Hypersph
cal elliptic coordinates@11,12# have been used. A piecewis
diabatic basis set on the hyperspherical angles was use
1050-2947/2003/68~6!/062506~5!/$20.00 68 0625
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expand the wave function. The resulting close-coupling tim
independent Schro¨dinger equations in the hyperradius we
solved using a de Vogelaere algorithm, and the partial
total muon-transfer probabilities were determined by
standardS-matrix analysis at large distances. Since for en
gies below 1021 eV, the muon-transfer process studied he
is equivalent to an ultracold collision~de Broglie wavelength
l.1 Å, much larger than the effective rangea;0.1 Å of
the potential interaction!, special care had to be taken fo
asymptotic analysis in the entrance channel.

The paper is organized as follows. Section II introduc
the model and the methodology used in the calculations. S
tion III presents the calculated muon-transfer probabilit
together with their interpretation in terms of simple Landa
Zener and threshold models. Finally, Sec. IV is devoted
the conclusions.

II. METHODOLOGY

We start with the two mass-scaled Jacobi sets of coo
nates (R1 ,r1) and (R2 ,r2) adapted to the entrance and ex
channels of reaction~1!, respectively~see Fig. 1!. They are
defined by

Ri5Ami , jk

m S mj xj1mk xk

mj1mk
2xi D , ~2!

FIG. 1. The two sets of mass-scaled Jacobi coordinates co
sponding to the entrance and exit channels of reaction~1!. The
center-of-mass positions are not to scale.
©2003 The American Physical Society06-1
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r i5Amj ,k

m
~xj2xk!, ~3!

where the set (i 51,j 52,k53) corresponds to (O,p,m) and
( i 52,j 53,k51) to (p,m,O). The reduced massesmi , jk and
mj ,k in Eqs.~2! and ~3! are given by

mi , jk5
mi ~mj1mk!

mi1mj1mk
, mj ,k5

mj mk

mj1mk
, ~4!

while m is chosen as

m5S mi mj mk

mi1mj1mk
D 1/2

. ~5!

These sets are related by the orthogonal transformation

S R2

r2
D 5S 2cosum 2sinum

sinum 2cosum
D S R1

r1
D , ~6!

where

tanum5
mm

m
, ~7!

giving in our caseum.19°.
In spherical coordinates, the system can be describe

three Euler angles specifying the overall orientation, the t
distances (Ri ,r i), and the angleg i between the two vector
Ri , and r i ~see Fig. 1!. Two sets of Delves hyperspheric
coordinates are then defined by the common hyperradiu

r5ARi
21r i

2, ~8!

the hyperangles

tan~x i /2!5
r i

Ri
, i 51,2, ~9!

and theg i angles.
The relationship between the two sets of Delves sh

angles is given by

S cosx2

sinx2 cosg2

sinx2 sing2

D 5S cos~2um! sin~2um! 0

2sin~2um! cos~2um! 0

0 0 1
D

3S cosx1

sinx1 cosg1

sinx1 sing1

D . ~10!

The hyperspherical elliptic coordinates are defined by

h5x12x2 , 22 um<h<2 um , ~11a!

j5x11x2 , 2 um<j<2 p22 um , ~11b!

with the volume element
06250
by
o

e

dt5r5 dr
p2

4 sin~2um!
@cos~h!2cos~j!# dh dj. ~12!

In terms of these coordinates the kinetic-energy opera
for total angular momentum zero is given by

T52
\2

2m S 1

r5

]

]r
r5

]

]r
1

16

r2

1

cos~h!2cos~j! F ]

]h
@cos~h!

2cos~2um!#
]

]h
2

]

]j
@cos~j!2cos~2um!#

]

]j G D . ~13!

For a given value of the hyperradiusr, the total wave
functionc(r,h,j) is expanded in terms of a basis set ofNch
functionsf i(h,j;r) depending on the hyperspherical angl
h andj. We use a diabatic-by-sector representation. In e
sectorrn2drn<r,rn1drn ;n51, . . . ,Nr we write

c~r,h,j!5
1

r5/2 (
i 51

Nch

Fi~r! f i~h,j;rn!, ~14!

wheref i(h,j;rn) are eigenstates of the Hamiltonian at fixe
rn distances. Their calculation requires the solution o
bound-state problem for the Coulomb potential

V52
e2

uxp2xmu
2

8 e2

uxm2xOu
1

8 e2

uxp2xOu
~15!

presenting two attractive singularities at (h,j)5
(62um,2um) corresponding to a vanishing muon-oxyge
and muon-proton distance.

This bound-state problem can be rewritten as

H 2
16\2

2mrn
2 @ L̂~h!2L̂~j!#1W~rn ,h,j!J f i~h,j;rn!50,

~16!

where

L̂~u!5
]

]u
@cosu2cos~2um!#

]

]u
~17!

and

W~rn ,h,j!5@cos~h!2cos~j!#@V~rn ,h,j!2e i~rn!#.
~18!

