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Mesic molecule formation in collisional Auger transitions of excited mesic hydrogen
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The formation rate of the excited hydrogen mesic molecule due to Auger process is calculated in a quasi-
classic approximation. The resulted bound state may decay via predissociation with a large energy release,
which leads to a considerable acceleration of the mesic atom. The calculated rates of the mesic molecule
formation are compared with those obtained in a semiclassical approach.
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I. INTRODUCTION

The excited mesic hydrogen atom is formed when a ne
tive muon stops in hydrogen and is captured into atom
orbitals. The most probable state has the principal quan
numbern;Am/me, wherem andme are the muon and elec
tron masses, respectively. The rate of radiative transiti
from such a state is small, so deexcitation proceeds ma
by collisions with neighbor atoms and molecules. Forn
&10 the main processes which lead to the cascade transi
in the mesic atom are Coulomb deexcitation and exte
Auger process. In the former process the deexcitation en
is transferred to the relative motion of the nuclei, resulting
the enhanced kinetic energy. In the latter process the en
of the mesic atom transition is taken mainly by the elect
of the target molecule, the acceleration thus being not la
The calculations@1–7# showed that the Coulomb deexcit
tion rates are much smaller than those of Auger deexcita
and thermalization rates in elastic collisions@8#. For this rea-
son the experimentally observed large number of fast m
atoms in the lower-energy states@9,10# has not been ex
plained for a long time.

In Ref. @6# a mechanism of the mesic atom acceleration
the cascade Auger transitions has been proposed. It
shown that after the external Auger process (n, n8 are the
principal quantum numbers of the mesic atom!

~pm!n1H→~pm!n81p1e2, n8,n, ~1!

when the transition energy is taken by the electron, thepm
1p system may appear in the bound state, decaying then
predissociation to the lower term:

~pm!n1H→~pmp!n81e2, ~2!

~pmp!n8→~pm!n91p, n9,n8. ~3!

As a result of the second step~3! the deexcitation energy i
shared by the heavy particles, enhancing considerably
mesic atom energy. The estimates of the reaction rates~2!
and ~3! presented in Refs.@6,7# appeared to exceed signifi
cantly the Coulomb deexcitation rates.

One should note that Menshikov@11# suggested that a
mesomolecular complex can be formed in the external Au
process. However, he considered only internal Auger de
of such a complex, which led to a small~up to ;1 eV)
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acceleration of the mesic atoms. His version of such a tw
step Auger process was as follows:

~pm!n1H2→@~pm!n8H2
1#1e2, ~4!

@~pm!n8H2
1#→~pm!n91p1p1e2. ~5!

In Ref. @11# it was suggested that the rates of reactions~4!
and ~5! do not differ from those calculated in earlier Ref
@4,5# on Auger deexcitation. In Refs.@6,7# the rates of reac-
tions ~2! and ~3! were recalculated taking into account th
electron screening in the input channel. The calculation w
performed in a semiclassical approach, in which the mot
of the nuclei was treated classically and that of the muon
electron was treated quantum mechanically. In accorda
with the approach, it was considered that in the bound s
of the complex the energy of the relative motion of the nuc
changes continuously. However, according to the quan
mechanics, the energy of the finite motion is quantized,
which reason the semiclassical estimates could be in
equate. In the present paper we calculate the rates of
cesses~2! and ~3! by means of a simplified version o
quantum-mechanical description of the relative motion of
nuclei—quasiclassical approximation.

II. PROBLEM DEFINITION

When hitting the hydrogen target the mesic atom intera
with the hydrogen molecule H2. Nevertheless, as in all pre
vious papers, beginning from the pioneer paper by Leon
Bethe @4#, we shall consider the collision with a hydroge
atom H, regarding, however, the electron binding energy
be equal toI e515.4 eV, as in a collision with the molecule
Just to be definite, we shall regard the muon and pro
keeping in mind that the results~with slight variations! are
valid for all hydrogen isotopes (p,d,t) and all negative me-
sons (m2, p2, K2). As before, we do not take into accou
the identity of the nuclei in the atom and mesic atom, b
cause it does not affect much the main aim of the paper
estimate the Auger deexcitation rate via the formation of
bound state.

