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Entanglement sharing in the two-atom Tavis-Cummings model
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Individual members of an ensemble of identical systems coupled to a common probe can become entangled
with one another, even when they do not interact directly. We investigate how this type of multipartite
entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to
a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements
in the different bipartite partitions of the system, as quantified by theI tangle. We also propose a generalization
of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This
enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom
Tavis-Cummings model, a system of both theoretical and experimental interest.
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I. INTRODUCTION

The control of quantum systems through active meas
ment and feedback has been developing at a rapid pace
typical scenario, a single atom is monitored indirec
through its coupling to a traveling probe such as a la
beam. The scattered beam and the system become corre
and a subsequent measurement of the probe leads to ba
tion on the system. A coherent drive applied to the syst
can then be made conditional on the measurement rec
leading to a closed-loop control model@1,2#. Such a protocol
has been implemented to control a single-mode electrom
netic field in a cavity@3#, and has been envisioned for co
trolling a variety of systems such as the state of a quan
dot in a solid@4#, the state of an atom coupled to a cav
mode @5#, and the motion of a micromechanical resona
coupled to a Cooper pair charge box@6#.

A common theme in the examples given above is t
measurements are made onsinglecopies of the quantum sys
tem of interest. However, in many situations one does
have access to an individually addressable system. In a
for example, preparing and/or addressing individual atom
extremely difficult. In situations such as this, it is useful
think of the entire ensemble as a single many-body syst
Indeed, recent experiments@7,8# and theoretical proposal
@9# have explored the control of such ensembles from
point of view of the Dicke model@10#, where a collection of
N two-level atoms is treated as a pseudospin withJ5N/2.

Measurement backaction on the pseudospin can lea
squeezing of the quantum fluctuations@7–9#, which may be
enhanced through active closed-loop control@1,2#. This
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squeezing can reduce the quantum fluctuations of an obs
able as in, for example, the reduction of ‘‘projection nois
leading to enhanced precision measurements in an ato
clock @11#. Moreover, spin squeezing is related to quantu
entanglement between the atomic members of the ense
@12#. This entanglement arises not through direct interact
between the atoms, but through their coupling to a comm
‘‘quantum bus’’ in the form of an applied probe.

Measures of entanglement associated with these s
squeezed states have been studied by Stocktonet al. @10#
under the assumption that all of the atoms in the ensem
are symmetrically coupled to the bus. However, complet
quantifying entanglement in the most general cases is
tremely difficult, and as yet, an unsolved problem@13#. In
this paper we consider the simplest possible ensemble
sisting of two two-level atoms. Although at first sight th
might appear trivial, when such a system is coupled to
quantum bus a rich structure emerges. Again, we cons
the simplest realization of the bus—a single-mode quanti
electromagnetic field. The resulting physical system th
corresponds to the two-atom Tavis-Cummings model~TCM!
@14#. A thorough understanding of the dynamical evoluti
of the TCM has obvious implications for the performance
quantum information processing@15–17#, as well as for our
understanding of fundamental quantum mechanics@15,18#.
Bipartite entanglement has been investigated in this sys
for the one-atom case, known as the Jaynes-Cumm
model, for initial pure states@19# and mixed states@20,21# of
the field.

Taken as a whole, the two-atom TCM in an overall pu
state constitutes atripartite quantum system in a Hilber
space with tensor product structure 2^ 2^ `. Entanglement
in tripartite systems has been studied by Coffmanet al. @22#
for the case of three qubits. They found that such quan
correlations cannot be arbitrarily distributed amongst
subsystems; the existence of three-body correlations c
strains the distribution of the bipartite entanglement wh
remains after tracing over any one of the qubits. For
©2003 The American Physical Society16-1
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TESSIERet al. PHYSICAL REVIEW A 68, 062316 ~2003!
ample, in a GHZ state,uGHZ&51/A2(u000&1u111&), tracing
over one qubit results in a maximally mixed state contain
no entanglement between the remaining two qubits. In c
trast, for aW state, uW&51/A3(u001&1u010&1u100&), the
average remaining bipartite entanglement is maximal@23#.
Coffman et al. analyzed this phenomenon ofentanglement
sharing@22#, using an entanglement monotone known as
tangle, a simple generalization of the more familiar conc
rence@24,25#. They also introduced a new quantity known
the residual tangle, in order to quantify the irreducible trip
tite correlations in a three-qubit system@22#.

In this paper we extend the analysis of entanglement s
ing to the case of the two-atom TCM. This has implicatio
for the study of quantum control of ensembles. For exam
if we imagine that the quantum bus is measured, e.g.,
field leaks out of the cavity and is then detected, then
degree of correlation between the field and one of the at
determines the degree of backaction onone atom. We can
then quantify the degree to which one can perform quan
control on a single member of an ensemble even when
couples onlycollectivelyto the entire ensemble. We will ac
complish this by extending the residual tangle formalism
Coffmanet al. to our 2^ 2^ ` system.

The remainder of this paper is organized as follows. T
important features of the TCM are reviewed in Sec. II, a
the applicable measures of entanglement are introduce
Sec. III. With this formalism in hand, we calculate the tang
for each of the bipartite partitions of this tripartite system
Sec. IV. We will find an approximate analytic expression
the tangle between the field and the ensemble in the limi
large average photon number and in the Markoff approxim
tion which provides further insight into these results. In S
V, we study the irreducible tripartite correlations in the sy
tem using our proposed generalization of the residual tan
Finally, we summarize our results in Sec. VI.

