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Entanglement sharing in the two-atom Tavis-Cummings model

T. E. Tessief; I. H. Deutsch’ and A. Delgadd
Department of Physics and Astronomy, University of New Mexico, 800 Yale Boulevard, Albuguerque, New Mexico 87131, USA

. Fuentes-Guridi
Perimeter Institute, 35 King Street, North Waterloo, Ontario, Canada N2J 2W9
and Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 3 June 2003; revised manuscript received 22 August 2003; published 18 Decemper 2003

Individual members of an ensemble of identical systems coupled to a common probe can become entangled
with one another, even when they do not interact directly. We investigate how this type of multipartite
entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to
a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements
in the different bipartite partitions of the system, as quantified by thagle. We also propose a generalization
of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This
enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom
Tavis-Cummings model, a system of both theoretical and experimental interest.
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[. INTRODUCTION squeezing can reduce the quantum fluctuations of an observ-
able as in, for example, the reduction of “projection noise”

The control of quantum systems through active measurdeading to enhanced precision measurements in an atomic
ment and feedback has been developing at a rapid pace. Incébock [11]. Moreover, spin squeezing is related to quantum
typical scenario, a single atom is monitored indirectlyentanglement between the atomic members of the ensemble
through its coupling to a traveling probe such as a lasef12]. This entanglement arises not through direct interaction
beam. The scattered beam and the system become correlatediween the atoms, but through their coupling to a common
and a subsequent measurement of the probe leads to backéguantum bus” in the form of an applied probe.
tion on the system. A coherent drive applied to the system Measures of entanglement associated with these spin-
can then be made conditional on the measurement recordqueezed states have been studied by Stocktad. [10]
leading to a closed-loop control modél,2]. Such a protocol under the assumption that all of the atoms in the ensemble
has been implemented to control a single-mode electromagre symmetrically coupled to the bus. However, completely
netic field in a cavity{3], and has been envisioned for con- quantifying entanglement in the most general cases is ex-
trolling a variety of systems such as the state of a quanturremely difficult, and as yet, an unsolved probl¢@8]. In
dot in a solid[4], the state of an atom coupled to a cavity this paper we consider the simplest possible ensemble con-
mode [5], and the motion of a micromechanical resonatorsisting of two two-level atoms. Although at first sight this
coupled to a Cooper pair charge bjd. might appear trivial, when such a system is coupled to a

A common theme in the examples given above is thajuantum bus a rich structure emerges. Again, we consider
measurements are made singlecopies of the quantum sys- the simplest realization of the bus—a single-mode quantized
tem of interest. However, in many situations one does notlectromagnetic field. The resulting physical system then
have access to an individually addressable system. In a gasprresponds to the two-atom Tavis-Cummings ma@i&lM)
for example, preparing and/or addressing individual atoms i§14]. A thorough understanding of the dynamical evolution
extremely difficult. In situations such as this, it is useful to of the TCM has obvious implications for the performance of
think of the entire ensemble as a single many-body systenguantum information processindg5—17, as well as for our
Indeed, recent experiment3,8] and theoretical proposals understanding of fundamental quantum mechapiés1§.
[9] have explored the control of such ensembles from théipartite entanglement has been investigated in this system
point of view of the Dicke mod€l10], where a collection of for the one-atom case, known as the Jaynes-Cummings

N two-level atoms is treated as a pseudospin WithN/2. model, for initial pure statelsl9] and mixed statel20,21] of
Measurement backaction on the pseudospin can lead tbe field.
squeezing of the quantum fluctuatiois-9], which may be Taken as a whole, the two-atom TCM in an overall pure

enhanced through active closed-loop contf@l2]. This state constitutes #ipartite quantum system in a Hilbert
space with tensor product structure2®«~. Entanglement
in tripartite systems has been studied by Coffreaial. [22]

*Electronic address: tessiert@info.phys.unm.edu for the case of three qubits. They found that such quantum
"Electronic address: ideutsch@info.phys.unm.edu; correlations cannot be arbitrarily distributed amongst the
URL: info.phys.unm.edufDeutschGroup subsystems; the existence of three-body correlations con-
*Electronic address: aldo.delgado@udec.cl strains the distribution of the bipartite entanglement which
$Electronic address: ifuentes-guridi@perimeterinstitute.ca remains after tracing over any one of the qubits. For ex-
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ample, in a GHZ statdGHZ) = 1/y2(/000) +|111)), tracing The total number of excitation&k=a'a+ (oM +o{?
over one qubit results in a maximally mixed state containingt2) is a conserved quantity which allows one to split the
no entanglement between the remaining two qubits. In conHilbert space’ into a direct sum of subspaces, i.¢
trast, for aW state,|W)=1/{/3(|001) +|010 +|100)), the  =Zy_o®Q, with each subspad@ spanned by the eigen-
average remaining bipartite entanglement is maxif@8].  vectors{|eek—2),|eg,k—1),/ge,k—1),|gg,k)} of K with
Coffman et al. analyzed this phenomenon ehtanglement eigenvaluek. The analytic form for the time evolution opera-
sharing[22], using an entanglement monotone known as theéor within a subspac€)y is given in Zenget al. [27].
tangle, a simple generalization of the more familiar concur- It is assumed throughout that the initial state of the TCM
rence[24,25. They also introduced a new quantity known assystem is pure. Furthermore, we consider only the effects of
the residual tangle, in order to quantify the irreducible tripar-the unitary evolution generated by E(), i.e., we do not
tite correlations in a three-qubit systd@?2)]. include the effects of measurement, nor of mixing due to
In this paper we extend the analysis of entanglement shaenvironment-induced decoheren@8], so that our system
ing to the case of the two-atom TCM. This has implicationsremains in an overall pure state at all times. Finally, by as-
for the study of quantum control of ensembles. For examplesuming an identical coupling constambetween each of the
if we imagine that the quantum bus is measured, e.g., thatoms and the field, the Hamiltonian is symmetric under
field leaks out of the cavity and is then detected, then thetom exchange. This invariance under the permutation group
degree of correlation between the field and one of the atomwas used by Stocktoet al.[10] to analyze the entanglement
determines the degree of backaction @me atom. We can properties of very large ensembles. We will also make use of
then quantify the degree to which one can perform quantunthis fact in order to reduce the number of different partition-
control on a single member of an ensemble even when onieag schemes that one needs to consider when studying en-
couples onlycollectivelyto the entire ensemble. We will ac- tanglement sharing in the two-atom TCM.
complish this by extending the residual tangle formalism of
Coffmanet al. to our 28 2® system. ll. THE TANGLE FORMALISM
. The remainder of this paper is organlzed as follows. The The tangle between two qubits in an arbitrary state is
important features of the TCM are reviewed in Sec. I, andd . !

