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Mesic molecule formation in collisional Auger transitions of excited mesic hydrogen
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The formation rate of the excited hydrogen mesic molecule due to Auger process is calculated in a quasi-
classic approximation. The resulted bound state may decay via predissociation with a large energy release,
which leads to a considerable acceleration of the mesic atom. The calculated rates of the mesic molecule
formation are compared with those obtained in a semiclassical approach.
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[. INTRODUCTION acceleration of the mesic atoms. His version of such a two-
step Auger process was as follows:
The excited mesic hydrogen atom is formed when a nega-

tive muon stops in hydrogen and is captured into atomic (Pu)ntHo—[(pu)nHy 1+€7, (4)
orbitals. The most probable state has the principal quantum
numbermn~ ym/m,, wherem andm, are the muon and elec- [(pu)nHy ]—(pu)+p+p+e . (5

tron masses, respectively. The rate of radiative transitions
from such a state is small, so deexcitation proceeds mainljn Ref. [11] it was suggested that the rates of reactiohs
by collisions with neighbor atoms and molecules. For and (5) do not differ from those calculated in earlier Refs.
=10 the main processes which lead to the cascade transitiofi$,5] on Auger deexcitation. In Ref§6,7] the rates of reac-
in the mesic atom are Coulomb deexcitation and externalions (2) and (3) were recalculated taking into account the
Auger process. In the former process the deexcitation energyectron screening in the input channel. The calculation was
is transferred to the relative motion of the nuclei, resulting inperformed in a semiclassical approach, in which the motion
the enhanced kinetic energy. In the latter process the energy the nuclei was treated classically and that of the muon and
of the mesic atom transition is taken mainly by the electrorelectron was treated quantum mechanically. In accordance
of the target molecule, the acceleration thus being not largewith the approach, it was considered that in the bound state
The calculationg1-7] showed that the Coulomb deexcita- of the complex the energy of the relative motion of the nuclei
tion rates are much smaller than those of Auger deexcitatioshanges continuously. However, according to the quantum
and thermalization rates in elastic collisid@§. For this rea- mechanics, the energy of the finite motion is quantized, for
son the experimentally observed large number of fast mesighich reason the semiclassical estimates could be inad-
atoms in the lower-energy stat¢8,10] has not been ex- equate. In the present paper we calculate the rates of pro-
plained for a long time. cesses(2) and (3) by means of a simplified version of

In Ref.[6] a mechanism of the mesic atom acceleration inquantum-mechanical description of the relative motion of the
the cascade Auger transitions has been proposed. It wasiclei—quasiclassical approximation.
shown that after the external Auger process ' are the
principal quantum numbers of the mesic ajom Il. PROBLEM DEFINITION

(pu)ntH—=(pu)y+p+e-, n'<n, () When hitting the hydrogen target the mesic atom interacts

. . with the hydrogen molecule H Nevertheless, as in all pre-

v:hen tr;e transition ener_gyﬂl]s t;lkendbyt Te glectrqn,pﬁﬁe vious papers, beginning from the pioneer paper by Leon and
p System may appear in the bound state, decaying then VI§ethe[4], we shall consider the collision with a hydrogen

predissociation to the lower term: atom H, regarding, however, the electron binding energy to

+H— +e, 2 be equal td,=15.4 eV, as in a collision with the molecule.
(Pt (PP} @ Just to be definite, we shall regard the muon and proton,
(pupP)y—(Pp)w+p, n'<n’. (3) keeping in mind that the resultsvith slight variation$ are

valid for all hydrogen isotopesp(d,t) and all negative me-
As a result of the second stép) the deexcitation energy is sons @, w, K7). As before, we do not take into account
shared by the heavy particles, enhancing considerably thiée identity of the nuclei in the atom and mesic atom, be-
mesic atom energy. The estimates of the reaction r@es cause it does not affect much the main aim of the paper: to
and (3) presented in Ref46,7] appeared to exceed signifi- estimate the Auger deexcitation rate via the formation of the
cantly the Coulomb deexcitation rates. bound state.

One should note that Menshikdd1] suggested that a So process$2) is considered under the assumption that the
mesomolecular complex can be formed in the external Augemain contribution to the cross section comes, like in process
process. However, he considered only internal Auger decagl), from the internuclear distanc&much greater than the
of such a complex, which led to a smdlip to ~1 eV) dimension of the excited mesic atom. The calculations are
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e where j,j’ are parabolic quantum numbers. With muonic
functions thus chosen, the wave functions of nuclear motion
F, andFy, are obtained by solving the Scliiager equation
with a potential equal to a half sum of the even and odd
potentials plus Coulomb repulsion of the nudl&2,13. The
electron screening effect should also be taken into account in
the input channel.