II. THE TAVIS-CUMMINGS MODEL

The Tavis-Cummings model~TCM! @14# ~also known as
the ‘‘Dicke model’’ @26#! describes the simplest fundamen
interaction between a single mode of the quantized elec
magnetic field and a collection ofN atoms under the usua
two-level and rotating wave approximations. The two-ato
(N52) TCM is governed by the Hamiltonian

H5H01Hint

5\v~a†a1 1
2 sz

(1)1 1
2 sz

(2)!

1\g@~s2
(1)1s2

(2)!a†1~s1
(1)1s1

(2)!a#, ~1!

wheres6
( i ) andsz

( i ) display a local su(2) algebra for thei th
atom in the two-dimensional subspace spanned by
ground and excited states$ug&,ue&%, and a(a†) is bosonic
annihilation~creation! operator for the monochromatic field
The Hilbert spaceH of the joint system is given by the
tensor productHA1

^ HA2
^ HF whereHA1

(HA2
) denotes the

Hilbert space of atom one~two! andHF is the Hilbert space
of the electromagnetic field.
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The total number of excitationsK5a†a1 1
2 (sz

(1)1sz
(2)

12) is a conserved quantity which allows one to split t
Hilbert spaceH into a direct sum of subspaces, i.e.,H
5(K50

`
% VK , with each subspaceVK spanned by the eigen

vectors$uee,k22&,ueg,k21&,uge,k21&,ugg,k&% of K with
eigenvaluek. The analytic form for the time evolution opera
tor within a subspaceVK is given in Zenget al. @27#.

It is assumed throughout that the initial state of the TC
system is pure. Furthermore, we consider only the effect
the unitary evolution generated by Eq.~1!, i.e., we do not
include the effects of measurement, nor of mixing due
environment-induced decoherence@28#, so that our system
remains in an overall pure state at all times. Finally, by
suming an identical coupling constantg between each of the
atoms and the field, the Hamiltonian is symmetric und
atom exchange. This invariance under the permutation gr
was used by Stocktonet al. @10# to analyze the entanglemen
properties of very large ensembles. We will also make use
this fact in order to reduce the number of different partitio
ing schemes that one needs to consider when studying
tanglement sharing in the two-atom TCM.

III. THE TANGLE FORMALISM

The tangle between two qubits in an arbitrary state
defined in terms of the concurrence@24,25#. For a pure state
uc& of two qubits, the concurrence is given byC(c)
[u^cuc̃&u, whereuc̃& represents the ‘‘spin flip’’ ofuc&, i.e.,
uc̃&[sy^ syuc* &, and the asterisk denotes complex con
gation in the standard basis.

The generalization of the concurrence to a mixed statr
of two qubits is defined as the infimum of the average c
currence over all possible pure state ensemble decomp
tions of r, defined as convex combinations of pure sta
Si5$pi ,c i%, such thatr5( i pi uc i&^c i u. In this way,C(r)
[ infSi

( i piC(c i)5 infSi
( i pi u^c i uc̃ i&u. Wootters succeeded

in deriving an analytic solution to this difficult minimizatio
procedure in terms of the eigenvalues of the non-Hermit
operatorrr̃, where the tilde again denotes the spin flip of t
quantum state. The closed-form solution for the concurre
of a mixed state of two qubits is given byC(r)5max$0,l1
2l22l32l4%, where thel i ’s are ordered in decreasin
order @25#. Rungtaet al. extended this formalism by intro
ducing an analytic form for the concurrence of a bipart
systemAB, with arbitrary dimensionsDA and DB , in an
overall pure state@29#. The analytic form of this quantity
dubbed the I concurrence, is given by C(cAB)
5A2nAnB@12tr(rA

2)#, whererA is the marginal density op
erator obtained by tracing the joint pure state over subsys
B, andnA andnB are arbitrary scale factors.

Coffmanet al. defined the tanglet2 for a system of two
qubits as the square of the concurrence@22#, i.e.,

t2~r![max$0,l12l22l32l4%
2. ~2!

Indeed, we may extend this definition directly to the result
Rungta et al. in order to obtain an analytic form for th
tanglet of a bipartite system in a pure state with arbitra
subsystem dimensions,
6-2
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ENTANGLEMENT SHARING IN THE TWO-ATOM TAVIS- . . . PHYSICAL REVIEW A 68, 062316 ~2003!
t~cAB![C2~cAB!52nAnB@12tr~rA
2 !#. ~3!

However, when extending this definition to apply to a bip
tite mixed staterAB with arbitrary subsystem dimension
one must find the infimum of the average squared pure s
concurrence@30#,

t~rAB![ infSi(i
piC

2~cAB
( i ) !

52nAnBinfSi(i
pi$12tr@~rA

( i )!2#%, ~4!

where we have used Eq.~3! for the pure state tangle withrA
( i )

as the marginal state for thei th term in the ensemble decom
position.

