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A parametrization of the density operator, a coherence vector representation, which uses a basis of orthogo-
nal, traceless, Hermitian matrices is discussed. Using this parametrization we find the region of permissible
vectors which represent a density operator. The inequalities which specify the region are shown to involve the
Casimir invariants of the group. In particular cases, this allows the determination of degeneracies in the
spectrum of the operator. The identification of the Casimir invariants also provides a method of constructing
guantities which are invariant undkrcal unitary operations. Several examples are given which illustrate the
constraints provided by the positivity requirements and the utility of the coherence vector parametrization.
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[. INTRODUCTION ants and positivity requirements are expressed in terms of the
coefficients of the characteristic polynomials. These coeffi-
The density operator must satisfy three important requirecients, and their ratios, were found to be entanglement mono-
ments:(1) It must be Hermitian(2) the trace of the density tones[11]. Entanglement monotones could provide some in-
operator, when appropriately normalized, must bg3};it ~ sight into the problem of finding suitable entanglement
must be positive semidefinite. The third of these require/Measures since they satisfy an important requirement of such
ments has been found to be vital in quantum informationmeasures; they do not increase, on average, under local op-
theory, and in quantum mechanics itsélf]. Perhaps the €rations and classical communicatid®]. _
most important place this has arisen is in the identification of 1S Paper can be divided into three main paetecluding
positive and completely positive maps which can be used t e Introduction and ConclusignThe first part gives the

identify entangled statd,3] and to classify quantum chan- generalized coherence vector representation of the density
nels (Refs.[4.5] and refe;ences therinFor both of these operator and the Casimir invariants in terms of the coherence

roblems, but in particular the latter, a parametrization of thevector. The second part gives positivity conditions for the
prool ’ P »ap . .. density operator in terms of the trace invariants as well as the
density operator is often useful. This provides an explicit

. . . . ) . coherence vector. The third part provides examples of the
way in which to identify when the channel is unital, trace part b P

) e utility of the structures presented in the first two parts.

preserving, and/or completely positiueee, for example,
Ref. [6]). In addition, positivity requirements place restric-
tions on physically realizable quantum transformatipris

Here we represent the density operator using a basis of In this section we present a coherence vector representa-
orthogonal, traceless, Hermitian matrices. This representdion for anN-state system with particular normalization rela-
tion is the generalization of the Bloch or coherence vector fotionships which differ, for example, from Rg8]. This is the
two-state systems which is commonly usesge Ref[8]). generalization of the Bloch sphere representation for two-
While the geometry of the space of density operators fostate systems. The coherence vector, in our parametrization,
two-state systems is relatively simple, the geometry of thd)as unit magnitude for pure states and has magnitude strictly
space of density operators for higher-dimensional systems #§ss than one for mixed states. We will then show how to
considerably more complicated. The positivir more pre- ~ construct the Casimir invariants of the system in this param-
cisely, positive semidefinitenessonditions are therefore €trization. Using a completely analogous construction, we
more difficult to express succinctly for higher-dimensionalare able to provide a distinguished setarfal unitary invari-
systems. The inequalities given in this paper give necessagnts for composite quantum systems.
and sufficient conditions for a Hermitian operator to be posi-
tive semidefinite. A. Pure states inN dimensions

_This set of inequalities can be expressed in terms of & Any density operator can be expanded in any basis of
distinguished set of unitary invariants, the Casimir invari-,qq0nal, traceless, Hermitian matrices. Here we adhere to
ants. This is a particularly notable relationship since the Cag,o following conventions. We will use the following nor-

simir invariants are associated with the “good” quantum majization condition for the elements of the Lie algebra of
numbers of a quantum systef@] and thus have direct ex- SUN):

perimental interpretation. They specify the set of quantities

which are invariant under a given set of unitary transforma- Tr(NN ) =26 . (1)
tions. This has found many important applications for mod-

eling of physical systems, and more recently, in quantume will also choose the following relations for commutation
control of spin systemglLQ]. In addition, the Casimir invari- and anticommutation relations:

II. COHERENCE VECTOR /CASIMIR INVARIANTS
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[N A j]=2if ek 2
and
4
N = g il 2dijh 3)

where thef;;, are the structure constants and thg are the
components of the totally symmetrid‘tensor,” and by con-
vention we sum over repeated indices. These two equatio

may be combined more succinctly as

2 .
)\i)\jzﬁ5ij]+|fijk)\k+dijk)\k' (4)

Using these conventions, we may express a pure state f

anNXN density operator as

B 1( [N(N-1). _
p—N 1+ Tn')\ . (5)

This representation is called a coherence vector representg
tion with n the coherence vector. The constant is a conve-

nient one such that for pure states
n-n=1 and n*n=n, (6)
where the “star” product is defined by

- >

N(N-1) 1
(axb)=\ —— =3 dikaib; - (7

This can be proved by direct computation using Ej.
Orthogonal pure states, e.da;) and |a,) with corre-

sponding density operatorp,=(1/N)(1+n;-X) and p,
=(1/N)(1+n,-X) are orthogonal if

-1
>, ®)

—~nc 1
6=cos N_1

where# is defined byn; - n,=cosé. Note that forN=2 this
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B. Mixed states inN dimensions

The mixed state density operator lhdimensions can be
written in the same form as the pure state case:

1 IN(N-1). .
p:N(H-F Tnh) (9)

with n-n<1. However, unlike the case for a two-state Sys-
tem, there are more constraints on the coherence vector for
dimensions greater than two for the Hermitian matrix here to

ns

represent a positive, semidefinite operator. This will be given
in Sec. lll.

