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Multipartite entanglement gambling: The power of asymptotic state transformations assisted
by a sublinear amount of quantum communication
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Reversible state transformations under entanglement nonincreasing operations give rise to entanglement
measures. It is well known that asymptotic local operations and classical communication~LOCC! are required
to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and
multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more
powerful versions of state transformations~or reducibilities!, namely, LOCCq~asymptotic LOCC with a
sublinear amount of quantum communication! and CLOCC~asymptotic LOCC with catalysis! have been
considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as
asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite
entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-
Rosen pair shared by some pair of parties and anyirreducible m-party pure state (m>2) can be used to create
any other state~pure or mixed! using LOCC. We consider applications of multipartite entanglement gambling
to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We
briefly consider generalizations of this result to mixed states by defining the class ofcat-distillable states, i.e.,
states from which cat states (u0^ m&1u1^ m&) may be distilled.
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INTRODUCTION

Entanglement is a fundamental aspect of quantum
chanics. It has been found useful for various informat
processing tasks such as teleportation@1#, superdense coding
@2#, entanglement assisted classical and quantum comm
cation @3,4#, quantum algorithms@5#, and quantum cryptog
raphy@6#. Because of its fundamental role in quantum theo
and its use as a resource in quantum information process
it is important to quantify it.

An operational way to quantify entanglement is to stu
reversible state transformations induced by entanglem
nonincreasing operations@7#. For bipartite pure states it i
well known that asymptotic local operations and classi
communication~LOCC! are required to get a simple oper
tional measure of bipartite pure state entanglement. H
ever, bipartite mixed state and multipartite entanglem
~pure and mixed state! are not completely understood. Fo
example, several different measures of entanglement
known for bipartite mixed states: The entanglement of f
mation, distillable entanglement@8,9#, and relative entropy
of entanglement@10#. Further, it has been proved@11,12# that
under asymptotic LOCC state transformations, the amoun
Einstein-Podolsky-Rosen~EPR! pairs required to create ce
tain bound entangled@13# states cannot be recovered aga
thus showing that reversible asymptotic LOCC state trans
mations do not give us a simple measure of entanglemen
general. Thus, for bipartite mixed states and multipar
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states a more powerful class of operations will be neede
quantify entanglement using the idea of reversible st
transformations under entanglement nonincreasing op
tions. To this end Bennettet al. @7# have defined more pow
erful, yet reasonable versions of state transformations~or re-
ducibilities!, namely, LOCCq ~asymptotic LOCC with a
sublinear amount of quantum communication! and CLOCC
~asymptotic LOCC with catalysis!. In this paper we look at
LOCCq state transformations and show that LOCCq s
transformations are only as powerful as asymptotic LO
state transformations for multipartite pure states.

The paper is organized as follows. In Sec. I we conside
generalization of entanglement gambling@8# from two par-
ties to multiple parties: Any pure multipartite entangled st
can be transformed to an EPR pair shared by some pa
parties and that any nontrivialm-party (m>2) pure state can
be used to create any other state~pure or mixed!, using only
LOCC. This is the basic tool we use to prove our main res
in Sec. II. Finally, in Sec. III we look at some applications
multipartite entanglement gambling to distillability and cha
acterizations of minimal entanglement generating sets.
also consider generalizing our main results to mixed sta
by defining the class ofcat-distillable states. Herem-partite
cat states are states like (u0^ m&1u1^ m&) and cat-distillability
means the possibility of obtaining cat states from a giv
state using asymptotic LCC state transformations.

I. MULTIPARTITE ENTANGLEMENT GAMBLING

Bennett, Bernstein, Popescu, and Schumacher introdu
the idea of bipartite entanglement gambling in Ref.@8#. It
involves the production of an EPR pair (J5u00&1u11&)
with a nonzero probability using local operations and clas

,
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cal communication~LOCC!, starting from any other en
tangled pure state. Let us review the bipartite entanglem
gambling protocol. Consider an arbitrary entangled p
stateC shared byA andB. It is well known that a bipartite
pure state can always be written in a Schmidt decomposi

uC&5(
i 51

k

ai u i Ai B&, ~1!

wherek>2 andai.0 since the state is entangled.u i A& form
an orthonormal basis forA and u i B& form an orthonormal
basis forB. Now A and B can apply the local projector
PA/B5u0A/B&^0A/Bu1u1A/B&^1A/Bu on their halves of the
state. This produces state

c15cu00&1du11&

with probability p5a1
21a2

2, where

c5
a1

p
andd5

a2

p
.

