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Adiabatic quantum search algorithm for structured problems
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The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms
for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have
been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as
Grover’s algorithm. In this paper, we study how the structure of the search problem may be exploited to further
improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a
reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a
complexity that, although still exponential, grows with a reduced order in the problem size.
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[. INTRODUCTION structured problems. More specifically, we will show that an
adiabatic search over a subset of the variables can be used to

Grover’'s quantum algorithm solves an unstructuredbuild a better initial Hamiltonian for the global adiabatic
search problem in a time of ordeiN, whereN is the dimen-  search. With this adiabatic algorithm, we recover the same
sion of the search space, which corresponds to a quadrat@®@mplexity as for the nested circuit-based algorithm of
speedup over a classical seafth This algorithm is proved Ref.[3], although we will see that it is slightly more general
to be optimal in the case of unstructured search prob[@js in that it does not require the exact number of solutirl
Naturally, it can also be used to solve a structured searchartial solutiongto be knowna priori.
problem with a quadratic speedup over a naive classical
search that would exhaustively check every possible solu- Il. ADIABATIC THEOREM
tion. However, exploiting the structure of the problem is well
known to lead to better classical search algorithms. It is Let us briefly recall the adiabatic theorem and how it may
therefore tempting to imagine that better quantum search abe used to design quantum algorithms by adiabatic evolution.
gorithms may be devised similarly by exploiting the problem ~We know that if a quantum system is prepared in the
structure. Following this, Cerf, Grover, and Williams showedground state of the time-independent Hamiltonian driving its
that this could be done by partitioning the unknown variablesvolution, it remains in this state. The adiabatic theorem
into two (or moreg sets and nesting a quantum search ovestates that, if this Hamiltonian becomes time dependent, the
one set into another search over t¢as more sets, yielding system will still stay close to its instantaneous ground state
an average complexity of ordaN“, with a<1 [3]. as long as the variation slow enough

While this algorithm, as well as Grover’s original algo-  More specifically, if Eq;t) and|E; ;t) are the ground and
rithm, stay within the standard paradigm of quantum compufirst excited states of the Hamiltonia(t), with energies
tation based on quantum circuits, a different type of quantuniEo(t) andE;(t), we define the minimum gap between these
algorithm based on adiabatic evolution has been introducegigenvalues as
lately [4]. In particular, a quantum adiabatic analogue of
Grover’s search algorithm has been independently developed Omin= Min [E1(t) —Eq(t)] D

@

in Refs.[5] and [6], which works for unstructured search O=t=T
problems. The use of quantum adiabatic algorithms has also
been analyzed for solving structured problems such agnd the maximum value of the matrix element aifi/dt
k-satisfiability (K-SAT), but in such a way that until now between the eigenstates as
only a numerical study has been possipi¢ Recently, the
study of quantum adiabatic algorithms progressed even fur- dH
ther after Aharonov and Ta-Shma demonstrated that any Dimax= max |
guantum state that may be efficiently generated in the 0=t=T 1.0
guantum-circuit model can also be efficiently generated by . ) )
an adiabatic quantum state generation algorifigh This ~ With <dH/dt>1,0:,<E1;t|dH/dt|E0;t>- The adiabatic theo-
result could hopefully lead to the proof of the universality of 'ém states that, if we prepare the system at tim@ in its
algorithms by quantum adiabatic evolution and thus provide§round stat¢Eq;0) and let it evolve under the Hamiltonian
a strong incentive in the search for further quantum adiabati€! (). then
algorithms.

The purpose of this paper is to bring the ideas of nested KEo; TIy(T))P=1~e? )
guantum search and quantum adiabatic computation together,
in order to devise a quantum adiabatic algorithm adapted tprovided that
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of the solution stategm). If the number of solutiond is
2 , (4 unknown, we may use in Eq10) an arbitrary valueM’ of
Yrmin the order ofM which will affect only the error probability of
the computation by a factor & '/M (if M'=1 is chosen,

wheree<1. - ,
Now, we may apply to the system a Hamiltonian for then the error probab|I|'Fy can only be lower than_ W_lt:h
=M, but the computation time will be longerThis is a

which the ground state encodes the unknown solution of a

problem. According to the adiabatic theorem, we know thafn@or difference to Grover's conventional algorithm, where
we may get the system very close to this solution state by'€ computation has to be run several times when the number

preparing it in the(known) ground state of another Hamil- of solutions is unknown, and will be helpful in our structured
tonian, and then by progressively changing it to the Hamil-S€arch.
tonian of our problem. This simple idea is central to the