In the first order of perturbation theory the reaction am-

plitude is

M =(W|V[T;). (12)

R Because of the orthogonality of the muonic functiahs
p b and¢’, as well agfs andyy, the only nonzero contribution
to matrix element12) comes from the first term of Eq6),
which represents the Coulomb interaction between the muon

performed in perturbation theory, the perturbation being thé"d €lectron. Then
interactionV between the mesic atom and target electron,

FIG. 1. Coordinate system used in the calculations.

unperturbed wave functions being presented as products of Mﬁ=J dRAFdpFE(R) ¢ (TR W (D)
muonic wave functions of the problem of two Coulomb cen-
ters¢(F, R) and electron single-center wave functiofiy): 1 . .
X—=——=1i1(p)p(r, RFL(R). (13
1 1 |P_r|
V= e ———, (6) o .
lp—r] |iR+p| Taking into account that the Auger transition proceeds

mainly at largeR, let us replace the functiong and ¢’ by
their asymptotic value$9) and (10), as well as the coordi-
natesr and p counted from the middle of the internuclear
axis, by the coordinates, andp., counted from the nuclei

The vectorsR, r, andp are shown in Fig. 1. Electron wave at which the corresponding particles are localized. Then
functions

W=F,(R) (T, R ¢1(p), ‘Iff=Fb(F5)¢’(F,R)¢z(5).(7)

M= [ AR, dpFS (R)gn ()01 (50

da(p)=das(pe).  Yalp)=ilpe) ®
are centered on the same nucleus and refer to the initial and x%wls(ﬁe)%j((#)pp(ﬁ)_ (14)
ionized states of the hydrogen atom, respectivebging the IR+ pe—r |

electron momentum in the ionized state.

The functionsF ,(R) andF,(R) describe the relative mo- Using the operator identity

tion of nuclei in the input and output channels, respectively. >

: ! S X 1 1 dq -5, - -
In the input channel the motion is infinite with the = _Zelq(R+pe—rﬂ), (15)
asymptotic momentunp, in the output channel it is finite R+pe—r,| 2m q

motion corresponding to the bound state of the two nuclei )

and muon. Since in the initial state muon is localized on on&®N€ Obtains

nucleus, and the electron on the other, and we neglect the

possibility of muon transfer to another nucle(iee Auger Mfi:f dﬁF;(f{)vﬁ(f{)Fp(ﬁ), (16)
transition proceeds at large distand@sr,), one should

choose the two-center muon function as a linear combination

of eveng and oddu adiabatic functions, which aR—ox B :i d_a idﬁJ > —igr 2 s
represents the wave function of the muonic atom: Vi(R) om2) ? © dr,.e ™ njr (1) ¢nj(r )
- 1 - - . 5 ey (o ;
HER= SIAERIT ATRT=enT,). O % f dpee e pe) Yas(pe). an

We shall consider the Auger transitions to the levels
. 1 . . . =n—1 from the levels withn=5 and n=4, because at
¢>'(f,R)=?[%(F,R)JFd’&(r,R)]—wn/y(r#). (100 nigher levels the mesic atoms are quickly thermalized in
2 elastic collisions[8], while at lowern radiative transitions
) ) dominate[14,15, which do not lead to the mesic atom ac-
j=(nnom), j’=(nn;m’), (1) celeration. The energy of the mesic atom transitigp, is
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taken by Ef;e ejected e_Iectron, whose energysgs_Ann, _ 5 _ R
—le~myn~°, wheremg is muon reduced magsn, is de- n,=— R
fined in Eqg.(30) below; in energy unitsny~5 keV for pu P

atom|. For the transition 5-4 (4—3) the energy of the

, (22

. . . hered, i h hif i L I ial.
Auger-electrone ,~40 eV (80 eV). This energy is not high W e;]e ]f 'S a_l pnase s . Zne}‘ 'S @ egendrelpo ()j/n;)mls
enough(especially in the former caséo use the plane-wave coeriEo#antlonSFb(R) and x,\(R) are normalized by the

approximation for the ejected electron; however, this ap-
proximation, as shown in Reff7], is not unreasonably crude

for the wave functiony(pe) in our problem. So we set f F;,(ﬁ)Fp(ﬁ)dﬁ?:(ZW)%(F—5),
(pe) =exp(Kpy). The integral overp, can then be easily
obtained as
f Xp A (R xpA(R)AR=2m5(p" —p), (23

