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Hyperspherical elliptic coordinate treatment of muon transfer from muonic hydrogen
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Quantum-mechanical calculations of muon transfer between muonic hydrogen and an oxygen nclei for
waves and collision energies in the range 3010 eV are presented. Close-coupling time-independent Schro
dinger equations, written in terms of hyperspherical elliptic coordinates, were integrated along the hyperradius
to obtain the partial and total muon-transfer probabilities. The results show the expected Wigner-Bethe thresh-
old behavior up to collision energies of the order of @&V and pronounced maxima at?16V which can be
interpreted in terms of crossings between potential energy curves corresponding to the entrance channel state
(up)1s+ O and two product channels which asymptotically correlate+qOu),-56. The population of the
final states with different orbital angular momenta is found to be essentially independent of energy in the range
considered in this work. This can be attributed to a strong selection rule for the conservation of the quantum
number associated with one of the elliptic hyperangles.
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[. INTRODUCTION expand the wave function. The resulting close-coupling time-
independent Schdinger equations in the hyperradius were

Negative muon transfer between muonic ataimsionic  solved using a de Vogelaere algorithm, and the partial and
hydrogen, for instangeand other atoms or molecules has total muon-transfer probabilities were determined by the
been extensively studied in the framework of muon catastandardS-matrix analysis at large distances. Since for ener-
lyzed nuclear fusion(see Ref.[1] and literature cited gies below 10 eV, the muon-transfer process studied here
therein. Also, the structural and spectroscopic properties ofs equivalent to an ultracold collisioide Broglie wavelength
these species are of interest for metrology and in tests of>1 A, much larger than the effective range-0.1 A of
guantum electrodynamidg,3]. the potential interaction special care had to be taken for

Recently, several theoretiddl,4—7] and experimentdl8]  asymptotic analysis in the entrance channel.
works have considered the problem of muon transfer from The paper is organized as follows. Section Il introduces
the muonic hydrogen to an oxygen molecule. Since thdhe model and the methodology used in the calculations. Sec-
muonic hydrogen has to approach one of the oxygen nucldion Il presents the calculated muon-transfer probabilities
very close in order for the muon to be transferf€d, the  together with their interpretation in terms of simple Landau-
process can be described as Zener and threshold models. Finally, Sec. IV is devoted to

the conclusions.
(Pu)1st 0% —p+(n0))/ . (1)
. . II. METHODOLOGY

Although there have been several full three-dimensional
calculations of muon transfer rates at low energies between We start with the two mass-scaled Jacobi sets of coordi-
muonic-hydrogen and low- atoms (see literature cited in nates R;,r;) and R,,r,) adapted to the entrance and exit
Ref.[6]), there is none when the transfer involves nuclei withchannels of reactiofil), respectively(see Fig. 1 They are
Z>3 . Indeed, ag increases there is a larger initial-channel defined by
polarization and a stronger final-channel Coulomb interac-
tion which make the full quantum calculation computation- /mi'jk/ m; X; + My Xy
ally heavy. Thus up to now only approximate calculations Ri= m
have been performed for the muon-transfer rate between
muonic-hydrogen and oxyge#,7,9,10. We present here the
numerically converged three-dimensional calculations for re-
action (1) for s waves and collision energies in the range
10 3-10C eV. Since for the entrance channel the centrifugal
barrier forJ=1 is about 0.1 eV, the calculations presented Tz/‘ R,
here can k_)e considered as full three dimensional up to ther- o @ o)
mal energies.

The calculations were performed as follows. Hyperspheri- FIG. 1. The two sets of mass-scaled Jacobi coordinates corre-
cal elliptic coordinate$11,12] have been used. A piecewise sponding to the entrance and exit channels of reaction The
diabatic basis set on the hyperspherical angles was used tenter-of-mass positions are not to scale.