D max

=¢

quantum algorithms by adiabatic evolutipf5]. IV. STRUCTURED PROBLEMS
In this article, we consider a class of problems where one
Ill. QUANTUM SEA;\%"LUBTTO';\IOCAL ADIABATIC has to find an assignment for a set of variables. For each

additional variable considered, new constraints appear and
As exposed iff6], this principle may be used to perform reduce the set of satisfying assignments. This corresponds to

a quantum search. Suppose that ambingiates, we have to most problems encountered in practiéeSAT, graph color-

find the M-times degenerate ground state of a Hamiltonian iNg Planning, combinatorial optimization, etc.
For a set ofn, variables denoted a&, there is a corre-

sponding set of constrainG, . We may define a functioh,
Hi=1 —mEEM [m){ml, ) that tells if an assignment of the variablesArsatisfies the
constraints inCp :
where M is the ensemble of solutiorief sizeM). We ini-
tially prepare the system in an equal superposition of all
could-be solutions:

fa:(Za)""—{0,1}

0 if x does not satisfyCp,
X— . . (13)
1 if x satisfiesCa,

1 :
'S>:TN-EN">' (6)
' whered is the number of possible assignments for each vari-
able (d=2 for bits). As quantum gates have to be reversible,

This superposition is the ground state of the followin 4 ) ; ;
Perp g gthe guantum equivalent of this function will be an oracle:

Hamiltonian:
Hi=1—]s)s|. 7) OA3HNA®H2—’HNA®H23|X>®|Y>_’|X>®|y@fA(X)>,
(12)
We now applyH; to the system and switch adiabatically to ) ) _ _
H;. If we perform an adiabatic evolution whereNy=d"A. It is shown in Ref.[9] that this oracle is
closely related to a Hamiltonian whose ground states, of en-
H(t)=[1—s(t)]H;+s(t)H;, (8) ergy 0, are the basis states encoding a satisfying assignment

_ _ _ _ and whose excited states, of energy 1, are all other basis
wheres(t) is a (carefully chosenmonotonic function with  states:
s(0)=0 ands(T)=1, we will finally obtain a state close to
a ground state ofl; : |x) if x does not satisfiC,,

Halx)= (13

0 if x satisfiesC,,

1
0= 2, ™ ©

(10

as long as
g Ha=la— X |ma)(mal, (14
mae Map
o[\
T=0 M/ where M, is the set of satisfying assignments for the vari-
ables inA. It is possible to efficiently simulate the time evo-

This algorithm is referred to decal becauses(t) is chosen lution according to this Hamiltonian, that is, the unitary op-
such that the adiabatic theorem is obeyed locally, at eachratore "' can be well approximated using a sequence of

time (see[6] for details. one- and two-qubit gates and two oracle cafiee[9] for
Note that if there is more than one solutiod &1) each  details.

solution corresponds to a ground statefand the system Now suppose we consider a larger set of variablgs

gets to the uniform superposition of all of these stadf@®s =n,+ng that have to satisfy a set of constrai@gg D Chp .

because the whole problem is symmetric under permutatioo discriminate between assignments satisfy@g or not,
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we will use an oracl€ g or a corresponding Hamiltonian Let us point out that, here and throughout the rest of the
H,g defined as in Eq912) and(13). The basic idea of our article, it seems that the number of solutidvs, (and later
structured search will be to find the solutions@{g by first ~ Mg, and M3) must be known to derive the minimal time
building the assignments of thw, primary variables satisfy- T, (and latefTz andT¢) needed to perform the computation
ing Ca, then by completing them with all possible assign-with a bounded error probability. Actually, as already ex-
ments of theng secondary variables, and finally by searchingplained in the case of the unstructured search at the end of
among these could-be solutions the global satisfying assignsec. 111, an approximate valud’ of the order of the actual

ments. M is sufficient as it will affect the error probability only by a
factor of M'/M. In real problems, this issue may thus be
V. STRUCTURED SEARCH BY NESTED ADIABATIC addressed by using approximate methods to evaluate the
EVOLUTION number of solutiongsuch as Eq(57) of Sec. VII fork-SAT).