Then Alice applies the local quantum operation given by
completely positive map with elements1

A15du0&^0u1cu1&^1u,

A25A12d2u0&^0u1A12c2u1&^1u,

then the outcome corresponding toA1 gives an EPR pair
with probability 2c2d2. Thus the total success probability fo
the whole process is (2a1

2a2
2)/(a1

21a2
2) which is nonzero.

Thus any pure bipartite entangled state can be converte
an EPR pair with non-zero probability. Note that the succ
or failure of the transformation is reported to us as class
information about which outcome actually occurs.

Let us now write the above result in the notation for st
transformations used by Ref.@7#.2 We first need to briefly
review the notation. We start with state transformations
one copy of a state involving probabilistic outcomes, wh
the procedure may fail some of the time but we know wh
it fails. This is known as a stochastic state transformation

We say a stateC is stochastic LOCC transformableto F
with yield p, written as C→LOCCF ^ p ~or simply as C
→F ^ p) if and only if

'L, such thatF5
L~C!

trL~C!
, ~2!

1This map can be physically implemented by Alice teleporti
half of the given state through a non–maximally entangled p
statedu00&1cu11& in her lab.

2In Ref. @7# state transformations are also called as reducibilit
If c is transformed tof we can say that the problem of creatingf
is reducible to the problem of creatingc. This provides the intu-
ition behind the name reducibility. In this paper we will use t
state transformations language instead of reducibilities.
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whereL is a multilocally implementable quantum operatio3

such that trL(C)5p. This means that a copy ofF may be
obtained from a copy ofC with probability p by LOCC
operations. Whenp51 the transformation is said to be exac
Again, here the success or failure of the transformation
reported as classical information. LetE2 denote the set of
bipartite pure entangled states, then the bipartite entan
ment gambling result can be expressed as

;cPE2 , ' p.0, c→J ^ p. ~3!

HereJ represents an EPR pair.
A generalized version of stochastic transformations is

tained if we allow a finite number of copies of the source a
target states. We say stateC is multicopy stochastic LOCC
transformable to stateF with yield p, written as
C�LOCCF ^ p ~or simply asC�F ^ p), if and only if

' L,m,n, such thatF ^ n5
L~C ^ m!

trL~C ^ m!
, ~4!

whereL is a multilocally implementable quantum operatio
such that trL(C)5pm/n. This means thatn copies ofF
may be obtained fromm copies ofC with yield p per copy
by LOCC operations. Again, here the quantum operat
must tell us whether the transformation succeeded or fai
Let us return to bipartite entanglement gambling again
gives us an EPR pair with positive probability starting fro
any entangled pure state. Since EPR pairs can be used
teleportation protocol to create an arbitrary bipartite sta
clearly any bipartite pure entangled state may be conve
to any other bipartite state with a positive probability. Noti
that this protocol will in general require multiple copies
the source state since the target state may be a state
higher Schmidt number. Thus a stronger version of bipar
gambling can be written using the language of multico
stochastic state transformations as

; cPE2 , ' p.0,c�f ^ p, ~5!

whereE2 denotes the set of bipartite pure entangled sta
andf is any bipartite state, pure or mixed.

Now let us consider the multiparty scenario: There arem
parties (m>2) labeled as$1,2, . . . ,m%. Given a nontrivial
subsetX of the parties and its complementX̄, we say that

$X,X̄% defines acut betweenX andX̄. We say that pure state
C is factorizableacross the cut$X,X̄% if C can be written as
a tensor product of two states, one with the parties in seX

and the other with the parties in the complementX̄, i.e., C

5fX
^ c X̄. We say that a pure state isentangledif it is not

factorizable across some cut, or equivalently, a separ
e

:

3A multilocally implementable quantum operation is a repres
tion of a multipartite LOCC protocol as a completely positive line
map.
4-2
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pure state is factorizable across all cuts.4 We define a pure
state to beirreducible if it is not factorizable across any cu
Thus an irreduciblem-party pure state captures the notion
a truem-party state.