C. Casimir invariants

The Casimir operators are invariant operators constructed
from the Lie algebra elements. In particular, they form a
YMaximal set of algebraically independent elements of the
center of the algebra, formed by homogeneous polynomials
in the generators. A very general discussion may be found in
Ref.[13], and they were first constructed in REJ]. General
expressions for these are given in Appendix A. Here we note
that the values of these operators can be determined by their
relation to the trace invariants. For example, let us consider a
ensity matrixp. For all p,

Tr(p2)=%[1+(N—1)ﬁ-ﬁ]. (10)

The quantityn-n is the value of the quadratic Casimir op-
erator(see Appendix A which we refer to as the quadratic
Casimir invariant. An example of the quadratic Casimir op-
erator is the total angular momentum operator. The Casimir
invariants are unchanged by unitary transformations on the
density operator. Similarly,

Tr(p3) = %[1+3(N—1)ﬁ-ﬁ+(N—1)(N—2)(ﬁ* n)-nj
(12)

is clearly invariant under unitary operations. The quantity

n*n-n is the cubic Casimir invariant. In Appendix B we
give the expressions for Ts(), n<9. One may then recur-
sively find higher-order Casimir invariants and show that
they are indeed unchanged by unitary operators. The trace
invariants Trp") here were discussed in Rdfl4] where

reduces to the well-known fact that for two-state systems thgome discussion of the local unitary invariants were given
orthogonal states are represented by antipodal points on thg, Greenberger-Horne-Zeilinger states.

Bloch sphere.

The first condition in Eq(6) implies that the coherence
vector must have unit magnitude. This restricts the set of
vectors to those that lie on the surface of the unit sphere We can now construct a set of quantities which are invari-
SM1. The second condition restricts the set of allowableant underlocal unitary transformations. These invariants,
rotations to a proper subset of the group 8&¢1). The like the Casimir invariants, are distinguishedset. Clearly
equations are nonlinear and give a set of constraints whiclocal unitary operations preserve the Casimir invariants of
restrict to the manifoldCcPN~1 having 2N—2 dimensions. the marginal density operators. However, in this section we
The second condition is also related to the positivity of dendiscuss invariants associated with the correlation matrix.
sity operators, a fact which is discussed further below. As an example, consider the quadratic Casimir invariant

D. Constructing local invariants
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C2=n-"N. (12 E dijkdimnCit CjmCicn - (20)
ijk,Imn
A two-qubit density operator can be expressed in a tensor
product basis as Similarly, we could construct invariants for arbitrary dimen-
sional systems as well as systems with any number of sub-
p=1(1®l+ns o®1+1®ng-0+Cjoi®a)). (13)  Systems. o _

The number polynomial invariants under unitary transfor-
mations grows rather rapidly with the dimension of the sys-
- - S tem under consideratidri5]. One might suppose that only a
denotedU, and Ug, conservena-n, and ng-ng, réspec-  gyhset is required for constructing entanglement measures

Note that local unitary transformations on systefnand B,

tively. This can be seen as follows, given that, for example, the square of the concurrence
, o [16,17) for two qubits(see Sec. IV  are constructed from

UanioiUk=n{Rlo;, (14)  only three quantities which are invariant under local unitary
transformations. Here we have given a subset of local invari-

whereRe SO(3). We cartherefore rewrite ants which may well be useful for many quantum informa-
tion processing tasks. The set of invariants given by Makhlin

nORI = m® (15) [18] (see also Refd15,19) to determine equivalence under

AN A

local unitary operations is larger than the number of Casimir
... invariants, which are included as a subset, and are a complete
and note thah-n,=mx-mjy since the transformation is or-  set for determining the ability of two density operators to be
thogonal. We also know that the set of all unitary transfor-transformed into one another by local unitary transforma-
mations acting on the composite system will be a subset ofions. However, since the concurrence armoncurrencé20]
the matrices in SO(15). This implies that do not rely on this large set of invariants, one may expect,
generally, that the number of invariants needed for the con-
. struction of entanglement measures may be far less than the
”A‘nA+”B‘”B+i2 CijCij (160 number required for other purposes, such as local unitary
. equivalence.
. . We have now shown that a density operator can be pa-
is also a conserved quantity. However, we may want o ask, atrized in terms of a set of traceless, orthogonal, Hermit-
what quantities associated with the correlation maifpare  jan matrices and have constructed associated invariant quan-
conserved under local unitary transformations. The correlagias our next goal is to give positivity constraints for the

tion matrix has rows and columns labeled by the indites jongjty operators that determine the allowable sets of coher-
andj, respectively. Now consider the vector formed from theence Vectors,

elements in each. Examining EG.4), we see that the mag-
nitude of the vector, is conserved bl . Similarly, the mag-
nitude of the vectors formed by the columns is conserved. Ill. CHARACTERISTIC POLYNOMIAL /POSITIVITY

We may express these relations as . . - . .

y exp In this section the characteristic polynomial of the density
P matrix is expressed in terms of the multinomial expansion,
UnCijoi®@ajUp=Cljo®ay, 17 the trace invariants, and the Casimir invariants.

