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Characterization of the positivity of the density matrix in terms
of the coherence vector representation
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A parametrization of the density operator, a coherence vector representation, which uses a basis of orthogo-
nal, traceless, Hermitian matrices is discussed. Using this parametrization we find the region of permissible
vectors which represent a density operator. The inequalities which specify the region are shown to involve the
Casimir invariants of the group. In particular cases, this allows the determination of degeneracies in the
spectrum of the operator. The identification of the Casimir invariants also provides a method of constructing
quantities which are invariant underlocal unitary operations. Several examples are given which illustrate the
constraints provided by the positivity requirements and the utility of the coherence vector parametrization.
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I. INTRODUCTION

The density operator must satisfy three important requ
ments:~1! It must be Hermitian;~2! the trace of the density
operator, when appropriately normalized, must be 1;~3! it
must be positive semidefinite. The third of these requ
ments has been found to be vital in quantum informat
theory, and in quantum mechanics itself@1#. Perhaps the
most important place this has arisen is in the identification
positive and completely positive maps which can be use
identify entangled states@2,3# and to classify quantum chan
nels ~Refs. @4,5# and references therein!. For both of these
problems, but in particular the latter, a parametrization of
density operator is often useful. This provides an expl
way in which to identify when the channel is unital, tra
preserving, and/or completely positive~see, for example
Ref. @6#!. In addition, positivity requirements place restri
tions on physically realizable quantum transformations@7#.

Here we represent the density operator using a basi
orthogonal, traceless, Hermitian matrices. This represe
tion is the generalization of the Bloch or coherence vector
two-state systems which is commonly used~see Ref.@8#!.
While the geometry of the space of density operators
two-state systems is relatively simple, the geometry of
space of density operators for higher-dimensional system
considerably more complicated. The positivity~or more pre-
cisely, positive semidefiniteness! conditions are therefore
more difficult to express succinctly for higher-dimension
systems. The inequalities given in this paper give neces
and sufficient conditions for a Hermitian operator to be po
tive semidefinite.

This set of inequalities can be expressed in terms o
distinguished set of unitary invariants, the Casimir inva
ants. This is a particularly notable relationship since the
simir invariants are associated with the ‘‘good’’ quantu
numbers of a quantum system@9# and thus have direct ex
perimental interpretation. They specify the set of quantit
which are invariant under a given set of unitary transform
tions. This has found many important applications for mo
eling of physical systems, and more recently, in quant
control of spin systems@10#. In addition, the Casimir invari-
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ants and positivity requirements are expressed in terms o
coefficients of the characteristic polynomials. These coe
cients, and their ratios, were found to be entanglement mo
tones@11#. Entanglement monotones could provide some
sight into the problem of finding suitable entangleme
measures since they satisfy an important requirement of s
measures; they do not increase, on average, under loca
erations and classical communication@12#.

This paper can be divided into three main parts~excluding
the Introduction and Conclusion!. The first part gives the
generalized coherence vector representation of the den
operator and the Casimir invariants in terms of the cohere
vector. The second part gives positivity conditions for t
density operator in terms of the trace invariants as well as
coherence vector. The third part provides examples of
utility of the structures presented in the first two parts.

II. COHERENCE VECTOR ÕCASIMIR INVARIANTS

In this section we present a coherence vector represe
tion for anN-state system with particular normalization rel
tionships which differ, for example, from Ref.@8#. This is the
generalization of the Bloch sphere representation for tw
state systems. The coherence vector, in our parametriza
has unit magnitude for pure states and has magnitude str
less than one for mixed states. We will then show how
construct the Casimir invariants of the system in this para
etrization. Using a completely analogous construction,
are able to provide a distinguished set oflocal unitary invari-
ants for composite quantum systems.

A. Pure states inN dimensions

Any density operator can be expanded in any basis
orthogonal, traceless, Hermitian matrices. Here we adher
the following conventions. We will use the following no
malization condition for the elements of the Lie algebra
SU(N):

Tr~l il j !52d i j . ~1!

We will also choose the following relations for commutatio
and anticommutation relations:
©2003 The American Physical Society22-1
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@l i ,l j #52i f i jklk ~2!

and

$l i ,l j%5
4

N
d i j 112di jklk , ~3!

where thef i jk are the structure constants and thedi jk are the
components of the totally symmetric ‘‘d tensor,’’ and by con-
vention we sum over repeated indices. These two equat
may be combined more succinctly as

l il j5
2

N
d i j 11 i f i jklk1di jklk . ~4!

Using these conventions, we may express a pure stat
an N3N density operator as

r5
1

N S 11AN~N21!

2
nW •lW D . ~5!

This representation is called a coherence vector represe
tion with nW the coherence vector. The constant is a con
nient one such that for pure states

nW •nW 51 and nW * nW 5nW , ~6!

where the ‘‘star’’ product is defined by

~aW * bW !k5AN~N21!

2

1

N22
di jkaibj . ~7!

This can be proved by direct computation using Eq.~4!.
Orthogonal pure states, e.g.,ua1& and ua2& with corre-

sponding density operatorsr15(1/N)(11nW 1•lW ) and r2

5(1/N)(11nW 2•lW ) are orthogonal if

u5cos21S 21

N21D , ~8!

whereu is defined bynW 1•nW 25cosu. Note that forN52 this
reduces to the well-known fact that for two-state systems
orthogonal states are represented by antipodal points on
Bloch sphere.

The first condition in Eq.~6! implies that the coherenc
vector must have unit magnitude. This restricts the se
vectors to those that lie on the surface of the unit sph
SN21. The second condition restricts the set of allowa
rotations to a proper subset of the group SO(N221). The
equations are nonlinear and give a set of constraints w
restrict to the manifoldCPN21 having 2N22 dimensions.
The second condition is also related to the positivity of d
sity operators, a fact which is discussed further below.
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B. Mixed states inN dimensions

The mixed state density operator inN dimensions can be
written in the same form as the pure state case:

r5
1

N S 11AN~N21!