8wy

——= =Me,
(g-k2+ 22 7 e

f dpe€' T Pey (pe) = Nig , . _ .
The functionF,(R) is a solution of the eigenvalue problem

s 1 and belongs to a discrete spectrum of the Sdimger equa-

Nis=(7"/m)"%, k=y2meee, fA=e=1. (18  tion. We may take it in the formY(,, is a spherical har-

. . . monic
When calculating the integral over muon coordinates one )

should take into account that the mesic atom dimensjpn o1 R
~n?ay (ap=1/my is the mesic atom radius in the ground Foau(R)= ﬁXVA(R)YAM(nR), (24)
statg and characteristig~k (at R~a, the integral overg

converges in the regiog=<Kk). Let us estimate the character-

o which describes the relative motion of the nuclei in the state
istic value ofqr,,

with vibrational quantum numbew, rotational quantum

qr,~kagn?~ [2memon—3n2m; * numberA, and magnetic numbes. Radial wave function
x»A(R) is characterized by the energy,,<0 and is nor-

m malized b
= \/2ﬁnzo.1Jﬁ<1 for n<10. (19 Y
0

Expanding the exponerai“dFﬂ in the muon integral in a
series and keeping only the dipole term one has

f x2A(R)AR=1. (25)

In quasiclassic approximation the radial functiogs, ,

- - > XA IN a classically approachable region look like
f dr,ue Iqrﬂcpn’j’(r,u)@nj(ry,) .

Cl fR ’77')
e .- s R)= —=co P(x)dx——/1,
=i | dFey; (Nien()=—iGD. (@0 X (R~ 5y 5( L Pdx=5
Inserting Eqs(18) and(20) into Eq. (1»7) and separating the C,=2JP(»), a<R, (26)
main contribution to the integral ovey one obtains
. C R
3 . KD g gr Xur(R)= ——=—co f P’ (x)dx— =,
Vfi(R):—4les?e' , (21 P'(R) a' 4
i i i M
The larger is thek value the more accurate is equati@1). C,=2 _w, 27

When calculating the integral ov& in Eqg. (16) we use 2

the integrand expansion in spherical harmonics, as well as a
guasiclassical approximation to describe the radial wave
functions of the relative motion of the nucléhe adiabatic w=2m
potentials corresponding to the excited states of the muonic
atom satisfy the validity condition for the quasiclassical ra-

dial mot|on[_16]). o . ] a’, b are left and right turning points in the classical motion
_The functlonFQ(R) isa solutlon_ of a single-channel scat- of the nuclei with energy, ., M is reduced mass of the
tering problem with the asymptotics “plane wave outgo- system:

ing spherical wave” with a well-known partial expansion

-1

b dx

ZMJ , a'<R<b. (28
a’P’(x)

Herew is a circular frequency of the molecular oscillations,

[17): M~i=(M;+Mj) 1+ M, 1, (29)
.1 — i
F (R =—— NN+ Dexdi s R)P, (N.Na), M., M, are the masses of the nucll,; is a meson mass
o(R) 2pR =0 ( Jexpi 6 X (RIPA(NpNR) (in our caseM;=M,=M,, M3=M,, the electron mass is
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1
e(R)=35[eg(R) +ey(R)]. (37)
g E Heree, ,(R) are the even and odd terr(term indices omit-
\ % ! ted), S(R) is the screening correction, which takes into ac-
1 €

n count the effect of the electron cloud of the target atom upon
the interatomic potential in the input channel. Introducing the
collision energys and the energy of the molecular lewg),

U/(R) by equationgsee Fig. 2

Ag, e=E;—¢e,, e, =Ey—e, (39

§~

one can write the radial momenta as

P(R)=v2M[e—uy(R)], P’ (R)= \/ZM[SVA—Uz(Rz:]g-g)

Then, expanding the exponeé{fz'i in Eg. (21) into partial
waves,

L ; eMR= 47 1] ((KR)YEn(R) Yem(MR), M= KIK,
, m
a a b R (40)
FIG. 2. Energy scheme of the molecule formation during mesic . .
atom deexcitation. where j,(kR)= \/77/2kRJ€+1,2(kR). is a spherlc_al Bessel
function, one can obtain the reaction amplitude in the follow-

neglectedl Hereafter we shall use the reduced mass of thd"9 form:

muonmg as a unit mass, defined as follows: N
i N1

Mgi=— 2> Vam(2n+1)i e AYE(n
my =M My =M ML (30) 1= 4™ 2, VAT2A+ DI (g
Radial momenta which enter EqR6)—(28) are given by J . e
P(R)=V2M[E;—-U;(R)], P'<R>=¢2M[E2—UZ<R(>3],) X f dQr(KD)Y} (M) Yro(MR) Yem(NR).  (42)
1

where E, , are total energies of thpup system,Us , are Formula(41) is written in the laboratory system withzaaxis

potential energies with centrifugal term included, in the inputdirected along the vectap, the spherical harmonics being
and output channels, respectivébee Fig. 2. For the poten-  taken according to
tial energy the following equations hold:

