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Reversible state transformations under entanglement nonincreasing operations give rise to entanglement
measures. It is well known that asymptotic local operations and classical communi¢a®io) are required
to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and
multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more
powerful versions of state transformatiof@r reducibilitieg, namely, LOCCqg(asymptotic LOCC with a
sublinear amount of quantum communicajiaand CLOCC (asymptotic LOCC with catalysishave been
considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as
asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite
entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-
Rosen pair shared by some pair of parties andiaagucible mparty pure stateri=2) can be used to create
any other statépure or mixed using LOCC. We consider applications of multipartite entanglement gambling
to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We
briefly consider generalizations of this result to mixed states by defining the class-distillable statesi.e.,
states from which cat statef0¢™)+|1*™)) may be distilled.
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INTRODUCTION states a more powerful class of operations will be needed to
quantify entanglement using the idea of reversible state
Entanglement is a fundamental aspect of quantum metransformations under entanglement nonincreasing opera-
chanics. It has been found useful for various informationtions. To this end Bennett al. [7] have defined more pow-
processing tasks such as teleportafibj) superdense coding erful, yet reasonable versions of state transformationse-
[2], entanglement assisted classical and quantum communilucibilities), namely, LOCCq(asymptotic LOCC with a
cation[3,4], quantum algorithm§5], and quantum cryptog- sublinear amount of quantum communicaji@md CLOCC
raphy[6]. Because of its fundamental role in quantum theory(asymptotic LOCC with catalysisin this paper we look at
and its use as a resource in quantum information processingOCCq state transformations and show that LOCCq state
it is important to quantify it. transformations are only as powerful as asymptotic LOCC
An operational way to quantify entanglement is to studystate transformations for multipartite pure states.
reversible state transformations induced by entanglement The paper is organized as follows. In Sec. | we consider a
nonincreasing operatior{§]. For bipartite pure states it is generalization of entanglement gamblifj from two par-
well known that asymptotic local operations and classicakies to multiple parties: Any pure multipartite entangled state
communication(LOCC) are required to get a simple opera- can be transformed to an EPR pair shared by some pair of
tional measure of bipartite pure state entanglement. Howparties and that any nontriviak-party (m=2) pure state can
ever, bipartite mixed state and multipartite entanglemenbe used to create any other stgtere or mixed, using only
(pure and mixed stateare not completely understood. For LOCC. This is the basic tool we use to prove our main result
example, several different measures of entanglement aig Sec. Il. Finally, in Sec. Il we look at some applications of
known for bipartite mixed states: The entanglement of for-multipartite entanglement gambling to distillability and char-
mation, distillable entangleme8,9], and relative entropy acterizations of minimal entanglement generating sets. We
of entanglementl0]. Further, it has been provédll,12 that  also consider generalizing our main results to mixed states,
under asymptotic LOCC state transformations, the amount dfy defining the class ofat-distillable statesHere m-partite
Einstein-Podolsky-RosefEPR pairs required to create cer- cat states are states lik@¢™)+|1™)) and cat-distillability
tain bound entanglefll3] states cannot be recovered again,means the possibility of obtaining cat states from a given
thus showing that reversible asymptotic LOCC state transforstate using asymptotic LCC state transformations.
mations do not give us a simple measure of entanglement in
general. Thus, for bipartite mixed states and multipartite | MULTIPARTITE ENTANGLEMENT GAMBLING
Bennett, Bernstein, Popescu, and Schumacher introduced
* Also at Mathematical Sciences Research Institute, Berkeley, CAthe idea of bipartite entanglement gambling in ReéX. It
USA,; electronic address ash@msri.org, thaps@cs.berkeley.edu involves the production of an EPR paiE&|00)+|11))
"Electronic address: smolin@watson.ibm.com with a nonzero probability using local operations and classi-

1050-2947/2003/68)/0623246)/$20.00 68 062324-1 ©2003 The American Physical Society