=X | (2)
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where the setiE1,j=2k=3) corresponds to (@,u) and
(i=2,j=3k=1) to (p,u,0). The reduced masses j, and
m;  in Egs.(2) and(3) are given by

m; (m; +my) m; my

m i, =———-, m: .= , 4
ik mi+mj+mk Ik mj+mk ()

while mis chosen as

m; m; my 1/2

m; +m; +my

5

These sets are related by the orthogonal transformation as
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2
dFﬁO‘ﬂ@[COS{n)—CO%)]dndé- (12)

In terms of these coordinates the kinetic-energy operator
for total angular momentum zero is given by

_ﬁ21a5a16 1

Jd
“ T am| 5 ap” a2 cody)—cosé) | an

[an[COE{n)

1% J

J
_cos(zeﬂ)]% &g[cos{g)—cos(Zaﬂ)]—D . (13

23

For a given value of the hyperradiys the total wave
function ¢(p, n,&) is expanded in terms of a basis sef\yf,
functions¢;( 7, ¢;p) depending on the hyperspherical angles
n and¢. We use a diabatic-by-sector representation. In each

R, —cos, —sind,| (R sectorp,— dpp<p<pn+dp,;n=1,... N, we write
= . y 6
( r2> ( sing, —cosaﬂ) ( r © 1 Nen
Yp.mE)=— > Filp) di(m&Epn), (14
where p~ri=l
m whered;(7,¢;p,) are eigenstates of the Hamiltonian at fixed
tan&,;ﬁ, (7) pn distances. Their calculation requires the solution of a
bound-state problem for the Coulomb potential
giving in our cased, =19°. e? 8 e? g8 g2
In spherical coordinates, the system can be described by V=— — + (15)
three Euler angles specifying the overall orientation, the two X=Xl [Xu=X0|  [%p=Xo]
distances R; ,r;), and the angley; between the two vectorsI oresenting two attractive  singularities  at 5,¢)=

Ri, andr; (see Fig. 1L Two sets of Delves hyperspherica
coordinates are then defined by the common hyperradius

p=\/Ri2+ri2, (8)

the hyperangles

tar(Xi/2)=%, i=1,2, 9

and they; angles.

The relationship between the two sets of Delves shape

angles is given by

COSY> cog26,) sin(26,) O
siny,cosy, | =| —sin(26,) cog26,) O
siny, siny, 0 0 1

COSx1

x| siny;cosy;
siny4 Siny,

(10

The hyperspherical elliptic coordinates are defined by
(11a
(11b

N=X1— X2, —20,<7<280,,

with the volume element

(*x26,,20,) corresponding to a vanishing muon-oxygen
and muon-proton distance.
This bound-state problem can be rewritten as

16H° . R
T om S[L(n) —L(E]+W(pn,7,8) | di(7,&pn)=0,

Pn
(16)

where

~ d Jd
L(u)=%[cosu—cos(2¢9#)]£ 17

and

W(Pn ’ 7715) = [COi 77) - COE{f)][V(pn ’ 7715) - El(pn)](ls

Equation(16) can be viewed as a zero eigenvalue prob-
lem depending parametrically on the potentiatos(y)
—cos@®) [ V(pn, 7€) —€(py], in the sense that the constant
€i(pn) is being adjusted in such a way that the operator on
the left-hand side of Eq16) has zero eigenvalue. The renor-
malized potentialW(p,,7n,£) has two important features.
One is that the two Coulomb singularities are regularized,
and the other is that it is approximately separable. We can
therefore write

W(pn,7,6)=W,(pn, 1) +We(pn, &) +AW(p,, 77,5),(19)
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trance and for the product channels. Elementary asymptotic
wave functions for the different final arrangement channels
N=1,2 are written as products of translational functions
fre(Ry), Coulomb bound wave functior@,,(r,), and nor-
malized Legendre polynomials:

()1 + O
P+ (BO)nr Uner(RyTr 270 = Fre(Ry) Cre(r ) Pe(cosyy).  (21)

We use these elementary asymptotic wave functions to form
N¢n physical solutions whose forms are given by

= l/fgm(Rx T YN

p+ (No)nzﬁ-

)n=5 4
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FIG. 2. Calculatec; energies of the hyperspherical elliptic ba- .
sis as a function of the hyperradius. where the superscriptS and C refer to the type of transla-

tional functions & for sine-type functions for open channels
where W, (p,,7)=W(py,7,26,) and W(p,,&)=W(p,, and exponentially growing funptions for glosed chann€ls,
~20,,6)~W(pn,—26,,20,). for cosine-type anc_i ex.pongnlnally decaying fgnctbom’s a
The two-dimensional problem can be solved by exploitingC°U|°mb'C interaction is still |_mp0rtar('as, for instance, in
this approximate separability of the potential. For instanceth® Product channels ©+p in our problem, Coulomb