, o

whereC;= RC;j implies A. The characteristic polynomial

In this subsection we express the characteristic polyno-
E_ CiiGij => CiiCy; - (18  mial in several different ways in terms of invariants of the

! ! group. Consider amXxn complex matrixA of arbitrary di-
mension with eigenvalugs . The characteristic equation for
Similarly for Ug acting on the vectors formed from the col- the matrix can be written ador a similar expression, see
umns ofC;; . Therefore under local unitary transformations Ref. [21])

of the formU,®Uyg, the following quantity is conserved:
defA—AD)=A"—S\" I+ SN 2=+ ... +(—1)"S,=0,

(21
> GG - (19)
g where theS, are the symmetric functions given pg2]
More generally, we may determine conserved quantities k
formed from the correlation matrix which are analogs of the S= 2 H D; . (22
Casimir invariants. For the cubic Casimir invariant, for ex- I=ig<--ig=Nj=1 !
ample, the following quantity is invariant under local unitary
transformations: These can be written in terms pfr(p")]™ as
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= = _ 2 _ _
S,=Tr(A),S,= (1/2)[Tr(A)S,— Tr(A?)] (23 ng%(N 1)(2N 2)[1_3ﬁ.ﬁ+2ﬁ*ﬁ.ﬁ], 29
and N
S=(LK[Tr(AISC 1= Tr(AS, o+ 4:;“‘”('\“32)(“‘3’[1_6ﬁ.ﬁ+aﬁ*ﬁ.ﬁ
+(=D)" T AMS_,+ - - -+ (= DK 2T AR Y S, N
+(— 1) TrAY]. (24) +% n-n)2— %ﬁ*ﬁ-ﬁ*ﬁ . (30)

This can be proved using the fact that ) ] ) )
Higher-order invariants can be calculated using the mate-

M N rial from the appendixes in a straightforward albeit some-
[Tr(p)]N:( > pk) what tedious manner. Note that if the two requirements for a
k=1

density operator to be a pure state are nmety=1 and

B E _ my My . _ﬁ* ﬁ'zﬁ., thfenS2 throughS‘! (gs well as gll highesk) van-

T & (N;my, My, M) Py P, - Py ish, indicating a characteristic polynomial with the solution,
one non-zero eigenvalue. The trace being 1 then demands
(25 that this eigenvalue be 1.
It is also noteworthy that two density operators have the
where{m,} is a set of integers such tha{’ ;m=N, and  same Casimir invarianti and only if they have the same

eigenvalues. This follows from the fact that two density op-

N! erators have the same Casimir invariaifitand only if they

(Nimg Mg, - .. My) = myim,! .. my!’ (26) satisfy the same characteristic equation. An entanglement
measure based upon an entanglement monotone for a bipar-
L tite pure state must be a function only of the eigenvalues of
B. Positivity

the marginal density operatof42]. This relation between
For a given set of real numbefs, ,n,, ... ,ny}eRN, we  Casimir invariants and eigenvalues implies that any en-

would like to know when the set will represent a valid den-tanglement measure based on an entanglement monotone

sity operator of the form Eq(9). It is clear that the right- may also be expressed as a function of Seor Casimir

hand side of Eq(9) has trace 1 and is Hermitian. However, invariants of the marginal density operator.

the positive semidefinite property is less trivial.
Theorem For a Hermitian matrix p=(1/N)(1

+ \/[N(N—l)/2]ﬁ-)3) to represent a positive semi-definite

Opesrl?é?crr:tc;? Sreocoefsssi?(?(/a ?ﬂg ?T:J;Ir(ﬂznits%ir?ngi);r?”;i ei- Casimir invariants. This relationship is noteworthy for sev-
genvalues of the operator are real. This implies that the coSral reasons. Casimir invariants can be used to determine

efficients of the characteristic polynomial are real. They aredegenerames in the orbits and emphasize the relation to the

also non-negative if and only if the signs of the coefficientspitri]g:'ﬁzleZy;’;elr;]bg?sdf;asl'jgr':tL'J';',:]/Zrt'gtr:g’ ?rfiﬁjgt?;rgetﬁqusi?'
of the characteristic polynomial alternate. In fact, the numbel}t of the Casimir invaria?\ts to provide iﬁformation about the
of positive roots of the characteristic polynomial is the num- Y P

; : g degeneracy of the spectrum, we will use the three-state sys-
ber of sign changes in the sequence of coefficiésee pp. : P )
124 and 125 of Ref[23)). tem as an example and then give a brief discussion of four-

state systems.