This problem is of the same type as the one considered in
[3], for which the technique of nesting was introduced in the
context of the traditional implementation of Grover’s algo- We will now perform a preliminary search in the Hilbert
rithm on a conventional quantum circuit. Here, we apply thisspace of dimensioNg=d"8 of the secondary variables B
technique to the adiabatic quantum search algorithm. by extending the partial solutios,). We prepare the vari-

Suppose we divide the variables of our problem into twoables inB in a state that is the uniform superposition
subsetsA (n, elements andB (ng elements First, we will

B. Adiabatic search on the secondary variables

perform a search on the variablesArusing the Hamiltonian Isg) = 1 2 i) 20
H that encodes the constraints@y : B NG i %% B
Globally, the system is thus in the superposition
Ha=la— 2 [ma)(myl. (15 v, e sy perp

mpe Mp

|W0)ae=|¥m,) ®|ss)

Then we will use the Hamiltoniai 5z acting on all vari-
ables inAUB and encoding the whole set of constraiiss

1
ma)®|j)s, 21
\/mmAEEMA| A> |]>B ( )
jeNg
Hag=lag— > |ma)(ma| @ [mg)(mg| (16)
(M .Mg) < Mag where some terms correspond to a global solution of the
b problem[(m,,j) e Mag satisfying all constraints irC,g]

fgrﬁtjclsuui zns;lF;ﬁ;gzsd:fnqgttg?tﬁgl:ﬂc;%?u?; tri%if:tlérptrr?enand the others to a partial solution orjlgn, e M, satisfies
AB - ; ; i
gives one of the global solutions at random. Ca but (my,}) € Mag does not satisfg]. We now divide

the setM, of solutions ofC, into two subsetsz\/l,f will be

the set ofm,’s for which there exists at least one solution

(mp,mg) of Cpg and M Rsthe set ofm,’s for which there is
The preliminary search on the variablesAris a simple  no such solution,

unstructured search as explained in Sec. lll. As therengre

A. Adiabatic search on the primary variables

variables inA, the corresponding Hilbert space is of dimen- Mia={mye Ma|3mg,(ma,Mmg) e Mag}, (22
sionN,=d"A. Let M be the number of solutions iM, .
Performing an adiabatic quantum search, we may thus trans- Mﬂ}'s:{mAe MV, (ma,j) & Mpg}- (23

form the initial state
Of course, we thus havat,= M UM N°. We may now

1 rewrite our initial statg21) as
sy =—— > i (17)
| A> \/N_A ie/\/Al >A .
: : . . [ Wo)aB= > Imaelie
into a state close to the uniform superposition of all solutions VM ANg mae M NS
in Ma, jeNg
| — S ma (19 b 3 mielde. (@4
=— my), A B-
Vimy) VM maeMp A MaNg myem$
jeNg

in a time of order ) . .
In the first part of this expression, no term corresponds to a

N solution of the full problem, whereas in the second part,
= A some terms do and others do not. The goal of this stage of
Tpo=0 v (19
A

the computation will be to increase the amplitude of the so-
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lution terms in this last part. To achieve this, we perform an 1 2
adiabatic evolution using as initial Hamiltonian | ap) = Imp)®|j)e
VMaNE m, e m S
IAE M A
Hi=1,®(lg—|s)(ssl), (25 TeNg
. o . 1 .
that hag ¢y) ag @s a ground state. The final Hamiltonian will + 2 e'%m|m,)
be VMa mpem$
Hi=Hag—Ha®l5. 26 1
f AB A B ( ) ® 2 |mB>
. . . \/MB/mA mBE/VlB/mA
We see that these Hamiltonians share the following proper-
ties. MK M3
=V 9 Vi v, (30
(1) They do not induce evolution of statf$,®|sg) cor- A A
responding to assignmenitof A, that do not satisfyCy : where the¢y, 's are phases appearing during the evolution,
Hifli)a®[sg)=0 V i&Ma,.
(2) They do not couple states corresponding to different 1
ma's: g(j|®@(MalH; (imp)®[j")g=0, V ma#mpe My, WN%:W E NS|mA>®|]>Bi (32
VijjeNs. A Bmf’-}ej\\//lA
€/NB
It follows that the instantaneous Hamiltonian of the adiabatic 1
evolutionH (t) satisfies the same properties. Keeping this in| S\ _ ib
A : o )= > dfmimye > Img),
mind, it may easily be shown that the effect of the adiabatic ‘/Mi mpe S M Bim, M8€ Meym,