- B L wave functions are used instead.
defining =2 6, n with —1<»<1, we get from Eq(16) We define the matriceB andF' as the projections of the

p+ (pO

(22

. i - elementary asymptotic functions on thi& hyperspherical
AR i’ 6, a_ 1— Si’(6,, ) i_ basis. This projection is performed at the maximum hyper-
mp; 6. dn sirfd, |an spherical radiugpy, :
(n) Fi,ne)\:<¢i|¢n(’)\>p:p,v|
+Wo(pn, 1) |k 7;00) = €7 (pn) ek(7;pn)-
20 =f dndé[cod n)—cod&)]di(n. & pm)
The similarity between the differential operator in Eg0) Paon (R, (233

(in particular in the limitd ,—0) with the one defining Leg- )

i I ' Flnox=(bildtner!dp),-
endre polynomials suggests to use the latter as basis set func- Nt P=Pm
tions for expansion op( 7;p,). We solve a similar problem

for £ using theW,(p,.£) potential, and obtaing (& py) - f dn dé[cog )~ cog £)] il 7,£:pm)
eigenfunctions and the%g)(pn) eigenvalues. We then iterate
(using a hi-section method og;) until we get el”(p,) X APnen(Ry Ty v 9p. (23b)

+ €9 (p,)=0. Once the separable basis set is obtained, so- . _ , .
lutions of Eq.(16) for the full nonseparable potential are TheNgp I|_nearly independent sol_ut|ons Whlch re;ult from the
obtained by diagonalizing the representation matrix of thePropagation steps up tpy are linear combinations of the
full Hamiltonian in the product basis. In Fig. 2 we presentNch @symptotic solutions given by Eq&23). This can be
the calculated energies as a function of the hyperradiys _restated as an eqyallty of_the logarithmic derivative marix
The origin of energies has been chosen to coincide with th the hyperspherical basis
asymptqtic limit of the e_ntrapce channgl 4),-1+0O. The Z=(F'S+F'CK)(FS+FCK)~ L. (24)
calculations presented in this work cover the energy range
between this limit and thp+ (1 O),— o threshold at about 1  The K matrix, and then th& matrix, can be extracted from
keV. Eq. (24).

The N, coupled equations are integrated along the hyper-
radiusp using the de Vogelaere algorithrh3]. This provides Il. RESULTS OF THE CALCULATIONS
a logarithmic derivative matriX at py, =pr+ 5pr. For the
energy range considered here, we included 88 channels:
[(p ,u)n:1_2+Q andp+ (u O)p=1-g]- The mtegraﬂpn of the (Pp)ney+ OBt —p+ (MO)Z} (25)
coupled equations was performed from the originptQg
~200a,~1 A. The asymptotic analysis has been per-for collision energies in the range 18-10° eV and for total
formed using the appropriate Jacobi coordinates for the emangular momentund=0 (s waves. For largeR distance

We have performed calculations of the reaction
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FIG. 3. Partial and total muon-transfer probabilities for reaction FIG. 4. Total muon-transfer probabilities for reacti(®f) as a

(25) as a function of the collision energy. function of the collision energy using a simple three-channel prob-
lem and Landau-Zener semiclassical approximation.

between the oxygen nuclei and the proton, the potential for

the entrance channel of reactiof25) behaves asV= of the distributions in Fi_gs. 5 a.nd 6 can be understood as

—aZ?e?/2R*, where Z=8 and a=(9/2) (ﬁzlm# pe2)3_ follows. From an inspection of'Flg. 2itis clgar that only one

Since with this potential the centrifugal barrier has a heigh©f the sets of states correlating asymptotically to a given

of [A2J(J+ l)/moprZe]Z/Sa, for energies below 0.1 eV Okn manifold is S|gn|f|captly coupled to _the initigd pep =1 _

the partial wavel=0 is the only one which contributes to State. Due to the approximate sgparabmty of thg potential,

the cross sections. Thus for thermal energies these calcul§ach of these states can be assigned to approximate hyper-

tions are essentially exact full three dimensional. spherical elliptic quantum numbers {,n). Since the initial