C. Symmetric functions and Casimir invariants

The quantities appearing in tig are combinations of the

Constraints on the coherence vector L . .
1. Casimir invariants for a system with three states

The set of inequalitie§, =0 characterizes the region of . : : : .
= . oo o Since the eigenvalues are invariant under unitary transfor-
permissible vectors which represent valid, i.e., positive

semidefinite, density operators. The first few of these condi.matlons' we can discuss the interpretation of the Casimir

i ; ) : invariants in terms of a diagonalized density operator. In
tions, given directly in terms of the coherence vector, are ag, . . : :

. ree dimensions a common basis for the traceless, diagonal
follows. For a normalizeg,

3X 3 Hermitian matrices are the Gell-Mann matri¢24]. In
this basis, we denote the two linearly independent, traceless

S$i1=Tr(p)=1. @7 diagonal matrices as

Here we adhere to the conventions set forth in Secs. Il A and

II B. Using the symmetric parts of the traces, denoteg, It 1 100 1 100
given in Appendix B, )\Bzﬁ 01 0|, Agzﬁ 0 -1 0
0 0 -2 0O 0 O

1 -
= — 2— 2 = — —_ .
S2 2{[Tr(p)] [Tr(p™)1} 2N [1=n-n}, (28 For a mixed state, we may write the diagonalized form as
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a, 0 O operator, one must preserve positivity. This restricts the set
-lo a o of coherence vectors such that the limitn|® can never be
Pd= 2 ) . = . . . .
0 0 a reached for certain values ¢f|. This will be discussed in
3

Sec. IV A.

where3,a;=1. Expanding this using The square of the coherence vector is

TG 1 00 n-n=a’+a3+a3—a;a,—a;a3—a,az=<1.
pr=g| 1+ 7(\/5)\3“\8) =120 0L BY e may also calculate
0 0O
o 0 0o n*n-n=a’+ad+ad+6a,a,a;— (3/2)(a%a,+ada; +aza,
1 3 2 2 2
pa=3| 1" \/7_(_\/5)\3‘”\8) (0 1 0], 32 + 823t a5t g%y
000 Note that—|n|3<n*n-n=<|n|3 since
0 0 O IR -
1 (n*n-n)?—|n|®=%(a;—a,)*(a;— az)*(a,—az)*=0.
pa=3[1=\3xg]={ O 0 O], (33 | | | |
0 0 1 Degenerate eigenvalues imply the following relations.

(1) If a;=ap,
yields a density operator of the form

pa=3{1+V3[(a;\3/2—a,\/3/2)\4

n-n=(a;—as)? and nxn-n=—(a;—az)?3 (37

+(ay/2+a,/2—az)\g]}. (34) (2) If ay=a3
The coherence vector is given by n-n=(a;—ag)? and n*n-n=(a;—az)s3 (39
n=(0,02,\/3/2—a,/3/2,0,0,0,08,/2+ a,/2—as). () If a;=as
Since this is a positive semidefinite, Hermitian matrix, the n-n=(a,—ag)? and n*n-n=(a,—azs3 (39

density operator formed by p,=UpsUT=1/3(l

+ \/§Uﬁ. NU T) is also a positive semidefinite, Hermitian op- Therefore, when the two degenerate eigenvalues are greater
erator. With the appropriate restrictions on the coefficientsthan the third, the quantitﬁ*ﬁ-ﬁ is negative and when they

we may parametrize all three-state density matri@®l a  4re smaller,n*n-n is positive. Thus by investigating the
direct generalization for higher-dimensional systgmsthis  \5yes of the Casimir invariants, we are able to extract infor-

way [25,26). ) » mation about degeneracies in the spectrum. These degenera-
For three-state systems, the following two quantities argjes correspond to invariant subspaces since an eigenvalue
two independent Casimir invariants, which, in terms of thes;hspace spanned by degeneracies is invariant under unitary

coherence vector, are given by transformations on that subspaf25]. We next comment
o oL briefly on the four-state and general cases of identifying de-
n-Nn=c,, N*Nn-Nn=cs. (350  generacies.

The first is the quadratic Casimir invariant of the group and 2. Higher dimensions

the second is the cubic Casimir invariant of the grgspe

also Refs[8,21]). The generic orbits are given bg1] For N-state systems, there ale—1 Casimir invariants.

This is the rank of the group of transformations, 8l)(on

- o I the space of density operators, and corresponds to the num-
n-n=c, and n*n-n=c3#Cy. (380  ber of elements in a complete set of commuting operators.
EachS,, when expressed in terms of the coherence vector,

ill contain a term of the form rfx)**~2n.n which is
p@bsent fromS; ,j <k. In the preceding section it was shown

The values ot, andc; are unchanged, i.e., invariant, under
unitary transformations of the density operator. One shoul

note that the Hamiltonian and the density operator are bot ) .
Hermitian and thus can both be expanded in the same badidat @ degeneracy in the spectrum of the density operator was

of traceless, orthogonal, Hermitian matrices. However, thdnanifest in the values of the Casimir invariants. When a

positive semidefiniteness of the density operator puts furthed€9eneracy in the spectrum exists, an added symmetry of the
ict th £ all bl s of coefficiards density operator under a subgroup of the group of all unitary
restrictions on the space ot allowable sets ot coetticia transformations exists. This will determine a relation be-

the Hermitian operator. Whereas, in generat|n|®  tween the Casimir invariants, and thus reduce the number of
<n*n-n</|n|® [21] for a Hermitian operator, for a density independent polynomial invariants.
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Let us discuss the example of four-state systems. If thevhich is positive but not completely positive. In terms of the
density operator for a four-state system has the spectruoherence vector representation,
(a,b,b,b) then each of the four Casimir invariants is propor-
; - T ; 1 - - (N=1) c . -
tional to powers of|n|. (c,_o<|n| ). If the spectrum is p— —[IIN=1)—ch-X]= (Jl— Y
(a,a,b,b), then all Casimir invariants are zero except the N N N

_1 !
guadratic. Spectra of the forma(b,c,c), or nondegenerate (42
spectra are not as easily identified by their Casimir invari-

ants. However, there exists a readily available programwherec=yN(N—1)/2. Thus, up to an overall constant, the
Macaulay which can check the independence of the invari-mapping corresponds to a change in sign of the coherence
ants, thereby determining the degeneracies. Of course, if théector and a reduction of the magnitude of the coherence
spectrum is completely degenerate, then all Casimir invarivector.

ants vanish sincea=0 for the completely degenerate case.