evolution will be to perform independent adiabatic searches (33)
for eachmy e M, . More precisely, each term i) ag

and MY\S (M3) is the number of elements in sett S

S meli) e P
T Ma)®1])8
Ngr jeN;
\/_B et C. Global adiabatic search
will evolve to The stage#\ and B define a unitary evolutiotd that ap-
plies the initial statds,)®|sg) onto |¥ag):
! S imye|me), (28) Ulsa)®[se)~|#as) (34)

\/MB/mA mg e Mp/m, IS S
=~/ AN MALS
TR T2 (35)

as long as
In this state, we now need to decrease the amplitude of the
T -0 Neg (29) first term, corresponding to partial solutions only, and in-
m 1 . .
A Mg/m, crease the amplitude of the second term, corresponding to

global solutions. This could be realized efficiently by per-

where Mgn, is the set ofng’s such that (s, Mg) € Mag forming an adiabatic search using as initial Hamiltonian:
andMgn, is the number of these elements. For this condi- Hi=1ag— | ¥ap){ ¥agl (36)

tion to be satisfied for alin,’s simultaneously, we must take

Ng
min Mg/m, |

ma

~U(l ag—[sa)(sal®|sg)(sg/)U" (37)

Tg=maxT, =0 (30 ~UHyUT, (39

ma

where Ho=1,—|Sp){(Sa|®|Sg){ss|, and as final Hamil-

tonian
Here is the major advantage of this adiabatic algorithm

compared to its circuit-based counterdatwhere allM ,’s H¢=Hag
had to be supposed equal to 1, as here it is sufficient that they

are of the same order of magnitude to ensure an error prob- D M) (Mal® | me)(mg|  (39)
A A B B

ability of the same order for each term. - IAB_(mA,mB)EMAB
At the end of this second stage, we have thus constructed
a state close to during a time
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Ma
Mg/

A

initial and the final Hamiltonians, whereas “local” means
(40)  that the evolution is optimized at each time, using a local

version of the adiabatic condition, which is the case here. We

now quickly review the discretization of this last method,
terpolating HamiltonianH(s) =(1—s)H;+sH; cannot be The first approximation consists in cutting the evolution
applied directly. However, we will see in Sec. VI that the time T into r intervalsAT=T/r and replacing the continu-
basic steps of the quantum-circuit implementation of thispysly varying HamiltoniarH (t) by a HamiltoniarH ' (t) that

adiabatic algorithm require only the applicationtéfduring s constant during each intervAlT and varies at times;
a particular time, that is, =jAT only:

TCZO

e Hit~ g 1UHUt= yg-iHotyt, (41) HI()=H(t) if tj_;stst;. (46)
Hence, each application bfi. durirng a_ftlimet will be equiya- It is shown in[9] that, for H(s)=(1—s)H;+sH; with s
lent to sequentially applyindJ’, e” ™, and U, which  —g(t), this approximation introduces a global error on the
means performing the adiabatic evolutidristagesA andB) corresponding evolution such that
backward, then applyingl, for a timet, and finally rerunJ

forward (stagesA andB). T
In Sec. VI, we will see that, when discretizing the evolu- U =U'(T)||,=< ZTH'Hi_ Hi o, (47)

tion, we must take a number of steps of order To. We
may now evaluate the complexity of this algorithm. As it
consists of ¢ steps, each involving two applications dfor
UT, that last a time of ordeT,+ Ty, the algorithm finally

