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Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static
electric and magnetic fields
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Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example:
a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by
ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a
standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the
external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory
gives the correct distribution.
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[. INTRODUCTION ate many channel extensigras applied in various areas

. . , ; from nuclear physic§16], mesoscopic$18], or chemical
After many years of intensive research in the q“antumreactions[w] to name a few. Creagh and Whelf20—23
chaos area” it is now commonly accepted that the quantungeyeloped a semiclassical approach to tunnefiaga semi-
behavior of complex systems may be strongly correlate¢|assical treatment concentrating on other aspects of tunnel-
with the character of their classical motiph-5]. Even such ing see, e.g., Ref§24,25) which enabled them to give an

a purely quantum phenomenon as tunneling may be pramproved statistical distribution of tunneling ratZ6]. The
foundly affected by chaotic classical dynamics. For(iate-  distribution has been tested on a model system and shown to
grable one-dimensional system, the tunneling rate dependithfully represent the tunneling splitting distribution, pro-
smoothly on parameters. For an integrable multidimensionayided the classical dynamics is sufficiently chaotic. However,
system, the eigenstates can be labeled with a set of godfliS distribution fails for systems when scar{@d—31 wave

guantum numbers and tunneling can be studied with a simpl@nCtionS dominate the process. In order to take into account
extension of the standard one-dimensional analysis, leadin carring, the same authof23] developed a more compli-

to tunneling rates which are simple functions of the quantu ted semiclassical theory which, in a model system, accu-
9 : P . quant r‘r}ately describes the numerically observed tunneling rates.
numbers. In contrast, in the presence of chaotic motion in a

-~ . . . The aim of this paper is threefold. First, we propose a
multidimensional - system, the tunneling rates typically simpler approach to the effect of scarring than that in Ref.

strongly fluctuate when parameters are varied, the game [$3] our approach is less general, as it is limited to the case
then to_ldentlfy both the average behavior and the statisticg)pen only one channel contributes to tunneling. This is,
properties of the fluctuations. o “however, a very frequent situation: because tunneling typi-
Imaglne the situation when the wave function is predoml-ca"y decays exponentia”y with some parameter' most con-
nantly localized in a region of regular motion. The tunnelingtributions are often hidden by a single dominant one. The
to the chaotic sea surrounding the regular island, calledormulas that we obtain are also much simpler. Second, we
“chaos assisted tunneling,” has been quite thoroughly studeonsider the tunneling rate distribution in a challenging, re-
ied [6—15]. It may be characterized by the statistics of tun-alistic system—a hydrogen atom in parallel electric and
neling rates, or directly measurable quantities such as tunnefragnetic fields. As mentioned by Creagh and Whelan, one
ing splittings between doublets of different symmetfi#g]  expects there the above-mentioned problems due to scar-
or tunneling widthg 11,12 where the tunneling to the cha- dominated tunneling. Here again we test the proposed distri-
otic sea leads eventually to decdg.g., to ionization of bution on a vast set of numerical data. Third, in contrast with
atomic species Models based on random matrix theory Most of the previous studies, we do not consider here a situ-
(RMT) [16,17] show that distributions of both quantities are ation where tunneling manifests itself as a quasidegeneracy
closely correlated with both the splitting0] and thesquare ~ Petween a pair of even-odd states, but rather the case when
roots of the widths [11] having a common Cauchy tunneling is followed by a subsequent ionization of the sys-
(Lorentzian-like distribution with an exponential cutoff for tem and manifests |tself_ in the mdtt(mmza@ﬂon_ rgte}; of
extremely large events. Such a situation occurs for suffiléSOnances. The analysis for both cases is similar, but not

ciently small% (in the semiclassical regimevhen the tun-  dentical.
neling coupling is much smaller than the mean level spacing Il THE DISTRIBUTION FOR TUNNELING RATES FOR

In a given system. . . SCAR-DOMINATED CHAOTIC TUNNELING
Another possibility occurs when virtually all accessible

phase spacéat a given energyis chaotic: the tunneling oc- Let us recall first shortly the analysis of chaotic tunneling
curs through a potentidtather than dynamical as in the pre- used in Ref.[26], which makes it possible to predict the
vious casgbarrier. Then a standard RMT based answer leaddlistribution of tunneling rates in terms of classical quantities.
to the Porter-Thomas distribution of widtlsr its appropri-  This approach is based on the standard semiclassical expan-
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sion of the Green function as a sum over classical orbitpers. In the simple case where the classical orbit which is the
(which is used, e.g., in periodic orbit theory in the manner ofreal continuation of the instanton inside the potential well is
Gutzwiller), but incorporates in addition some complex or-a periodic orbit(this is, for example, the case where the
bits, that is, orbits where time, position, and momentum cannstanton is along a symmetry axis of the potentielis not

be made complex. Such orbits may tunnel through the potersurprising that the oscillatory terms will be governed by the
tial well and eventually lead to escape at infinity; they areproperties of this real periodic orbit. Indeed, it is known that
essential for the calculation of tunneling rates. In the onethe eigenstates inside the well will be scarred by such an
dimensional case, it is well understood that tunneling can berbit, thus showing either an increased or decreased prob-
guantitatively described using a single complex orbit knownability density at the point where the instanton emerges. It is
as the instanton: the orbit propagates under the potential wethus reasonable to expect that scar@ttiscarregistates will

with a purely real position, and purely imaginary time andshow an increaseddecreased tunneling probability. The
momentum, until it emerges in the real phase space when thmodulations of the weighted density of states are thus related
potential barrier is crossd@ can be visualized as a standard to the action of the real periodic orbit. More specifically, one
real orbit in the inverted potentlal The actionS, of the  gets

instanton is then purely imagina§=iK and the tunneling

rate is, not surprisingly, essentially described by the 1 - exd (—K+ijS)/#]
exp(S, /h)=exp(—K/h) contribution. fosd E)=—Re>, — . (@
For a multidimensional system, the situation is somehow T =1 (-1 TdefWM - 1)

comparable, except that there are now several instanton or-

bits. It also turns out that the structure of the tunneling comwhereS is the (real) action of the periodic orbit in the well
plex orbits can be extremely complicatE?2b,32. However, and M its stability matrix. The sum ovef just takes into
because of the exponential decrease of the tunneling rate, account the repetitions of this orbit. This approach is re-
the semiclassical limiti—0, there are cases when the in- stricted to a low tunneling rate when repetitions of the in-
stanton orbit with the smallest imaginary action will give the stanton give negligible contributions. The fact that, in the
dominant contribution. Creagh and Whelan succeeded in excontribution of the instanton, there is a #/%refactor, half
pressing the tunneling rate in terms of the action and stabilitghe prefactor for the oscillatory term, is not trivial, but ex-
exponent of the instanton orldi21]. They were able to de- plained in Ref[20].