At this point we note that the scale factorsnA andnB in
Eqs.~3! and~4!, which may in general depend on the dime
sions of the subsystemsDA andDB respectively, are usually
set to one so that agreement with the two-qubit case is m
tained, and so that the addition of extra unused Hilbert-sp
dimensions has no effect on the value of the concurre
@29#. We will find in Sec. V, when we attempt our own fu
ther generalization of the tangle formalism, that it is usefu
take advantage of this scale freedom. For now, however
adopt the usual convention both for the sake of clarity and
demonstrate exactly where in our proposed generaliza
this freedom is required.

Using the definition given by Eq.~4!, dubbed theI tangle
in reference to the work of Rungtaet al., Osborne derived an
analytic form fort(rAB) in the case where the rank ofrAB is
no greater than 2,

t~rAB!5tr~rABr̃AB!12lmin
(AB)@12tr~rAB

2 !#, ~5!

where r̃AB now represents the universal inversion@29# of
rAB and lmin

(AB) is the smallest eigenvalue of theM matrix
defined by Osborne@30#. The important point is that Eq.~5!
yields a closed form which, as we will see in Sec. IV C,
directly applicable to a specific bipartite partition of the tw
atom TCM.

IV. BIPARTITE TANGLES IN THE TWO-ATOM TCM

Let the two atoms in the ensemble be denoted byA1 and
A2, respectively, and the field, or quantum bus, byF. Be-
cause of the assumed exchange symmetry, there are
nonequivalent partitions of the two-atom TCM into tens
products of bipartite subsystems:~i! the field times the two-
atom ensemble,F ^ (A1A2); ~ii ! one atom times the remain
ing atom and the field,A1^ (A2F)[A2^ (A1F); ~iii ! the
two atoms taken separately, having traced over the fieldA1
^ A2; and~iv! one of the atoms times the field, having trac
over the other atom,A1^ F[A2^ F. We calculate how the
tangle for each of these partitions evolves as a function
time under TCM Hamiltonian evolution using the formalis
reviewed in Sec. II. We take the initial state to be a pu
product state of the field with the atoms. We will capture t
06231
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key features of the tangle evolution by considering th
classes of initial state vectors:

ue&A1
^ ue&A2

^ un&F[uee,n&, ~6a!

uee,a& or ugg,a&, ~6b!

and

1

A2
~ ueg&1uge&) ^ ua& or

1

A2
~ ugg&1uee&) ^ ua&,

~6c!

whereug(e)& denotes the ground~excited! state of the atom,
un& denotes a Fock state field withn photons, andua& de-
notes a coherent-state field with an average number of p
tons given by^n&. The alternatives in Eqs.~6b! and ~6c!
arise from the fact that, in the limit of largên&, the evolu-
tion of all the tangles are found to be identical for the tw
different initial atomic conditions, as we will see below.

A. Field-ensemble and one-atom-remainder tangles

Under the assumption that the system is in an overall p
state, we may easily calculate the tangles in partitions~i! and
~ii ! above by applying Eq.~3!, with nA5nB51. Specifically,

tF(A1A2)52@12tr~rF
2 !#52@12tr~rA1A2

2 !# ~7!

and

tA1(A2F)52@12tr~rA1

2 !#52@12tr~rA2F
2 !#, ~8!

where we have used the fact that the~nonzero! eigenvalue
spectra of the two marginal density operators for a bipar
division of a pure state are identical@15,31# in obtaining the
rightmost equalities. These tangles have implications for
quantum control of atomic ensembles. Because the ove
system is pure, any correlation between the field and
ensemble is necessarily in one-to-one correspondence
the amount of entanglement between these two subsyst
The quantum backaction on the ensemble due to meas
ment of the field is thus quantified by Eq.~7!. Alternatively,
a measurement of one atom leads to backaction on the
maining subsystem as described by Eq.~8!.

The time evolutions for each of the different tangles, c
responding to the initial conditions given by Eqs.~6a!–~6c!,
are shown in Figs. 1~a!–3~a!, respectively. Figures 1~b!–3~b!
show the time evolution of the atomic inversion, defined
the probability of finding both atoms in the excited sta
minus the probability of finding both atoms in the groun
state, for reference purposes. We find, under certain co
tions, that the two stretched states in Eq.~6b! lead to identi-
cal evolution for the tangles in all of the bipartite partition
of the system, corresponding to the curves shown in F
2~a!. Similarly, the two symmetric states given in Eq.~6c!
both yield the curves shown in Fig. 3~a!. This behavior can
be derived under a set of highly accurate approximations
the limit of large average photon number, an initial cohere
state field with zero phase will remain approximately se
6-3
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TESSIERet al. PHYSICAL REVIEW A 68, 062316 ~2003!
rable from the atomic ensemble in an eigenstate ofJx[J1

1J2 up to times of the order of̂n&/g where, in the pseu-
dospin picture,J6[s6

(1)1s6
(2) . This follows immediately

from the time evolution operator generated byHint in Eq. ~1!
in the interaction picture. The key observation is that, fo
macroscopic field, the removal or addition of a single pho
has a negligible effect. This allows one to approximate
time evolution operator by exp2iHintt/\'exp2igA^n&Jxt. Thus,
the eigenstates ofJx form a convenient basis to use in d
scribing the state of the atomic ensemble. This approach
taken by Gea-Banacloche in analyzing the behavior of
single-atom Jaynes-Cummings model@32# and the genera
tion of macroscopic superposition states@33#, and extended