It turns out that for multiple parties, gambling can b
generalized in different ways. First we generalize the wea
result shown in Eq.~3!. In this case we show that an en
tangled pure multipartite state can be transformed un
LOCC to an EPR pair between some pair of parties.
write this as a lemma.5

Lemma 1.If state C is an m-partite pure state that i
entangled across the cut$$ i 1%,$ i 2 ,i 3 , . . . ,i m%% then there ex-
ists p.0 and two parties, sayP1 andP2, such that

C→~JP1P2! ^ p, ~6!

where JP1P2 represents an EPR pair shared by partiesP1
andP2.

Proof.We argue by induction on the number of partiesm.
The first nontrivial case is whenm52. Here the entangle
ment gambling protocols we discussed in the Introduct
guarantee the result. So let us assume that the result is
for m,k. We need to prove that it is true form5k.2. For
this we will use the idea of entanglement of assistance@15#.
We let A5 i 1 be the helper,B5 i 2 be the first party, and
$ i 3 ,i 4 , . . . ,i m%5C be the ~composite! second party. Con-
sider the entanglement of assistance ofrBC. If it is zero then
the result on zero entanglement of assistance from Ref.@15#
implies that eitherrBC5rB

^ ucC&^cCu or rBC5ucB&^cB

u ^ rC. Then eitherC5cAB
^ cC or C5cAC

^ cB. In the
first case, sinceC was entangled across the partitio
$$ i 1%,$ i 2 ,i 3 , . . . ,i m%%, c i 1 ,i 2 has to be entangled, thus re
ducing it to the bipartite case. Similarly, for the second c
c i 1 ,i 3 , . . . ,i m must be entangled across the c
$$ i 1%,$ i 3 , . . . ,i m%%, which by the induction hypothesis ca
give an EPR pair between some two parties. If the entan
ment of assistance is not zero, thenA can helpB andC to get
~with finite probability! an entangled statecBC, i.e., state
c i 2 ,i 3 , . . . ,i m that is entangled across the partitio
$$ i 2%,$ i 3 , . . . ,i m%%. This, by the induction hypothesis, ca
give an EPR pair between some two parties. Thus the re
is proved.

Note that the result does not require multiple copies of
starting state. For proving the above result we used the
essary and sufficient condition for a state to have zero
tanglement of assistance. It is quite reasonable that the
tanglement of assistance would be useful for a multipar
scenario, since the motivation for it relies on a three-pa
scenario.

Now we generalize the stronger version of bipartite e
tanglement gambling shown in Eq.~4!. The generalization
involves showing that any irreduciblem-party state can gen

4In fact, any state~pure or mixed! which is factorizable across a
cuts is separable since it has to be of the formr5r1^ r2^¯

^ rm . A ~fully ! separable mixed state is a correlated mixture
separable pure statesr5( i pir i 1

^ r i 2
^¯^ r i m

.
5This lemma was independently proved in@14#.
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erate any otherm-party state~pure or mixed! with positive
probability using the multicopy stochastic LOCC operation
We prove this by showing that we can get an EPR pair
tween every pair of parties from any irreduciblem-partite
pure state. Then using teleportation, any other state ca
generated from these EPR pairs. We state this result bel

Theorem 1. If stateC is an irreduciblem-partite state then
for any two parties sayP1 and P2 there existsp.0, such
that

C�~JP1P2! ^ p, ~7!

where JP1P2 represents an EPR pair shared by partiesP1
andP2.

Proof. To prove this we argue by induction on the numb
of partiesm. The first nontrivial case is whenm52. Since
the state is irreducible, it is an entangled bipartite state
we get the result directly from Lemma 1. Assuming the res
to be true form,k, we show that it is true form5k. Since
C is irreducible, by Lemma 1 we can stochastically get
EPR pair between some two parties, say,A and B. If these
two are the required partiesP1 and P2 then we are done
Otherwise by teleportation through these EPR pairs, the
ties A andB can implement any operation they could if the
were in the same lab. Thus we can look on them as form
a composite party, say,Ã. Then we have reduced the prob
lem to them5k21 partite case, thus proving the result.