.- 41
Uy AR)=Us )+ Uy AR), (32 PA(MaR) = \/ 253 1 ao(Me)- 42
1 1 The factor (25) enters the angular integral because the
Uy(®)=epn=— o2’ Up(®)=ep =~ o2’ dipole momenD depends omg via the Coulomb parabolic
functions ¢,;, defined in the molecular coordinate system
with the z axis directed along the internuclear axis, defined
Uy A*)=0, (33 by the vectorng(6,$). When calculating the angular inte-
2 gral in Eq.(41) one should expresB via spherical basis
- (N+1/2) : _
Us(R)=[en;(R)— &+ R ]S R)+—R2, (34)  vectors in the laboratory systej8]:
S(R)=e 2R(14 28R+ 26%R?), B=my/mo=m,, D_i:;,y,z Die'i=_ 2, doe” 43

(35
, Heree’ ; are Cartesian basis vectors of the molecular coordi-
(A+172) (35 nate systeme’ ,=ng, while e* are spherical basis vectors of

u (R):S r'/(R)—E /+R_l+ y N N
2 " " R? the laboratory systerreoznp,

062501-4



MESIC MOLECULE FORMATION IN COLLISIONAL . .. PHYSICAL REVIEW A 68, 062501 (2003

do=—D,sin6+ D,cosé, (44  The angular integration ovél(ng) andQ(n,) is performed
with standard techniquEl8]. Omitting the cumbersome in-
e*id _ termediate formulas, one can obtain the final expression for
dil:IW[Dx(l_l— cosf)+D,sing]. (45 the rate of the reaction in question reduced to the liquid-
hydrogen density as
Cartesian components of the dipole mombgt D, D, %
are calculated as matrix elements of the radius vector Noa=Te {(Noad) °——(2A +1)

=(x,Y,2) in the molecular coordinate system for a transition vle

between given parabolic states;(n,,m) and (h;,n,,m’),

A )
e.g., X ;o

n=-A

)

> (2n+1)ireld
A=0

2

DX: j dF@nrle@nj . (46) (53)

A A
X 2 apGly(kp)
'=€+1

Their values can be found by formulas given in Ref9].
The calculations showed that the matrix elemd@ys D, are  where 7,'=4.134x10s ™!, Nya2=0.63x10"2, N,
real, andD,=iD, is purely imaginary. This property was =4.25x10?2 cm 2 is the liquid-hydrogen density is the

used when deriving Eq¢44) and (45). relative velocity of the nuclei in the initial state, is the
velocity of the ejected electrony is the frequency of the
Ill. REACTION CROSS SECTION molecular oscillations. The phase shift is determined by

. . . S the formula[17
The differential cross section of the reaction is given by a ula[17]

well-known formula[17] R R
8= |imU P(x)dx—f dxy/p?—(N+1/2)%/x?|,
Roo| Ja ap
mek , dQy . (54
(2m)?
(470 wherea, is the left turning point for the classical motion of
the particle with momentunp and angular momentum
The energy¢ of the system comprising atom and mesic atomwithout the field, the radial momentuf(x) being defined
is related to the enerdy of the (pup) complex and electron by Eq. (39).

2 )
dU:T“Vlfil o&E—&) M|

@m® v

energye, as follows: The coefficientsa,, have nonzero values only fdr' =¢
-+
E=E;—le, &=E,+e,, (48) ’
. €(2¢€-1) (€+1)(2¢+3)
where —1, and ¢, are the energies of the bound and free 1=\ 51 =N op51
electron, respectively. (55)

Since the molecular state is degenerate over the angular-
momentum projection, the cross section for the transition to e factorst(", appear from angular integrations and

the stater, A is given by a formula can be written as follows:
mk &
do=—1 > [M£[2dQ,. (49) GMi=> CM (h,Dy+f,D,),
Ay p=-A o R
Electron momentunk is obtained from the energy conserva- m;=q+o, q=M-u, M=-0, o0=0,%=1,
tion &=&; and the energy schentEig. 2): (56)
Age=get|o=E;—E,=g ,+e—&5—£,,. (50) wherecgibﬁ are Clebsh-Gordan coefficients,
Taking into account that,, <0 and introducin )= 2
g A P =en hey==3 BLaal(L), fer=3Bisy,