2
nW •lW D ~9!

with nW •nW ,1. However, unlike the case for a two-state sy
tem, there are more constraints on the coherence vecto
dimensions greater than two for the Hermitian matrix here
represent a positive, semidefinite operator. This will be giv
in Sec. III.

C. Casimir invariants

The Casimir operators are invariant operators construc
from the Lie algebra elements. In particular, they form
maximal set of algebraically independent elements of
center of the algebra, formed by homogeneous polynom
in the generators. A very general discussion may be foun
Ref. @13#, and they were first constructed in Ref.@9#. General
expressions for these are given in Appendix A. Here we n
that the values of these operators can be determined by
relation to the trace invariants. For example, let us consid
density matrixr. For all r,

Tr~r2!5
1

N
@11~N21!nW •nW #. ~10!

The quantitynW •nW is the value of the quadratic Casimir op
erator~see Appendix A!, which we refer to as the quadrati
Casimir invariant. An example of the quadratic Casimir o
erator is the total angular momentum operator. The Cas
invariants are unchanged by unitary transformations on
density operator. Similarly,

Tr~r3!5
1

N2
@113~N21!nW •nW 1~N21!~N22!~nW * nW !•nW #

~11!

is clearly invariant under unitary operations. The quant
nW * nW •nW is the cubic Casimir invariant. In Appendix B w
give the expressions for Tr(rn), n<9. One may then recur
sively find higher-order Casimir invariants and show th
they are indeed unchanged by unitary operators. The t
invariants Tr(rn) here were discussed in Ref.@14# where
some discussion of the local unitary invariants were giv
for Greenberger-Horne-Zeilinger states.

D. Constructing local invariants

We can now construct a set of quantities which are inva
ant under local unitary transformations. These invariant
like the Casimir invariants, are adistinguishedset. Clearly
local unitary operations preserve the Casimir invariants
the marginal density operators. However, in this section
discuss invariants associated with the correlation matrix.

As an example, consider the quadratic Casimir invaria
2-2
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c25nW •nW . ~12!

A two-qubit density operator can be expressed in a ten
product basis as

r5 1
4 ~1^ 11nW A•sW ^ 111^ nW B•sW 1Ci j s i ^ s j !. ~13!

Note that local unitary transformations on systemsA andB,
denotedUA and UB , conservenW A•nW A and nW B•nW B, respec-
tively. This can be seen as follows,

UAnA
( i )s iUA

†5nA
( i )Ri

js j , ~14!

whereRPSO(3). We cantherefore rewrite

nA
( i )Ri

j5mA
( i ) ~15!

and note thatnW A•nW A5mW A•mW A since the transformation is or
thogonal. We also know that the set of all unitary transf
mations acting on the composite system will be a subse
the matrices in SO(15). This implies that

nW A•nW A1nW B•nW B1(
i j

Ci j Ci j ~16!

is also a conserved quantity. However, we may want to
what quantities associated with the correlation matrixCi j are
conserved under local unitary transformations. The corr
tion matrix has rows and columns labeled by the indicei
andj, respectively. Now consider the vector formed from t
elements in each. Examining Eq.~14!, we see that the mag
nitude of the vector, is conserved byUA . Similarly, the mag-
nitude of the vectors formed by the columns is conserv
We may express these relations as

UACi j s i ^ s jUA
†5C l j8 s l ^ s j , ~17!

whereC l j8 [Rl
iCi j implies

(
i

Ci j Ci j 5(
l

C l j8 C l j8 . ~18!

Similarly for UB acting on the vectors formed from the co
umns ofCi j . Therefore under local unitary transformatio
of the formUA^ UB , the following quantity is conserved:

(
i j

Ci j Ci j . ~19!

More generally, we may determine conserved quanti
formed from the correlation matrix which are analogs of t
Casimir invariants. For the cubic Casimir invariant, for e
ample, the following quantity is invariant under local unita
transformations:
06232
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Similarly, we could construct invariants for arbitrary dime
sional systems as well as systems with any number of s
systems.

The number polynomial invariants under unitary transf
mations grows rather rapidly with the dimension of the s
tem under consideration@15#. One might suppose that only
subset is required for constructing entanglement meas
given that, for example, the square of the concurre
@16,17# for two qubits~see Sec. IV C!, are constructed from
only three quantities which are invariant under local unita
transformations. Here we have given a subset of local inv
ants which may well be useful for many quantum inform
tion processing tasks. The set of invariants given by Makh
@18# ~see also Refs.@15,19#! to determine equivalence unde
local unitary operations is larger than the number of Casi
invariants, which are included as a subset, and are a com
set for determining the ability of two density operators to
transformed into one another by local unitary transform
tions. However, since the concurrence andI concurrence@20#
do not rely on this large set of invariants, one may expe
generally, that the number of invariants needed for the c
struction of entanglement measures may be far less than
number required for other purposes, such as local uni
equivalence.

We have now shown that a density operator can be
rametrized in terms of a set of traceless, orthogonal, Herm
ian matrices and have constructed associated invariant q
tities. Our next goal is to give positivity constraints for th
density operators that determine the allowable sets of co
ence vectorsnW .

III. CHARACTERISTIC POLYNOMIAL ÕPOSITIVITY

In this section the characteristic polynomial of the dens
matrix is expressed in terms of the multinomial expansi
the trace invariants, and the Casimir invariants.

A. The characteristic polynomial

In this subsection we express the characteristic poly
mial in several different ways in terms of invariants of th
group. Consider ann3n complex matrixA of arbitrary di-
mension with eigenvaluespi . The characteristic equation fo
the matrix can be written as~for a similar expression, se
Ref. @21#!

det~A2l1!5ln2S1ln211S2ln2221•••1~21!nSn50,

~21!

where theSk are the symmetric functions given by@22#

Sk5 (
1< i 1<••• i k<N

)
j 51

k

pi j
. ~22!