Equation~16! can be viewed as a zero eigenvalue pro
lem depending parametrically on the potential@cos(h)
2cos(j)#@V(rn ,h,j)2ei(rn)#, in the sense that the consta
e i(rn) is being adjusted in such a way that the operator
the left-hand side of Eq.~16! has zero eigenvalue. The reno
malized potentialW(rn ,h,j) has two important features
One is that the two Coulomb singularities are regulariz
and the other is that it is approximately separable. We
therefore write

W~rn ,h,j!5Wh~rn ,h!1Wj~rn ,j!1DW~rn ,h,j!,
~19!
6-2
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where Wh(rn ,h)5W(rn ,h,2um) and Wj(rn ,j)5W(rn ,
22 um ,j)2W(rn ,22 um,2um).

The two-dimensional problem can be solved by exploit
this approximate separability of the potential. For instan
definingh52 um h̄ with 21<h̄<1, we get from Eq.~16!

F2
4 \2

m rn
2

sin2um

um
2

]

] h̄
S 12

sin2~um h̄!

sin2um
D ]

] h̄

1Wh~rn ,h!Gwk~h;rn!5ek
(h)~rn! wk~h;rn!.

~20!

The similarity between the differential operator in Eq.~20!
~in particular in the limitum→0) with the one defining Leg-
endre polynomials suggests to use the latter as basis set
tions for expansion ofwk(h;rn). We solve a similar problem
for j using theWj(rn ,j) potential, and obtainw,(j;rn)
eigenfunctions and thee,

(j)(rn) eigenvalues. We then iterat
~using a bi-section method one i) until we get ek

(h)(rn)
1e,

(j)(rn)50. Once the separable basis set is obtained,
lutions of Eq. ~16! for the full nonseparable potential ar
obtained by diagonalizing the representation matrix of
full Hamiltonian in the product basis. In Fig. 2 we prese
the calculated energiese i as a function of the hyperradiusr.
The origin of energies has been chosen to coincide with
asymptotic limit of the entrance channel (p m)n511O. The
calculations presented in this work cover the energy ra
between this limit and thep1(m O)n510 threshold at about 1
keV.

TheNch coupled equations are integrated along the hyp
radiusr using the de Vogelaere algorithm@13#. This provides
a logarithmic derivative matrixZ at rM5rNr

1drNr
. For the

energy range considered here, we included 88 chann
@(p m)n51 –21O andp1(m O)n51 –9]. The integration of the
coupled equations was performed from the origin torend
;200am;1 Å. The asymptotic analysis has been p
formed using the appropriate Jacobi coordinates for the

FIG. 2. Calculatede i energies of the hyperspherical elliptic b
sis as a function of the hyperradius.
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trance and for the product channels. Elementary asympt
wave functions for the different final arrangement chann
l51,2 are written as products of translational functio
f n,(Rl), Coulomb bound wave functionsCn,(r l), and nor-
malized Legendre polynomials:

cn,l~Rl ,r l ,gl!5 f n,~Rl! Cn,~r l!P̄,~cosgl!. ~21!

We use these elementary asymptotic wave functions to f
Nch physical solutions whose forms are given by

C (a)5cn,l
S ~Rl ,r l ,gl!

1 (
n8,8l8

cn8,8l8
C

~Rl8 ,r l8 ,gl8!Kn8,8l8←n,l ,

~22!

where the superscriptsS and C refer to the type of transla
tional functions (S for sine-type functions for open channe
and exponentially growing functions for closed channelsC
for cosine-type and exponentially decaying functions!. If a
Coulombic interaction is still important~as, for instance, in
the product channels Om1p in our problem!, Coulomb
wave functions are used instead.

We define the matricesF andF8 as the projections of the
elementary asymptotic functions on thef i hyperspherical
basis. This projection is performed at the maximum hyp
spherical radiusrM :

Fi ,n,l5^f i ucn,l&r5rM

5E dh dj @cos~h!2cos~j!#f i~h,j;rM !

cn,l~Rl ,r l ,gl!, ~23a!

Fi ,n,l8 5^f i u]cn,l /]r&r5rM

5E dh dj@cos~h!2cos~j!# f i~h,j;rM !

3]cn,l~Rl ,r l ,gl!/]r. ~23b!

TheNch linearly independent solutions which result from th
propagation steps up torM are linear combinations of the
Nch asymptotic solutions given by Eqs.~23!. This can be
restated as an equality of the logarithmic derivative matrixZ
in the hyperspherical basis

Z5~F8S1F8C K!~FS1FC K!21. ~24!

The K matrix, and then theS matrix, can be extracted from
Eq. ~24!.

III. RESULTS OF THE CALCULATIONS

We have performed calculations of the reaction

~pm!n511O81→p1~mO!n,,
71 ~25!

for collision energies in the range 1023–103 eV and for total
angular momentumJ50 (s waves!. For largeR distance
6-3
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between the oxygen nuclei and the proton, the potential
the entrance channel of reaction~25! behaves asV5
2a Z2e2/2R4, where Z58 and a5(9/2)(\2/mm,pe2)3.
Since with this potential the centrifugal barrier has a hei
of @\2J(J11)/mO,pmZe#2/8a, for energies below 0.1 eV
the partial waveJ50 is the only one which contributes t
the cross sections. Thus for thermal energies these calc
tions are essentially exact full three dimensional.