scribe the situation of a symmetric double well, where tun-
neling manifests itself through the existence of pairs of
guasidegenerate states, i.e., to calculate the splitting of the
doublets. Comparison with “exact” numerical results for a  We consider a hydrogen atom placed in static parallel
model system showed a very good agreeni2@f21]. They = magnetic and electric fields. The Hamiltonian of the system
were also able to describe the situation of tunneling outside & (for infinite mass of the nucleus, neglecting relativistic and
single potential wellwith chaotic dynamics inside the well QED corrections, in atomic units

followed by “ionization,” that is, particle directly escaping

toward infinity. The quantity of interest is the “weighted” p2 y2 y

density of states, where the weight is given by the widths H=————Fz+-(X®>+y?)+ -L,, (5)

of the resonances with energigs: 2 T 8 2

Ill. THE HYDROGEN ATOM IN PARALLEL FIELDS

where y stands traditionally for the magnetic field in atomic
f(E):En: I'nd(E-Ep). (1) units (=2.35x 10° T) while F is the static electric fieldin
atomic units of~5.1x 10" V/m) assumed to be oriented,
In the semiclassical approximation, it can be written—in thetogether with the magnetic field, along tie axis. The sys-

spirit of periodic orbit theory—as the sum of smooth andtem obeys cylindrical symmetry arid, is a constant of mo-
oscillatory terms: tion. The last Zeeman term in the Hamiltonian gives thus a

constant shift(for a givenL,) and will be omitted for sim-
f(E)=fo(E) +fosd E), (2 plicity.
o Classically, the atom may ionize for energiés,>
Explicitly, the smooth term reads —2F. Note that ionization occurs in thedirection—the
diamagnetic term provides a two-dimensional harmonic-
¢ (E)= 1 exp(—K/#h) 3 oscillator binding potential in the perpendicular directions.
o) 27 J(—=1)T TdetW—1)’ The character of the classical motion depends on the en-
ergy as well as on the relative magnitude of electric and

whereK is the (imaginary action of the periodic instanton Mmagnetic fields, as discussed long time ago in R&3,34.

(that is the full orbit back and forth across the potential yyell In fact, the system obeys the standard classical scaling laws
d the number of freedoms of the system, awd the [35,36. Explicitly, scaling with respect to the magnetic field
2(d—1)x2(d—1) stability matrix of the instanton. The os- ast=ry?3 p=py B e=Ey 23 f=Fy %3 L,=L, "
cillatory term is not explicitly written by Creagh and leads to a new Hamiltonian dependent on two parameters
Whelan, but it is rather simple to calculate it from their pa-only, the scaled energy, and scaled electric fielfj
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1. nance and’, its width, i.e., the inverse of its lifetime. Well
—fz+=(X°+y?) =e. (6)  below the classical ionization threshold, E@), the widths

8 should be vanishingly small; with increasifigsome states,

) ) ) notably those extended indirection, i.e., along the “ioniza-
Later on we shall drop the- sign using classically scaled tion direction,” should have increased imaginary parts indi-
variables only. cating tunneling ionization. Above the threshold, Ed),

With this scaling and fof =0 (pure magnetic field the  jonjzation becomes classically allowed and the widths are
motion is predominantly regular for smad<—0.5; for  expected to be large. Moreover, in the tunneling regime, the
larger e a gradual transition to chaos takes place so that, fojyidths should on an average exponentially decrease in mag-
€>—0.12, practically all the available phase space becomesitude with decreasindg: according to an exp{K/#) law,
chaotic[35,36. This character of the motion is basically pre- with K being a characteristic tunneling action.
served forf >0, provided

=2
~ 1
H=—p - =
2 7

IV. NUMERICAL RESULTS—SHIFT OF THE EFFECTIVE
E<Ejon= — 2\/?, (7 IONIZATION THRESHOLD

i.e., below the classical ionization threshold. The expectations described in the preceding section are

Quantum mechanics does not preserve the scaling. Inste&@Sed on a rough classical analysis of the ionization process.
of ﬁnding, however, eigenenergies at given values of magl.n order to test these ideas and the semiclassical predICtlon

netic (y) and electric(F) fields, it is a celebrated tradition for the widths of the resonances, we have performed exten-

now to consider scaled specfi6,36), i.e., choose values of Sive numerical studies of the energy spectrum of the system.
external fields as to obtain eigenenergies at fixedThis The mat_rlx repr_esentmg _the co_mplex r_otated Hamllt_onlan in

equation, one may obtain a generalized eigenvalue problef€nts have strong selection rules and are all known as
for fixed e (andf in our casg from which quantized field sn’pple analytic expressions. The matrix in then diagonalized
values 7;1/3 are obtained. If one were to get back to the YSiNg the Lanczos algorithri43], produ_cmg several hun-
original problem, then a givery, value together with the dreds or thousands fully converged eigenvalues. We have
definition of € yields the energ¥,,, which is an eigenvalue carefully checked that all e|genya[ue_s prgsented in this paper
of the original Schidinger equation for thay, field value.  2'¢ fully converged. The only limitation is that the calcula-
tion is performed in double precision, yielding about 12 sig-

The set ofy, obtained for fixed values o& andf corre- o . . o . X
sponds to the very same classical dynamics while differengificant digits. This also implies that widttigunneling ratep
~1/3 smaller than 10%? cannot be accurately computed.

Yo play the role of different values of the effective Planck It turns out that, below the classical ionization threshold,

constant . Eq. (7), the widths of the resonances are usually very small.

One may then expect that to study quantum tunneling IrMoreover, as we are interested in the situation where the

the semiclassical regime with a well-defined classical Me 1ssical d ics inside th ial well is chaofi
chanics, it is sufficient to diagonalize a standard scaled pro classical dynamics inside the potential wellis chaotic, we
! ave to use a rather large value of the scaled energy

lem. This is, however, not completely true: indeed, because : _ e
T o7 é—typically e= —0.1—which in turn corresponds to a rather
tunneling implies that the electron ionizes, the energy spec-

. : small value of the scaled electric field at the ionization
trum is not a discrete spectrum of bound states, but ratheJ1 . ; -

. threshold, that is, typically=0.0025 from Eq(7). For these
composed of resonances. Far below the classical ionization lues. we observed that the numerically computed widths
threshold, the widths of the resonances are extremely sma\zgf?e all ,vanishin v small. smaller than thexfé acf:)urac of
and can be neglected. Then diagonalization of the Hamil: aly ' y