FIG. 1. ~Color online! TCM evolution for both atoms initially in
the excited state and the field in an initial Fock state withn510. ~a!
Solid curve ~red!, field-ensemble tangletF(A1A2) ; large-dotted
curve ~green!, one-atom-remainder tangletA1(A2F) ; dashed curve
~black!, atom-atom tangletA1A2

~note that the atom-atom tangle
always zero for the given initial condition!; dot-dashed curve
~pink!, single-atom-field tangletA1F ; and dotted curve~blue!, re-
sidual tangletA1A2F . ~b! Atomic inversion of the ensemble.
06231
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to the multiatom TCM by Chumakovet al. @34–36#.
We take as the appropriate basis the three symme

eigenstates ofJx , which we label bym521, 0, and 1; the
singlet stateJ50 is a dark state and thus does not couple
the field. Writing the initial state of the system as

uc~0!&5 (
m521

1

dmum& ^ ua&, ~9!

and using the factorization approximation@34#, we find that
the state of the system up to times of the order of^n&/g is
given by

FIG. 2. ~Color online! TCM evolution for both atoms initially in
a stretched state and the field in an initial coherent state with^n&
5100. ~a! Solid curve~red!, field-ensemble tangletF(A1A2) ; large-
dotted curve~green!, one-atom-remainder tangletA1(A2F) ; dashed
curve ~black!, atom-atom tangletA1A2

; dot-dashed curve~pink!,
single-atom-field tangletA1F ; and dotted curve~blue!, residual
tangletA1A2F . ~b! Atomic inversion of the ensemble.
6-4
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uc~ t !&' (
m521

1

dmuAm~ t !& ^ ufm~ t !&, ~10!

whereuAm(t)& and ufm(t)& are the time-evolved atomic an
field states, respectively. The marginal density operator
the two atoms is then

rA1A2
~ t !'(

l ,m
dl* dmuAm~ t !&^Al~ t !u f ml~gt,^n&!, ~11!

where f ml(gt,^n&)[(n^nufm(t)&^f l(t)un&. We find that
this function has ‘‘memory’’ only fort!A^n&/g, and be-
haves very much like ad function for longer time scales

FIG. 3. ~Color online! TCM evolution for the atoms initially in
one of the symmetric states and the field in an initial coherent s
with ^n&5100. ~a! Solid curve ~red!, field-ensemble tangle
tF(A1A2) ; large-dotted curve~green!, one-atom-remainder tangl
tA1(A2F) ; dashed curve~black!, atom-atom tangletA1A2

; dot-dashed
curve~pink!, single-atom-field tangletA1F ; and dotted curve~blue!,
residual tangletA1A2F . ~b! Atomic inversion of the ensemble.
06231
r

Effectively, the large dimensional Hilbert space of the fie
acts as a broadband reservoir for the atoms—the genera
tion of the familiar ‘‘collapse’’ phenomenon in the Jayne
Cummings model. This ‘‘Markoff’’ approximation is valid
up to times of the order of 2pA^n&/g, corresponding to the
well-known revival time in the Jaynes-Cummings mod
@32#. Making this approximation in Eq.~11!, the states
uAm(t)& act effectively as a ‘‘pointer basis’’ for decoherenc
@28# of the atomic density matrix, i.e.,

rA1A2
~ t !'(

m
udmu2uAm~ t !&^Am~ t !u. ~12!

Substituting this formula into Eq.~7! yields

tF(A1A2)~ t !'2$12 1
4 @c2h~ t8!#%, ~13!

where

c[4~ ud21u41ud0u41ud1u4!12ud0u2ud1u2

1ud21u2~2ud0u213ud1u2!24ud21u2ud1u2, ~14!

h~ t8![2ud0u2~ ud21u21ud1u2!cos~4t8!

1ud21u2ud1u2cos~8t8!, ~15!

and

t8[
gt

2A^n&2
N

2
1

1

2

. ~16!

Under the factorization and Markoff approximations, t
field-ensemble tangle is given by a constant termc that de-
pends only on theinitial probabilities to find the atomic en
semble in each of theJx eigenstates, and a time-depende
pieceh(t8). These probabilities depend solely on the ab
lute squares of the expansion coefficients of the initial atom
state given by Eq.~9!. It is now clear why certain initial
atomic conditions result in identical evolution for the diffe
ent tangles. For example, the initial atomic statesugg& and
uee& both satisfy

ud21u5ud1u5
1

2
and ud0u5

1

A2
, ~17!

corresponding to identical evolution for all of the tangl
shown in Fig. 2~a!. Similarly, the initial atomic states
1/A2(ueg&1uge&) and 1/A2(uee&1ugg&) both satisfy

ud21u5ud1u5
1

A2
and ud0u50, ~18!

corresponding to the curves shown in Fig. 3~a!. More gener-
ally, this property holds for any class of initial state
uc ( i )(0)& having the form of Eq.~9! such thatudm

( i )u5udm
( j )u,

mP$21,0,1%. One immediate consequence of this result

te
6-5
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TESSIERet al. PHYSICAL REVIEW A 68, 062316 ~2003!
that the relative phase information encoded in the initial s
of the atomic system is irrelevant to the evolution of t
field-ensemble tangle.