II. THE POWER OF A LITTLE QUANTUM
COMMUNICATION

In this section we will define the notions of asymptot
LOCC and LOCCq state transformations and then prove
main result: For pure states asymptotic LOCCq transform
tions are only as powerful as asymptotic LOCC transform
tions.

We first consider asymptotic LOCC state transformatio
StateC is said to beasymptotically LOCC transformableto
stateF, written asC LOCCF, or simply asC F, if and
only if

; d.0, e.0' n,n8,L,

u~n8/n!21u,d, F„L~C ^ n!,F ^ n8
…>12e. ~8!

Here L is a multilocally implementable superoperator th
convertsn copies ofC into a high fidelity approximation to
n8 copies ofF. We will refer to the condition onn andn8 as
the d-condition and the condition on the fidelity as th
e-condition. Note that thed-condition says that then andn8
can differ only sublinearly withn for large n. Thus
asymptotic reducibility captures the possibility of state tra
formations as the number of source and target copies tend
infinity, allowing a little imperfection and a little loss
Asymptotic reducibilities can have noninteger yields. Th
can be expressed using tensor exponents that take on
non-negative real value, so thatC ^ y F ^ x denotes

; d.0, e.0, ' n,n8,L,

u~n8/n!2x/yu,d, F„L~C ^ n!,F ^ n8
…>12e. ~9!

f
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A. V. THAPLIYAL AND J. A. SMOLIN PHYSICAL REVIEW A 68, 062324 ~2003!
In this case we sayx/y is the asymptotic efficiency or yield
with which F can be obtained fromC. Note that ifc�f ^ p

then c f ^ p because of the concentration results for t
binomial distribution with probabilityp of success.6 This jus-
tifies the notation used while writing the stochastic st
transformations. In our proof of the main result, we will on
consider transformations with unit yield for simplicity. Th
extension of the result to noninteger yields is trivially o
tained by replacing the unit yield by any arbitrary yield.

A stronger version of asymptotic state transformations
obtained if we allow a sublinear amount of quantum comm
nication during the transformation process in addition to
LOCC operations. This is called as an asymptotic LOC
state transformation. We say stateC is asymptotically
LOCCq transformable to stateF, written asC LOCCqF ~or
simply C qF), if and only if

; d.0, e.0 ' n,k,L,

~k/n!,d, F„L~G ^ k
^ C ^ n!,F ^ n

…>12e, ~10!

whereG5u0^ m&1u1^ m& denotes them-partite cat state. The
m-partite cat states used here are a convenient way of al
ing a sublinear amount,o(n) of quantum communication
since they can be used as described in@7# to generate EPR
pairs between any two parties, which in turn can be use
teleport quantum data between the parties. Theo(n) quan-
tum communication allows the definition to be simpler
one respect: A single tensor powern can be used for the
input stateC and output stateF, rather than the separat
powers n and n8 used in the definition of ordinary
asymptotic LOCC reducibility without quantum communic
tion, because anyo(n) shortfall in number of copies of the
output state can be made up by using the cat states to
thesize the extra output statesde novo. This definition is
more natural than that for ordinary asymptotic LOCC red
ibility in that the input and output states are allowed to dif
in any way that can be repaired by ano(n) expenditure of
quantum communication, rather than only in the specific w
of being n versusn8 copies of the desired state wheren

6We outline the proof for the single copy stochastic transform
tions. The multicopy case is similar. We start withn copies of state
C and to each we apply the stochastic state transformation.
want n85(12n21/3)np copies of F which gives the required
asymptotic yieldp. Let X be the number of successful stochas
transformations. When we haveX>n8 then we declare it a succes

and keep onlyn8 of these and the output isrs5F ^ n8; otherwise we
output some unentangled state, say,r f . Thus the output density
matrix isL(C ^ n)5r5psrs1pfr f , whereps /pf is the probability

of success/failure. Now, the fidelity of the output isF(r,F ^ n8)

>psF(rs ,F ^ n8)>12exp(n1/3p/2), using the Chernoff bound
Prob@X,(12D)m#,exp(2mD2/2), m being the expectation ofX.
By choosingn large enough the fidelity can be made arbitrar
good, as required for thee-condition. Also note thatun8/n2pu
5p/n1/3 which can also be made arbitrarily small by choosing la
n, thus satisfying thed-condition. Since both thee andd-condition
can be satisfied by makingn large enough, they can be simulta
neously satisfied, thus giving the result.
06232
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2n8 is o(n). For an arbitrary yieldy, we just changeF ^ n to
F ^ dyne in the e-condition of the above definition.