L ; ) . he numerics.
tonian in a convenient basis set may produce a discrete eﬁ—

ergy spectrum which very well approximates the true reso- This can be understood fro.m. E@)' Indeed, _the stability
nances. On the other hand. far above the ionizatior%axponent of the instanton orbit is, in our specific case, enor-

threshold, the spectrum is continuous and basically unstrudloYs: The reason is that the potential in the vicinity of the

tured. We are interested in the intermediate situation, in th d?;rg;e Eg:::t tlgrrneirril t?\glig[;(;?/g It;g slt;(:]r;gtlitbﬁggg gxlthe
vicinity of the classical ionization threshold, where the reso- ver gsmooth otential maximusrﬁ i Ft)he fiel) direction y
nances have a small but significant width due to tunnelin y P . S
followed by ionization. The treatment of tunneling reso-. he instanton can be seen as a real orb!t propagating in the
nances necessitates a further standard extension, known frdﬂlve.rted potentlal_. Th.'s inverted potential has_ a _shallow
Inimum in thez direction but falls down very rapidly in the

the pure magnetic-field case above the ionization threshol LT X

[37,38: a complex rotation approadB9—41]. The idea is to ranS\{erze dlreguoni. the mstantlon movgls along ﬁ sharp rﬁ)o—
T . . S . tential ridge and is thus extremely unstable. We show in the

apply the following complex scalingpr rotation if viewed in Appendix how to calculate the actidf and stability matrix

the (;omplex plane r—r exp(©), P P exp( '.G.)) to the W of the instanton. For small(the regime we are interested
Hamiltonian of the system, whef® is a real positive param- . : . . Lo

. : . in), the following approximate expressions are sufficient:
eter representing the complex rotation angygically of the

order of 0.1 ragl The transformed Hamiltonian is no longer
a Hermitian operator, and its diagonalization yields complex K(e)=—
eigenvaluef,,—il',/2, whereE,, is the energy of the reso-

2m(e+2f1?)
21/2f 3/4

()
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and nothing but a shift of the energy available for tunneling by
the zero-point energy in the transverse direction.
T Such an analysis does not take into account the azimuthal
(=1 'de(w—1) ZGXP( W) : (9 symmetry around the field's axis and the fact that the contri-
butions of the variousn values can be separated in the nu-
merical calculation. Not surprisingly, tunneling is much more
order of 1d% which explains that the widths cannot be mea-Sective form=0 states which are not repelied from the
axis by a centrifugal potential and thus feel more efficiently

sured in a numerical experimeht. the instanton. In the quantum point of view, such states have
An alternative, equivalent, “quantum” explanation can be ' q P '
the lowest transverse zero-point eneegy For otherm val-

given. The magnetic-field term in the Hamiltonian is respon- )
sible for a harmonic potential in the direction perpendicular.ues’ the treatment of Creagh and Whelan has to be adapted:

to the fields. Thus the quantum-mechanical energy of thdhstead of considering the full semiclassical Green function

motion in thex-y plane cannot be smaller than the energy ofgaghi:é's;i?’ ?r?ee rrgif\faen)ipggg] 'toonne;ﬁeixaégéﬁfjggczse A
the lowest state of the corresponding oscillator. Egrm similar roblt)—:*/m occurs in eriod?c orbit theory when gne ié
=0 the energy in question is the ground-state endfgy . prot 1N P cory

B . o interested in the contribution to the density of states of an
=1vy/2 while for other (conserved m values it is E,

— (|m|+1)y/2. Reaching the energy of the classical ioniza_orblt along thez axis. How to deal with such a problem has

. . - been described in a general manner by Bogomd##;45
tion threshold is thus not s_u_ff|C|ent for the_ quantum systemtq .. " specific case by Shaw and co-workég. The rule
ionize. It requires the additional zero-point eneigy to be

able to overcome the potential barrier. As the harmonic polS that higher powers of the stability matrix come into play,

- 10 OVEl : . . for example,M!M*! instead ofM for the real orbit. The
tential is quite strong, this excess energy is rather high and:., ~. = """ . . S .
. S Situation is similar for the instanton, resulting in the denomi-
has the effect of tremendously reducing the ionization prob-

o nator being raised to powém|+ 1. The net effect is again
_ablllty. F(_)r the scaled problem, t.he energy shift translate taken into account by shifing the scaled energy dy
into a shift of the scaled energy:

=(|m|+1)ep, i.e., the transverse zero-point energy in he
Im|+1 subspace. Thus results in an effective quantum ionization
T eff - (100  threshold

For f=0.0025, the denominator in E@3) is thus of the

g M+
en=Ey 2= 5 13_ 5
. : . |m|[+1
The equivalence of the two points of view can be estab- € = —2\f+ —Tigg. (14)
lished by noting that expressid8) has itself an exponential 2
dependence, which can be combined with the numerator in

Eq. (3). We obtain Because of the transverse zero-point energy, in the pres-

ence of magnetic fieldarger electric-field strengths are nec-
essary to observe the same ionization yield, or, conversely,
, (11) larger scaled energy is required for a fixed electric field
strength. We have thus performed numerical diagonalization
of the scaled Hamiltoniarabove the classical ionization
which can also be written as threshold, Eq(7). The results are shown in Fig. 1, where the
widths of the resonances are plotted versus the quantized
value of y~Y3=1/4 ¢, the inverse of the effective Planck’s

fo(E)

1 27(e+ 22— 1 42)
T om f2 V23

1
fO(E)= EGX[{ 7 .
e

' (12 constant. At lowy 13 e, largetiq, the transverse zero-
point energy is so large that the quantum ionization thresh-
where(here form=0) old, Eq. (14), is far above the scaled energy of the state
which consequently has a vanishingly small ionization rate.
c=e—e,. (13 This corresponds to the regign “°<28 in Fig. 1a), where

the widths are smaller than the numerical accuracyyA%®

The physical meaning of these equations is rather clear. |i$ increased, the quantum ionization threshold decreases and
effect, tunneling can be described with a standard exponergignificant tunneling takes place, as observed in the range
tial (actionf ), provided the amounty=# /2 of energy is  28<y~ *<35. Finally, at sufficiently highy*® value, the

subtracted from the total available energyThe global ef-  Scaled energy is higher than the quantum ionization threshold

fect of the degrees of freedom transverse to the instanton @nd direct ionization takes place. There, the ionization rates
are large, comparable to the spacing between consecutive

resonances, and the tunneling regime is left. In the figure, the

This effect was not observed in the various numerical experi-V_l/3 value where the quantum ionization threshold is
ments of Creagh and Whelan. This is because, in their case, tH€ached is marked by the dotted line, and agrees with the
potential varies quite rapidly along the instanton trajectory, having &lumerical results. The two values effor m=0 andm=3
shallow minimum in the transverse direction. This results in thehave to be chosen quite different in order to observe the
denominator being of the order of unity, several tens of orders otransition within the range of~® available from numerical
magnitude smaller than in our case. diagonalization. Let us note that also in the pure magnetic-