Figure 3 presents the total probabilities for muon trans
as a function of the energy, as well as the partial mu
transfer probabilities into the p1(m O)n56 and p
1(m O)n55 channels. The other open channels have ne
gible populations. This is in complete agreement with w
was found in approximate calculations@9#. These results can
be qualitatively understood by inspection of Fig. 2. Start
in channel (p m)n511O, the system crosses diabatically t
channelp1(m O)n57. Muon transfer is completely negli
gible as the coupling is very small compared with the co
sion energy. The couplings to channelsp1(m O)n56 and p
1(m O)n55 are larger as evidenced by avoided crossin
The other channelsp1(m O)n,5 are weakly coupled to the
initial one and they are not expected to be populated sig
cantly.

Actually, a simple calculation involving only three cha
nels @(p m)n511O, p1(m O)n55 –6,,50# and using the
semiclassical Landau-Zener formula for the two crossi
provides a qualitative agreement with the exact results do
to energies of the order of 1 eV~see Fig. 4!. For lower
energies, quantum threshold behavior dominates the s
classical Landau-Zener approximation and for very low
ergies Wigner’s threshold laws predict anE1/2 dependence
This low-energy region corresponds tok a!1, with k
5(2 mO,pm E)1/2/\ anda being the range of the potential i
the entrance channel. Defining the effective range of the
tential byV(a)<E, we getE!0.1 eV. This is exactly wha
is found in our calculations~see Fig. 3!.

In Figs. 5 and 6 we present relative populations of
mn5526,, levels for collision energyE50.1 eV. This distri-
bution is almost independent of collision energy in the e
ergy range considered here. This fact and the particular f

FIG. 3. Partial and total muon-transfer probabilities for react
~25! as a function of the collision energy.
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of the distributions in Figs. 5 and 6 can be understood
follows. From an inspection of Fig. 2 it is clear that only on
of the sets of states correlating asymptotically to a giv
Omn manifold is significantly coupled to the initialpmn51
state. Due to the approximate separability of the poten
each of these states can be assigned to approximate h
spherical elliptic quantum numbers (nh ,nj). Since the initial
pmn51 channel is colinearly dominated andnj.0 corre-
sponds to excitation away from the colinear configuratio
the final states significantly coupled to the initial chann
satisfy the approximate selection rule:nj50. At large dis-
tances, hyperspherical coordinates tend gradually tow
parabolic coordinates@12#. The final (nh ,nj50) states can
therefore be identified as (n̄h ,n̄j50) parabolic states with
n̄h5n21 andn̄j50 . The final approximate, distribution is
then given by the square of the projection of this states o
the final (n,,) spherical basis set with the result@14#

Pn,
app}uC~~n21!/2,~n21!/2,~n21!/2,2~n21!/2;,,0!u2,

~26!

FIG. 4. Total muon-transfer probabilities for reaction~25! as a
function of the collision energy using a simple three-channel pr
lem and Landau-Zener semiclassical approximation.

FIG. 5. Exact~full line! and approximate~dotted! relative popu-
lations of the, levels forn55 and collision energyE50.1 eV.
6-4
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where C stands for a Clebsh-Gordan coefficient. We ha
represented this approximate distribution in Figs. 5 and
Clearly, thenj50 selection rule is a very good approxim
tion.

Experimentally only the populations of the fine-structu
levels j are eventually measurable. Thus, from the orb
angular-momentum, probabilities one gets

Pn, j}~2 j 11! (
u j 2 1

2 u<,< j 1 1
2

Pn,,

2,11
. ~27!

The results are presented in Fig. 7.

IV. CONCLUSIONS

We have presented three-dimensional calculations
muon-transfer probabilities between muonic hydrogen
oxygen for relative translational energies between 1023 and
103 eV and total angular momentumJ50 (s waves!. Since
the centrifugal barrier forJ51 is of the order of 0.1 eV, for

FIG. 6. Exact~full line! and approximate~dotted! relative popu-
lations of the, levels forn56 and collision energyE50.1 eV.
i,

.

C

.
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e
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thermal and lower energies the calculations are essent
exact.

The results for the total and partial probabilities can
interpreted qualitatively by a simple three-channel model a
Landau-Zener semiclassical approximation for energies
tween 1 and 1000 eV. For energies below 0.1 eV, the pr
abilities follow the expected Wigner’s threshold law beha
ior.

The fine-structure level populations are essentially in
pendent of energy and almost independent of the princ
quantum numbern. This has been attributed to an approx
mate selection rule for the elliptic hyperspherical quant
numbernj .

In conclusion, the hyperspherical elliptic coordinates
troduced by Tolstikhinet al. @11#, are particularly well suited
to the treatment of this type of reaction.
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FIG. 7. Relative populations of thej levels forn55 ~dotted! and
n56 ~full ! for a collision energyE50.1 eV.
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