So process~2! is considered under the assumption that
main contribution to the cross section comes, like in proc
~1!, from the internuclear distancesR much greater than the
dimension of the excited mesic atom. The calculations
©2003 The American Physical Society01-1
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performed in perturbation theory, the perturbation being
interactionV between the mesic atom and target electr
unperturbed wave functions being presented as produc
muonic wave functions of the problem of two Coulomb ce
tersf(rW,R) and electron single-center wave functionsc(r):

V5
1

urW 2rWu
2

1

u 1
2 RW 1rW u

, ~6!

C i5Fp~RW !f~rW,R!c1~rW !, C f5Fb~RW !f8~rW,R!c2~rW !.
~7!

The vectorsRW , rW, andrW are shown in Fig. 1. Electron wav
functions

c1~rW !5c1s~rW e!, c2~rW !5ck~rW e! ~8!

are centered on the same nucleus and refer to the initial
ionized states of the hydrogen atom, respectively,k being the
electron momentum in the ionized state.

The functionsFp(RW ) andFb(RW ) describe the relative mo
tion of nuclei in the input and output channels, respective
In the input channel the motion is infinite with th
asymptotic momentump, in the output channel it is finite
motion corresponding to the bound state of the two nu
and muon. Since in the initial state muon is localized on o
nucleus, and the electron on the other, and we neglect
possibility of muon transfer to another nucleus~the Auger
transition proceeds at large distancesR@r m), one should
choose the two-center muon function as a linear combina
of even g and oddu adiabatic functions, which atR→`
represents the wave function of the muonic atom:

f~rW,R!5
1

A2
@fg~rW,R!1fu~rW,R!#→wn j~rWm!, ~9!

f8~rW,R!5
1

A2
@fg8~rW,R!1fu8~rW,R!#→wn8 j 8~rWm!, ~10!

j 5~n1n2m!, j 85~n18n28m8!, ~11!

FIG. 1. Coordinate system used in the calculations.
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where j , j 8 are parabolic quantum numbers. With muon
functions thus chosen, the wave functions of nuclear mot
Fp andFb are obtained by solving the Schro¨dinger equation
with a potential equal to a half sum of the even and o
potentials plus Coulomb repulsion of the nuclei@12,13#. The
electron screening effect should also be taken into accoun
the input channel.

In the first order of perturbation theory the reaction a
plitude is

M f i5^C f uVuC i&. ~12!

Because of the orthogonality of the muonic functionsf
andf8, as well asc1s andck , the only nonzero contribution
to matrix element~12! comes from the first term of Eq.~6!,
which represents the Coulomb interaction between the m
and electron. Then

M f i5E dRW drWdrW Fb* ~RW !f8~rW,R!c2* ~rW !

3
1

urW 2rWu
c1~rW !f~rW,R!Fp~RW !. ~13!

Taking into account that the Auger transition procee
mainly at largeR, let us replace the functionsf andf8 by
their asymptotic values~9! and ~10!, as well as the coordi-
natesrW and rW counted from the middle of the internuclea
axis, by the coordinatesrWm andrW e , counted from the nucle
at which the corresponding particles are localized. Then

M f i.E dRW drWmdrW eFb* ~RW !wn8 j 8~rWm!ck* ~rW e!

3
1

uRW 1rW e2rWmu
c1s~rW e!wn j~rWm!Fp~RW !. ~14!

Using the operator identity

1

uRW 1rW e2rWmu
5

1

2p2E dqW

q2
eiqW (RW 1rW e2rWm), ~15!

one obtains

M f i5E dRW Fb* ~RW !Vf i~RW !Fp~RW !, ~16!

Vf i~RW !5
1

2p2E dqW

q2
eiqW RW E drWme2 iqW rWmwn8 j 8~rWm!wn j~rWm!