062110-4



EXAMPLE OF CHAOTIC TUNNELING: THE HYDROGEN . .. PHYSICAL REVIEW A68, 062110(2003

g 10
2 _ |
[ NE
g T 10" ‘ fllky “l”“'um
! @ O PR RA A et ‘
: = o IV
o g 107 L I
: : I
g £ 10 |
~ s
(]
§ [;; 107"
c ®
S c
k¥ % 107"
= S
S 5
T ' : :
;. 10 20 30 40 50
Y =1/heg Y = 1/heg
FIG. 1. The ionization rategwidths) of resonances of the hy- FIG. 2. Widths(ionization ratesof the resonances of the hydro-

drogen atom in parallel electric and magggtic fields, as a function ofen atom in parallel electric and magnetic fields, computed at con-
the effective principal quantum number “"=1/i¢, which plays a0t modified scaled energy, EA.3), e=—0.1005, i.e., 0.0005
the role of the inverse of the effective Planck’s constant. The diagobe|ow the quantum ionization threshold, H44). Parameters are
nalization is performed at a fixed value of the scaled energnd m=0, f=0.0025. The widthsin logarithmic scalgare plotted vs
yields complex eigenvalues, their real part corresponds to quantized-1/3_ /4. The data show the exponential decrease of the rate
values of magnetic field for fixed values ofe andf. (a) shows data ¢, 4 .0 characteristic for tunneling process. The dashed line is

cibtained for angular momgnturm=0, scaled eIeptric_ fie_ldf . the average behavior predicted from the semiclassical analysis, Eq.
=0.0025, ande=—0.085, i.e,, above the classical ionization (15 one may also notice periodic short-range modulations of the
threshold as given by conditiof7). Observe very small ionization i ation rategwith a period close to 0)4this is a manifestation

; -173 ; ;
widths for y _<1,238 then a rapid, on an average increase andyt qearring by the periodic orbit along the fields axis and is dis-
saturation fory~**>33.3. The region of rapid increase corre- cussed in Sec. VI.

sponds to tunneling, as explained in the text. The dashed vertical
line gives the quantum ionization threshold, Etd). (b) shows the
data form=3, f=0.0025, ance=0.005 showing a similar behav-
ior. Now the threshold is ay~1°~19.

Planck’s constant, and the eigenstateg,(r):

Iml+1 . 1 x2+y?

ﬁ2
. . TR — 5 Aty —e— ——fzt—5— | $y(1) =0,
field case, the statistics of level spacings in the vicinity of the 2 2 8
ionization threshold is sensitive to the very same quantum (15

threshold law{ 38,47). . .
W L with A being the Laplace operator.

This equation is solved by expansion over a Sturmian
V. NUMERICAL RESULTS AT CONSTANT MODIFIED basis and a modified version of the Lanczos algorithm
SCALED ENERGY adapted to such a generalized eigenvalue proljlh We
have been able to obtain a few thousands of resonance
widths for a giverm value, all lying in the tunneling regime.
n example is presented in Fig. 2.
As expected from Eq(12), the ionization rate shows an
verall exponential decrease withalf. The rate of this

The behavior observed in Fig. 1 has important conse
guences. To study tunneling, we should consider only th
region just below the threshold; this region is very small an
the tunneling rate changes very rapidly wigh Thus, scaled

spectroscopy is not appropriate for the analysis of statistic ecrease is directly related to the tunneling action of the

properties of tunneling._As is_clear fr_om the discussion abov‘fnstanton: the prediction of Eq12) is shown as a dashed
and the examples depicted in the figures, the proper paranjpe iy the figure. Obviously, the agreement is excellent. It
eter characterizing the spectrum is notbut rathere=e  should be noted that the semiclassical prediction is entirely
—€m- In order to overcome the difficulty described in the gbtained from classical ingredients and free of any param-
preceding section, a simple solution is to scale the problerater. Note also the existence of very large fluctuations—
following the effective quantum ionization threshold inSteadexpected for chaotic tunneling—around the mean value.

of the classical one. One then gets rid of the huge denomi- |n order to make a more quantitative test, we remove the

nator due to the transverse motion and may more easily cofjiobal exponential decrease and define, following [R2],
centrate on the interesting dynamics, namely, the interplay rescaled width

between the instanton and the chaotic dynamics inside the
potential well. We will thus solve the Schidimger equation, po(En)
not at constant scaled energy but at constant modified yn:fO(En) n (16)

scaled energy, Eq.(13). This results in the following gen-
eralized (nonlineaj eigenvalue problem for the effective wherepy(E) is the density of states.
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FIG. 3. Rescaled width&onization ratesy, , Eq. (16), of the
resonances of the hydrogen atom in parallel electric and magnetic FIG. 4. Statistical distribution of the rescaled ionization rates
fields (same data as in Fig)2As expected from the semiclassical (widths) y of the resonances of the hydrogen atom in parallel elec-
analysis, they, values have an average value close to unity, withtric and magnetic fields. The data are taken at fixed modified scaled
large fluctuations. Note especially the large proportions of VerVenergye, Eq.(13), and rescaled according to EG.6) in order to
small widths, characteristic of chaos assisted tunneling with a singlgske into account the exponential decrease due to the tunneling
open channel. through the potential barrier. These data are obtained fomthe

=3 series at scaled electric fiefle- 0.0025. In order to improve the

From its definitiony, should have average value unity in statistics, several distributions obtained for various valuese of
the semiclassical limit. The distribution gf, (same data as sjightly below— 0.1 are used. The inset shows the distributk{y)
in Fig. 2) is shown in Fig. 3, on a linear scale. It has very on a double logarithmic scale, with y 2 behavior at smaly,
large fluctuations—several orders of magnitude with a largeharacteristic of ionization with only one open channel, and an
proportion of very small ionization rates—but we checkedexponential tail at largg. The numerical results are shown by the
that the average value gf, is constant across the spectrum histogram, the dashed line is theiversalPorter-Thomas distribu-
within a few percentalthoughl", themselves vary over five tion, Eg.(17), predicted by random matrix theory, while the solid
orders of magnitudeand equal to 0.950.03. This is only line is the prediction of E(22) obtained by taking into account the
slightly smaller than unity. The difference might be due toscarring of the eigenstates by the orbit along the field axis. Note that
deviations from harmonicity of the potential in the vicinity of there is no adjustable parameter. The main figure shows the distri-
the saddle poinfan assumption made in our calculaion bution of Jy, which is not singular ay—0, on a double linear
Another plausible source of deviation is the assumptionscale' The predlgtlon of random matrlx_ thepry is a pure Gaussian.
made in the calculation of Creagh and Whelan that every©F them=3 series, the effect of scarring is small and both theo-
electron which tunnels through the barrier will eventually retical distributions agree well with the numerical results.
ionize; although this is very likely to happen, the channel ) . .
along thez axis may also refiect a small part of the electronicNd @ wave packet optimally tuned for tunneling, i.e., built to
wave function, even after tunneling took place. This wouldfollow the instanton trajectory. Creagh and Whelan have
manifest itself by they,, being smaller than unity. shown how to e_xpl|(:|tly build suc_:h a wave packes]. For a