A. V. THAPLIYAL AND J. A. SMOLIN PHYSICAL REVIEW A 68, 062324 (2003

cal communication(LOCC), starting from any other en- where£ is a multilocally implementable quantum operation
tangled pure state. Let us review the bipartite entanglemerguch that t£(¥)=p. This means that a copy @ may be
gambling protocol. Consider an arbitrary entangled pureobtained from a copy off with probability p by LOCC
state¥ shared byA andB. It is well known that a bipartite  operations. Whep=1 the transformation is said to be exact.
pure state can always be written in a Schmidt decompositioAgain, here the success or failure of the transformation is
reported as classical information. L& denote the set of

« AR bipartite pure entangled states, then the bipartite entangle-
|‘I’>:§1 ai%i®), ) ment gambling result can be expressed as
wherek=2 anda;>0 since the state is entangléi) form Vye&,, 3 p>0, y—E®P. (3

an orthonormal basis foA and |iB) form an orthonormal
basis forB. Now A and B can apply the local projectors Here = represents an EPR pair.

PAB=]0~B)(0MB|+|14B)(1~B| on their halves of the A generalized version of stochastic transformations is ob-
state. This produces state tained if we allow a finite number of copies of the source and
target states. We say stafe is multicopy stochastic LOCC
g1 =c|00) +d|11) transformable to state® with yield p, written as

W — | occ®®P (or simply as¥ — ®®P), if and only if
with probability p=a2+ a3, where

o LT
3 £,m,n, suchthath®"'=—— 4

C—Fandd—g. trE(\P®m)

Then Alice applies the local quantum operation given by thevhere£ is a multilocally implementable quantum operation

completely positive map with elemehts such that tZ(W)=pm/n. This means thah copies of®
may be obtained fronrm copies of¥ with yield p per copy

A;=d|0){0|+c|1)(1], by LOCC operations. Again, here the quantum operation

must tell us whether the transformation succeeded or failed.

A,=+1—d?|0)0|+ V1—c?|1)(1], Let us return to bipartite entanglement gambling again. It

gives us an EPR pair with positive probability starting from

then the outcome corresponding Aq gives an EPR pair any entangled pure state. Since EPR pairs can be used in a
with probability 2c2d2. Thus the total success probability for teleportation protocol to create an arbitrary bipartite state,
the whole process is é#a2)/(a2+a2) which is nonzero. clearly any bipartite pure entangled state may be converted
Thus any pure bipartite entangled state can be converted £§ any other bipartite state with a positive probability. Notice
an EPR pair with non-zero probability. Note that the succeséhat this protocol will in general require multiple copies of
or failure of the transformation is reported to us as classicaih® source state since the target state may be a state with
information about which outcome actually occurs. hlgher_ Schmidt numt_)er. Thu_s a stronger version of blpartlte

Let us now write the above result in the notation for state9ambling can be written using the language of multicopy
transformations used by Ref7].2 We first need to briefly ~Stochastic state transformations as
review the notation. We start with state transformations for
one copy of a state involving probabilistic outcomes, where V ye&, I p>0,0— %P, (5)
the procedure may fail some of the time but we know when

it fails. This is known as a stochastic state transformation. \ynere &, denotes the set of bipartite pure entangled states
We say a stat&’ is stochastic LOCC transformabte ® 514 ¢ is any bipartite state, pure or mixed.

with yield p, written as W — occ®“P (or simply asW¥ Now let us consider the multiparty scenario: There rre
—®°P) if and only if parties (n=2) labeled ag1,2, ... m}. Given a nontrivial
L(W) subietX of the parties and its co_mplemeﬁ' we say that

3L, suchthaid= TL(P)’ (20 {X,X} defines aut betweenX andX. We say that pure state

V¥ is factorizableacross the cuX, X} if ¥ can be written as
a tensor product of two states, one with the parties inXset

This map can be physically implemented by Alice teleporting@nd the other with the parties in the complemxnti.e., ¥
half of the given state through a non-maximally entangled pure= ¢*® yX. We say that a pure state émtangledif it is not
stated|00)+c|11) in her lab. factorizable across some cut, or equivalently, a separable