These can be written in terms of@Tr(rn)#m as
2-3
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S15Tr~A!,S25~1/2!@Tr~A!S12Tr~A2!# ~23!

and

Sk5~1/k!@Tr~A!Sk212Tr~A2!Sk221•••

1~21!n21Tr~An!Sk2n1•••1~21!k22Tr~Ak21!S1

1~21!k21Tr~Ak!#. ~24!

This can be proved using the fact that

@Tr~r!#N5S (
k51

M

pkD N

5 (
$mk%

~N;m1 ,m2 , . . . ,mM !p1
m1p2

m2 . . . pM
mM ,

~25!

where$mk% is a set of integers such that(k51
M mk5N, and

~N;m1 ,m2 , . . . ,mM !5
N!

m1!m2! . . . mM!
. ~26!

B. Positivity

For a given set of real numbers$n1 ,n2 , . . . ,nN%PRN, we
would like to know when the set will represent a valid de
sity operator of the form Eq.~9!. It is clear that the right-
hand side of Eq.~9! has trace 1 and is Hermitian. Howeve
the positive semidefinite property is less trivial.

Theorem. For a Hermitian matrix r5(1/N)(1
1A@N(N21)/2#nW •lW ) to represent a positive semi-defini
operator it is necessary and sufficient forSk>0 for all k.

Sketch of proof. Since the matrixr is Hermitian, all ei-
genvalues of the operator are real. This implies that the
efficients of the characteristic polynomial are real. They
also non-negative if and only if the signs of the coefficie
of the characteristic polynomial alternate. In fact, the num
of positive roots of the characteristic polynomial is the nu
ber of sign changes in the sequence of coefficients~see pp.
124 and 125 of Ref.@23#!. j

Constraints on the coherence vector

The set of inequalitiesSk>0 characterizes the region o
permissible vectors which represent valid, i.e., posit
semidefinite, density operators. The first few of these con
tions, given directly in terms of the coherence vector, are
follows. For a normalizedr,

S15Tr~r!51. ~27!

Here we adhere to the conventions set forth in Secs. II A
II B. Using the symmetric parts of the traces, denoted Trsym
given in Appendix B,

S25
1

2
$@Tr~r!#22@Tr~r2!#%5

N21

2N
@12nW •nW #, ~28!
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S35
1

6

~N21!~N22!

N2
@123nW •nW 12nW * nW •nW #, ~29!

S45
1

24

~N21!~N22!~N23!

N3 F126nW •nW 18nW * nW •nW

1
3~N21!

~N23!
~nW •nW !22

6~N22!

~N23!
nW * nW •nW * nW G . ~30!

Higher-order invariants can be calculated using the ma
rial from the appendixes in a straightforward albeit som
what tedious manner. Note that if the two requirements fo
density operator to be a pure state are met,nW •nW 51 and
nW * nW 5nW , thenS2 throughS4 ~as well as all higherSk) van-
ish, indicating a characteristic polynomial with the solutio
one non-zero eigenvalue. The trace being 1 then dema
that this eigenvalue be 1.

It is also noteworthy that two density operators have
same Casimir invariantsif and only if they have the same
eigenvalues. This follows from the fact that two density o
erators have the same Casimir invariantsif and only if they
satisfy the same characteristic equation. An entanglem
measure based upon an entanglement monotone for a b
tite pure state must be a function only of the eigenvalues
the marginal density operators@12#. This relation between
Casimir invariants and eigenvalues implies that any
tanglement measure based on an entanglement mono
may also be expressed as a function of theSk or Casimir
invariants of the marginal density operator.

C. Symmetric functions and Casimir invariants

The quantities appearing in theSk are combinations of the
Casimir invariants. This relationship is noteworthy for se
eral reasons. Casimir invariants can be used to determ
degeneracies in the orbits and emphasize the relation to
physical system and Casimir invariants are conserved qu
tities used as labels for quantum states. To illustrate the a
ity of the Casimir invariants to provide information about th
degeneracy of the spectrum, we will use the three-state
tem as an example and then give a brief discussion of fo
state systems.

1. Casimir invariants for a system with three states

Since the eigenvalues are invariant under unitary trans
mations, we can discuss the interpretation of the Casi
invariants in terms of a diagonalized density operator.
three dimensions a common basis for the traceless, diag
333 Hermitian matrices are the Gell-Mann matrices@24#. In
this basis, we denote the two linearly independent, trace
diagonal matrices as

l85
1

A3 S 1 0 0

0 1 0

0 0 22
D , l35

1

A3 S 1 0 0

0 21 0

0 0 0
D .

For a mixed state, we may write the diagonalized form a
2-4
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rd[S a1 0 0

0 a2 0

0 0 a3

D ,

where( iai51. Expanding this using

r15
1

3 F 11
A3

2
~A3l31l8!G5S 1 0 0

0 0 0

0 0 0
D , ~31!

r25
1

3 F 11
A3

2
~2A3l31l8!G5S 0 0 0

0 1 0

0 0 0
D , ~32!

r35
1

3
@12A3l8#5S 0 0 0

0 0 0

0 0 1
D , ~33!

yields a density operator of the form

rd5 1
3 $11A3@~a1A3/22a2A3/2!l3

1~a1/21a2/22a3!l8#%. ~34!

The coherence vector is given by

nW 5~0,0,a1A3/22a2A3/2,0,0,0,0,a1/21a2/22a3!.

Since this is a positive semidefinite, Hermitian matrix, t
density operator formed by rm5UrdU†51/3(1
1A3UnW •lW U†) is also a positive semidefinite, Hermitian o
erator. With the appropriate restrictions on the coefficien
we may parametrize all three-state density matrices~and a
direct generalization for higher-dimensional systems! in this
way @25,26#.

For three-state systems, the following two quantities
two independent Casimir invariants, which, in terms of t
coherence vector, are given by

nW •nW 5c2 , nW * nW •nW 5c3 . ~35!

The first is the quadratic Casimir invariant of the group a
the second is the cubic Casimir invariant of the group~see
also Refs.@8,21#!. The generic orbits are given by@21#

nW •nW 5c2 and nW * nW •nW 5c3Þc2 . ~36!