The advantage of obtaining this information through the use

of invariants is thabne may not always solve directly forthe ~ We might ask if there exists a physical map which will

eigenvalues of a matrix, but the Casimir invariants may stillproperly invert the coherence vectdnversion of the coher-

be obtained. ence vector as a possible generalization of the concurrence
For the convenience of the reader, the Casimir operatorsl6,17] was studied by Rungtet al. [20].) This would be of

are given in terms of the Lie algebra elements in Appendixhe form

A. In Appendix B we give the trace formulas from which

2. Inverting the coherence vector

these can be calculated and the coefficients of the character- 1 - - 1 - -
istic polynomial can be found. p=qUtenn)—p=gl-cn-r). (43
Note that a map from a density operator to a density op-

erator may be expressed as an affine map, However, this is not positive. To see this, consider the matrix

n—n'=Tn+t, (40)
. . - . " 1 0 a 0 e

whereT is a matrix andt is a translation. The positivity of P=N 1+ . . . . (44

the mapping is determined by the positivity of the density : - :

operator formed by’ [6]. o ... —(N-1)a
V. EXAMPLES For this matrixn-n=a? and n*n-n=a%. This gives the

symmetric polynomial
In this section we give the following results. First, we
show how the positivity of theS, restricts the coherence S;x1—3n-n+2n*n-n=1-3a2+2ad. (45)
vector for two particularly interesting examplessn-n=

—|n|® and inversion. This gives, in terms of the coherenceThis function ofn is minimum whenn*n-n=—|n|3<0 so
vector, the same bound obtained by Rurgftal.[20] on the that

ability to construct a “universal inverter.” Second, we show

that the positivity of the density operator of two qubits can S;c1—-3n-n—2|n*n-n|=1-3a?—2a3. (46)
be determined by the positivity &; andS, for the general

case and for the Werner state. Third, we present an alterngyr this to be positivea=1/2 showing that for certain the
tive derivation of the three-tangle of Coffman, Kundu, andlimit A*R. A= _|ﬁ|3 cannot be obtained. This is unlike the

Wootters[27] using the coherence vector description. case of a Hamiltonian, or general Hermitian matrix, where it

is acceptable to have*n-n=—|n|3. For a system with

three states, and no zero eigenvali®sis the non-zero de-
Here we show that, due to positivity requirements, theterminant of the matrix.

limit n*n-n=—|n|® cannotbe reached for certain. This For higher-dimensional systems the requirement phit

follows from the positivity requirement§,=0 and restricts Ed. (44) be positive corresponds to

the set of positive maps for the set of density matrices. An

example of this is the universal inverter and univensaflr 1

gate. —N_lzaz—l. 47

A. Inversion of the coherence vector

1. Universal inversion Now if we ask for an inversion map which is positive, we

The universal inverter and universabT gate[20] are ~ S€ek a mapping of the form
related to a mapping of the form

1 N
p—)]—p, (41) pﬁﬁ(b]_cn')\)- (48)
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Choosing an operator of the form Ed4), for the map to be (41).This is a condition on the positivity of the determinant

positive we require which we have shown iS§y for an N-state system.
b=(1-N)a=(N—-1). (49) 3. Three-state example
This is the condition found by Rungt al.[20] for positiv- For example, let us consider a three-state density matrix

ity and restricts inversion to a map of the form in Eg. of the form

0.15278 0.036084i0.06250 —0.072169-i0.1250
p=| 0.036084-i0.06250 0.23611 —-0.25 ) (50)
—0.072168-i10.12500 —-0.25 0.61111
|
Using nj=(1/3/2) Tr(p\;), direct calculation gives This forms an orthogonal basis with respect to the trace and

has normalization given by
S;1—3(0.6662+2(0.666°.
However, when 0.666 —0.666 thenS;<0 showing that

inversion is not a positive map for this density operator. The nonzero, totally symmetrid-tensor components in

this basis are given by
B. Two-qubit entanglement

In the Sec. IV B 2 the example of the Werner states for T=d1,4,7:d1,5,8:d1,6,9: d2,416= 25117 d26177 A3 4,13
two qubits is investigated. This mixture of a completely
mixed and singlet state is separable if and only if the par-

. ) . . o =d ~d =—d =—d ~d
tially transposed density operator is positive semidefinite ac- 3514778615~ F7illsT V812137 H7.12,14

cording to the Peres-Horodecki criterip®,3]. In this case, = —dg 101 g 101=dg 11 13 (54)
S; andS, determine positivity. This will be shown using the o ” ”
coherence vector representation. 2. Werner states: A case study
1. A basis for two qubits Under partial transpose of the first subsystem in the den-

sity operator, only elements,,n;y,n41,N1> change sigr(in
the given basis Sec. IV B)1 Therefore under the partial
transpose, one may readily determine which elements of the
productsn*n-n andn*n-n*n change sign.