takes a time of order U] = e THATZ g ill-s)HiAT=isjH;AT, (48)
T=(Ta+Te)rc (42)

wherel[|Al[| ;= max, -1 AlX)|| is the operator norm k. Our
algorithm now requires steps of the form

wheres;=s(t;). As we are able to appl{l; andH; sepa-

\/N\A Ng M, rately but not necessarily a simultaneous combination of
= = _ — them, we will approximatéJ; b
© ( MAjL \/ min Mg/, | V mS$ PP i
ma Uj’ze_i(l_si)HiATe_istfAT. (49)
Na MaNg o .
=0 —+ —— |- (43 This will result in an error
ma

T2
Let us notice that, with the same hypothesis as in . I (T)_E[ Vi ”|2€O(T|”[Hi ’Hf]”|2> (50
namely,

(see[9] for details.
MB/mA:]- V mA, (44)

. . . B. Application t tructured t h
Miz Mg, and the computation time is pplication to a structured quantum searc

We now consider the case of a structured quantum search.

UNA+ VM aNg We could apply the discretization procedure to all three
T=0 T : (45  stages A,B,C) of our algorithm in order to implement it on
AB

a quantum circuit, but we will concentrate on st&gevhich

so that the complexity is the same as that of the equivaler{? the only one that requires discretization. Nonetheless, it is

circuit-based algorithm described in R¢8]. A more de- easy to show that stagh(B) would require a number of

tailed analysis of this complexity will be performed in Sec. ?_trer)lsrA (rs) of the same order as the computation tife
B .
Vil For the final stage, the global adiabatic search, the Hamil-
toniansH; andH; are defined in Eq9:36)—(39). Evaluating

V1. DISCRETIZING THE ADIABATIC EVOLUTION the errors introduced by the approximations, we find

A. General method
[Hi—H¢ll|2<1, (51)

The implementation of global adiabatic evolution algo-
rithm on a discrete quantum circuit was initially shown in M
[4], further studied irf5], and extended to the case ofoaal ITH; Hedll2< :
. . . . . il 2 M.
adiabatic evolution algorithm if9]. Let us recall that we use
the term “global” when the adiabatic condition is imposed
globally and the evolution interpolates linearly between theand, asTC=0(\/MA/MAS),

(52
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IMAME or, with a= \/d™8 andx=np/nag,
UM -U"(Mlle0 ) . (59 X+ gl (BIBIX"

VMATMR o W) -
|||U'(T)_H Uillloe O(T) 4 We now optimizex, the fraction of variables for which we

perform a partial search, to minimize the computation time.
Therefore, as announced in Sec. V, we have to cut our evop/e have to solve the equation

lution into a number of stepsC:O(\/MA/MAS) of the same

order asT.. Each step will take the form Ekxkflza(ﬁlﬁc)xk+xfl (60)
U/ = i(1-s)HATg—isjH{AT (55) €
j . . .
which, for largea (that is, largen,g) approximately reduces
%Ue*I(l*S])HoATUTe*ISJHfAT, (56) to
where the applications of Hamiltoniart$, during a time B B
(1—s;)AT andH; during a times;AT may be realized by B8~ +x—1=0. (61)

the procedure described f@].
The solution of this equatioa (0<a=<1) corresponds to
VIl. COMPLEXITY ANALYSIS the optimal partial search we may perform such that the
complexity grows with the smallest power ith for npg

To estimate the efficiency of this algorithm, we will fol- o 1his gptimal computation time may then be written as
low the same development as[i8]: as we have seen in Sec.
Zaa ) ( danAB )

V, under the assumptio@4) that we will consider here, the
complexity of this adiabatic algorithm has exactly the same T=0 RS 0] T AR
Let us now consider the hardest problems for whjgh

form as its circuit-based counterpart.
For these problems, the complexity reads

(62

First of all let us define a few concepffor details here
and throughout this section, we refer the reader to 3.
The structured search problem is to find an assignment of Be-
nag=Np+Ng variables amongl possibilities and satisfying T=0( Jdee)
e constraints, each involving at mdsbf these variables. We '
define as @round instancen assignment of all the variables \yhich we may immediately compare to the complexity of an
involved in a particular constraint. A ground instance will be unstructured quantum sear€{d™?). The gain in the ex-
said to beno goodif it violates the constraint. Lef be the ponenta depends ork through Eq.(61). For instance, we

nhumber of those no-good ground instances. find «=0.62 fork=2, =0.68 fork=3, anda—1 when
Empirical studies show that the difficulty of solving a K

structured problem essentially depends on four parameters:
the number of variables,g, the number of possible assign-
ment per variablel, the number of variables per constralnt