—&p one has

ee=Apy—letet|e,n], k=v2mee.. (51

For slow collisions ¢<1 eV) and transitions to the molecu-
lar states withv>1 (such transitions are the most probable
the electron momenturkis practically inde — L" ~L sL'd LM d _ (~do

. P y pendent of and Bim= 2 C)\(’CL'AC)\OK’qCL’qu. + Car=Caoho "
€, SO One may write L’

ge=Apy—le. (52 I(L)=ay[1(L)—BLIx(L)],
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minus process, in which the nuclei in the final state are
bound. It is seen that the results of both papers are in a
reasonable agreement. Our calculations of the rates of the
Coulomb deexcitation for excited muonic hydrogen result in
AP=1.4x10" s ! and 5.1x10'°s ! for n=5 and 4, re-
spectively, for a collision energy of 0.04 eV. So, at least for
n=>5 the molecule formation rates are much larger than the
Coulomb deexcitation. A considerable drop of the formation
rates fore>0.1 eV is naturally explained by the decrease of
the probability for the nuclei in the final state to be bound,
when the collision energy increases.

The bound state in which the system appeared could de-
cay either via predissociatioiCoulomb deexcitation

(PuP)n—(Pu)pr+p, n'=n"—1 (60)

or via the external Auger ionization

(PP)n+Ho— (Pu)yr+H; +e. (61)

If the binding energy of the quasimolecul@gp), is
smaller than the thermal energy, the molecule can decay in
quasielastic collisions with target molecules,

FIG. 3. Typical dependence of,, on v and A for (022)

—(021) transition at the collision energy ef=0.04 eV. (pmpP)p +Ho— (pu)y +p+H,. (62
a =[2L(L+1)(2L+1)]"? B.=L(L+1), In this case the mesic atoms do not accelerate. As a rule, in
the states where the molecule formation rate has a maximum,
+1 xdx the average binding energy of the quasimolecule amounts to
l(L)= N PL(X), about several tenths electron volt, so the quasielastic mecha-
- —X

nism has low probability.
If the system in the final state represents a quasimolecule

—
—
'

I2(L):fjlldx\/1—x2PL(x),

w
[4(L) Vtielng zero for.ev_em, I,(L) being zero for odd.. At < i / n=>5
last, I, ,, are the radial integrals of the following type: 10 e e SN
vA b — BR~ ~ . C > 5
e (Kp)=] dRe "7 xpy(R) x,a(R)j e (kR), (57) [ %
a e
11 o \n=4
10 s s .
Ton(R) = — cos( fRP(x)dx W) (58) o e :
XPX - R e R
VP(R) a 4 N X
. \
Yon(R) = — s(fRP( )d W) (59 10
’ = ——C0 "(X)dx——]. 10
XvA PR o 4
All variables are taken here in mesic atom unifs=(e
= m0= 1) .
IV. RESULTS AND DISCUSSIONS 10 -3 10 2 10 -1 1 10
A typical dependence of the,, on v andA is shown in e (ev)

Fig. 3 for (022)-(021) transition at the collision energy FIG. 4. Energy dependence of the mesic molecule formation
=0.04 eV. A distinct maximum in both variables is clearly rates via Auger collisions fon=4 and 5. The solid lines show the
seen. rates of the “Auger-minus” process calculated in RgT]. The

The reaction rates are shown in Fig. 4 together with thesircles are the results of the present paper, the dashed lines join
results of the semiclassical calculatiof® of the Auger- them just to guide the eye.
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comprising the excited mesic atom and hydrogen molecular Summing up, one may state that the data obtained cor-
ion (pu)nH, , or (pup). H, the internal Auger process is roborate the conclusion made in Rig] about the possibility
also possible. In this case, as it was shown by Menshikowf the considerable acceleration of the mesic atom during the
[11], mesic atom acquires some part of the muon energyAuger transition. As a result, thew atoms in the final state
accelerating up to energies about 1 eV. acquire the kinetic energypﬂ~1/m’(n’—1)2, which is a

The predissociation process E(0) leads to a two- half of the transition energy for the transitiorf —n’'—1.
particle decay, in which the deexcitation energy transformd=or n’=4, when the Auger process starts from the state
into the kinetic energy of the fragments because of the Cou=5, €,,~70 eV. This effect should be taken into account in
lomb repulsion of nuclei. the cascade calculations of the mesic atom kinetics.
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