The main point remains that semiclassics are able to preguantum chaotic system, the simplest model for describing

dict quantitatively the average behavior of the ionizationth€ Statistical properties of the energy spectrum and eigen-
rates in the tunneling regime. states is to use RMT16,17]. There, it is assumed that any

unknown matrix element will be statistically described by a
Gaussian distribution. In our case, although the system is not
VI. FLUCTUATIONS OF THE IONIZATION time-reversal invariantbecause of the magnetic fig¢ldt has
RATES—EFFECT OF SCARRING a generalized time-reversal symmetry and the Gaussian or-

thogonal ensemble of random matrices must be used. Thus

Beyond the average behavior discussed in the precedir’i% . : .
. : . ) . e matrix element is purely real and its square, and conse-
section, we are also interested in the fluctuations of the ion-

ization rates. The most probable origin of these ﬂuCtuation%?’li?}':gsﬂ(;?st:‘?;&%i?)tllii% Zg_e’ will be described by a Porter-
is the fact that the classical dynamics inside the potentia T

well is chaotic. This implies that the resonance wave func- L

tions in the well display apparently erratic fluctuations from —

state to state. States with a large probability density near the P(y)= \/__exp(—y/Zy), (17)
classical saddle point are more likely to tunnel and ionize the 2myy

ones with small probability density. As a simple approxima- .

tion, the tunneling probability and thus the ionization rate iswherey is the mean value of, unity in our case. In Fig. 4,
proportional to the squared overlap between the eigenstatge show the numerically obtained distribution for the
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FIG. 6. Fourier transforms of the distribution of widttisniza-

FIG. 5. Same as Fig. 4, but for the=0 series. The effect of tion rate$ with respect to ¥y, Eq. (18), obtained forf =0.0025
scarring is much more important and large deviations from theande= —0.1005 in them=0 (a) andm=3 (b) series. It displays a
Porter-Thomagrandom matrix theory distribution (dashed ling  large peak(hardly visible at s=0 with amplitude being unity, as
are observed. In contrast, the agreement with the model taking intexpected from semiclassics; this peak describes the average behav-
account the scarring by theorbit, Eq.(22) and solid line, is much  ior of the widths. The other peaks correspond to modulations of the
better. This proves that our model—with no adjustable parameter—width associated with periodic orbits inside the inner potential well.
describes properly the physics of tunneling and ionization of chaThe peaks are much more pronounced forrthveO series(a) than
otic states in the presence of scarring. for the m=3 series(b), because the former are more strongly

_ . . I scarred by the orbit along the field axis, with acti®.427
=3 series compared with the Porter-Thomas prediction on 22 655. The repetitions of this orbit are clearly visible, with am-

double-logarithmic scale which is more convenient to dis-yjiv,des forming a geometric series. The heights of these peaks are
play the large fluctuations. The agreement is excellent, whicQjrectly related to the instability of the periodic orbit along the
proves that the distribution of ionization rates in our realisticfie|ds axis. In(a), the amplitude of the first peak is 0.589.005 in
problem can be quantitatively predicted, using a combinatiorRxcellent agreement with the semiclassical prediction 0.592, which
of semiclassics(for the mean valueand random matrix involves exclusively classical properties of the periodic orbits. The
theory (for the fluctuationk other peaks, appearing at actions clustered slightly below the rep-
It should be emphasized that large fluctuations of the ionetitions of the main orbit, correspond to other orbits in the inner
ization rate should also be observed in multidimensional syspotential well, which are slightly off the axis but approach the
tem where the classical dynamics is regular. Indeed, in sucbaddle point. Inb), the centrifugal potential prevents the periodic
a case, the eigenstates are described by series of energy levbits from strongly scarring the quantum states, and the amplitudes
els labeled by several quantum numbg@se good quantum of the peakdespecially the ones associated with repetitions ofzthe
number per dimensionThe tunneling rate is a smooth func- orbit) are much smaller.
tion of these quantum numbers, implying that the spectrum is
composed of several interleaved series of states. In a givafhich shows that fluctuations around the average trend are
series, the ionization rates vary smoothly, but, because of theot random but clearly display a short-range oscillation
interleaving of the various series, wildly fluctuating ioniza- (@bout 100 oscillations in the covered rangéhe simplest
tion rates are observed for consecutive energy levels. In sucay of measuring this oscillation is to perform a Fourier
a case, the statistical distribution of the ionization rates is byransform with respect to 4y, a standard tool in periodic
no meansiniversa) but depends on the specific properties oforbit theory. We define
the tunneling actions in the various series. On the contrary, 2
random matrix theory predicts a universal statistical distribu- _ :
tion of the ionizationyrgtes, which is thus characteristic of a 9(s) A ; L expK/) expl —islin), (18
chaotic classical dynamics.
The results for then=0 series are shown in Fig. 5. The where the sum is taken over some range &f df lengthA.
overall agreement is rather good, with a clgat’? behavior ~ The functiong(s) is shown in Fig. 6 both fom=0 andm
at smally and an exponentially small tail at large How-  =3. As expectedg(0) is very close to unitythis proves that
ever, a significant deviation is clearly visible at intermediatethe actual average width is well predicted by the semiclassi-
values. What is the origin of this deviation? We have beercal formula, Eq.(12)]. g(s) has a very large peak around
able to show that it is directly related to the unstable periodics/27=2.655, with harmonics at integer multiples, but also
orbits inside the chaotic potential well. The quantitative in-smaller peaks at other values. From K4), the peaks are
terpretation is based on the semiclassical prediction, Eqexpected to take place at the actions of the periodic orbits
(1)—(4). A clue is provided by a careful inspection of Fig. 2 inside the well, which are real continuations of the imaginary
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nator of the semiclassical contribution, Ed), to the ioniza-
tion rate, whose calculation is detailed in the Appendix. The
fact that what counts is not the real orbit itself but its com-
bination with the instanton completely eliminates the series
of bifurcations and gives a smooth contribution as the scaled
energy is varied, as observed in the numerical quantum ex-
periment. Moreover, the semiclassical formh predicts
for g(s) a peak atS,,J27=2.655 with amplitude 0.592,
while the numerical result is 0.5890.005, in excellent
agreement. Similarly, the harmonics of the peak form ap-
proximately a geometric series with amplitude0.59' for
the jth repetition of the primitive real orbit. The physical
interpretation is clear: because the motion in the inner poten-
tial well is chaotic, each time the quantum particle leaves the
4 ‘ ‘ ‘ ‘ vicinity of the saddle poinfalong thez axis), it explores
0.11 0.108 0.106 0.104 0.102 0.1 some part of the chaotic phase space and roughly only 59%
Scaled energy € of the electronic density is reflected by the nucleus back
along thez axis.
FIG. 7. Trace of the stability matris of the periodic orbit It is important to remark that the oscillations of the
along the fields axis, as a function of the scaled enédgsted ling.  widths, Eq.(4), induced by the orbit along theaxis and all
The orbit is stable when the trace is in th&,2] range, unstable its repetitions addcoherently Indeed, if we assume for
otherwise. There is a series of stable-unstable bifurcations accumlg,-imp|icity3 that thejth repetition contributes with amplitude
lating at the saddle-point energy= —0.1 (f =0.0025 in this plot R (with R=0.59 in our caseand phasg ¢, the series, in-
In contrast, the contributior|y—detWM—1)/J—detW—1)|,  ¢luding the smooth terrfi, can be summed exactly, leading

plotted as a solid line, is a smooth functioneflt is precisely this {5 the following contribution to the ionization width:
contribution which enters the denominator of the semiclassical ex-

pansion, Eq(4). 1—R2?