The field-ensemble tangle calculated according to Eq.~7!
and the approximation given by Eq.~13! for an initial
stretched atomic state and an initial coherent-state field w
^n&5500 are shown by the solid~red! and dashed~black!
curves in Fig. 4, respectively. The approximation is seen
track the exact evolution extremely well over the range of
validity. The discrepancy at very small times is explained
the fact that at these times the Markoff approximation bre
down. It is also seen that our approximate solution does
capture the small dip in the field-ensemble tangle occurr
at t5pA^n&/g. The absence of this feature can be explain
by noting that in making the Markoff approximation we ha
effectively wiped out any information regarding the initi
coherence between theum521& and um51& states. The
presence of this dip is then seen to be dependent upon
existence of this coherence. This is borne out by the fact
the dip in the field-ensemble tangle in Fig. 2~a! is much
shallower than that in Fig. 3~a!, where the initial atomic ex-
pansion coefficients are given by Eqs.~17! and~18!, respec-
tively.

B. Atom-atom tangle

Given an initial state, we time evolve the system acco
ing to the dynamics governed by Eq.~1! and then trace ove
the field subsystem. The tangle of the two-atom mixed s
rA1A2

(t) may then be calculated according to Eq.~2!. The
resulting atom-atom tangles corresponding to the initial c
ditions in Eqs.~6a!–~6c! are depicted by the dashed~black!
curves in Figs. 1~a!–3~a!, respectively. These curves yie
direct insight into the state of the atomic ensemble as a fu
tion of time. Specifically, the atom-atom tangle quantifies
degree to which the ensemble behaves as a collective e
rather than as two individual particles.

FIG. 4. ~Color online! Exact field-ensemble tangle, solid~red!
curve, and approximate formula, dashed~black! curve, as functions
of time.
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It is somewhat surprising that for the initial conditio
given by Eq.~6a!, i.e., when the field is initially in aFock
statewith any value forn, the atom-atom tangle remains ze
at all times, whereas the evolution of the atom-atom tan
resulting from an initialcoherent-statefield is nontrivial and,
in general, nonzero. As a first step towards understand
these observations, we have studied the evolution of
atom-atom tangle for other initial conditions. When the fie
is initially in a Fock state and both atoms start in the grou
state, the loss of an excitation in the field can result in
creation of an excitation in the atomic ensemble. This p
duces entanglement between the field and the ensemble
in the single-atom-field and one-atom-remainder partitio
Since it is not possible to distinguish in which atom t
excitation is created, the two atoms become entangled w
each other as well. It is found that the atom-atom entang
ment falls off as 1/n2 so that, in the limit of a highly excited
Fock state, these initial conditions yield results reminisc
of those found in Fig. 1~a!. Specifically, we find that the
entanglement in all of the different subsystem partitions
ways oscillate in phase at twice the Rabi frequency, and
the atom-atom tangle approaches zero asn becomes large.

Next, we considered the case when both atoms initia
reside in a stretched state, and the initial field state cons
of a coherent superposition of two neighboring Fock sta
We find, on a time scale much longer than that given by
inverse of the associated Rabi frequencies, that the ove
behavior again closely resembles the evolution seen fo
initial field consisting of a single Fock state. Specifically, w
find that the general features of all of the different bipart
tangles oscillate in phase with one another. However,
much shorter time scales, the effects of dephasing betw
the two Rabi frequencies become apparent, yielding the
clues regarding how the observed coherent-state beha
arises in terms of initial Fock state superpositions. For
ample, it seems likely that these observations provide ins
into the Fock-like behavior seen in Fig. 2~a! at the revival
time, when there is a partial rephasing of the Rabi frequ
cies. At this time all of the bipartite tangles decrease sim
taneously, while at other times the tangles in certain bipar
partitions may be completely out of phase with one anoth
We are currently performing a detailed study of the entang
ment that can be dynamically generated between the
atoms under TCM evolution for the most general initial co
ditions in order to better understand this behavior.

C. Single atom-field tangle

The final bipartite partition of the two-atom TCM is tha
consisting of a single atom, sayA1, as one subsystem and th
field F as the second subsystem. Again by exchange sym
try tA1F5tA2F , so we need to calculate only one of the
quantities. Because the tripartite system is in an overall p
state, the Schmidt decomposition theorem@15,31# implies
that the marginal density operatorrA1F has at most rank 2
The rank of the reduced density matrix is set by the dim
sion of the smallest subsystem, which in this case is a t
level atom. This is exactly the scenario envisioned by O
borne@30#, as described in Sec. III. The tangle correspond
6-6
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to this partition,A1^ F, is computed by first tracing over th
state of the remaining atom,A2, and then applying Eq.~5!.

Employing this procedure,

tA1F5tr~rA1Fr̃A1F!12lmin
(A1F)

@12tr~rA1F
2 !#, ~19!

wherelmin
(A1F) represents the minimum eigenvalue of the O

borne M matrix @30# generated from the marginal densi
operatorrA1F . The dot-dashed~pink! curves in Figs. 1~a!–
3~a! give the time evolution of the single-atom-field tang
for the different initial conditions considered.