3E drW ee
iqW rW eck~rW e!c1s~rW e!. ~17!

We shall consider the Auger transitions to the levelsn8
5n21 from the levels withn55 and n54, because at
higher levels the mesic atoms are quickly thermalized
elastic collisions@8#, while at lowern radiative transitions
dominate@14,15#, which do not lead to the mesic atom a
celeration. The energy of the mesic atom transitionDnn8 is
1-2
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taken by the ejected electron, whose energy is«e;Dnn8
2I e;m0n23, wherem0 is muon reduced mass@m0 is de-
fined in Eq.~30! below; in energy unitsm0;5 keV for pm
atom#. For the transition 5→4 (4→3) the energy of the
Auger-electron«e;40 eV ~80 eV!. This energy is not high
enough~especially in the former case! to use the plane-wave
approximation for the ejected electron; however, this
proximation, as shown in Ref.@7#, is not unreasonably crud
for the wave functionck(rW e) in our problem. So we se
ck(rW e)5exp(ikWrWe). The integral overrW e can then be easily
obtained as

E drW ee
i (qW 2kW )rW ec1s~rW e!5N1s

8ph

@~qW 2kW !21h2#2
, h5me ,

N1s5~h3/p!1/2, k5A2me«e, \5e51. ~18!

When calculating the integral over muon coordinates o
should take into account that the mesic atom dimensionr n
;n2a0 (a051/m0 is the mesic atom radius in the groun
state! and characteristicq;k ~at R;ae the integral overq
converges in the regionq&k). Let us estimate the characte
istic value ofqrm ,

qrm;ka0n2;A2mem0n23n2m0
21

5A2
me

m0
n.0.1An!1 for n,10. ~19!

Expanding the exponente2 iqW rWm in the muon integral in a
series and keeping only the dipole term one has

E drWme2 iqW rWmwn8 j 8~rWm!wn j~rWm!

.2 iqW E drWwn8 j 8~rW !rWwn j~rW !52 iqW DW . ~20!

Inserting Eqs.~18! and~20! into Eq. ~17! and separating the
main contribution to the integral overqW one obtains

Vf i~RW !.24p iN1s

kWDW

k2
eikWRW 2hR. ~21!

The larger is thek value the more accurate is equation~21!.
When calculating the integral overRW in Eq. ~16! we use

the integrand expansion in spherical harmonics, as well
quasiclassical approximation to describe the radial w
functions of the relative motion of the nuclei~the adiabatic
potentials corresponding to the excited states of the mu
atom satisfy the validity condition for the quasiclassical
dial motion @16#!.

The functionFp(RW ) is a solution of a single-channel sca
tering problem with the asymptotics ‘‘plane wave1 outgo-
ing spherical wave’’ with a well-known partial expansio
@17#:

Fp~RW !5
1

2pR (
l50

`

i l~2l11!exp~ idl!xpl~R!Pl~np
W nR
W !,
06250
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W5

pW

p
, nR
W5

RW

R
, ~22!

wheredl is a phase shift andPl is a Legendre polynomial
The functionsFb(RW ) and xpl(R) are normalized by the

conditions

E Fp8
* ~RW !Fp~RW !dRW 5~2p!3d~p8W2pW !,

E xp8l~R!xpl~R!dR52pd~p82p!, ~23!

The functionFb(RW ) is a solution of the eigenvalue problem
and belongs to a discrete spectrum of the Schro¨dinger equa-
tion. We may take it in the form (YLm is a spherical har-
monic!

FnLm~RW !5
1

R
xnL~R!YLm~nW R!, ~24!

which describes the relative motion of the nuclei in the st
with vibrational quantum numbern, rotational quantum
numberL, and magnetic numberm. Radial wave function
xnL(R) is characterized by the energy«nL,0 and is nor-
malized by

E xnL
2 ~R!dR51. ~25!