1
f(h)= —exp—K/h) .
2 2_ _
instanton. In our case, this orbit is entirely along thaxis 1+ R~ 2Rc0s Sqas/ i~ ) (19

and its classical actiorg;, is easily computed. We find
Sciad27=2.655 for the parameters of the figure, in perfectThis, in turn, predicts that the average normalized widths are

agreement with the numerical quantum calculation. It shoulghot uniformly distributed, but should follow the distribution
be noticed that we use for the classical calculation the scaled

energy—0.1005, i.e., the value of thmodifiedscaled energy _ 1-R2
of the quantum calculatiohThe fact that both agree vali- y(h)= > :
dates our correction and fully confirms the important role of 1+ R"—2Rcog Sgas/ — ¢)

the zero-point transverse energy.

Trace
o

(20

. . . . The physical interpretation of this distribution is simple. It is
The semiclassical formule) also predicts the amplitude nothing, but the function giving the intensity transmitted

of the peak that should be observed in the Fourier transfor ; . . : .
g(s). There is however an important subtiety here. Thgﬂwough a Fabry-Perot optical cavity with reflection coeffi

monodromy matrix of the real orbit along theaxis enters cientsR for the combination of the two mirrors, phase shift

o at the reflections, and optical leng®y ¢/ in units of the
the formula. It turns out that, because the orbit is very clos%dz o ogeas .
. ' . avelength. This is of coursepgeriodic function of the vari-

to the saddle pointreached at=—2./f), it undergoes an g e

able 1A with period 27/S,,s. It has maxima atS;.J/#%
infinite series of bifurcation as— —2/f. At closely spaced _  equal to aﬁ integerwmlji?isple of 2—where the V;'ﬁje of

€ values, the orbit loses and regains stability. At each bifury, o nction is (1 R)/(1—R)—and minima at half-integer

cation, a new periodic orbit is born, W.hiCh is off taeaxis, multiples where the function is 2R)/(1+R). If Ris large,
but close to it. Such a phenomenon is well known when a

particle either approaches a saddle pdsge, for example,
the Henon-Heiles model in Ref50]) or explores a channel
with a long-range potential, as, for example, is the case for
Rydberg series converging to an ionization thresHald.

SStrictly speaking, the amplitudes and phases associated with the
?epetitions do not form a geometric series, but should be given by a

A o . rather complicated formula, as explained in Appendix A of Ref.
We show in Fig. 7 the trace of the stability matrix of the [23]. Only for smallR does it reduce to a geometrical series. How-

orbit as a function of the scaled energyfor f=0.0025,  gyer it turns out that although ofrvalue is not very small0.59,
which clearly shows this series of stable-unstable bifurcame fy|| result does not differ very much from a simple geometric

tions. However, we also plot in the same figure the denomiseries—as is also visible in the heights of the repetition peaks in
Fig. 6—which has the advantage that the summation over repeti-
tions can be explicitly carried out, see EQO). In any case, the
2For thef o values used in our calculation, the scaled energy isdeviation from an exact geometric series is small and does not
far abovethe classical threshold. affect our statistical analysis.
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W exponential decrease and the modulations discussed above.
2 Such fluctuations are thought to be unavoidable in a chaotic
system, and display universal propertidsscribed by RMT
in the presence of chaos. In a semiclassical point of view,
they can be seen as the effect of the whole setn§table
periodic orbits in the inner potential well. Each orbit ap-
proaching the saddle point contributes an oscillatory term
analogous to Eq4) to the width, and the individual widths
are just the result of the superposition of plenty of such terms
which oscillate rapidly: it results in apparently random fluc-
? % tuations around the mean value. A number of peaks are vis-
0.2 0.4 0.6 0.8 1 ible in the Fourier-transformed spectra in Fig. 6; semiclassi-
x=y'"S,,,/2m (mod 1) cal theory tells us that they appear at the actions of periodic
orbits. In our specific case, it is visible that most of them are
FIG. 8. Rescaled ionization rateg,, Eqg. (16), of them=0  clustered at actions slightly smaller than the action of zhe
series forf =0.0025 ande=—0.1005, as a function of Eq.(21).  orbit and its repetitions. Physically, they correspond to orbits
X represent$within a mu|t|pl|cat|Ve 27 faCtOO the phase accumu- malnly |ocated Close to thEaXIS, born from tha Orblt at the
lated by the wave function along the periodic orbit in the inner hifyrcations discussed above. There is actually a very large
potential well. There are large fluctuations, as expected in a chaoti§ ,mper of such orbits with similar shapes, but differing by

Sf.tim' but thﬁ avsrage,bg,ha"i%r, is Ob"ilous;?’ depf‘”def‘j’ﬁ” small details. Thus, it is in general difficult to associate a
which proves that the periodic orbit strongly affects the width. A ye oy iy the Fourier transform with a single periodic orbit.

pure random matrix gpproaph prEd'C.tS a uniform d's.t”bu“on IIr‘de'Except for the lowest members, we could not assign unam-
pendent ofx. The solid line is a running average which smoothes

the fluctuations and clearly shows the resonant behavior chihe biguously such peaks. This is not a simple problem: indeed,

eragewidth with x. The dashed line is the semiclassical prediction,mzliny ofrglts are verybclose |ndpha§e spacle agd.’ f(;]r a finite
Eqg. (23), which incorporates the effect of the periodic orbit. value of7¢q, cannot be considered as isolated in the sense

that the saddle point approximation around each orbit—a key
the maxima are sharp peaks. The analogy with the Fabr))pgrement of periodic orbit theory—is not valid. In such cir-

Perot cavity is more than formal: it actually describes howcumstances, it is not possible to separate the contributions of
. e various orbits which have to be grouped together using

the electronic density can be resonantly trapped inside th or example, a uniform approximatigs2]. The origin of the

inner potential well along the axis, resulting in enhanced .. ) ; ; g
tunneling amplitude and ionization rate. Because the dynamqlffICUIty is that the neighborhood of the simplest periodic

ics is chaotic, such a resonant enhancement is only paRial (ﬁ;tgtbaelgr?gsr%’ivzna;(ritl?t gzegec?rrgg[ﬁaggé IlTsiI?we{fzhz(}n:E)clinic
must be smaller than unity resulting in scarring of the 9

In order to test whether this distribution adequately de- Y P P P

scribes the numerical result, we have “folded” all the nu- tion of the number of orbits.