The inequalitiesS;=0 and S,=0 depend only on the
nonlocal invariants of the system sin8¢ does not change

Let a basis for the Lie algebra of SU(4) be given by
(\}2o={ai®a}}; 0, (51)

whereNo=1, andoy=1,. The labels correspond in the fol-

lowing way: ! > -
and the local invariants which have the same fornspélso
1 do not change. This shows that the negativity arises in the
\i,i=0,12,3—0o®l, i=01,23, nonlocal invariantgas it should. As noted before, the partial
V2 transpose is positive since it preserves local positivity, but is
not completely positive. Although this is a low-dimensional
1 example and the higher ord&; become more complicated
\i,i=456—=Il®g, =123, as thek increases, such an analysis might lead to ways.,
V2 numerical and/or analytic searchder identifying positive,
but not completely positive, maps which may witness en-
] 1 ] tanglement.
i 1=7,8,9- EUI@ op, =123, (52 To clarify the discussions above, concerning the positivity

of the coefficients of the characteristic polynomial, we give
an example of the calculation for the Werner state of two

l . . . .
N i=1011,12 qubits. The Werner state for two qubits is given by

—o,Q0;, 1=1,2,3,
\/E 1-x
pw=——1+XxS§ (55)
1 4
\i,1=13,14,15~—03®0;, 1=1,2,3.
\/E where 0=x=<1 is real andSis the singlet state
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0 0O 0 C. Distributed entanglement
110 1 -1 0 Coffman, Kundu, and Wootterf27] have studied “dis-
S= 51 o 1 1 ol (56) tributed entanglement” which concerns the entanglement of
B various subsystems of a tripartite qubit system. One of their
0O O 0 main results is the description of entanglement of a pure state

of three qubits which is not expressible in terms of two-qubit
Therefore wherx=0 the state is separable and wheAl  relations. Here we wish to streamline their argument using
the state is maximally entangled. We may rewrite this as  the material presented above and thus derive by alternative
means the “tangle” of three qubits. Consider a pure state of
:E}l_ f((,x@) Tyt Oy @Oyt 0,0 7,) three_ qubits for s_ystems we lab&|B,C. We will write the
density operator in a tensor product basis,

1;_’( 0 0 0 pasc= 2111+ N, 0@l 1+1®@Ng- c®1+1®1®Nc- o
14x  x +Npp 0Q @1+ Npc- 0@1@F+Nge 1@ T
O — —-—= 0 . I
_ 4 2 57 +Npgc- OR TR ), (61)
X 1+x '
0 -—- — 0 s s
2 4 wherenag- o® 0=(Ng)ijoi®0;j, €tc.
1—x Sincepapc represents a pure state, the marginal density
0 0 0 e matrices, e.g.pag= Trc(pasc), have only two nonzero ei-
genvalues, so that the square of the concurrence may be used
to write

The partial transpose conditioiPeres-Horodeckis[2,3] is
equivalent(up to a local unitary transformatioto the inver- _
sion of the coherence vector, which is also known as spin flip Cag= (A1 —N2)2=N5+A5— 2\ \,=Tr(pagpas) — 2\ 1A2
or inversion. In terms of the coherence vector for the com- -
bined system, if we write the density operator in terms of the ~ <Tr(paPas); (62
basis given in the preceding section,

where\,; and\, are the square roots of the eigenvalues of

1 . ~ o~ : ~
= PAB=Z(1+ Jen-x), (58)  Paepas- The matrixpag is defined bypag=o,® TypAsTy
Roy.
At this point our argument will differ from that of Ref.
the partial transpose correspondsnie- —N,, Nig——N1g,  [27]. Since this is a pure state, the Schmidt decomposition

ny;— —Ny1,N1— —Np,. Calculating the coefficients of the can be used to choose a preferred basis for subsysidns
characteristic polynomialS;(pag) and S,(pag) are un- and C. The reduced density matrices may be rewritten as

changed under this transformation. However, (using an unnormalized coherence vegtor
1 1 — _1 2 Y
%(pAB)=(E)(1—3x2+ 2X3)_><E) (1—3x2—2x3) pag=Trc(pagc) =7 (1+mMug-N), (63)
(59) where rﬁABE (ﬁA ,ﬁB !ﬁAB) and
and o
pc=Trap(pagc) =3(1+nc- o). (64)
1
S =| —|(1-6x%>+8x3—3x* . .
4(Pae) (44)( ) Then, by the Schmidt decomposition these two have the
same eigenvalues. Therefore they satisfy the same character-
1 ) 3 4 istic equation which will have only one non-trivi&g, [S;
—| g2 (176X =8=3xD). 60 =Tr(p)=1], that being
This partial transpose condition implies that the density op- Ss(pc)=Ss(pag): (65

erator is separablié and only ifthe partially transposed den-

sity operator(or the spin-flipped density operajas positive  \\hich implies

semidefinite. Here we see that the coefficients have follow-

ing possibilities for sign changes. For ¥3<1/2, $,<0,

S;>0, and forx>1/2, S,<0 andS;<0. However, in each H(1+Mag-Mag) = 3(1+nc-Ne). (66)
case there is only one change in sign fagaand therefore

one negative eigenvalue. Therefore
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nAB'nAB:1+2nc’nC_nA' nA_nB'nB.