We are now in possession of closed forms for the tang
of all bipartite partitions of the two-atom TCM. Any othe
entanglement that the system may possess must neces
be in the form of irreducible three-body quantum corre
tions. In Sec. V we review theresidual tangleformalism
introduced by Coffmanet al. in order to quantify this type of
tripartite entanglement in a system of three qubits. We t
propose a generalization of this quantity that is applicable
a 2^ 2^ D system in an overall pure state. This extension
the tangle formalism allows us to study the phenomenon
entanglement sharing in the two-atom TCM.

V. ENTANGLEMENT SHARING AND THE RESIDUAL
TANGLE

The concept of entanglement sharing studied in R
@22,37# refers to the fact that entanglement cannot be fre
distributed among subsystems in a multipartite, i.e., tripar
or higher, system. Rather, the distribution of entanglemen
these systems is subject to certain constraints. As a sim
example, consider a tripartite system of three qubits labe
A, B, andC. Suppose that qubitsA andB are known to be in
a maximally entangled pure state, e.g., the singlet st
given byucAB&51/A2(u01&2u10&) when written in the logi-
cal basis. In this case, it is obvious that the overall sys
ABC is constrained such that no entanglement may e
either betweenA and C or betweenB and C. Otherwise,
tracing over subsystemC would necessarily result in amixed
marginal density operator forAB in contradiction to the
known purity of the singlet state.

Coffmanet al. analyze the phenomenon of entanglem
sharing for a system of three qubits in an overall pure stat
full generality by introducing a quantity known as the r
sidual tangle@22#. This definition is motivated by the obse
vation that the tangle ofA with B plus the tangle ofA with C
cannot exceed the tangle ofA with the joint subsystemBC,
i.e.,

tAB1tAC<tA(BC) . ~20!

Here,tAB and tAC are calculated according to Eq.~2!, and
tA(BC) may be obtained from Eq.~3!.

The original proof @22# of the inequality in Eq.~20!,
which forms the heart of the phenomenon of entanglem
sharing for the case of three qubits, may be substanti
simplified by making use of certain results due to Run
et al. Specifically, we note that@29#
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tr~rxyr̃xy!512tr~rx
2!2tr~ry

2!1tr~rxy
2 !>0 ~21!

for subsystemsx andy having arbitrary Hilbert-space dimen
sions. Under the assumption thatx and y are in an overall
pure state with a third subsystemz, Eq.~21! may be rewritten

tr~rxyr̃xy!512tr~rx
2!2tr~ry

2!1tr~rz
2!>0, ~22!

where we have used the equality of the nonzero eigenv
spectra ofrxy andrz . Then, by the observation@22# that for
an arbitrary state of two qubitsA andB, the following upper
bound on the tangle defined by Eq.~2! holds:

t2~rAB!<tr~rABr̃AB!, ~23!

and by Eq.~3! with nA5nB51, the inequality in Eq.~20!
follows immediately.

Subtracting the terms on the left-hand side of Eq.~20!
from that on the right-hand side yields a positive quant
referred to as the residual tangletABC , i.e.,

tABC[tA(BC)2tAB2tAC . ~24!

The residual tangle is interpreted as quantifying the inher
tripartite entanglement present in a system of three qub
i.e., the entanglement that cannot be accounted for in te
of the various bipartite tangles. This interpretation is giv
further support by the observation that the residual tangl
invariant under all possible permutations of the subsys
labels@22#.

We wish to generalize the residual tangle, defined fo
system of three qubits, to apply to a 2^ 2^ D quantum sys-
tem in an overall pure state so that we may study entan
ment sharing in the two-atom TCM. Note that we alrea
have all of the other tools needed for such an analysis. S
cifically, from Sec. IV, we know the analytic forms for all o
the different possible bipartite tangles in such a system.

Any proper generalization of the residual tangle must, a
minimum, be a positive quantity, and be equal to zero if a
only if there is no tripartite entanglement in the system, i
if and only if all of the quantum correlations can be a
counted for using only bipartite tangles. It should also redu
to the definition of the residual tangle in the case of th
qubits. Further it is reasonable to require, if this is to be
true measure of irreducible three-body correlations, that s
metry under permutation of the subsystems be preserved
that it remains invariant under local unitary operations.
nally, we conjecture that this quantity satisfies the requ
ments for being an entanglement monotone@38,39# under the
set of stochastic local operations and classical commun
tion ~SLOCCs! or, equivalently, under the set of invertibl
local operations@23#. We limit the monotonicity requiremen
to this restricted set of operations since, in the context
entanglement sharing, we are only concerned with LOC
that preserve the local ranks of the marginal density ope
tors such that all subsystem dimensions remain constan

Let A and B again be qubits, and letC now be a
D-dimensional system with the composite systemABC in an
overall pure state. We note that, under these assumptions
are still capable of evaluating each of the terms on the rig
6-7
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hand side of Eq.~24! analytically using the results of Sec. IV
However, we cannot simply use the definition of the resid
tangle~with C now understood to represent aD-dimensional
system! as the proper generalization for two reasons. Fi
since the three subsystems are no longer of equal dimen
symmetry under permutations of the subsystems is l
However, as we will see, this problem is easily fixed
explicitly enforcing the desired symmetry. The second a
more difficult problem to overcome is the fact that the
equality given by Eq.~20! no longer holds for our genera
ized system becauselmin in Eq. ~5! can be negative, imply-
ing that Eq.~24! can also be negative.