merical valuey,, inside a single “free spectral range” of the _An Interesting illustration of th'.s pro_blem may be Ob'
. : . tained by launching a bunch of trajectories from the section
Fabry-Perot cavity, by plotting them against

z=127, close to the saddle point. Following the real trajecto-

y (rescaled ionization rate)

g, 13 S ries (all started with positive momentum i) until they hit
x = —cashn (mod J)=—2 (mod 1), (21) @adainthe same plare=z, with positive momentum one can
n
2m 27hy, get a feeling of the relevant dynamics. For a fully chaotic

system one could naively expect that a plot of, say, actions

where #(mod 1) denotes the fractional part of the numbercalculated along the trajectory versus the initial momentum
a. The result is shown in Fig. 8. Clearly the larggstvalues  along thez axis will not show any structure. This is not true
are grouped around a well-definedvalue, as expected. in our system as visualized in Fig. 9. Observe a strongly not
Large fluctuations still exist; in order to smooth them, weergodic behavior with allowed actions forming almost paral-
plot also the running averagever 100 valueswhich clearly  lel strips. A clear accumulation of actions in strips correlates
presents a resonant behavior arousd0.54. The semiclas- nicely with peaks in the Fourier transform, Figag in the
sical prediction, using thR value deduced from the classical range just below the second repetition &.,2/27=5.31 of
stability of the orbit, is shown as a dashed line and agreethe straight line periodic orbit. Each strip contains of course
fairly well with the numerical result. This proves that the mainly nonperiodic orbits, but also periodic orbits with vari-
orbit along thez axis plays the dominant role in our problem. ous shapegnd actiong and homoclinic orbits. As all these
To be completely honest, we must mention that the phaserbits have very similar actions, they all contribute very
¢=0.54X 27, which is directly related to the position of the similarly to the semiclassical formula. It is not clear to us—
maximum in the plot, has not been extracted from the clasand to some extent irrelevant for the present statistical
sical dynamics but fitted to the numerical data. analysis—which semiclassical approach, either using ho-

The last step is to characterize precisely the fluctuationsnoclinic orbits or sets of periodic orbits, would be more
of the individual widths that appear on top of the global adapted for dealing with our specific situation.
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FIG. 9. Distribution of actions of trajectories launched from a

plane z=z,=8.82 towards the saddle point as a function of the
momentum along thez axis for m=0, f=0.0025, ande=
—0.1005. The action is calculated along a given trajectory till it hits
the same plane also with positive momentum. Observe a clear struc- F|G. 10. Same as Figs. 4 and 5, but for the=1 series. The
ture of strips. Arrows indicate actions corresponding to peaks in theffect of scarring is intermediate and some deviations from the
Fourier transform of the widths. The circle indicates the secondporter-Thomagrandom matrix theory distribution (dashed ling
repetition of the orbit along the axis with maximum action  are observed. In contrast, the agreement with the model taking into
2Syad2m=5.31 and momenturp,=0.2643. account the scarring by theorbit, Eq.(22) and solid line, is much
better.
The basic assumption, usual in studies of quantum chaos,
is that the effect of long orbits is to create fluctuations welly sma| R value, the deviation of distributiori22) from
described by random matrix theory. As—see above—the ionpgter-Thomas is very small. This explains why the Porter-
ization rate appears as the square of some real matrix el§nomas distribution correctly reproduces the results of the
ments, the simplest hypothesis is to assume that the fluctu@ymerical experiment, see Fig. 4. We have also obtained re-
tions are described by a Porter-Thomas distribution (Ef. sults for them=1 andm=2 series, shown in Figs. 10 and
However, the mean valugis now taken as predicted by the 11. Significant deviations from Porter-Thomas are observed,
semiclassical theory, i.e., E€RO). As thex, values are uni- although smaller than for the=0 series. Again, the modi-
formly distributed, this results in a global statistical distribu- fied distribution, Eq(22), agrees very well with the numeri-
tion: cal results.
An alternative approach to the statistical properties of the
1 1 Y ionization widths is possible. From the semiclassical ap-
P(V;R)=f —TeXP( - _—)dx, (22 proach, we know both the average trend and the modula-
0 N2myy(x) 2y(x) tions; we can thus subtratr rather divide these factors in

where

15

y(x) LR
X)= .
y 1+ R2—2Rcos 2mx

(23

This distribution is plotted in Fig. 5 as a solid line. It 10 ¢

clearly, very significantly, improves over the Porter-Thomas ~ ~
distribution and is in excellent agreement with our numerical s,
data. Especially, it correctly describes the excess of large o
ionization widths. 05 |
The same approach can be used for the data in ather
series. However, as is obvious in Figh§ the contribution
of the z orbit is much smaller in, e.g., th@=3 series. As
mentioned above, this is well understood semiclassically. In
simple words, as the centrifugal term is more important, it
keeps the electron away from thexis and strongly dimin-
ishes the contribution of this orbit. THe parameter for the
m=3 series can be extracted from the Fourier transform in  FiG. 11. Same as Figs. 4 and 5, but for the-2 series. The
Fig. 6(b) and is close to 0.1. The semiclassical prediction,effect of scarring is small and only marginal deviations from the
which can be calculated in the spirit of Refgl5,46, iS  Porter-Thomagrandom matrix theory distribution (dashed ling
[R(m=0)]*~0.12 in reasonably good agreement. For suchare observed.
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15

P(yllz)

P(21/2)

FIG. 13. Same as Figs. 4 and 5, but for the two-dimensional
hydrogen atom in parallel electric and magnetic fields. Because of
FIG. 12. Statistical distribution of the ionization widths, res- the reduced dimensionality, the motion transverse taztperiodic
caled according to E¢24), to take into account tunneling and the gorpit is less unstable than in the three-dimensional atom, and the
effect of the periodic orbit along the field axis. A good agreement iseffect of scarring is enhanced. Very large deviations from the
obtained with the Porter-Thomas distribution, Etj7), shown as a  porter-Thomas(random matrix theory distribution (dashed ling

dashed line. The data are the same as in Fig. 5. The fact that a goque observed, but the improved model, E2R) (solid line), repro-
agreement is obtained indicates that our model describes scarrinfiices well the numerical results.

and tunneling in a satisfactory manner.

(2) The stability matrix is a X2 matrix instead of a 4
order to concentrate on the fluctuations. We thus rescale the 4 matrix. As explained in the Appendix, this results in
numerical data to the expected averagscillatory behavior, denominators in Eq$1)—(4) to be square roots of the three-
that is, define dimensional results fom=0.

The net effect is that the instability of the real orbit in the

potential well is significantly reduced, simply because there
zn:_y” (24)  is less space for the electron to escape far fromztiagis.
y(hp) The analysis is similar to the three-dimensiona+0 case,
with the parameteR being now taken at power 1/2, i.€R,
wih s dfined i €920, T i s s s o

The statistical distribution of the variable is shown in 13 and 14 show that it is indeed the Fc):ase Oﬁ:\ce gmore the
Fig. 12 for them=0 series. As can be seen, it agrees Vel agreement with the modified Porter-Thomaé distribution ,E
well with a pure Porter-Thomas distribution. This fully con- gree d » =0
firms that, once the average and oscillatory behavior hangZ), IS very good.
been properly taken into account, only the standard fluctua-
tions described by random matrix theory persist.