. . efined in terms of the concurren@4,25. For a pure state
the applicable measures of entanglement are introduced 1% of two qubits, the concurrence is given b9(y)
Sec. lll. With this formalism in hand, we calculate the tangle ~ ! o )
for each of the bipartite partitions of this tripartite system in f|<¢| )|, where|4) represents the “spin flip” ofy), i.e.,
Sec. IV. We will find an approximate analytic expression for|#)=o,® o\|¢*), and the asterisk denotes complex conju-
the tangle between the field and the ensemble in the limit ogation in the standard basis.
large average photon number and in the Markoff approxima- The generalization of the concurrence to a mixed spate
tion which provides further insight into these results. In Secof two qubits is defined as the infimum of the average con-
V, we study the irreducible tripartite correlations in the sys-currence over all possible pure state ensemble decomposi-
tem using our proposed generalization of the residual tangldions of p, defined as convex combinations of pure states

Finally, we summarize our results in Sec. VI. S={pi, ¢}, such thatp==;pi|;)(#;|. In this way, C(p)
EinfSIEipiC(z,bi)=inf5|2ipi|<z/;i|ﬂ/i)|. Wootters succeeded
Il. THE TAVIS-CUMMINGS MODEL in deriving an analytic solution to this difficult minimization

procedure in terms of the eigenvalues of the non-Hermitian

The Tavis-Cummings modélTCM) [14] (also known as ~ . . L
the “Dicke model” [26]) describes the simplest fundamental operatorpp, where the tilde again denqtes the spin flip of the
guantum state. The closed-form solution for the concurrence

interaction between a single mode of the quantized electro . T
magnetic field and a collection ™ atoms under the usual of a mixed state of two qubits is given (p) =max0A,

two-level and rotating wave approximations. The two-atom_ M2~ A3~ A4}, where thed;'s are ordered in decreasing
(N=2) TCM is governed by the Hamiltonian order[25]. Rungtaet al. extended this formalism by intro-

ducing an analytic form for the concurrence of a bipartite
systemAB, with arbitrary dimensionsD, andDg, in an

H=Ho+Hin overall pure stat¢29]. The analytic form of this quantity,
=thw(a'a+icM+10?) dubbed the | concurrence, is given by C(¢ag)
=\2vavg[1—tr(pa)], wherep, is the marginal density op-
+hg[(cP+a)a’+ (P +oP)a], (1) erator obtained by tracing the joint pure state over subsystem
_ _ B, andv, and vg are arbitrary scale factors.
wheres" and ¢! display a local su(2) algebra for thith Coffmanet al. defined the tangle, for a system of two

atom in the two-dimensional subspace spanned by thqubits as the square of the concurref2g], i.e.,

ground and excited statd$g),|e)}, anda(a’) is bosonic B )
annihilation(creation operator for the monochromatic field. m(p)=maxON;—No—N3— Ng}”. 2
The Hilbert space} of the joint system is given by the |hgeed, we may extend this definition directly to the result of
tensor product{ @ Ha,® Hr whereH, (Ha,) denotes the  Ryngtaet al. in order to obtain an analytic form for the
Hilbert space of atom onéwo) andH is the Hilbert space tangler of a bipartite system in a pure state with arbitrary
of the electromagnetic field. subsystem dimensions,
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T(¢AB)ECZ(¢AB)zzyAyB[l_tr(pi)]. (3 key featurgs. _of the tangle evolution by considering three
classes of initial state vectors:

However, when extending this definition to apply to a bipar-

tite mixed statep,g With arbitrary subsystem dimensions, [€)a,@]€)a,8 In)e=|een), (63
one must find the infimum of the average squared pure state
concurrencé30], leea) or |gga), (6b)
_ and
m(pag)=infs 2 piCA (Wb . .