The values ofc2 andc3 are unchanged, i.e., invariant, und
unitary transformations of the density operator. One sho
note that the Hamiltonian and the density operator are b
Hermitian and thus can both be expanded in the same b
of traceless, orthogonal, Hermitian matrices. However,
positive semidefiniteness of the density operator puts fur
restrictions on the space of allowable sets of coefficientsnW of
the Hermitian operator. Whereas, in general,2unW u3

<nW * nW •nW <unW u3 @21# for a Hermitian operator, for a densit
06232
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operator, one must preserve positivity. This restricts the
of coherence vectors such that the limit2unW u3 can never be
reached for certain values ofunW u. This will be discussed in
Sec. IV A.

The square of the coherence vector is

nW •nW 5a1
21a2

21a3
22a1a22a1a32a2a3<1.

We may also calculate

nW * nW •nW 5a1
31a2

31a3
316a1a2a32~3/2!~a1

2a21a2
2a11a1

2a3

1a2
2a31a3

2a11a3
2a2!.

Note that2unW u3<nW * nW •nW <unW u3 since

~nW * nW •nW !22unW u65 27
4 ~a12a2!2~a12a3!2~a22a3!2>0.

Degenerate eigenvalues imply the following relations.
~1! If a15a2,

nW •nW 5~a12a3!2 and nW * nW •nW 52~a12a3!3. ~37!

~2! If a25a3

nW •nW 5~a12a3!2 and nW * nW •nW 5~a12a3!3. ~38!

~3! If a15a3

nW •nW 5~a22a3!2 and nW * nW •nW 5~a22a3!3. ~39!

Therefore, when the two degenerate eigenvalues are gre
than the third, the quantitynW * nW •nW is negative and when the
are smaller,nW * nW •nW is positive. Thus by investigating th
values of the Casimir invariants, we are able to extract inf
mation about degeneracies in the spectrum. These dege
cies correspond to invariant subspaces since an eigenv
subspace spanned by degeneracies is invariant under un
transformations on that subspace@25#. We next comment
briefly on the four-state and general cases of identifying
generacies.

2. Higher dimensions

For N-state systems, there areN21 Casimir invariants.
This is the rank of the group of transformations, SU(N) on
the space of density operators, and corresponds to the n
ber of elements in a complete set of commuting operat
EachSk , when expressed in terms of the coherence vec
will contain a term of the form (nW * )3(k22)nW •nW which is
absent fromSj , j ,k. In the preceding section it was show
that a degeneracy in the spectrum of the density operator
manifest in the values of the Casimir invariants. When
degeneracy in the spectrum exists, an added symmetry o
density operator under a subgroup of the group of all unit
transformations exists. This will determine a relation b
tween the Casimir invariants, and thus reduce the numbe
independent polynomial invariants.
2-5
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Let us discuss the example of four-state systems. If
density operator for a four-state system has the spect
(a,b,b,b) then each of the four Casimir invariants is propo
tional to powers of unW u (ci}unW u i). If the spectrum is
(a,a,b,b), then all Casimir invariants are zero except t
quadratic. Spectra of the form (a,b,c,c), or nondegenerate
spectra are not as easily identified by their Casimir inva
ants. However, there exists a readily available progra
Macaulay, which can check the independence of the inva
ants, thereby determining the degeneracies. Of course, i
spectrum is completely degenerate, then all Casimir inv
ants vanish sincenW 50 for the completely degenerate cas
The advantage of obtaining this information through the
of invariants is thatone may not always solve directly for th
eigenvalues of a matrix, but the Casimir invariants may s
be obtained.

For the convenience of the reader, the Casimir opera
are given in terms of the Lie algebra elements in Appen
A. In Appendix B we give the trace formulas from whic
these can be calculated and the coefficients of the chara
istic polynomial can be found.

Note that a map from a density operator to a density
erator may be expressed as an affine map,

nW→nW 85TnW 1 tW, ~40!

whereT is a matrix andtW is a translation. The positivity o
the mapping is determined by the positivity of the dens
operator formed bynW 8 @6#.

IV. EXAMPLES

In this section we give the following results. First, w
show how the positivity of theSk restricts the coherenc
vector for two particularly interesting examples,nW * nW •nW 5

2unW u3 and inversion. This gives, in terms of the coheren
vector, the same bound obtained by Rungtaet al. @20# on the
ability to construct a ‘‘universal inverter.’’ Second, we sho
that the positivity of the density operator of two qubits c
be determined by the positivity ofS3 andS4 for the general
case and for the Werner state. Third, we present an alte
tive derivation of the three-tangle of Coffman, Kundu, a
Wootters@27# using the coherence vector description.

A. Inversion of the coherence vector

Here we show that, due to positivity requirements,
limit nW * nW •nW 52unW u3 cannotbe reached for certainnW . This
follows from the positivity requirementsSk>0 and restricts
the set of positive maps for the set of density matrices.
example of this is the universal inverter and universalNOT

gate.

1. Universal inversion

The universal inverter and universalNOT gate @20# are
related to a mapping of the form

r→12r, ~41!
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which is positive but not completely positive. In terms of th
coherence vector representation,

r→ 1

N
@1~N21!2cnW •lW #5

~N21!

N S 12
c

N21
nW •lW D ,

~42!

wherec5AN(N21)/2. Thus, up to an overall constant, th
mapping corresponds to a change in sign of the cohere
vector and a reduction of the magnitude of the cohere
vector.

2. Inverting the coherence vector

We might ask if there exists a physical map which w
properly invert the coherence vector.~Inversion of the coher-
ence vector as a possible generalization of the concurre
@16,17# was studied by Rungtaet al. @20#.! This would be of
the form

r5
1

N
~11cnW •lW !→r5

1

N
~12cnW •lW !. ~43!

However, this is not positive. To see this, consider the ma

r5
1

NF 11S a 0 •••

0 a 0 •••

A � A

0 . . . 2~N21!a

D G . ~44!