The required permutation symmetry may be restored
taking our generalization of the residual tangle, which
dub theI-residual tanglein reference to previous work an
continue to denote bytABC , to be

tABC[ 1
3 ~tA(BC)1tB(AC)1tC(AB)!2 2

3 ~tAB1tAC1tBC!.
~25!

The definition in Eq.~25! is obtained by averaging over a
possible relabelings of the subsystems in Eq.~24!. By in-
spection it is obvious that Eq.~25! preserves permutatio
symmetry. However, it still suffers from the problem that
value can be negative. In order to deal with this difficulty, w
make use of the arbitrary scale factors appearing in Eqs~3!
and ~4!, and discussed in Sec. III.

Let d be the smaller of the two ‘‘dimensions’’ of two
arbitrary dimensional subsystemsx and y, i.e., d
[min$Dx ,Dy%. Note that by dimension we do not necessar
mean the total Hilbert-space dimension of the physical s
tem under consideration, but only the number of differe
Hilbert-space dimensionsthat contribute to the formationof
the overall pure state of the system. This is a subtle
important point which automatically enforces insights su
as those due to Rungtaet al. @29# and Verstraeteet al. @40#,
which state that the scale chosen for a measure of entan
ment must be invariant under the addition of extra, but
used, Hilbert-space dimensions. The two-atom TCM p
vides one example of the relevant physics underlying th
ideas.

Consider, for example, the bipartite partitioning of t
TCM into a field subsystem withDF5`, and an ensemble
subsystem consisting of the two qubits withDA1A2

54. Any
entangled state of the overall system has a Schmidt dec
position with at most four terms, implying that the field e
fectively behaves like a four-dimensional system. Furth
since the Tavis-Cummings Hamiltonian given by Eq.~1!
does not induce couplings between the field and the sin
state of the atomic ensemble, i.e., the singlet state is a
state, the field behaves effectively as a three-level system
qutrit, in the context of the TCM. Accordingly, in any en
tangled state of the field with the ensemble, the field is c
sidered to have a dimension no greater than three. We
ploy this revised definition of dimension throughout t
remainder of the paper.

We now make the choice

nAnB5d/2, ~26!
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when calculating each of the bipartite tangles appearing
the right-hand side of Eq.~25!. This choice is made for sev
eral reasons. First of all, it is in complete agreement with
two-qubit case, yieldingnAnB51 as required. Indeed, whe
A, B, andC are all qubits, the residual tangle given by E
~24! is recovered. Second, it takes differences in the Hilbe
space dimensions of the subsystems into account when
ting the relevant scale for each tangle. This is import
since, in order to study the phenomenon of entanglem
sharing, the tangles for each of the different bipartite pa
tions must be compared on a common scale. It is reason
that this scale be a function of the smaller of the two su
system dimensions since, for an overall pure state, it is
quantity that limits the number of terms in the Schmidt d
composition. Finally, it is conjectured that a proper rescal
of the various tangles will result in the positivity of Eq.~25!.

Note that when applying the proposed rescaling to
terms on the right-hand side of Eq.~25!, the only term af-
fected istC(AB) , which is rescaled by one-half of the small
of the two subsystem dimensionsDC andDAB . Each of the
other terms remains unaltered since, in each case, at leas
of the two subsystems involved is a qubit. The net effect
this rescaling is to increase the ‘‘weight’’ of the tangle b
tweenC and AB relative to that of the rest of the tangle
This is reasonable when one recognizes that bothAB, a sys-
tem of two qubits, andC, a D-dimensional system~in the
caseD.2), haveentanglement capacities@37# exceeding
that of a single qubit.

The requirement that theI residual tangle be invarian
under local unitary operations follows trivially, since ea
term on the right-hand side of Eq.~25! is known to satisfy
this property individually. It is still an open question as
whether or not the proposed rescaling is sufficient to p
serve positivity when generalizing the residual tangle, E
~24!, to the I residual tangle, Eq.~25!. However, numerical
calculations give strong evidence that this is the case. TI
residual tangle has been calculated for over 2003106 ran-
domly generated pure states of a 2^ 2^ 3 system and of a
2^ 2^ 4 system, the only nontrivial possibilities. In each i
stance the resulting quantity has been positive. We conjec
that theI residual tangle satisfies the requirements of po
tivity and monotonicity under SLOCC not only for a 2̂2
^ D system, where closed forms currently exist for all of t
terms on the right-hand side of Eq.~25!, but for the most
generalDA^ DB^ DC dimensional tripartite system in a
overall pure state@with the proper scaling of each term aga
given by Eq.~26!#. The I residual tangle arising in the con
text of the two-atom TCM is shown by the blue curves
Figs. 1~a!–3~a!.