—(legy+|ge))®|a) or — +|ee)®|a),

| o ﬁ(l 9 +lge)®la) ﬁ(lgg> lee)@|a)
=2vavginfs 2, p{1-tL(pR)}, (@) (60

i where|g(e)) denotes the groungxcited state of the atom,
where we have used E€B) for the pure state tangle wih In) denotes a Fock state field with photons, anda) de-
as the marginal state for theh term in the ensemble decom- potes a coherent-state field with an average number of pho-
position. _ tons given by(n). The alternatives in Eqg6b) and (60)

At this point we note that the scale factarg andvg in arise from the fact that, in the limit of large), the evolu-
Eqgs.(3) and(4), which may in general depend on the dimen-jon of all the tangles are found to be identical for the two

sions of the subsystents, andDg respectively, are usually gjfferent initial atomic conditions, as we will see below.
set to one so that agreement with the two-qubit case is main-

tained, and so that the addition of extra unused Hilbert-space
dimensions has no effect on the value of the concurrence
[29]. We will find in Sec. V, when we attempt our own fur- Under the assumption that the system is in an overall pure
ther generalization of the tangle formalism, that it is useful tostate, we may easily calculate the tangles in partitionand
take advantage of this scale freedom. For now, however, wéi) above by applying Eq3), with vo=rvg=1. Specifically,
adopt the usual convention both for the sake of clarity and to
demonstrate exactly where in our proposed generalization TF(AlAz):Z[l_tr(pﬁ)]:2[1_”(”/2*1%)] @)
this freedom is required.

Using the definition given by Eq4), dubbed thd tangle ~ and
in reference to the work of Rung# al, Osborne derived an _ 2\ 2
analytic form forr(pag) in the case where the rank pfg is Tay(AF) = 2L 1= t(p, ) ]1=2[1=1tr(pp) ], 8
no greater than 2,

A. Field-ensemble and one-atom-remainder tangles

where we have used the fact that ttmonzerg eigenvalue
spectra of the two marginal density operators for a bipartite
division of a pure state are identiddl5,31 in obtaining the

- rightmost equalities. These tangles have implications for the
where pag NOw represents the universal inversii28] of  quantum control of atomic ensembles. Because the overall
pag and A3 is the smallest eigenvalue of tid matrix  system is pure, any correlation between the field and the
defined by Osborng30]. The important point is that Ed5) ensemble is necessarily in one-to-one correspondence with
yields a closed form which, as we will see in Sec. IV C, isthe amount of entanglement between these two subsystems.

directly applicable to a specific bipartite partition of the two- The quantum backaction on the ensemble due to measure-

m(pas) =tr(paspas) + 2N G [ 1—tr(p3p) ], ©)

atom TCM. ment of the field is thus quantified by E). Alternatively,
a measurement of one atom leads to backaction on the re-
IV. BIPARTITE TANGLES IN THE TWO-ATOM TCM maining subsystem as described by ER).

The time evolutions for each of the different tangles, cor-

Let the two atoms in the ensemble be denoted\pyand  responding to the initial conditions given by E¢6a—(60),
A,, respectively, and the field, or quantum bus, FayBe-  are shown in Figs.(#)—3(a), respectively. Figures(ih)—3(b)
cause of the assumed exchange symmetry, there are foshow the time evolution of the atomic inversion, defined as
nonequivalent partitions of the two-atom TCM into tensorthe probability of finding both atoms in the excited state
products of bipartite subsystem@) the field times the two- minus the probability of finding both atoms in the ground
atom ensemble; ® (A;A,); (i) one atom times the remain- state, for reference purposes. We find, under certain condi-
ing atom and the fieldA;® (AF)=A,® (AF); (iii) the tions, that the two stretched states in Ep) lead to identi-
two atoms taken separately, having traced over the field, cal evolution for the tangles in all of the bipartite partitions
®A,; and(iv) one of the atoms times the field, having tracedof the system, corresponding to the curves shown in Fig.
over the other atomh\;®@ F=A,®F. We calculate how the 2(a). Similarly, the two symmetric states given in E@c)
tangle for each of these partitions evolves as a function oboth yield the curves shown in Fig(8. This behavior can
time under TCM Hamiltonian evolution using the formalism be derived under a set of highly accurate approximations. In
reviewed in Sec. Il. We take the initial state to be a purethe limit of large average photon number, an initial coherent-
product state of the field with the atoms. We will capture thestate field with zero phase will remain approximately sepa-
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Tangles

Atomic Inversion

FIG. 1. (Color onling TCM evolution for both atoms initially in
the excited state and the field in an initial Fock state with10. (a)
Solid curve (red), field-ensemble tanglerF(AlAz); large-dotted
curve (green, one-atom-remainder tangla\l(AZF); dashed curve
(black), atom-atom tangle », (note that the atom-atom tangle is
always zero for the given initial condition dot-dashed curve
(pink), single-atom-field tanglerAlF; and dotted curveblue), re-
sidual tanglera a . (b) Atomic inversion of the ensemble.

rable from the atomic ensemble in an eigenstatd,efJ
+J_ up to times of the order ofn)/g where, in the pseu-
dospin picture,JiEcr(ilH cr(f). This follows immediately
from the time evolution operator generatedHby; in Eq. (1)
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FIG. 2. (Color onling TCM evolution for both atoms initially in
a stretched state and the field in an initial coherent state {mith
=100. (a) Solid curve(red), field-ensemble tangler(a ) ; large-
dotted curve(green, one-atom-remainder tangha\l(AzF); dashed
curve (black), atom-atom tanglera »,; dot-dashed curvepink),
single-atom-field tanglerAlF; and dotted curveblue), residual
tangle7a a,r . (b) Atomic inversion of the ensemble.

to the multiatom TCM by Chumakoegt al. [34—-36.