For this matrix nW •nW 5a2 and nW * nW •nW 5a3. This gives the
symmetric polynomial

S3}123nW •nW 12nW * nW •nW 5123a212a3. ~45!

This function ofnW is minimum whennW * nW •nW 52unW u3,0 so
that

S3}123nW •nW 22unW * nW •nW u5123a222a3. ~46!

For this to be positive,a>1/2 showing that for certainnW the
limit nW * nW •nW 52unW u3 cannot be obtained. This is unlike th
case of a Hamiltonian, or general Hermitian matrix, where
is acceptable to havenW * nW •nW 52unW u3. For a system with
three states, and no zero eigenvalues,S3 is the non-zero de-
terminant of the matrix.

For higher-dimensional systems the requirement thatr in
Eq. ~44! be positive corresponds to

1

N21
>a>21. ~47!

Now if we ask for an inversion map which is positive, w
seek a mapping of the form

r→ 1

N
~b12cnW •lW !. ~48!
2-6
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Choosing an operator of the form Eq.~44!, for the map to be
positive we require

b>~12N!a>~N21!. ~49!

This is the condition found by Rungtaet al. @20# for positiv-
ity and restricts inversion to a map of the form in E
fo
ly
a
a

e

l-

06232
~41!.This is a condition on the positivity of the determina
which we have shown isSN for an N-state system.

3. Three-state example

For example, let us consider a three-state density ma
of the form
r5S 0.152 78 0.036 0842 i0.062 50 20.072 1691 i0.125 00

0.036 0841 i0.062 50 0.236 11 20.25

20.072 1682 i0.125 00 20.25 0.611 11
D . ~50!
and

en-

l
the

the
l
t is
al
d

n-

ity
ve
wo
Using ni5(A3/2)Tr(rl i), direct calculation gives

S3}123~0.666!212~0.666!3.

However, when 0.666→20.666 thenS3,0 showing that
inversion is not a positive map for this density operator.

B. Two-qubit entanglement

In the Sec. IV B 2 the example of the Werner states
two qubits is investigated. This mixture of a complete
mixed and singlet state is separable if and only if the p
tially transposed density operator is positive semidefinite
cording to the Peres-Horodecki criterion@2,3#. In this case,
S3 andS4 determine positivity. This will be shown using th
coherence vector representation.

1. A basis for two qubits

Let a basis for the Lie algebra of SU(4) be given by

$l i% i 50
15 5$s i ^ s j% i , j 50

3 , ~51!

wherel0[14 ands0[12. The labels correspond in the fo
lowing way:

l i ,i 50,1,2,3↔ 1

A2
s i ^ 1, i 50,1,2,3,

l i ,i 54,5,6↔ 1

A2
1^ s i , i 51,2,3,

l i ,i 57,8,9↔ 1

A2
s1^ s i , i 51,2,3, ~52!

l i ,i 510,11,12↔ 1

A2
s2^ s i , i 51,2,3,

l i ,i 513,14,15↔
1

A2
s3^ s i , i 51,2,3.
r

r-
c-

This forms an orthogonal basis with respect to the trace
has normalization given by

Tr~l il j !52d i j . ~53!

The nonzero, totally symmetricd-tensor components in
this basis are given by

1

A2
5d1,4,75d1,5,85d1,6,95d2,4,105d2,5,115d2,6,125d3,4,13

5d3,5,145d3,6,1552d7,11,1552d8,12,135d7,12,14

52d9,10,145d8,10,155d9,11,13. ~54!

2. Werner states: A case study

Under partial transpose of the first subsystem in the d
sity operator, only elementsn2 ,n10,n11,n12 change sign~in
the given basis Sec. IV B 1!. Therefore under the partia
transpose, one may readily determine which elements of
productsnW * nW •nW andnW * nW •nW * nW change sign.

The inequalitiesS3>0 and S4>0 depend only on the
nonlocal invariants of the system sinceS2 does not change
and the local invariants which have the same form ofS2 also
do not change. This shows that the negativity arises in
nonlocal invariants~as it should!. As noted before, the partia
transpose is positive since it preserves local positivity, bu
not completely positive. Although this is a low-dimension
example and the higher orderSk become more complicate
as thek increases, such an analysis might lead to ways~e.g.,
numerical and/or analytic searches! for identifying positive,
but not completely positive, maps which may witness e
tanglement.

To clarify the discussions above, concerning the positiv
of the coefficients of the characteristic polynomial, we gi
an example of the calculation for the Werner state of t
qubits. The Werner state for two qubits is given by

rW5
12x

4
11xS, ~55!

where 0<x<1 is real andS is the singlet state
2-7
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S5
1

2 S 0 0 0 0

0 1 21 0

0 21 1 0

0 0 0 0

D . ~56!

Therefore whenx50 the state is separable and whenx51
the state is maximally entangled. We may rewrite this as

rW5
1

4
12

x

4
~sx^ sx1sy^ sy1sz^ sz!

5S 12x

4
0 0 0

0
11x

4
2

x

2
0

0 2
x

2

11x

4
0

0 0 0
12x

4

D . ~57!

The partial transpose condition~Peres-Horodeckis! @2,3# is
equivalent~up to a local unitary transformation! to the inver-
sion of the coherence vector, which is also known as spin
or inversion. In terms of the coherence vector for the co
bined system, if we write the density operator in terms of
basis given in the preceding section,

rW5rAB5
1

4
~11A6nW •lW !, ~58!

the partial transpose corresponds tonW 2→2nW 2 , nW 10→2nW 10,
nW 11→2nW 11,nW 12→2nW 12. Calculating the coefficients of th
characteristic polynomial,S1(rAB) and S2(rAB) are un-
changed under this transformation. However,

S3~rAB!5S 1

42D ~123x212x3!→S 1

42D ~123x222x3!

~59!

and

S4~rAB!5S 1

44D ~126x218x323x4!

→S 1

44D ~126x228x323x4!. ~60!