(63

o]

As already pointed out, we recover exactly the same com-
plexity as for the circuit-based structured search algorithm

h ¢ ) itivel shown in[3], but with fewer hypotheses as, due to the par-
and the number of no-good ground instangesntuitively,  yioiar form of the required running time for an adiabatic

we understand that & is small, there are many assignments 5,4 qrithm (10), the number of solutions derived from Eq.
satisfying the. constraints so the prob!em is easy to'solve. O 7) must give only an order of magnitude, while it must be
the contrary, if¢ is large, the problem is overconstrained and good approximation for its circuit-based analogue. More-

it is easy to show that there is no solution. More precisely, it) o 45 seen in Sec. V. the numbers of solutibhs,, do
may be shown that for fixed,g andd, the average difficulty ’ ] Ma
not have to be equal for ath,’s, but only of the same order.

may be evaluated by the paramef@r&/nag. The hard To compare these results with a classical algorithm, let us

problems will be concentrated around a critical vafi consider a specific problem, the satisfiability of Boolean for-
Let us now estimate the complexig5). Let p(n) be the mulas in conjunctive normal form, ck-SAT. For 3-SAT,

probability that a randomly generated assignment ofrthe which is known to beNP complete, some of the best classi-

first variables satisfies all the constraints involving theseCal alorithms have a worst-case running time that scales as
variables. We then haveMp=p(n,)d™ and Mgug g 9

- N Lo . 0O(2%%8) [10,11], while, asa=0.68 fork=3, our quantum
P(nag)d™e while it is shown in[3] that adiabatic algorithm has a computation time of order

p(n)~d~"as(B/B (Vg (57 0O(2%3Mae), which is a slight improvement. Nonetheless, let
' us recall that there is a distinction between the worst-case
Equation(45) becomes complexity used for characterizing classical algorithms and
the average-case complexity for hardest proble@s 8.)
dA+ \/dnAB[l—(,e/ﬁc)(nA/nAB)k] used for characterizing our quantum algorithm. However, let
T=0 (58) us also notice that this scaling could be further improved by
vd™e(1-B/B.) using several levels of nesting, i.e., by replacing the prelimi-
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nary search over the primary variables by another nestetstageC) has to be discretized, which makes it possible to
structured searctsee the analysis of the circuit-based coun-nestthe preliminary adiabatic sear¢btagesA and B) into

terpart of this idea in the Appendix §8]). the global one. Each step of the discretized algorithm re-
quires alternating partial adiabatic searches backward and
VIll. CONCLUSION forward with global search iteration steps.

) . . A complexity analysis shows that the average computa-
~ We have introduced a quantum search algorithm combingop, time of this adiabatic algorithm, although still exponen-
ing the approach based on local adiabatic evolution develjy grows with a reduced exponent compared to quantum

oped in[6] and the nesting technique introduced[8]. It ynstructured search algorithms to solve a problem such as
allows one to adiabatically solve structured search problemg_gat

with an improved complexity over a naive adiabatic search
that would not exploit the structure of the problem.

The basic idea is to perform a preliminary adiabatic
search over a reduced number of variables of the problem in J.R. acknowledges support from the Belgian foundation
order to keep only a superposition of the assignments th@RIA. This work was funded in part by the Communaute
respect the constraints of this partial problem, and then t&ran@ise de Belgique under Grant No. ARC 00/05-251, by
complete these partial solutions by finding satisfying assignthe IUAP program of the Belgian government under Grant
ments for the remaining variables. We have seen that, tdlo. V-18, and by the EU under project RESGrant No.
implement this algorithm, the global adiabatic evolutionST-2001-3575%
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