We take as the appropriate basis the three symmetric
eigenstates ad,, which we label byn=—1, 0, and 1; the
singlet state]=0 is a dark state and thus does not couple to
the field. Writing the initial state of the system as

in the interaction picture. The key observation is that, for a

macroscopic field, the removal or addition of a single photon
has a negligible effect. This allows one to approximate the

time evolution operator by exfiin?"~exp 9 (M Thus,

the eigenstates of, form a convenient basis to use in de-

1
[(0)= X dnlm)®]a), 9

scribing the state of the atomic ensemble. This approach was
taken by Gea-Banacloche in analyzing the behavior of thend using the factorization approximatifd¢], we find that

single-atom Jaynes-Cummings mod8R] and the genera-
tion of macroscopic superposition staf@8], and extended

the state of the system up to times of the ordefrof/g is
given by
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(@ Effectively, the large dimensional Hilbert space of the field
' ' it acts as a broadband reservoir for the atoms—the generaliza-

One Atom-Rest
e (M tion of the familiar “collapse” phenomenon in the Jaynes-

|-Residual Tangle

Cummings model. This “Markoff” approximation is valid
up to times of the order of 2,/(n)/g, corresponding to the
well-known revival time in the Jaynes-Cummings model
[32]. Making this approximation in Eq(1l), the states
|An(t)) act effectively as a “pointer basis” for decoherence
[28] of the atomic density matrix, i.e.,

Tangles

Paya(0= 2 [df? Am(D){Ar(D)] (12)

Substituting this formula into Eq7) yields

0 S Traay(D=2{1— 2[c—h(t)]}, (13

where
(b)

c=4(|d_q|*+|do|*+[dy|*) +2[do|?|d4|?
+]d_q|2(2|do|*+3]ds[?) —4]d_4|?[ds ]2, (14)

h(t')=2|do|?(|d_1|?+]dy|?)cog4t’)
+]d_4|?|dy|*cog8t"), (15)

and

Atomic Inversion

gt
N 1
2 <n>—E+§

Under the factorization and Markoff approximations, the
gt field-ensemble tangle is given by a constant terthat de-
pends only on thénitial probabilities to find the atomic en-
FIG. 3. (Color onling TCM evolution for the atoms initially in  semble in each of thd, eigenstates, and a time-dependent
one of the symmetric states and the field in an initial coherent statgjeceh(t’). These probabilities depend solely on the abso-
with (n)=100. (a) Solid curve (red), field-ensemble tangle |yte squares of the expansion coefficients of the initial atomic
Te(an,); large-dotted curve(green, one-atom-remainder tangle state given by Eq(9). It is now clear why certain initial
Ta,(A,F)  dashed curvéblack), atom-atom tangle, ,; dot-dashed  atomic conditions result in identical evolution for the differ-
curve(pink), single-atom-field tangle, r ; and dotted curvéblue),  ent tangles. For example, the initial atomic stgigg) and
residual tanglera a e . (b) Atomic inversion of the ensemble. |ee) both satisfy

t/

(16)

1 1
|d—1|:|d1|:§ and |do|=—=, (17)

V2

corresponding to identical evolution for all of the tangles

where|Ay(t)) and|$y(t)) are the time-evolved atomic and shown in Fig. 2a). Similarly, the initial atomic states
field states, respectively. The marginal density operator fol/v2(leg)+|ge)) and 142(|ee)+|gg)) both satisfy
the two atoms is then

1
[(O)~ 2 dolAnD)@|¢n(V),  (10)

1
|d_yf=[di|=—= and [do|=0, (18
Pa(D)= 2 O dul An(O)A (D fm(gt(n)), (1D V2
corresponding to the curves shown in Figa)3More gener-
where f,(gt,(n))=2.(n|dm(t) (& (t)|n). We find that ally, this property holds for any class of initial states
this function has “memory” only fort<.{(n)/g, and be- |¢{"(0)) having the form of Eq(9) such thajd{)|=|d{|,
haves very much like & function for longer time scales. me{—1,0,1}. One immediate consequence of this result is
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4 - - ' ' ' - - - ' It is somewhat surprising that for the initial condition
given by Eq.(6a), i.e., when the field is initially in d&ock
statewith any value fom, the atom-atom tangle remains zero
at all times, whereas the evolution of the atom-atom tangle
resulting from an initiatoherent-statdield is nontrivial and,
in general, nonzero. As a first step towards understanding
these observations, we have studied the evolution of the
atom-atom tangle for other initial conditions. When the field
is initially in a Fock state and both atoms start in the ground
state, the loss of an excitation in the field can result in the
04 _ creation of an excitation in the atomic ensemble. This pro-
duces entanglement between the field and the ensemble and
in the single-atom-field and one-atom-remainder partitions.
Since it is not possible to distinguish in which atom the
\ . . . . . . . . . excitation is created, the two atoms become entangled with
°o w0 2 3 4 5*} 6 70 8 s 100 each other as well. It is found that the atom-atom entangle-
g ment falls off as 1?2 so that, in the limit of a highly excited
FIG. 4. (Color onling Exact field-ensemble tangle, soliced) Fock state, these initial conditions yleld results reminiscent
curve, and approximate formula, dashethck) curve, as functions  Of those found in Fig. (). Specifically, we find that the
of time. entanglement in all of the different subsystem patrtitions al-
ways oscillate in phase at twice the Rabi frequency, and that
éhe atom-atom tangle approaches zeram &gcomes large.
Next, we considered the case when both atoms initially
reside in a stretched state, and the initial field state consists
of a coherent superposition of two neighboring Fock states.
We find, on a time scale much longer than that given by the