This partial transpose condition implies that the density
erator is separableif and only if the partially transposed den
sity operator~or the spin-flipped density operator! is positive
semidefinite. Here we see that the coefficients have follo
ing possibilities for sign changes. For 1/3,x,1/2, S4,0,
S3.0, and forx.1/2, S4,0 andS3,0. However, in each
case there is only one change in sign for aSk and therefore
one negative eigenvalue.
06232
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C. Distributed entanglement

Coffman, Kundu, and Wootters@27# have studied ‘‘dis-
tributed entanglement’’ which concerns the entanglemen
various subsystems of a tripartite qubit system. One of th
main results is the description of entanglement of a pure s
of three qubits which is not expressible in terms of two-qu
relations. Here we wish to streamline their argument us
the material presented above and thus derive by alterna
means the ‘‘tangle’’ of three qubits. Consider a pure state
three qubits for systems we labelA,B,C. We will write the
density operator in a tensor product basis,

rABC5 1
8 ~1^ 1^ 11nW A•sW ^ 1^ 111^ nW B•sW ^ 111^ 1^ nW C•sW

1nW AB•sW ^ sW ^ 11nW AC•sW ^ 1^ sW 1nW BC•1^ sW ^ sW

1nW ABC•sW ^ sW ^ sW !, ~61!

wherenW AB•sW ^ sW [(nAB) i j s i ^ s j , etc.
SincerABC represents a pure state, the marginal den

matrices, e.g.,rAB5TrC(rABC), have only two nonzero ei-
genvalues, so that the square of the concurrence may be
to write

C AB
2 5~l12l2!25l1

21l2
222l1l25Tr~rABr̃AB!22l1l2

<Tr~rABr̃AB!, ~62!

wherel1 andl2 are the square roots of the eigenvalues
rABr̃AB . The matrixr̃AB is defined byr̃AB5sy^ syrAB* sy

^ sy .
At this point our argument will differ from that of Ref

@27#. Since this is a pure state, the Schmidt decomposi
can be used to choose a preferred basis for subsystemsAB
and C. The reduced density matrices may be rewritten
~using an unnormalized coherence vector!

rAB5TrC~rABC!5 1
4 ~11mW AB•lW !, ~63!

wheremW AB[(nW A ,nW B ,nW AB) and

rC5TrAB~rABC!5 1
2 ~11nW C•sW !. ~64!

Then, by the Schmidt decomposition these two have
same eigenvalues. Therefore they satisfy the same chara
istic equation which will have only one non-trivialSk @S1
5Tr(r)51#, that being

S2~rC!5S2~rAB!, ~65!

which implies

1
4 ~11mW AB•mW AB!5 1

2 ~11nW C•nW C!. ~66!

Therefore
2-8
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nW AB•nW AB5112nW C•nW C2nW A•nW A2nW B•nW B. ~67!

Noting that

Tr~rABr̃AB!5 1
4 ~12nW A•nW A2nW B•nW B1nW AB•nW AB!, ~68!

we can use Eq.~67! to write

Tr~rABr̃AB!5 1
2 ~12nW A•nW A2nW B•nW B1nW C•nW C!. ~69!

This is completely equivalent to the results in Eqs.~7! and
~8! of Ref. @27#, the latter is repeated here:

Tr~rABr̃AB!52~detrA1detrB2detrC!. ~70!

This is needed to derive the ‘‘first main result’’ of Ref.@27#:

C AB
2 1C AC

2 <4 detrA , ~71!

where we have used Eq.~62!.
At this point, we can calculate

4AS2~rABr̃AB!5tABC[C(A)BC
2 2C AB

2 2C AC
2 .

This quantity describes the three-way entanglement of
three qubits and was shown in Ref.@27# to be invariant under
the permutation of the qubits.

V. CONCLUSION

The identification of positive, but not complete positiv
maps has recently become an active area of research d
the restrictions it places on physically realizable quant
transformations@7# and the question of entanglement
quantum systems@2,3#. To aid in the study of such transfo
mations this paper has presented a representation of the
sity operator in terms of traceless, Hermitian, orthogonal m
trices. We then showed that the Casimir invariants
generalized coherence vector for density operator could
calculated directly and information about degeneracies in
spectrum of the operator could be obtained for some part
lar cases. It should be noted that we have given a repre
tation of the density operator in bases, but the expression
the Casimir invariants and symmetric functions do not
pend on the choice of the set of traceless, Hermitian,
thogonal matrices in the basis. The region of posit
semidefinite density operators is determined by thenecessary
and sufficientconditionsSk>0. The Sk were expressed in
terms of the coherence vector and Casimir invariants.
positivity conditions given here not only indicate whether
density operator has all positive eigenvalues, but also in
cate the number of positive eigenvalues in terms of the n
ber of sign changes of the sequence of coefficientsSk .

Superoperators which map Hermitian operators to H
mitian operators will preserve the reality of the eigenvalu
Since the eigenvalues are real, the coefficients of the cha
teristic polynomial must alternate in sign if the eigenvalu
are to be positive. Therefore changes in the signs of theSk
can indicate positivity or nonpositivity of maps of the dens
operator. Given the expressions in this paper, this statem
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may be utilized directly given an affine map of the coheren
vector.

It is interesting to note that the ‘‘measure of purity’’ of
density operator has arisen in several contexts. Consid
pure state, bipartite density operator. The generalized con
rence in Ref.@20# is simply related to the purity of the mar
ginal density operator. IfrA is the marginal density operato
then the concurrence is proportional toS2(rA) which is a
measure of the purity of the density operator. The staterA is
pure if and only if S2(rA) is zero. The state is ‘‘less pure’’ if
this quantity is larger. This measure of purity is also used
the optimal decompositions discussed in Ref.@28#. One
might consider generalizations of the ‘‘measure of purity
Certainly if S1 ~equal to 1 when the matrix has unit trac!
andS2 are the only nonzero coefficients of the characteris
polynomial, thenS2 is a ‘‘good’’ measure of purity. However
if S2 and S3 are both nonzero, then the purity should
measured by two quantities since pure states necessarily
both quantities equal to zero. States that are closer to b
pure are those with smaller values of these two quantit
Similar arguments can be made for the higher-dimensio
Sk . One might then consider a generalization of measure
entanglement which rely on this modified set of ‘‘measu
of purity.’’