Clearly  LOCC implies  LOCCq because as discusse
above asymptotic LOCC state transformation is a spe
case of LOCCq state transformations. An important ques
is whether LOCCq state transformations are stronger. It tu
out that LOCCq state transformations are not stronger t
asymptotic LOCC for pure states. This constitutes our m
result.

We start by showing that under asymptotic LOCCq st
transformations a state that is factorizable across some
can only give rise to states that are factorizable across
cut. We prove this in the following lemma.

Lemma 2.Given stateC that is factorizable across th
partition $X,X̄% and thatC LOCCqF, thenF must be fac-
torizable across the same partition.

Proof.This is essentially a two party problem, withX and
X̄ as the two compound parties. We argue by contradict
SupposeF was nonfactorizable across the partition$X,X̄%
with bipartite entanglementx.0. Thenn copies ofF would
have a linear amountnx of bipartite entanglement across th
partition. However, sinceC has no entanglement across t
partition and since LOCCq protocols only allow a subline
@o(n)# amount ofm-partite cat states along with LOCC, the
cannot increase the entanglement across the cut by a li
amount. Thus, no asymptotic LOCCq protocol can give r
to F starting fromC.

Now we prove that for irreducible pure states, asympto
LOCCq and asymptotic LOCC are equally powerful.

Lemma 3.For an irreduciblem-partite pure stateC and
any arbitrary stateF,

C LOCCqF⇔C LOCCF. ~11!

Proof. Since C is irreducible, it is cat distillable from
theorem 1. Hence we can useo(n) copies ofC to generate
o(n) copies of them-partite cat state by LOCC, which w
can use for theo(n) quantum communication required fo
LOCCq. Since onlyo(n) extra copies ofC are required than
the LOCCq protocol, this does not change the yield asym
totically, and hence the LOCCq protocol can be simulated
an LOCC protocol. This proves the result.

Now we are ready to combine the results from the abo
lemmas to prove the general result as the theorem below

Theorem 2.For m-partite pure statesC andF,

C LOCCqF⇔C LOCCF. ~12!

Proof. We argue by induction on the number of partiesm.
Consider the first nontrivial casem52. If C is irreducible,
then Theorem 1 along with Lemma 3 gives us the result
C is factorizable, in this case a product state, then by Lem
2, F must be a product state too and thus can be cre
trivially by LOCC operations. Now let the theorem be tru
for all m,k, then we show that it is true form5k. If C is
irreducible, then Theorem 1 along with Lemma 3 gives
the result. OtherwiseC is factorizable across some cu

$X,X̄%. Then Lemma 2 implies thatF is factorizable across

-

e

e
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the same cut, i.e.,F5f1
X

^ f2
X̄ . Applying this theorem for

m,k, to the statesf1
X andf2

X we have the result.
Thus we have shown that asymptotic LOCC and LOC

state transformations are equivalent for pure states. Le
now turn our attention to an application of entanglem
gambling to multipartite distillability.

III. ENTANGLEMENT GAMBLING AND MULTIPARTITE
DISTILLABILITY

In this section we will briefly study some implications o
the entanglement gambling result to the notion of distillab
ity in multipartite systems. Distillation of multipartite en
tanglement has already been considered in Refs.@16–18#,
but the issues we discuss here are related to the definition
distillability, rather than actual distillation protocols.

Since there are many different kinds of entanglement
three or more parties, one of the main problems with defin
multipartite distillable entanglement is that it is not possib
to maximize over the yield of all those states, since one k
of entanglement can in general be traded for another. H
ever, we may easily generalize the notion of distillabil
from the bipartite scenario to get the following general de
nition of distillability: We sayr is distillable if and only if
we can asymptotically transform it to a pure entangled s
with a nonzero yield. In symbolsr C ^ x for some positive
x, wherec is some entangled pure state.