Finally, we have studied a slightly less realistic system:
the two-dimensional hydrogen atom in parallel electric and
magnetic fields, obtained from the previous system by im-
posing that the motion takes place in thez) plane. The
classical dynamics igxactlythe same as fom=0 states
(obviously the motion is planar for such case®ne could
thus naively expect the same properties for the ionization
widths for the quantum system. This is however not entirely
true for the following two reasons.

(1) The zero-point transverse motion is now in one dimen-
sion instead of two. Thus, the shift energy is reduced by a
factor of 2 compared to Eq10):

15

P(21/2)

€20=17"°= ifieg. (25)

FIG. 14. Same as Fig. 12, but for the two-dimensional model of
The modified scaled energy, E(.3), must be modified ac- the atom in parallel electric and magnetic fieldata as in Fig. 18
cordingly. Again, scarring is well accounted for by our model.
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VII. CONCLUSION 1

In this paper, we have studied the widtimnization rates Zsadd'e_ﬁ’
of resonances of a realistic system, the hydrogen atom in
parallel electric and magnetic fields, in conditions where thewith energye,,= — 2/f.
classical dynamics is chaotic. We have shown that, using a As we are interested in highly excited states lying in the
semiclassical approach without any adjustable parameter birhmediate vicinity of the saddle-point energy, it is conve-
only with classical ingredients, we are able to predict ananient to expand the Hamiltonian at second order around the
lytically the average behavior of the widths. We have alsosaddle point. The normal modes of this harmonic approxima-
shown the existence of a modulation of the average widtiiion are along thez axis and in thex-y plane. In thex-y
associated with a periodic orbit and have calculated quantiplane, the saddle point is a potential minimum associated
tatively its properties, again using only classical ingredientsWith a vibration frequency
Finally, the residual fluctuations have been shown to be ac-

(A1)

3/2
curately described by a random matrix model. This proves w0 = V1+4f (A2)
that a proper combination of semiclassics and random matrix P 2 ‘
theory canpredictthe behavior of the system versus ioniza- ) . _
tion. Because of the azimuthal symmetry around the field axis,

Our results are comparable to the ones obtained on this _mode is deg_enerate. In order to have a chaotic motion in
model system in Ref[23]. For example, their Fig. 1 is thel inner potential well, the sgale_d energy m_ust be_Iarge,
clearly comparable to our Fig. 8. Note however that, due tdYPically of the order of~0.1, which in turns implies thdis
the specificities of ourealistic system, the expressions we rather small. In most cases, one can_thus_ forgef thepen-
obtain have a simpler form. On a different model system,dence in Eq(A2) and use the approximation
Bies et al. [31] observed also deviations from the Porter- 1
Thomas distribution. Part of the deviation is due to the rela- w,~=. (A3)

p
tively small value of the effective Planck constant, but an- 2
othe_r part is certainly due to scarring. Their Figs. 4 and 5 are Along thez axis, the saddle point is a potentraaximum
again very comparable to our Fig. 8. Because they do noj ig 5 associated with an eigenmode with purely imagi-

consider a scaling system, the classical dynamics—and COary frequencyi w,, where

sequently the properties of the periodic orbits—change with

energy which makes a comparison with our distribution w,= 234 (A4)
rather difficult. We however have little doubt that the basic

process at work is similar to ours. The corresponding imaginary period is nothing but the pe-

riod of the instanton. Alternativelyy, can be viewed as the
vibration frequency around the saddle point in theerted
ACKNOWLEDGMENTS potential. In a harmonic potential, the action of an orbit is
simply (within a 27 facton the ratio of its excitation energy
r(with respect to the equilibrium pointo the frequency. This
ields the(imaginary action of the instanton given by Eq.

We are grateful to Niall Whelan and Stephen Creagh fo
an initial stimulation to look at tunneling in the parallel field
problem, and anonymous discussions. We thank W.E. Bie
L. Kaplan, and E.J. Heller for their permission to use their
data for our manipulations. Support of KBN under Project
No. 5P03B-08821(J.Z) is acknowledged. The additional
support of the bilateral Polonium and PICS programs is ap

The harmonic approximation around the saddle point can
also be used for the calculation of the stability matrix of the
instanton. Indeed, as the harmonic potential separates com-
. i N pletely in a transverse and a longitudinal component, the
preciated. Laboratoire Kastler Brossel de I'Universtierre monodromy matrix of the instanton in each transverse direc-

et Marie Curie et de I'Ecole Normale Supsure is UMR . . R
8552 du CNRS. CPU time on various computers has beeHon’ after propagation during tim is simply of the form

provided by IDRIS. cosw,t  —sinw,t
. . (A5)
SiNnw,t  CoSw,t

APPENDIX: CLASSICAL DYNAMICS NEAR

THE SADDLE POINT The stability matrix of the instanton is obtained by evaluat-

ing the monodromy matrix at the period of the instanton
In this appendix, we discuss how the various classicaF 2i 7/ w,:
guantities which enter the semiclassical formula can be cal-

culated in our specific system, the hydrogen atom in parallel 27w, . 27w,
electric and magnetic fields. cosh o, —isinh o,
The Hamiltonian of the system is given, in scaled units, W= 5 5 . (AB)
by Eq. (6). The saddle point is located along theaxis at isinhor 2 coshr2e
position o, W,
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In our case, the ratiav,/w, is very large, so that the potential well. As explained in the main text, the series of
hyperbolic trigonometric functions can be approximated bybifurcations taking place in the vicinity of the saddle-point
an exponential, yielding energy implies that this matrix changes rapidly wi¢hOn
the other hand, whe is varied, the dynamics inside the
) potential well is only weakly affected: the main effect is that

V_de(W_””eXV{ (A7) the electron spends less or more time in the immediate vi-
cinity on the saddle point. As the transverse potential is
For the three-dimensional hydrogen atom, the stabilityrather steep there, the stability matrix varies a lot. These
matrix is a 4<4 matrix which actually splits in two 2  modifications are essentially described by a multiplication by
identical blocks(along thex andy directions of type (A6).  a matrix similar to Eq(A5). A small variation of the period
Thus, contribution(A7) must be squared to get the correct of the orbit is enough to affect strongly the matrix. However,
semiclassical contribution. In contrast, for the simplifiedit is the product of the stability matrices of the instanton and
two-dimensional model, there is only one such contributionthe real periodic orbit which describes the semiclassical con-

7T0)p
Wz

If one uses the approximate valA3) in Eq. (A7), one
finally gets contribution9).

tribution, Eq. (4). As it is the very same matrix typeA5)

which contributes to the two stability matrixes, it turns out

The last ingredient in the semiclassical approximation ishat themodulusof det(WM—1) actually depends weakly on
the stability matrix of the real periodic orbit in the inner e as shown in Fig. 7.
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