(67)
Noting that

Tr(paspap) = $(1—Na-Na—Ng-Ng+Nap-Nap), (68)

PHYSICAL REVIEW A 68, 062322 (2003

may be utilized directly given an affine map of the coherence
vector.

It is interesting to note that the “measure of purity” of a
density operator has arisen in several contexts. Consider a
pure state, bipartite density operator. The generalized concur-

rence in Ref[20] is simply related to the purity of the mar-
ginal density operator. If, is the marginal density operator,
then the concurrence is proportional $3(p,) which is a
measure of the purity of the density operator. The statés
pureif and only if S(p,) is zero. The state is “less pure” if
this quantity is larger. This measure of purity is also used in
the optimal decompositions discussed in Rg#8]. One
might consider generalizations of the “measure of purity.”
Certainly if S; (equal to 1 when the matrix has unit trace
andS, are the only nonzero coefficients of the characteristic
polynomial, thers; is a “good” measure of purity. However,

if S, and S; are both nonzero, then the purity should be
measured by two quantities since pure states necessarily have
both quantities equal to zero. States that are closer to being
pure are those with smaller values of these two quantities.
Similar arguments can be made for the higher-dimensional
S, . One might then consider a generalization of measures of
entanglement which rely on this modified set of “measures

we can use Eq67) to write

Tr(paspas) = 3(1—Na-Na—Ng-Ng+Nc-Ne).  (69)
This is completely equivalent to the results in EG8. and
(8) of Ref.[27], the latter is repeated here:

Tr(pagpae) = 2(detp,+ detpg—detpc). (70

This is needed to derive the “first main result” of R¢27]:

CagtCac=4detp,, (72)
where we have used E(62).
At this point, we can calculate

4 SZ(PAB;AB) = TABCEC(ZA)BC_ CE\B_ Cic .

This quantity describes the three-way entanglement of th8' PUrty.”

three qubits and was shown in RE27] to be invariant under The set of algebraic equations given §=0 give a set
the permutation of the qubits. of geometric constraints on the spaces of allowable coher-

ence vectors. This may motivate further exploration of tech-
nigues from algebraic geometry which has already been
found useful by Miyakd?29] for describing pure-state sepa-
The identification of positive, but not complete positive, rability.
maps has recently become an active area of research due toDue to the generality of the arguments here and the con-
the restrictions it places on physically realizable quantunnections made between Casimir invariants, algebraic geom-
transformations[7] and the question of entanglement of etry, and positivity, we believe that this work provides useful
quantum systemg2,3]. To aid in the study of such transfor- relations and insights into the structure of positive operators.
mations this paper has presented a representation of the déf¥e also hope that it will aid in identifying positive, but not
sity operator in terms of traceless, Hermitian, orthogonal macompletely positive, maps.
trices. We then showed that the Casimir invariants of Note added in proofRecently, a detailed independent
generalized coherence vector for density operator could beroof of the positivity condition§30] was kindly pointed out
calculated directly and information about degeneracies in thBy Gen Kimura. This includes an independent derivation of
spectrum of the operator could be obtained for some particu=ds. (28—(30) and a more thorough discussion of the re-
lar cases. It should be noted that we have given a represegions of positivity for three-state systems.
tation of the density operator in bases, but the expressions of
the Casimir invariants and symmetric functions do not de-
pend on the choice of the set of traceless, Hermitian, or-
thogonal matrices in the basis. The region of positive
semidefinite density operators is determined bynt@eessary

V. CONCLUSION
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APPENDIX A: CASIMIR INVARIANTS
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N

Co= X Gaph®\, (A1) Cs= 2 dann,dasan daaph A2 \Bs,
ab=t by by ,b3.0y,bg
ag,a
whereN is the dimension of the vector spaldé¢=n?—1 for v (A6)

SU(n) groupd, and\ e £(G). Note thatg,,*3 . 432 is
an invariant, symmetric tensor. To find other invariant, sym- C.— 2
6=

bg
metric tensors, one forms '

by\ba. ..
dalblbzdala2b3da2a3b4da3b5b67\ A A

by.by, ..., bg
Tr(adyaceadyas°- - -oadya,) %1828 (A7)
N
_ 2 §101a22 fan-1bn-148nbn Of course the ones that are immediately interesting are
byby . by=1 P2 B3 777 7bn by C,,C3,C,,Cq,C, for the purposes of embedding two qubits

A2) into a four-state system, a two-state and a three-state system
into a six-state system and the embedding of two three-state

totally symmetric tensod,y., ining quantum control for two qubits and entanglement is-
sues for a two qubits, a qubit and a qutrit, and two qutrits.
N The above relations can be expressed in terms of adjoint
C3:at§_1 dap A *APAC. (A3)  vectors and particular products. We introduce this notation

here since it has its own manipulation rules that make it
Generally these higher-order operators can be expressed gasier to calculate quantities of intgrest. Note _also that since
terms of the symmetric tensor as the .. and d,p,. tensors are obtained by taking traces of

products of elements with anticommutators and commutators
respectively, they are easily calculated by analytic methods

Cn= 2 dalbllozdalazb?,dazagb4 cee on a symbolic manipulation program SUChN@#STHEMATICA .
by by, . by, These relations are
aj,ag, ..., am_3
d d -
o - 28m-3Pm-2" - 3bm-1bm fabC: T Tr([)\al)\b])\c)
bipb2. .. \P
XAPIN Am, (A4) and
We list the first few here in order to be explicit and to enable 1
the development of the pattern. dabc:(Z) Tr({Na ApJNo)-
C,= > dalblbzda1b3b4)\b1)\bz)\b3?\b4v (A5)  The difference between upper and lower indices is not im-

ap,by,by,bg,by portant if we are considering Sbl.