In quasiclassic approximation the radial functionsxpl ,
xnL in a classically approachable region look like

xpl~R!5
C1

AP~R!
cosS E

a

R

P~x!dx2
p

4 D ,

C152AP~`!, a,R, ~26!

xnL~R!5
C2

AP8~R!
cosS E

a8

R

P8~x!dx2
p

4 D ,

C252AMv

2p
, ~27!

v52pS 2ME
a8

b dx

P8~x!
D 21

, a8,R,b. ~28!

Herev is a circular frequency of the molecular oscillation
a8, b are left and right turning points in the classical motio
of the nuclei with energy«nL , M is reduced mass of the
system:

M 215~M11M3!211M2
21 , ~29!

M1 , M2 are the masses of the nuclei,M3 is a meson mass
~in our caseM15M25M p , M35Mm , the electron mass is
1-3
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neglected!. Hereafter we shall use the reduced mass of
muonm0 as a unit mass, defined as follows:

m0
215M1

211M3
215M p

211Mm
21 . ~30!

Radial momenta which enter Eqs.~26!–~28! are given by
formulas

P~R!5A2M @E12U1~R!#, P8~R!5A2M @E22U2~R!#,
~31!

where E1,2 are total energies of thepmp system,U1,2 are
potential energies with centrifugal term included, in the inp
and output channels, respectively~see Fig. 2!. For the poten-
tial energy the following equations hold:

U1,2~R!5U1,2~`!1u1,2~R!, ~32!

U1~`!5«n52
1

2n2
, U2~`!5«n852

1

2n82
,

u1,2~`!50, ~33!

u1~R!5@«n j~R!2«n1R21#S~R!1
~l11/2!2

2MR2
, ~34!

S~R!5e22bR~112bR12b2R2!, b5me /m05me ,
~35!

u2~R!5«n8 j 8~R!2«n81R211
~L11/2!2

2MR2
, ~36!

FIG. 2. Energy scheme of the molecule formation during me
atom deexcitation.
06250
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«~R!5
1

2
@«g~R!1«u~R!#. ~37!

Here«g,u(R) are the even and odd terms~term indices omit-
ted!, S(R) is the screening correction, which takes into a
count the effect of the electron cloud of the target atom up
the interatomic potential in the input channel. Introducing t
collision energy« and the energy of the molecular level«nL

by equations~see Fig. 2!

«5E12«n , «nL5E22«n8 ~38!

one can write the radial momenta as

P~R!5A2M @«2u1~R!#, P8~R!5A2M @«nL2u2~R!#.
~39!

Then, expanding the exponenteikWRW in Eq. ~21! into partial
waves,

eikWRW 54p(
,m

i , j ,~kR!Y,m* ~nW k!Y,m~nW R!, nW k5kW /k,

~40!

where j ,(kR)5Ap/2kRJ,11/2(kR) is a spherical Besse
function, one can obtain the reaction amplitude in the follo
ing form:

M f i52
iN1s

2pk2
~4p!2(

l,m
A4p~2l11!i ,1leidlY,m* ~nW k!

3E dRxpl~R!xnL~R! j ,~kR!e2bR

3E dVR~kWDW !YLm* ~nW R!Yl0~nW R!Y,m~nW R!. ~41!

Formula~41! is written in the laboratory system with az axis
directed along the vectorpW , the spherical harmonics bein
taken according to

Pl~nW pnW R!5A 4p

2l11
Yl0~nW R!. ~42!

The factor (kWDW ) enters the angular integral because t
dipole momentDW depends onnW R via the Coulomb parabolic
functions wn j , defined in the molecular coordinate syste
with the z axis directed along the internuclear axis, defin
by the vectornW R(u,f). When calculating the angular inte
gral in Eq. ~41! one should expressDW via spherical basis
vectors in the laboratory system@18#:

DW 5 (
i 5x,y,z

Die8W i5 (
a50,61

daeaW . ~43!