The set of algebraic equations given bySk>0 give a set
of geometric constraints on the spaces of allowable coh
ence vectors. This may motivate further exploration of te
niques from algebraic geometry which has already b
found useful by Miyake@29# for describing pure-state sepa
rability.

Due to the generality of the arguments here and the c
nections made between Casimir invariants, algebraic ge
etry, and positivity, we believe that this work provides use
relations and insights into the structure of positive operato
We also hope that it will aid in identifying positive, but no
completely positive, maps.

Note added in proof. Recently, a detailed independe
proof of the positivity conditions@30# was kindly pointed out
by Gen Kimura. This includes an independent derivation
Eqs. ~28!–~30! and a more thorough discussion of the r
gions of positivity for three-state systems.

ACKNOWLEDGMENTS

M.S.B. would like to thank the following people for help
ful discussions: William Wootters and Robert Griffiths~at
QCMC ’02!, Randy Scott, Sara Schneider, and especia
Luis Boya and E.C.G. Sudarshan. M.S.B. would also like
thank Sara Schneider for a critical reading of the manuscr
This work was supported by DARPA-QuIST, Grant N
F49620-01-1-0556.

APPENDIX A: CASIMIR INVARIANTS

Here we give expressions for the Casimir operators o
Lie group. For a discussion see Ref.@13#.

The Killing form Gab gives themetric gab on the vector
space. This will determine thequadratic Casimiroperator
2-9
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C25 (
a,b51

N

gabl
alb, ~A1!

whereN is the dimension of the vector space@N5n221 for
SU(n) groups#, andlPL(G). Note thatgab}(c,df d

acf c
bd is

an invariant, symmetric tensor. To find other invariant, sy
metric tensors, one forms

Tr~adla1+adla2+•••+adlan!

5 (
b1 ,b2 , . . . ,bn51

N

f b2

a1b1f b3

a2b2 . . . f bn

an21bn21f b1

anbn.

~A2!

One can express thecubic Casimiroperator in terms of the
totally symmetric tensordabc ,

C35 (
a,b,c51

N

dabcl
alblc. ~A3!

Generally these higher-order operators can be expresse
terms of the symmetric tensor as

Cm5 (
a1 ,a2 , . . . ,am23

b1 ,b2 , . . . ,bm

da1b1b2
da1a2b3

da2a3b4
. . .

3dam22am23bm22
dam23bm21bm

3lb1lb2
•••lbm. ~A4!

We list the first few here in order to be explicit and to ena
the development of the pattern.

C45 (
a1 ,b1 ,b2 ,b3 ,b4

da1b1b2
da1b3b4

lb1lb2lb3lb4, ~A5!
06232
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C55 (
a1 ,a2

b1 ,b2 ,b3 ,b4 ,b5

da1b1b2
da1a2b3

da2a4b5
lb1lb2

•••lb5,

~A6!

C65 (
a1 ,a2 ,a3

b1 ,b2 , . . . ,b6

da1b1b2
da1a2b3

da2a3b4
da3b5b6

lb1lb2
•••lb6.

~A7!

Of course the ones that are immediately interesting
C2 ,C3 ,C4 ,C6 ,C9 for the purposes of embedding two qubi
into a four-state system, a two-state and a three-state sy
into a six-state system and the embedding of two three-s
systems into a nine-state system. These are useful for ex
ining quantum control for two qubits and entanglement
sues for a two qubits, a qubit and a qutrit, and two qutrit

The above relations can be expressed in terms of adj
vectors and particular products. We introduce this notat
here since it has its own manipulation rules that make
easier to calculate quantities of interest. Note also that s
the f abc and dabc tensors are obtained by taking traces
products of elements with anticommutators and commuta
respectively, they are easily calculated by analytic meth
on a symbolic manipulation program such asMATHEMATICA .
These relations are

f abc5S 2 i

4 DTr~@la ,lb#lc!

and

dabc5S 1

4DTr~$la ,lb%lc!.

The difference between upper and lower indices is not
portant if we are considering SU(n).
APPENDIX B: TRACE FORMULAS

1. Symmetric traces of basis elements

Here the first few examples of the trace formulas have been given.

Tr~l il j !52d i j , ~B1!

Trsym~l il jlk!52di jk , ~B2!

Trsym~l il jlkl l !5
4

N
d i j dkl12di jmdmkl , ~B3!

Trsym~l il jlkl llq!5
4

N
~d i j dklq1dkldi jq !12di jmdklndmnq, ~B4!

Trsym~l il jlkl llqls!5
23

N2
d i j dkldqs1

4

N
~di jmdklmdqs1di jmdqsmdkl1dklmdqsmd i j !12di jmdklndqstdmnt , ~B5!
2-10
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Trsym~l il jlkl llqlslu!5
23

N2
~d i j dkldqsu1d i j dqsdklu1dqsdkldi ju !1

22

N
~dqsdi jmdklndmnu1d i j dklmdqsndmnu

1dkldi jmdqsndmnu!1
22

N
dqsudi jmdklm12di jmdklndqstdmnvdvtu , ~B6!

Trsym~l il jlkl llqlslulw!5
24

N3
d i j dkldqsduw1

23

N2
~d i j dkldqstduwt1d i j dqsdklnduwn1d i j duwdqsndkln1dkldqsdi jnduwn

1dklduwdi jndqsn1duwdqsdklndi jn !1
22

N
~d i j dklmdqstduwvdtvm1dkldi jmdqstduwvdtvm

1dqsdi jmdklndmnvduwv1duwdi jmdklndmnvdqsv!12di jmdklndmnpdqstduwvdtvp , ~B7!