Figure 3 presents the total probabilities for muon transfelP&n-1 channel is colinearly dominated ang>0 corre-
as a function of the energy, as well as the partial muonSPONds to excitation away from the colinear configuration,
transfer probabilites into thep+(x0),_s and p thel final states S|gn|f|cantly cpupled to the initial ch_annel
+(u 0),_5 channels. The other open channels have neglisatisfy the approximate selection ruke;=0. At large dis-
gible populations. This is in complete agreement with whatfi@nces, hyperspherical coordinates tend gradually toward
was found in approximate calculatiof@]. These results can Parabolic coordinategl2]. The final (,,n;=0) states can
be qualitatively understood by inspection of Fig. 2. Startingtherefore be identified as(,n,=0) parabolic states with
in channel p u),-,+ O, the system crosses diabatically then =n—1 andn;=0. The final approximaté distribution is
channelp+ (u O),-7. Muon transfer is completely negli- then given by the square of the projection of this states onto
gible as the coupling is very small compared with the colli-the final (h,€) spherical basis set with the res[i4]
sion energy. The couplings to channels (u« O),-¢ andp
+(u0),_5 are larger as evidenced by avoided crossings. PaPP=|C((n—1)/2(n—1)/2,(n—1)/2,—(n—1)/2;¢,0)|?,

The other channelp+ (u O),-5 are weakly coupled to the (26)
initial one and they are not expected to be populated signifi-
cantly.

Actually, a simple calculation involving only three chan-
nels [(pu)n-1+t0, p+(uO)n_s_6¢-0] and using the
semiclassical Landau-Zener formula for the two crossings
provides a qualitative agreement with the exact results dowr §
to energies of the order of 1 e\see Fig. 4. For lower
energies, quantum threshold behavior dominates the sem
classical Landau-Zener approximation and for very low en-
ergies Wigner’s threshold laws predict &Y? dependence.
This low-energy region corresponds toa<<1l, with k
=(2mg, E)Y4% anda being the range of the potential in
the entrance channel. Defining the effective range of the po-
tential byV(a)<E, we getE<0.1 eV. This is exactly what
is found in our calculationgsee Fig. 3.

In Figs. 5 and 6 we present relative populations of O
Mn=s5—6. levels for collision energfe=0.1 eV. This distri-
bution is almost independent of collision energy in the en- FIG. 5. Exact(full line) and approximatédotted relative popu-
ergy range considered here. This fact and the particular forrations of the¢ levels forn=5 and collision energ=0.1 eV.
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FIG. 6. Exact(full line) and approximatédotted relative popu- FIG. 7. Relative populations of thjdevels forn=>5 (dotted and
lations of thef levels forn=6 and collision energf=0.1 eV. n=6 (full) for a collision energye=0.1 eV.

where C stands for a Clebsh-Gordan coefficient. We havethermal and lower energies the calculations are essentially
: exact.

represented this appro>_<imate d_istribution In Figs. 5 gnd 6. The results for the total and partial probabilities can be
t(_ZOI(re]arIy, then,=0 selection rule is a very good approxima- interpreted qualitatively by a simple three-channel model and
lon. . . , Landau-Zener semiclassical approximation for energies be-
Experimentally only the populations of the fine-structureyeen 1 and 1000 eV. For energies below 0.1 eV, the prob-
levels j are eventually measurable. Thus, from the orbitalypjities follow the expected Wigner's threshold law behav-

angular-momentund probabilities one gets ior.
The fine-structure level populations are essentially inde-
. Pn.e pendent of energy and almost independent of the principal
Pnj=(2j+1) . > L 20+1° (27 quantum numben. This has been attributed to an approxi-
li—zl<st<j+z mate selection rule for the elliptic hyperspherical quantum
numbern,.
The results are presented in Fig. 7. In conclusion, the hyperspherical elliptic coordinates in-

troduced by Tolstikhiret al.[11], are particularly well suited

to the treatment of this type of reaction.
IV. CONCLUSIONS
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