stretched atomic state and an initial coherent-state field wit < > of th? associated Rabi frequencies, _that the overall
— . behavior again closely resembles the evolution seen for an

(n)=500 are shown by the solited and dashedblack initial field consisting of a single Fock state. Specifically, we

curves in Fig. 4, respectively. The approximation is seen tqQ. g 9 - =P Y

track the exact evolution extremely well over the range of its,[:,:r(]j Itgst;rs]gilgigeirnal fﬁgtsuereviig ?rl]:f;rr:gtggerﬁgt/vt;'\?:rmfn
validity. The discrepancy at very small times is explained by 9 P : '

the fact that at these times the Markoff approximation breakmUCh shortgr time SC"’.‘leS’ the effects of dephasn_ng betw_een
down. It is also seen that our approximate solution does no € two Rabi frequencies become apparent, yielding the first

clues regarding how the observed coherent-state behavior

capture the small dip in the field-ensemble tangle occurring’ ; ; L -

att=7T\/W/g The absence of this feature can be explaine%“seS In terms O.f initial Fock state superpositions. F_or ex-
. B X S mple, it seems likely that these observations provide insight

by noting that in making the Markoff approximation we have ;

effectively wiped out any information regarding the initial into the Fock-like behavior seen in Fig(a at the revival
coherence between then=—1) and |m=1) states. The time, when there is a partial rephasing of the Rabi frequen-

cies. At this time all of the bipartite tangles decrease simul-

prgs,tence 0; ttﬁ.'s d'f] is then ?ﬁ.en. t% be dep;agd?rr:t l];’potnthtl? neously, while at other times the tangles in certain bipartite
existence of this conerence. This 1S borne out by the fac artitions may be completely out of phase with one another.

the dip in the field-ensemble tangle in FigaRis much We are currently performing a detailed study of the entangle-

shallpwer th?f_n _thatt n F'g'.(a)’ vl\;heée ;%e mgu(a:lLISf;\tomlc X ment that can be dynamically generated between the two
pansion coefficients are given by E¢$7) an + T€SPEC- atoms under TCM evolution for the most general initial con-

tively. ditions in order to better understand this behavior.

02 q

that the relative phase information encoded in the initial stat
of the atomic system is irrelevant to the evolution of the
field-ensemble tangle.

The field-ensemble tangle calculated according to(Ey.
and the approximation given by Eq13) for an initial

B. Atom-atom tangle C. Single atom-field tangle

Given an initial state, we time evolve the system accord- The final bipartite partition of the two-atom TCM is that
ing to the dynamics governed by E@) and then trace over consisting of a single atom, s@, as one subsystem and the
the field subsystem. The tangle of the two-atom mixed statéield F as the second subsystem. Again by exchange symme-
paa,(t) may then be calculated according to E@). The Y 7a,F=7a,r, SO We need to calculate only one of these

resulting atom-atom tangles corresponding to the initial conduantities. Because the tripartite system is in an overall pure
ditions in Egs.(6a)—(6¢) are depicted by the dashéolack state, the Schmidt decomposition theorghb,31 implies
curves in Figs. (a)—3(a), respectively. These curves yield that the marginal density operatpi ¢ has at most rank 2.
direct insight into the state of the atomic ensemble as a funcFhe rank of the reduced density matrix is set by the dimen-
tion of time. Specifically, the atom-atom tangle quantifies thesion of the smallest subsystem, which in this case is a two-
degree to which the ensemble behaves as a collective entitigvel atom. This is exactly the scenario envisioned by Os-
rather than as two individual particles. borne[30], as described in Sec. Ill. The tangle corresponding
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to this partition,A;® F, is computed by first tracing over the 0w =1 —1r( p2) —tr( 02) +tr( p2 ) =0 21
state of the remaining ator,,, and then applying Eq5). (PryPxy) (P = tr(py) + tr(piy) @)
Employing this procedure, for subsystems andy having arbitrary Hilbert-space dimen-

- (AF) 5 sions. Under the assumption thatandy are in an overall
TaF=t(parpap) T 20 T1=tr(pa )], (19 pure state with a third subsystearEq. (21) may be rewritten