However it is more useful to have EPR pairs or cat sta
as the target state to be produced in the distillation pro
dure, since they can then directly be used for other inform
tion processing tasks. Thus, one may define EPR distillab
as: We sayr is EPR-distillable if and only if r C ^ x for
some positivex, whereC is an EPR pair between some pa
of parties. Similarly, one may define cat distillability exce
the target stateC is now required to be anm-partite cat state
for m parties.

The relation between general distillability, EPR and c
state distillability is an interesting issue. In the bipartite ca
since any pure entangled state can be converted to an
pair, it turns out that EPR distillability and distillability ar
identical. A natural question is whether this property is tr
for multipartite states too.

Clearly if a state is EPR distillable then it is distillab
since it can be asymtpotically converted to an entangled p
state, namely, the EPR pair. Then the question remains a
whether distillability implies EPR distillability. To prove thi
it suffices to show that any entangled multipartite pure s
can give some amount of EPR pairs. This is precisely
result of Lemma 1! Thus we can say that anm-partite stater
is distillable if and only if it is EPR distillable.

On the other hand, if a state is cat distillable it is al
distillable and EPR distillable, however the converse is
true in general. Cat-state distillable states are interesting
cause they can generate all other states and hence fo
minimal entanglement generating set, that is, a minimal
of states that can generate any other state under asymp
LOCC. Since the reversibility of the state transformations
not required, this is a very coarse-grained entanglement m
sure. Let us consider a state that is factorizable across s
06232
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cut of parties$X,X̄%. Then it cannot be cat-state distillab
because that would imply that a separable bipartite state
be made into an entangled one with LOCC operations, wh
we know is impossible. Thus only irreducible states can
cat distillable. Then Lemma 1 shows that any irreducib
pure state is cat distillable. Putting these together we see
a pure state is cat distillable if and only if it is irreducibl
But dropping the requirement of reversibility still gives
qualitative broad picture of multipartite entanglement. This
analogous to classifying bipartite mixed states as distilla
and undistillable to get a coarse-grained measure of dis
able entanglement. In this light, the result is very satisfy
because it says that if we allow ourselves to waste entan
ment during transformation of states, then any irreduci
state is equivalent to any other, and is more powerful
tanglementwise than any factorizable state, thus giving a
erarchy of qualitatively different entangled states which fa
torize into irreducible parts of various sizes~e.g., for three
parties 3-party cat state, EPRAB, EPRBC, EPRCA).

From the discussion above, a natural question is how
define irreducibility for mixed states and whether an irredu
ible mixed state is also cat-state distillable. If we define ir
ducibility as nonfactorizability then this obviously is fals
because that would imply separable but non-factorizable
partite states could generate entanglement, which we k
cannot happen. The next thing to try is replacing the idea
factorizability with that of separability. So we say thatC is
reducible across a partition$X,X̄% of parties if it is separable
across that partition. We say a state is irreducible if it is n
separable across any partition of the parties. This genera
tion is not useful because of the existence of bound
tangled states, that is, states which are inseparable bu
distillable. The final idea is that we could generalize irredu
ibility to mixed states using distillability across cuts: We s
a state is irreducible if it is distillable across all cuts. Giv
this generalization of the definition, it is an open questi
whether cat-state distillability and irreducibility are equiv
lent for mixed states, because Lemma 1 does not hold
mixed states in general@19,11#.

DISCUSSIONS AND CONCLUSIONS

In this paper we have shown that asymptotic LOCC a
LOCCq state transformations are equally powerful for pu
states. An important question is whether LOCCq is mo
powerful than asymptotic LOCC for mixed states. Obv
ously, for cat~mixed! states our result showing that the tw
have equal power should hold since we can useo(n) cat
states to achieveo(n) quantum communication. Thus, th
open question is mainly regarding the mixed states that
not cat distillable. This is an important future direction. O
possible way to get the full mixed state result, just as we
for pure states using induction, leads to the problem of h
to define irreducible mixed states such that they are cat
tillable and at the same time would facilitate an inducti
argument.

We have shown here that any irreducible~nonfactoriz-
able! pure state is cat distillable, however our protocols a
not very efficient, and that was not the goal either. Howev
4-5
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in reality, we need cat-distillation protocols that are efficie
Finding such protocols is another important future directi
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