Heree8W i are Cartesian basis vectors of the molecular coo
nate system,e8W z5nW R , while eaW are spherical basis vectors o
the laboratory system,eW05nW p ,

c

1-4
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d052Dxsinu1Dzcosu, ~44!

d6157
e6 if

A2
@Dx~11cosu!1Dzsinu#. ~45!

Cartesian components of the dipole momentDx , Dy , Dz

are calculated as matrix elements of the radius vectorW
[(x,y,z) in the molecular coordinate system for a transiti
between given parabolic states (n1 ,n2 ,m) and (n18 ,n28 ,m8),
e.g.,

Dx5E drWwn8 j 8xwn j . ~46!

Their values can be found by formulas given in Ref.@19#.
The calculations showed that the matrix elementsDx , Dz are
real, andDy5 iD x is purely imaginary. This property wa
used when deriving Eqs.~44! and ~45!.

III. REACTION CROSS SECTION

The differential cross section of the reaction is given b
well-known formula@17#

ds5
2p

v
uM f i u2d~Ef2Ei !

dkW

~2p!3
5

mek

v
uM f i u2

dVk

~2p!2
.

~47!

The energyE of the system comprising atom and mesic ato
is related to the energyE of the (pmp) complex and electron
energy«e as follows:

Ei5E12I e , Ef5E21«e , ~48!

where 2I e and «e are the energies of the bound and fr
electron, respectively.

Since the molecular state is degenerate over the ang
momentum projection, the cross section for the transition
the staten, L is given by a formula

ds5
mek

4p2v
(

m52L

L

uM f i
m u2dVk . ~49!

Electron momentumk is obtained from the energy conserv
tion Ei5Ef and the energy scheme~Fig. 2!:

D«e5«e1I e5E12E25«n1«2«n82«nL . ~50!

Taking into account that«nL,0 and introducingDnn85«n
2«n8 one has

«e5Dnn82I e1«1u«nLu, k5A2me«e. ~51!

For slow collisions («,1 eV) and transitions to the molecu
lar states withn@1 ~such transitions are the most probab!
the electron momentumk is practically independent of« and
«nL so one may write

«e.Dnn82I e . ~52!
06250
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The angular integration overV(nW R) andV(nW k) is performed
with standard technique@18#. Omitting the cumbersome in
termediate formulas, one can obtain the final expression
the rate of the reaction in question reduced to the liqu
hydrogen density as

lnL5te
21~N0ae

3!b5
32v

vve
~2L11!

3 (
m52L

L

(
,50

` U(
l50

`

~2l11!i leidl

3 (
,85,61

a,8Gl,8
Lm I l,8

nL
~k,p!U2

, ~53!

where te
2154.13431016 s21, N0ae

350.6331022, N0

54.2531022 cm23 is the liquid-hydrogen density;v is the
relative velocity of the nuclei in the initial state,ve is the
velocity of the ejected electron,v is the frequency of the
molecular oscillations. The phase shiftdl is determined by
the formula@17#

dl5 lim
R→`

S E
a

R

P~x!dx2E
a1

R

dxAp22~l11/2!2/x2D ,

~54!

wherea1 is the left turning point for the classical motion o
the particle with momentump and angular momentuml
without the field, the radial momentumP(x) being defined
by Eq. ~39!.

The coefficientsa,8 have nonzero values only for,85,
61,

a,215A,~2,21!

2,11
, a,115A~,11!~2,13!

2,11
.

~55!

The factorsGl,8
Lm appear from angular integrations an

can be written as follows:

Gl,8
Lm

5(
s

C
,8q1s

,1m1 ~hsDx1 f sDz!,

m15q1s, q5M2m, M52s, s50,61,
~56!

whereCaabb
dd are Clebsh-Gordan coefficients,

h6156(
L

BL,71I ~L !, f 615
2

3
B1,71 ,

h05(
L

BL0I 2~L !, f 052
2

3
B10,

BLM5(
L8

Cl,8
L8 CL8L

L Cl0,8q
L8q CL8qLm

LM , Cab
d [Ca0b0

d0 ,

I ~L !5aL@ I 1~L !2bLI 2~L !#,
1-5
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aL5@2L~L11!~2L11!#1/2, bL5L~L11!,