The residual tangle, as well as our proposed general
tion of this quantity, may be interpreted as the irreducib
tripartite entanglement in a system since it cannot be
counted for in terms of any combination of bipartite e
tanglement measures@22#. A slightly different and possibly
more enlightening interpretation is that theI residual tangle
quantifies the amount of ‘‘freedom’’ that a system has
satisfying the constraints imposed by the phenomenon of
tanglement sharing. If theI residual tangle of a tripartite
system is zero, then each bipartite tangle is uniquely de
6-8
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mined by the values of all of the other bipartite tangle
Alternatively, if tABC is strictly greater than 0, then the b
partite tangles enjoy a certain latitude in the values that e
may assume while still satisfying the positivity criterion. Th
larger the value of theI residual tangle, the more freedom th
system has in satisfying the entanglement sharing c
straints. This reasoning highlights the relationship betw
entanglement sharing and theI residual tangle.

Finally, we may interpret theI residual tangle as theav-
erage fragilityof a tripartite state under the loss of a sing
subsystem. That is, if one of the three subsystems is sele
at random and discarded~or traced over!, then theI residual
tangle quantifies the amount ofbipartite entanglement that is
lost, on average. It is the existence of physically meaning
interpretations such as these which prompt us to postu
this measure of tripartite entanglement for a 2^ 2^ D system
in an overall pure state, rather than to rely on previou
defined measures based on normal forms@40# or on the
method of hyperdeterminants@41#, for example. At this point
it is unclear what, if any, connection these entanglem
monotones have to the entanglement that exists in diffe
bipartite partitions of the system, a key ingredient in a
discussion of entanglement sharing.

The constraint imposed by entanglement sharing on
values of the various bipartite tangles, each of which
known to be a positive function, is simply that Eq.~25! can-
not be negative. It then follows that the strongest constr
of this form is placed on the two-atom TCM when theI
residual tangle is equal to zero. This occurs~to a good ap-
proximation! periodically in Fig. 1~a! for the initial condition
given by Eq.~6a!. It is at these points that each biparti
tangle is uniquely determined in terms of the values of al
the other bipartite tangles. Conversely, at one-half of t
period when theI residual tangle achieves its maximu
value, the various bipartite partitions enjoy their great
freedom with respect to how entanglement may be dist
uted throughout the system while still satisfying the e
tanglement sharing constraints. The distribution of corre
tions is, of course, still determined by the initial state of t
system and by the TCM time evolution, both of which w
consider to be separate constraints.

Similarly, the dotted~blue! curves in Figs. 2~a! and 3~a!
show the evolution of the residual tangle for the initial sta
given by Eqs.~6b! and~6c!, respectively. Note how the mor
complicated behavior resulting from an initial coherent-st
field arises from a specific superposition of Fock states,
tangles of which all have a simple oscillatory evolution. Th
suggests that the phenomenon of entanglement sharing
offer a useful perspective from which to investigate the w
in which the coherent-state evolution results from a super
sition of Fock state evolutions.

The fact that the TCM Hamiltonian leads to a nonzerI
residual tangle is interesting in its own right. Inspection
Eq. ~1! shows that this model does not include a physi
mechanism, e.g., a dipole-dipole coupling term enabling
rect interaction between the two atoms in the ensemble,
only for coupling between the field and the atoms. Con
quently, all interactions between the atoms are mediated
the electromagnetic field via the exchange of photons,
06231
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are in some sense indirect. This, however, turns out to
sufficient to allow genuine tripartite correlations to devel
in the system, as evidenced by values of theI residual tangle
that are strictly greater than zero.

Finally, we note that we have considered an alternat
approach to understanding the constraints on the distribu
of entanglement among the different subsystem partition
the two-atom TCM by using the relative entropy of entang
ment @38# as our entanglement measure. This quantity g
eralizes in a straightforward manner to the multipartite c
@42#, and has a clear physical interpretation relating
amount of entanglement in a state to its distance from the
of separable states@38#. The existence of upper and lowe
bounds in the tripartite case@43# yields another method by
which to investigate the genuine three body entanglem
arising in the two-atom TCM. The results of the relativ
entropy of entanglement approach will be presented in a s
sequent paper.

VI. SUMMARY AND FUTURE DIRECTIONS

The two-atom Tavis-Cummings model provides the si
plest example of a collection of two-level atoms, or qubi
sharing a common coupling to the electromagnetic field
detailed understanding of the evolution of entanglemen
different bipartite partitions of this model is valuable for bo
fundamental theoretical investigations, and for accurately
scribing the behavior of certain nontrivial, yet experime
tally realizable systems. Our proposed generalization of
residual tangle augments the current formalism, and allo
one to analyze the irreducible three-body correlations t
arise in a broader class of tripartite systems, providing a t
useful for studying the phenomenon of entanglement sha
in the context of a physically relevant and accessible syst

In future work we hope to generalize this analysis to
clude ensembles with an arbitrary number of atoms. This w
require further extensions of the tangle formalism in order
quantify both the entanglement in a mixed state of a bipar
system of arbitrary dimensions having a local rank grea
than 2, and the multipartite entanglement in a system co
posed of more than three subsystems. Ultimately, we hop
connect this analysis to the phenomenon of quantum ba
action on individual particles when the whole ensemble
measured. The tradeoff between the information gain
about a system and the disturbance caused to that syste
certainly fundamental to quantum mechanics@44–46#. How-
ever, the relationship of this tradeoff to multiparticle e
tanglement is far from clear. Such an understanding wo
not only be a crucial step in designing protocols for the qu
tum control of ensembles, but would also provide dee
insight into the nature of the correlations at the heart of qu
tum mechanics@47#.
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