~ el 22 2
wherex "1 represents the minimum eigenvalue of the Os- (pxypxy) = 1= tr(p) ~tr(py) +1r(pz)=0, (22
borne M matrix [30] generated from the marginal density \yhere we have used the equality of the nonzero eigenvalue

operatorp, ¢ . The dot-dashedpink) curves in Figs. - gpectra ofpyy andp,. Then, by the observatidi22] that for
3(a) give the time evolution of the single-atom-field tangle an arbitrary state of two qubiis andB, the following upper

for the different initial conditions considered. bound on the tangle defined by EQ) holds:
We are now in possession of closed forms for the tangles 5
of all bipartite partitions of the two-atom TCM. Any other To(pag) <tr(paPAR): (23

entanglement that the system may possess must necessarily

be in the form of irreducible three-body quantum correla-and by Eq.(3) with vo=vg=1, the inequality in Eq(20)
tions. In Sec. V we review theesidual tangleformalism  follows immediately.

introduced by Coffmaret al.in order to quantify this type of Subtracting the terms on the left-hand side of E20)
tripartite entanglement in a system of three qubits. We theffom that on the right-hand side yields a positive quantity
propose a generalization of this quantity that is applicable t¢€ferred to as the residual tangiggc, i.e.,

a 2® 2@ D system in an overall pure state. This extension of

the tangle formalism allows us to study the phenomenon of TABC= TA(BC)~ TAB™ TAC: (24)

entanglement sharing in the two-atom TCM. The residual tangle is interpreted as quantifying the inherent

tripartite entanglement present in a system of three qubits,

V. ENTANGLEMENT SHARING AND THE RESIDUAL i.e., the entanglement that cannot be accounted for in terms
TANGLE of the various bipartite tangles. This interpretation is given

further support by the observation that the residual tangle is

The concept of entanglement sharing studied in RefS, o iant under all possible permutations of the subsystem
[22,37] refers to the fact that entanglement cannot be free'Xabels[ZZ].

distr_ibuted among subsystems i_n a mu_ltipartite, .e., tripartit_e We wish to generalize the residual tangle, defined for a
or higher, system. Rather, the distribution of entanglement i stem of three qubits, to apply to ®2®D quantum sys-
these systems Is SUbj?Ct to certain constraints. A.S a simp% m in an overall pure’state so that we may study entangle-
example, consider a tripartite system of three qubits labele ent sharing in the two-atom TCM. Note that we already
A B, af‘dc- Suppose that qubi® andB are known'to be in have all of the other tools needed for such an analysis. Spe-
a maximally entangled pure state, e.g., the singlet stat

i - X ) ; %ifically, from Sec. IV, we know the analytic forms for all of
given by|¢s) =1/y2(|01)—|10)) when written in the logi- e gifferent possible bipartite tangles in such a system.

cal basis. In this case, it is obvious that the overall system Any proper generalization of the residual tangle must, at a

ABC is constrained such that no entanglement may existinimum, be a positive quantity, and be equal to zero if and
either betweerA and C or betweenB and C. Otherwise, g1y if there is no tripartite entanglement in the system, i.e.,

tracing over subsyste@ would necessarily result inmixed it 5nq only if all of the quantum correlations can be ac-

marginal density operator foAB in contradiction to the  coynted for using only bipartite tangles. It should also reduce
known purity of the singlet state. to the definition of the residual tangle in the case of three

Coffmanet al. analyze the phenomenon of entanglementypits. Further it is reasonable to require, if this is to be a
sharing for a system of three qubits in an overall pure state ify,e measure of irreducible three-body correlations, that sym-

full generality by introducing a quantity known as the re- metry under permutation of the subsystems be preserved, and
sidual tanglg[22]. This definition is motivated by the obser- {hat it remains invariant under local unitary operations. Fi-

vation that the tangle oA with B plus the tangle oA with C a1y \ve conjecture that this quantity satisfies the require-
_cannot exceed the tangle Afwith the joint subsystenB C, ments for being an entanglement monotf&&,39 under the
€., set of stochastic local operations and classical communica-
tion (SLOCCS or, equivalently, under the set of invertible
TaBt TACS TA(BC) - (20) local operation$23]. We limit the monotonicity requirement
to this restricted set of operations since, in the context of
Here, 7o and 7ac are calculated according to E(R), and  entanglement sharing, we are only concerned with LOCCs
Tac) May be obtained from Ed3). that preserve the local ranks of the marginal density opera-
The original proof[22] of the inequality in Eq.(20), tors such that all subsystem dimensions remain constant.
which forms the heart of the phenomenon of entanglement Let A and B again be qubits, and |e€ now be a
sharing for the case of three qubits, may be substantiall{p-dimensional system with the composite sys#@&BiC in an
simplified by making use of certain results due to Rungtaoverall pure state. We note that, under these assumptions, we
et al. Specifically, we note thdt29] are still capable of evaluating each of the terms on the right-
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hand side of Eq(24) analytically using the results of Sec. IV. when calculating each of the bipartite tangles appearing on
However, we cannot simply use the definition of the residuathe right-hand side of Eq25). This choice is made for sev-
tangle(with C now understood to represenbadimensional  eral reasons. First of all, it is in complete agreement with the
system as the proper generalization for two reasons. Firsttwo-qubit case, yieldingavg=1 as required. Indeed, when
since the three subsystems are no longer of equal dimensiop, B, andC are all qubits, the residual tangle given by Eq.
symmetry under permutations of the subsystems is 10s{24) is recovered. Second, it takes differences in the Hilbert-
However, as we will see, this problem is easily fixed byspace dimensions of the subsystems into account when set-
explicitly enforcing the desired symmetry. The second anding the relevant scale for each tangle. This is important
more difficult problem to overcome is the fact that the in- since, in order to study the phenomenon of entang]ement
equality given by Eq(20) no longer holds for our general- sharing, the tangles for each of the different bipartite parti-
ized system becausey, in Eq. (5) can be negative, imply-  tions must be compared on a common scale. It is reasonable
ing that Eq.(24) can also be negative. that this scale be a function of the smaller of the two sub-
The required permutation symmetry may be restored bgystem dimensions since, for an overall pure state, it is this
taking our generalization of the residual tangle, which wequantity that limits the number of terms in the Schmidt de-
dub thel-residual tanglein reference to previous work and composition. Finally, it is conjectured that a proper rescaling