I 1~L !5E
21

11 xdx

A12x2
PL~x!,

I 2~L !5E
21

11

dxA12x2PL~x!,

I 1(L) being zero for evenL, I 2(L) being zero for oddL. At
last, I l,8

nL are the radial integrals of the following type:

I l,8
nL

~k,p!5E
a

b

dRe2bR x̃Pl~R! x̃nL~R! j ,8~kR!, ~57!

x̃Pl~R!5
1

AP~R!
cosS E

a

R

P~x!dx2
p

4 D , ~58!

x̃nL~R!5
1

AP8~R!
cosS E

a8

R

P8~x!dx2
p

4 D . ~59!

All variables are taken here in mesic atom units (\5e
5m051).

IV. RESULTS AND DISCUSSIONS

A typical dependence of thelnL on n andL is shown in
Fig. 3 for (022)→(021) transition at the collision energye
50.04 eV. A distinct maximum in both variables is clear
seen.

The reaction rates are shown in Fig. 4 together with
results of the semiclassical calculations@6# of the Auger-

FIG. 3. Typical dependence oflnL on n and L for (022)
→(021) transition at the collision energy ofe50.04 eV.
06250
e

minus process, in which the nuclei in the final state a
bound. It is seen that the results of both papers are i
reasonable agreement. Our calculations of the rates of
Coulomb deexcitation for excited muonic hydrogen result
lCD51.431011 s21 and 5.131010 s21 for n55 and 4, re-
spectively, for a collision energy of 0.04 eV. So, at least
n55 the molecule formation rates are much larger than
Coulomb deexcitation. A considerable drop of the formati
rates fore.0.1 eV is naturally explained by the decrease
the probability for the nuclei in the final state to be boun
when the collision energy increases.

The bound state in which the system appeared could
cay either via predissociation~Coulomb deexcitation!

~pmp!n8→~pm!n91p, n95n821 ~60!

or via the external Auger ionization

~pmp!n81H2→~pm!n91H2
11e. ~61!

If the binding energy of the quasimolecule (pmp)n8 is
smaller than the thermal energy, the molecule can deca
quasielastic collisions with target molecules,

~pmp!n81H2→~pm!n81p1H2. ~62!

In this case the mesic atoms do not accelerate. As a rule
the states where the molecule formation rate has a maxim
the average binding energy of the quasimolecule amount
about several tenths electron volt, so the quasielastic me
nism has low probability.

If the system in the final state represents a quasimole

FIG. 4. Energy dependence of the mesic molecule forma
rates via Auger collisions forn54 and 5. The solid lines show th
rates of the ‘‘Auger-minus’’ process calculated in Ref.@7#. The
circles are the results of the present paper, the dashed lines
them just to guide the eye.
1-6



ul
s
ko
rg

m
o

cor-

the

in

MESIC MOLECULE FORMATION IN COLLISIONAL . . . PHYSICAL REVIEW A 68, 062501 ~2003!
comprising the excited mesic atom and hydrogen molec
ion (pm)n8H2

1 , or (pmp)n8H, the internal Auger process i
also possible. In this case, as it was shown by Menshi
@11#, mesic atom acquires some part of the muon ene
accelerating up to energies about 1 eV.

The predissociation process Eq.~60! leads to a two-
particle decay, in which the deexcitation energy transfor
into the kinetic energy of the fragments because of the C
lomb repulsion of nuclei.
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Summing up, one may state that the data obtained
roborate the conclusion made in Ref.@6# about the possibility
of the considerable acceleration of the mesic atom during
Auger transition. As a result, thepm atoms in the final state
acquire the kinetic energyepm;1/2n8(n821)2, which is a
half of the transition energy for the transitionn8→n821.
For n854, when the Auger process starts from the staten
55, epm;70 eV. This effect should be taken into account
the cascade calculations of the mesic atom kinetics.
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