2In Ref. [7] state transformations are also called as reducibilities:
If ¢ is transformed tap we can say that the problem of creatigg

is reducible to the problem of creating This provides the intu- 3A multilocally implementable quantum operation is a represen-
ition behind the name reducibility. In this paper we will use the tion of a multipartite LOCC protocol as a completely positive linear
state transformations language instead of reducibilities. map.
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pure state is factorizable across all ctitle define a pure erate any othem-party state(pure or mixed with positive
state to bearreducibleif it is not factorizable across any cut. probability using the multicopy stochastic LOCC operations.
Thus an irreduciblen-party pure state captures the notion of We prove this by showing that we can get an EPR pair be-
a truem-party state. tween every pair of parties from any irreducibiepartite

It turns out that for multiple parties, gambling can be pure state. Then using teleportation, any other state can be
generalized in different ways. First we generalize the weakegenerated from these EPR pairs. We state this result below.
result shown in Eq(3). In this case we show that an en-  Theorem 1If state¥ is an irreduciblen-partite state then
tangled pure multipartite state can be transformed undefor any two parties say; and P, there existgp>0, such
LOCC to an EPR pair between some pair of parties. Wethat
write this as a lemma.

Lemma 1.If state ¥ is an m-partite pure state that is
entangled across the ciffi },{i2.is, . . . im}} thenthere ex- \yhere ZP1P2 represents an EPR pair shared by parfes
ists p>0 and two parties, saf; andP,, such that andP,.

Proof. To prove this we argue by induction on the number
of partiesm. The first nontrivial case is whem=2. Since
the state is irreducible, it is an entangled bipartite state and
we get the result directly from Lemma 1. Assuming the result
to be true fom<k, we show that it is true fom=Kk. Since
X A ; ¥ is irreducible, by Lemma 1 we can stochastically get an
The first nontnwal case is Whem=2. Here the entangle—. EPR pair between some two parties, s&yand B. If these
ment gambling protocols we discussed in the Introduc':tlor'tWO are the required partie®; and P, then we are done.
guarantee the result. So let us assume that the result is trge o oo by teleportation through these EPR pairs, the par-

fo_r m<Kk. .We need to prove that it is true fon= k_>2' FOr {iesA andB can implement any operation they could if they
this we will use the idea of entanglement of assistdli&:  \yere in the same lab. Thus we can look on them as forming

We let A=i,; be the helperB=i, be the first party, and . ~
{isi il}=C be thep(compésite second pgrtyy Con- & composite party, sayh. Then we have reduced the prob-
804y e m ' lem to them=k— 1 partite case, thus proving the result.

sider the entanglement of assistance®f. If it is zero then
the result on zero entanglement of assistance from [RBf.

¥ (EP1P2) 9P, ()

¥ — (EP1P2)°P, (6)

where ZP1P2 represents an EPR pair shared by parfigs
andP,.
Proof. We argue by induction on the number of partias

implies that eitherpBC=pB®|z,b°>(z,bC| or pBC=|l/IB><l//B II. THE POWER OF A LITTLE QUANTUM

|@pC. Then either¥ = y"Bo ¢y or ¥=y @ ¢B. In the COMMUNICATION

first case, sinceW¥ was ientangled across the partition |n this section we will define the notions of asymptotic
{{is}diz2.is, ... it} ¥'1'2 has to be entangled, thus re- L OCC and LOCCq state transformations and then prove the

ducing it to the bipartite case. Similarly, for the second casenain result: For pure states asymptotic LOCCq transforma-
g'r'soim must be entangled across the cuttions are only as powerful as asymptotic LOCC transforma-
{{i.}+{is, - .. .imt}, which by the induction hypothesis can tjons.

give an EPR pair between some two parties. If the entangle- \we first consider asymptotic LOCC state transformations.
ment of assistance is not zero, theean helpB andCto get  State is said to beasymptotically LOCC transformabte

(with finite probability an entangled statg°C, i.e., state  stated, written asW¥~+ occ®, or simply as¥~®, if and
g'2's-im that is entangled across the partition only if

iz} {is, ... imt}. This, by the induction hypothesis, can )
give an EPR pair between some two parties. Thus the result vV 6>0, €>03 n,n',L,
is proved. ,
Note that the result does not require multiple copies of the [(n'/n)—1]<6, FL(P®M),0°M)=1-€.  (8)

starting state. For proving the above result we used the nec- . : .
essary and sufficient condition for a state to have zero en-€'€ £ is @ multilocally implementable superoperator that

tanglement of assistance. It is quite reasonable that the efONVertsn copies of¥ into a high fidelity approximation to
tanglement of assistance would be useful for a multipartitd] COPies of®. We will refer to the condition om andn’ as
scenario, since the motivation for it relies on a three-party"€ d-condition and the condition on the fidelity as,the
scenario. e-condition. Note that thé-condition says that the andn