continue to denote by,gc, to be of the various tangles will result in the positivity of E@5).
. , Note that when applying the proposed rescaling to the
Taec=3(Ta@C) T TB(AC) T Tc(aB) ~ 5(TABT TACT TBC)- terms on the right-hand side of E(R5), the only term af-

(25 fected istc(ap), Which is rescaled by one-half of the smaller

) of the two subsystem dimensiobBg. andD 5. Each of the
The definition in Eq.(29) is obtained by averaging over all other terms remains unaltered since, in each case, at least one
possible relabelings of the subsystems in Ef). By in-  of the two subsystems involved is a qubit. The net effect of
spection it is obvious that Eq25) preserves permutation thjs rescaling is to increase the “weight” of the tangle be-
symmetry. However, it still suffers from the problem that its yyeenC and AB relative to that of the rest of the tangles.
value can be negative. In order to deal with this difficulty, weThjs js reasonable when one recognizes that Bdha sys-
make use of the arbitrary scale factors appearing in B)S. tem of two qubits, andC, a D-dimensional systentin the

and(4), and discussed in Sec. III. . . caseD>2), haveentanglement capacitie87] exceeding
Let d be the smaller of the two “dimensions” of two that of a single qubit.
arbitrary dimensional subsystems and vy, ie., d The requirement that thé residual tangle be invariant

=min{D,Dy}. Note that by dimension we do not necessarily ynger local unitary operations follows trivially, since each
mean the total Hilbert-space dimension of the physi(_:al SYSterm on the right-hand side of E(R5) is known to satisfy
tem under consideration, but only the number of differenthis property individually. It is still an open question as to
Hilbert-space dimensiorthat contribute to the formationf  \yhether or not the proposed rescaling is sufficient to pre-
the overall pure state of the system. This is a subtle bugerve positivity when generalizing the residual tangle, Eq.
important point which automatically enforces insights such24), to thel residual tangle, Eq(25). However, numerical
as those due to Runget al. [29] and Verstraetet al. [40],  calculations give strong evidence that this is the case.IThe
which state that the scale chosen for a measure of entanglgssjqyal tangle has been calculated for over>200° ran-
ment must be invariant undgr the addition of extra, but Ungomly generated pure states of @ 2®3 system and of a
used, Hilbert-space dimensions. The two-atom TCM prog 24 system, the only nontrivial possibilities. In each in-
vides one example of the relevant physics underlying thesgiance the resulting quantity has been positive. We conjecture
ideas. o o that thel residual tangle satisfies the requirements of posi-
ConS|der, .for example, the. bipartite partitioning of thetivity and monotonicity under SLOCC not only for az2
TCM into a field subsystem witbg=cc, and an ensemble g p system, where closed forms currently exist for all of the
subsystem consisting of the two qubits Wity o,=4. ANy terms on the right-hand side of E€5), but for the most
entangled state of the overall system has a Schmidt decongeneralD ,® Dg® D dimensional tripartite system in an
position with at most four terms, implying that the field ef- overall pure statgwith the proper scaling of each term again
fectively behaves like a four-dimensional system. Furthergiven by Eq.(26)]. Thel residual tangle arising in the con-
since the Tavis-Cummings Hamiltonian given by H&)  text of the two-atom TCM is shown by the blue curves in
does not induce couplings between the field and the singletigs. 1(a)—3(a).
state of the atomic ensemble, i.e., the singlet state is a dark The residual tangle, as well as our proposed generaliza-
state, the field behaves effectively as a three-level system, @ion of this quantity, may be interpreted as the irreducible
qutrit, in the context of the TCM. Accordingly, in any en- tripartite entanglement in a system since it cannot be ac-
tangled state of the field with the ensemble, the field is coneounted for in terms of any combination of bipartite en-
sidered to have a dimension no greater than three. We enfanglement measurdg®2]. A slightly different and possibly
ploy this revised definition of dimension throughout the more enlightening interpretation is that theesidual tangle