Trsym~l il jlkl llqlslulwly!5
24

N3
~d i j dkldqsduyw1d i j dklduwdqsy1d i j dqsduwdkly1dkldqsduwdi jy !1

23

N2
~d i j dkldqstduvwdtvy

1dqsduwdi jmdklndmny1d i j dqsdklnduvwdnvy1d i j duwdklndqstdnty!1
23

N2
~d i j dklydqstduwt

1dkldi jydqstduwt1dqsdi jmdklmduwy1duwdi jmdklmdqsy!1
22

N
~d i j dklndqstduvwdtvxdnxy

1dkldi jmdqstduvwdtvxdmxy1dqsdi jmdklndmnpduwvdpvy1duwdi jmdklndmnpdqstdpty!

12di jmdklndmnpdqstduwvdtvxdpxy . ~B8!

2. Symmetric traces for the density operator

For the density operator these translate to~again only the first few are given!

Tr~r2!5
1

N
@11~N21!nW •nW #, ~B9!

Tr~r3!5
1

N2
@113~N21!nW •nW 1~N21!~N22!~nW * nW !•nW #, ~B10!

Tr~r4!5
1

N3
@116~N21!nW •nW 14~N21!~N22!~nW * nW !•nW 1~N21!2~nW •nW !21~N21!~N22!2~nW * nW !•~nW * nW !#, ~B11!

Tr~r5!5
1

N4
@1110~N21!nW •nW 110~N21!~N22!nW * nW •nW 15~N21!2~nW •nW !215~N21!~N22!2~nW * nW !•~nW * nW !

12~N21!2~N22!~nW •nW !~nW * nW •nW !1~N21!~N22!3nW * nW * nW * nW •nW #, ~B12!

Tr~r6!5
1

N5
@1115~N21!nW •nW 120~N21!~N22!nW * nW •nW 115~N21!2~nW •nW !2115~N21!~N22!2~nW * nW !•~nW * nW !

112~N21!2~N22!~nW •nW !~nW * nW •nW !16~N21!~N22!3~nW * nW * nW * nW •nW !

1~N21!3~nW •nW !313~N21!2~N22!2~nW •nW !~nW * nW •nW * nW !1~N21!~N22!4~nW * nW * nW !2#, ~B13!
062322-11
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Tr~r7!5
1

N6
@1121~N21!nW •nW 135~N21!~N22!nW * nW •nW 135~N21!2~nW •nW !2135~N21!~N22!2~nW * nW !•~nW * nW !

142~N21!2~N22!~nW •nW !~nW * nW •nW !121~N21!~N22!3~nW * nW * nW * nW •nW !

17~N21!3~nW •nW !3121~N21!2~N22!2~nW •nW !~nW * nW •nW * nW !17~N21!~N22!4~nW * nW * nW !2

13~N21!3~N22!~nW •nW !2~nW * nW •nW !13~N21!2~N22!3~nW * nW * nW * nW •nW !~nW •nW !1~N21!

3~N22!3~nW * nW •nW !~nW * nW •nW * nW !1~N21!~N22!5~nW * nW * nW * nW * nW * nW •nW !#, ~B14!

Tr~r8!5
1

N7
@1128~N21!nW •nW 156~N21!~N22!nW * nW •nW 170~N21!2~nW •nW !2170~N21!

3~N22!2~nW * nW !•~nW * nW !1112~N21!2~N22!~nW •nW !~nW * nW •nW !156~N21!~N22!3~nW * nW * nW * nW •nW !

128~N21!3~nW •nW !3184~N21!2~N22!2~nW •nW !~nW * nW •nW * nW !N2128~N21!~N22!4~nW * nW * nW !2

124~N21!3~N22!~nW •nW !2~nW * nW •nW !124~N21!2~N22!3~nW * nW * nW * nW •nW !~nW •nW !

18~N21!~N22!3~nW * nW •nW !~nW * nW •nW * nW !18~N21!~N22!5~nW * nW * nW * nW * nW * nW •nW !

1~N21!4~nW •nW !416~N21!3~N22!2~nW •nW !2~nW * nW •nW * nW !14~N21!2~N22!4

3~nW •nW !~nW * nW * nW * nW * nW •nW !1~N22!6~nW * nW * nW * nW * nW * nW * nW •nW !#, ~B15!

Tr~r9!5
1

N8
@1136~N21!nW •nW 184~N21!~N22!nW * nW •nW 1126~N21!2~nW •nW !21126~N21!

3~N22!2~nW * nW !•~nW * nW !1252~N21!2~N22!~nW •nW !~nW * nW •nW !1126~N21!~N22!3

3~nW * nW * nW * nW •nW !184~N21!3~nW •nW !31252~N21!2~N22!2~nW •nW !~nW * nW •nW * nW !184~N21!~N22!4~nW * nW * nW !2

1108~N21!3~N22!~nW •nW !2~nW * nW •nW !1108~N21!2~N22!3~nW * nW * nW * nW •nW !~nW •nW !

136~N21!~N22!3~nW * nW •nW !~nW * nW •nW * nW !136~N21!~N22!5~nW * nW * nW * nW * nW * nW •nW !19~N21!4~nW •nW !4

154~N21!3~N22!2~nW •nW !2~nW * nW •nW * nW !136~N21!2~N22!4~nW •nW !~nW * nW * nW * nW * nW •nW !19~N22!6

3~nW * nW * nW * nW * nW * nW * nW •nW !14~N21!4~N22!~nW •nW !3~nW * nW •nW !16~N21!3~N22!3~nW •nW !2~nW * nW * nW * nW •nW !

14~N21!3~N22!3~nW •nW !~nW * nW •nW !~nW * nW •nW * nW !12~N21!2~N22!5~nW * nW •nW * nW !~nW * nW * nW * nW •nW !

14~N21!2~N22!5~nW •nW !~nW * nW * nW * nW •nW * nW * nW !1~N21!~N22!7~nW * nW * nW * nW * nW * nW * nW * nW •nW !#. ~B16!
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