Now we generalize the stronger version of bipartite en-c@n differ only sublinearly withn for large n. Thus
tanglement gambling shown in E¢4). The generalization asymptotic reducibility captures the possibility of state trans-

involves showing that any irreducibie-party state can gen- for_mations as_the number pf source.and target cqpies tends to
infinity, allowing a little imperfection and a little loss.

Asymptotic reducibilities can have noninteger yields. This
can be expressed using tensor exponents that take on any

In fact, any statépure or mixed which is factorizable across all non-negative real value, so that® Y~ d ©X denotes

cuts is separable since it has to be of the fgsmp,;®p,®---

®pm- A (fully) separable mixed state is a correlated mixture of Y 6>0,e>0, dn,n', L,
separable pure states= Zipipi,®pi 8 @p; . )
5This lemma was independently proved[i]. [(n'/n)=xly|< 8, F(L(PEM),®®")=1—€. (9
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In this case we say/y is the asymptotic efficiency or yield —n’is o(n). For an arbitrary yield, we just chang&®" to

with which @ can be obtained fror¥. Note that ify— ¢“P eIVl i the e-condition of the above definition.

then ¢~ »®P because of the concentration results for the Clearly ~ occ implies ~ occq because as discussed
binomial distribution with probability of succesS.This jus-  apove asymptotic LOCC state transformation is a special
tifies the notation used while writing the stochastic statecase of LOCCq state transformations. An important question
transformations. In our proof of the main result, we will only j5 yhether LOCCq state transformations are stronger. It turns
consider transformations with unit yield for simplicity. The oyt that LOCCq state transformations are not stronger than
extension of the result to noninteger yields is trivially ob- asymptotic LOCC for pure states. This constitutes our main
tained by replacing the unit yield by any arbitrary yield.  ragylt.

A stronger version of asymptotic state transformations is e start by showing that under asymptotic LOCCq state
obtained if we allow a sublinear amount of quantum commuransformations a state that is factorizable across some cut
nication during the transformation process in addition to thésan only give rise to states that are factorizable across that
LOCC operations. This is called as an asymptotic LOCCoyt. \We prove this in the following lemma.
state transformation. We say staté is asymptotically Lemma 2.Given stateV that is factorizable across the
LOCCq transformable to state, written as¥ ~~ | occ P (or partition {X,X} and that¥~ oceq®, thend must be fac-

simply W~ ®), if and only if torizable across the same partition.
VY 6>0, >0 3 nk L, Proof. This is essentially a two party problem, wixhand

X as the two compound parties. We argue by contradiction.

Supposed was nonfactorizable across the partitip, X}
with bipartite entanglement>0. Thenn copies of® would
have a linear amoumtx of bipartite entanglement across the
\Af)'artition. However, sinc& has no entanglement across the
partition and since LOCCq protocols only allow a sublinear
o(n) ] amount ofm-partite cat states along with LOCC, they
annot increase the entanglement across the cut by a linear
amount. Thus, no asymptotic LOCCq protocol can give rise
to @ starting fromV.
Now we prove that for irreducible pure states, asymptotic
LOCCq and asymptotic LOCC are equally powerful.
Lemma 3.For an irreduciblem-partite pure statel and
any arbitrary stateb,

(k/in)< s, FL(I®keWPeM) d®M=1—¢, (10

ing a sublinear amounp(n) of quantum communication,
since they can be used as described7into generate EPR
pairs between any two parties, which in turn can be used t
teleport quantum data between the parties. ©f®) quan-
tum communication allows the definition to be simpler in
one respect: A single tensor powercan be used for the
input stateV and output stateb, rather than the separate
powers n and n’ used in the definition of ordinary
asymptotic LOCC reducibility without quantum communica-
tion, because ang(n) shortfall in number of copies of the
output state can be made up by using the cat states to syn- Vs oced® SV~ | occd. (12)
thesize the extra output statee novo This definition is d
more natural than that for ordinary asymptotic LOCC reduc-
ibility in that the input and output states are allowed to differ
in any way that can be repaired by afn) expenditure of
guantum communication, rather than only in the specific w
of being n versusn’ copies of the desired state wheme