remainder of the paper. quantifies the amount of “freedom” that a system has in
We now make the choice satisfying the constraints imposed by the phenomenon of en-
tanglement sharing. If thé residual tangle of a tripartite
vavg=0d/2, (26) system is zero, then each bipartite tangle is uniquely deter-
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mined by the values of all of the other bipartite tangles.are in some sense indirect. This, however, turns out to be
Alternatively, if Tagc is strictly greater than 0, then the bi- sufficient to allow genuine tripartite correlations to develop
partite tangles enjoy a certain latitude in the values that eacin the system, as evidenced by values ofthesidual tangle
may assume while still satisfying the positivity criterion. The that are strictly greater than zero.
larger the value of theresidual tangle, the more freedom the ~ Finally, we note that we have considered an alternative
system has in satisfying the entanglement sharing cor@Pproach to understanding the constraints on the distribution
straints. This reasoning highlights the relationship betwee®f €ntanglement among the different subsystem partitions of
entanglement sharing and theesidual tangle. the two-atom TCM by using the relative entropy of en_tangle-
Finally, we may interpret thé residual tangle as thav-  Ment[38] as our entanglement measure. This quantity gen-
erage fragility of a tripartite state under the loss of a single eralizes in a straightforward manner to the multipartite case
subsystem. That is, if one of the three subsystems is selectéfi2; and has a clear physical interpretation relating the
at random and discardddr traced over, then thel residual amount of entanglement in a s'gate to its distance from the set
tangle quantifies the amount bipartite entanglement that is  ©f Separable statef88]. The existence of upper and lower
lost, on average. It is the existence of physically meaningfuP@unds in the tripartite cadé3] yields another method by
interpretations such as these which prompt us to postulat¥hich to investigate the genuine three body entanglement
this measure of tripartite entanglement for@2 D system ~ a1ising in the two-atom TCM. The results of the relative
in an overall pure state, rather than to rely on previouslye"tropy of entanglement approach will be presented in a sub-
defined measures based on normal forf#6] or on the S€duent paper.
method of hyperdeterminani41], for example. At this point
it is unclear what, if any, connection these entanglement
monotones have to the entanglement that exists in different

bipartite partitions of the system, a key ingredient in any The two-atom Tavis-Cummings model provides the sim-

discussion of entanglement sharing. ) .
g g glest example of a collection of two-level atoms, or qubits,

The constraint imposed by entanglement sharing on th X . s
values of the various bipartite tangles, each of which issharlng a common coupling to the electromagnetic field. A

known to be a positive function, is simply that E85) can- detailed understanding of the evolution of entanglement in

not be negative. It then follows that the strongest constrainfifferent bipartite pa(titions of t_his model IS valuable for both
of this form is placed on the two-atom TCM when the undamental theoretical investigations, and for accurately de-

residual tangle is equal to zero. This occlis a good ap- scribing the behavior of certain nontrivial, yet experimen-

proximation periodically in Fig. 1a) for the initial condition tally realizable systems. Our proposed gene_rallzatlon of the
given by Eq.(6a. It is at these points that each bipartite residual tangle augments the current formalism, aqd allows
tangle is uniquely determined in terms of the values of all ofone to analyze the uredumple t.hree-body COl‘I‘e|.at.IOI’IS that
the other bipartite tangles. Conversely, at one-half of thid'seina broad.er class of ripartite systems, providing atqol
period when thel residual tangle achieves its maximum _useful for studying the phenomenon of entanglement sharing
value, the various bipartite partitions enjoy their greatesfn tlhefc?ntext ofka ph)r/1$|calli/ relevantl'andtﬁccessible. s%/st'em.
freedom with respect to how entanglement may be distrib- N Tuture work we hope 1o generalize this analysis 1o In-

uted throughout the system while still satisfying the en_cludg ensembles W|th_an arbitrary number of atoms. This will

tanglement sharing constraints. The distribution of correla!®auIre further extensions of thg tanglg formalism in °Tdef .to
tions is, of course, still determined by the initial state of thequantn‘y both t_he enta_nglement na m|xed state of a bipartite
system and by the TCM time evolution, both of which we system of arbitrary ‘?"mef‘s'o”s having a Ipcal rank greater
consider to be separate constraints ' than 2, and the multipartite entanglement in a system com-

Similarly, the dottedblue) curves in Figs. @) and 3a) posed of more than three subsystems. Ultimately, we hope to

show the evolution of the residual tangle for the initial statesSonnect this analysis ta the phenomenon of quantum back-

given by Egs(6b) and(6c¢), respectively. Note how the more action or:j 'n_(lj_'r\]’ 'dlial dparftflclt()est when :L‘e W?OIe etr)semblg 'Sd
complicated behavior resulting from an initial c:oherent—staténbeasture ) ¢ N rz tflo di tevgeen e n grtm"’;rlo? gatlne .
field arises from a specific superposition of Fock states, th@P0Ut a system and the disturbance caused to that System 1S

tangles of which all have a simple oscillatory evolution. Thiscerta'qlﬁl fun(ljatmen;c]ql to ﬁltﬁnuf[mdme%h?r[m_lfq' lt-'mlw-
suggests that the phenomenon of entanglement sharing m zyeri € ;e_a]lon? P OI |sSraheo odmutlpaar_lce en-ld
offer a useful perspective from which to investigate the way->'J'€MeNt IS far from ciéar. such an understanding wou

in which the coherent-state evolution results from a superpor—1Ot only be a crucial step in designing protocols for the quan-

sition of Fock state evolutions tum control of ensembles, but would also provide deeper
The fact that the TCM Harﬁiltonian leads to a nonzero nsightinto the nature of the correlations at the heart of quan-

residual tangle is interesting in its own right. Inspection oftum mechanic$47].
Eqg. (1) shows that this model does not include a physical
mechanism, e.g., a dipole-dipole coupling term enabling di-
rect interaction between the two atoms in the ensemble, but
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