APPENDIX B: TRACE FORMULAS
1. Symmetric traces of basis elements

Here the first few examples of the trace formulas have been given.

Trsyr‘r{)\i)\j)\k)ZZdijki (BZ)
4
Trsynl Nk Mk ) = 5 i 8+ 20ijm i, (B3)
4
Trsyn{)\i)\j)\k)\l)\q):N(5ijdk|q+ Sxdijq) + 2dijmdiindmng (B4)
28 4
Trsyn(M?\j)\k)\ﬁ\qNs):m@j Ok16gst N(dijmdk|m5qs+ dijmdgsmSkit dkimdgsmdij) + 2dijmdkindgsmnt. (B5)
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23 22
Troym NiN NN A GA N ,) Im( 8ij O1lgsut 9ij Sqediiut SqsOidiju) + W(‘sqsdijmdklndmnu"_ 6ijdiimdgsrAmnu

22
+ 5kldijmdqsndmnu) + qusudijmdklm+ 2dijmdkIndqs.tdmnudutu ' (BB)
24 23
Troymd NiN NN N GA SN (A y) :ﬁ 6ij Ok10qsOuw™ W( 6ij Oilgsuwit 9ij Sqsdiinduwn 8ij SuwdgsrdiinT Skidqsdijnduwn

22
+ 5kI5uwdijn dqsn+ 5uw5qsdklndijn) + N( 5ijdklmdqstduWUdtvm+ 5kldijmdqsthWUdtvm

+ 5qsdijmdklndmnudUWu + 5uwdijmdklndmnudq&;) + 2dijmdklndmnpdqstduWUdtup ' (87)

24 23
Trsyn{)\i)\j)\k)\l}\q)\s)\u)\w}\y) :m(éij 5k| 5qsduyw+ 5ij 5k| 5uwdqsy+ 5ij 5q55uwdkly+ 5kI5qs5uwdijy) + m(éij 5k|quIdUUWdtvy

23
+ é\qséuwdijmdklndmny'ip 5ij 5qsdklndUdenvy+ 5ij 5uwdklndqstdnty) + m(éijdklydqstduwt

22
+ é\kldijydqstduwt"' é\qsdijmdklmduwy_lp 5uwdijmdklmdqsy) + W( 5ijdklndqsIdUdetuxdnxy

+ 5kldijmdqstduvwdtvxdmxy+ 5qsdijmdklndmnpduwz;dpvy+ 5uwdijmdklndmnpdqstdpty)

+2dijmdklndmnpdqsthWvdtuxdpxy- (88)

2. Symmetric traces for the density operator

For the density operator these translatéagain only the first few are given

Tr(p2)=%[1+(|\1—1)ﬁ.ﬁ], (B9)
Tr(p3) = %[1+ 3(N—1)n-n+(N—1)(N=2)(n*n)-n], (B10)
Tr(p*) = %[H 6(N—1)n-n+4(N—1)(N-2)(n*n)-n+(N—1)%(n-n)2+(N—1)(N—2)3(n*n)-(n*n)], (B11)

Tr(p®) = %[1+ 10(N—1)n-n+10(N—1)(N—=2)n*n-n+5(N—1)4(n-n)2+5(N—1)(N—2)2(n*n)- (n*n)

+2(N=1)4N-2)(n-n)(n*n-n)+(N—1)(N—2)3n*n*n*n-n], (B12)

Tr(p%) = %[LL 15(N—1)n-n+20(N—1)(N=2)n*n-n+15N—1)4(n-n)2+15N—1)(N—2)2(n*n)-(n*n)

»»»»»

+(N=1)3(n-n)3+3(N=1)3(N-2)2(n-n)(n*n-n*n)+(N—1)(N—2)*(n*n*n)?], (B13)
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Tr(p")= %[1+21(N—1)ﬁ- n+35N—1)(N=2)n*n-n+35N—1)4n-n)2+35N—-1)(N—2)4(n*n)-(n*n)

eeeee

> > > > >

»»»»»»»

X (N=2)3(n*n-n)(n*n-nxn)+(N—1)(N—2)%(n*n*n*nxn*n-n)], (B14)

B T

B T

eeeeeee

> > 5> > 5> > 5> 5> 5 s 5 5 s >

X(ﬁ~ﬁ)(n* n*n*n*n-n)+(N—2)8(n*n*n*n*n*n*n-n)]J, (B15)

Tr(p9)=@[1+36(N—1)n~n+84(N—1)(N—2)n*n-n+126(N—1)2(n~n)2+126(N—1)
X (N=2)2(n*n)-(n*n)+252AN—1)2(N—2)(n-n)(n*n-n)+ 126 N—1)(N—2)3

eeeeeeeeeeeeeeee

+4(N—-1)4N—-2)5(n-n)(n*n*n*n-n*n*n)+(N—1)(N—2)7(n*n*n*n*nxn*n*n-n)J. (B16)
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