Proof. Since ¥ is irreducible, it is cat distillable from
theorem 1. Hence we can usén) copies of ¥ to generate
o(n) copies of them-partite cat state by LOCC, which we
Aean use for theo(n) quantum communication required for
LOCCq. Since onlyo(n) extra copies ofV' are required than
the LOCCq protocol, this does not change the yield asymp-
totically, and hence the LOCCq protocol can be simulated by
“an LOCC protocol. This proves the result.

Now we are ready to combine the results from the above
mmas to prove the general result as the theorem below.
Theorem 2For m-partite pure stated and®,

Swe outline the proof for the single copy stochastic transforma
tions. The multicopy case is similar. We start witltopies of state
¥ and to each we apply the stochastic state transformation. WFe
want n’=(1-n"Y3np copies of ® which gives the required
asymptotic yieldp. Let X be the number of successful stochastic
transformations. When we have=n’ then we declare it a success
and keep only' of these and the outputhg:q)@”'; otherwise we
output some unentangled state, spy, Thus the output density
matrix is L(V ") = p=psps+ Psps , Wherepg/p; is the probability
of success/failure. Now, the fidelity of the outputﬁip,d)@”’)
=pF(ps, " )=1—expn3p/2), using the Chernoff bound
Proff X<(1—A)u]<exp(uA?2), u being the expectation of.

By choosingn large enough the fidelity can be made arbitrarily
good, as required for the-condition. Also note thatn’/n—p|

=p/n*®which can also be made arbitrarily small by choosing large. ; ) .
n, thus satisfying th&S-condition. Since both the and §-condition irreducible, then Theorem 1 a'°”9 with Lemma 3 gives us
can be satisfied by making large enough, they can be simulta- e _result. Otherwisel is factorizable across some cut

neously satisfied, thus giving the result. {X,X}. Then Lemma 2 implies thab is factorizable across

W Loced®@ W~ occ®- (12

Proof. We argue by induction on the number of parties
Consider the first nontrivial cage=2. If ¥ is irreducible,
then Theorem 1 along with Lemma 3 gives us the result. If
¥ is factorizable, in this case a product state, then by Lemma
2, ® must be a product state too and thus can be created
trivially by LOCC operations. Now let the theorem be true
for all m<k, then we show that it is true fan=k. If ¥ is
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the same cut, i.,eP=¢3® 5. Applying this theorem for cut of parties{X,X}. Then it cannot be cat-state distillable
m<k, to the stateséi( and ¢,§ we have the result. because that would imply that a separable bipartite state can
Thus we have shown that asymptotic LOCC and LOCCcPe made into an entangled one with LOCC operations, which
state transformations are equivalent for pure states. Let u¥e know is impossible. Thus only irreducible states can be
now turn our attention to an application of entanglementcat distillable. Then Lemma 1 shows that any irreducible
gambling to multipartite distillability. pure state is cat distillable. Putting these together we see that
a pure state is cat distillable if and only if it is irreducible.
IIl. ENTANGLEMENT GAMBLING AND MULTIPARTITE But dropping the requirement of reversibility still gives a
DISTILLABILITY qualitative broad picture of multipartite entanglement. This is
analogous to classifying bipartite mixed states as distillable
In this section we will briefly study some implications of and undistillable to get a coarse-grained measure of distill-
the entanglement gambling result to the notion of distillabil-able entanglement. In this light, the result is very satisfying
ity in multipartite systems. Distillation of multipartite en- because it says that if we allow ourselves to waste entangle-
tanglement has already been considered in Réf8-18, ment during transformation of states, then any irreducible
but the issues we discuss here are related to the definitions efate is equivalent to any other, and is more powerful en-
distillability, rather than actual distillation protocols. tanglementwise than any factorizable state, thus giving a hi-
Since there are many different kinds of entanglement foerarchy of qualitatively different entangled states which fac-
three or more parties, one of the main problems with definingorize into irreducible parts of various sizés.g., for three
multipartite distillable entanglement is that it is not possibleparties 3-party cat state, EPR EPRC, EPF4).
to maximize over the yield of all those states, since one kind From the discussion above, a natural question is how to
of entanglement can in general be traded for another. Howdefine irreducibility for mixed states and whether an irreduc-
ever, we may easily generalize the notion of distillability ible mixed state is also cat-state distillable. If we define irre-
from the bipartite scenario to get the following general defi-ducibility as nonfactorizability then this obviously is false,
nition of distillability: We sayp is distillable if and only if  because that would imply separable but non-factorizable bi-
we can asymptotically transform it to a pure entangled stat@artite states could generate entanglement, which we know
with a nonzero yield. In symbols~ ¥ ®* for some positive cannot happen. The next thing to try is replacing the idea of
X, Wwhereys is some entangled pure state. factorizability with that of separability. So we say thtis

However it is more useful to have EPR pairs or cat stateseducible across a partitidiX, X} of parties if it is separable
as the target state to be produced in the distillation proceacross that partition. We say a state is irreducible if it is not
dure, since they can then directly be used for other informaseparable across any partition of the parties. This generaliza-
tion processing tasks. Thus, one may define EPR distillabilition is not useful because of the existence of bound en-
as: We sayp is EPRdistillable if and only if p~»W®* for  tangled states, that is, states which are inseparable but not
some positivex, whereW is an EPR pair between some pair distillable. The final idea is that we could generalize irreduc-
of parties. Similarly, one may define cat distillability except ibility to mixed states using distillability across cuts: We say
the target stat&’ is now required to be am-partite cat state  a state is irreducible if it is distillable across all cuts. Given
for m parties. this generalization of the definition, it is an open question

The relation between general distillability, EPR and cat-whether cat-state distillability and irreducibility are equiva-
state distillability is an interesting issue. In the bipartite caselent for mixed states, because Lemma 1 does not hold for
since any pure entangled state can be converted to an ERRixed states in generfil9,11].
pair, it turns out that EPR distillability and distillability are
identical. A natural question is whether this property is true
for multipartite states too.

Clearly if a state is EPR distillable then it is distillable  In this paper we have shown that asymptotic LOCC and
since it can be asymtpotically converted to an entangled pureOCCq state transformations are equally powerful for pure
state, namely, the EPR pair. Then the question remains abostates. An important question is whether LOCCq is more
whether distillability implies EPR distillability. To prove this powerful than asymptotic LOCC for mixed states. Obvi-
it suffices to show that any entangled multipartite pure stateusly, for cat(mixed states our result showing that the two
can give some amount of EPR pairs. This is precisely thénave equal power should hold since we can aée) cat
result of Lemma 1! Thus we can say thatrarpartite statep states to achieve(n) quantum communication. Thus, the
is distillable if and only if it is EPR distillable. open question is mainly regarding the mixed states that are

On the other hand, if a state is cat distillable it is alsonot cat distillable. This is an important future direction. One
distillable and EPR distillable, however the converse is nofpossible way to get the full mixed state result, just as we did
true in general. Cat-state distillable states are interesting bder pure states using induction, leads to the problem of how
cause they can generate all other states and hence formt@define irreducible mixed states such that they are cat dis-
minimal entanglement generating set, that is, a minimal seillable and at the same time would facilitate an inductive
of states that can generate any other state under asymptotegument.

LOCC. Since the reversibility of the state transformations is We have shown here that any irreduciljleonfactoriz-
not required, this is a very coarse-grained entanglement meable pure state is cat distillable, however our protocols are
sure. Let us consider a state that is factorizable across sonmet very efficient, and that was not the goal either. However,

DISCUSSIONS AND CONCLUSIONS
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in reality, we need cat-distillation protocols that are efficient.ratory, Air Force Material Command, USAF, under Contract
Finding such protocols is another important future directionNo. F30602-01-2-0524, from the USA Army Research Of-
fice, under Grant Nos. DAAG-55-98-C-0041, and DAAG-
55-98-1-0366, and support from IBM Research. J.A.S. ac-
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