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Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static
electric and magnetic fields
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Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example:
a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by
ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a
standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the
external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory
gives the correct distribution.
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I. INTRODUCTION

After many years of intensive research in the ‘‘quantu
chaos area’’ it is now commonly accepted that the quan
behavior of complex systems may be strongly correla
with the character of their classical motion@1–5#. Even such
a purely quantum phenomenon as tunneling may be
foundly affected by chaotic classical dynamics. For an~inte-
grable! one-dimensional system, the tunneling rate depe
smoothly on parameters. For an integrable multidimensio
system, the eigenstates can be labeled with a set of g
quantum numbers and tunneling can be studied with a sim
extension of the standard one-dimensional analysis, lea
to tunneling rates which are simple functions of the quant
numbers. In contrast, in the presence of chaotic motion
multidimensional system, the tunneling rates typica
strongly fluctuate when parameters are varied, the gam
then to identify both the average behavior and the statist
properties of the fluctuations.

Imagine the situation when the wave function is predom
nantly localized in a region of regular motion. The tunneli
to the chaotic sea surrounding the regular island, ca
‘‘chaos assisted tunneling,’’ has been quite thoroughly st
ied @6–15#. It may be characterized by the statistics of tu
neling rates, or directly measurable quantities such as tun
ing splittings between doublets of different symmetries@10#
or tunneling widths@11,12# where the tunneling to the cha
otic sea leads eventually to decay~e.g., to ionization of
atomic species!. Models based on random matrix theo
~RMT! @16,17# show that distributions of both quantities a
closely correlated with both the splittings@10# and thesquare
roots of the widths @11# having a common Cauch
~Lorentzian-like! distribution with an exponential cutoff fo
extremely large events. Such a situation occurs for su
ciently small\ ~in the semiclassical regime! when the tun-
neling coupling is much smaller than the mean level spac
in a given system.

Another possibility occurs when virtually all accessib
phase space~at a given energy! is chaotic: the tunneling oc
curs through a potential~rather than dynamical as in the pr
vious case! barrier. Then a standard RMT based answer le
to the Porter-Thomas distribution of widths~or its appropri-
1050-2947/2003/68~6!/062110~14!/$20.00 68 0621
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ate many channel extension!, as applied in various area
from nuclear physics@16#, mesoscopics@18#, or chemical
reactions@19# to name a few. Creagh and Whelan@20–23#
developed a semiclassical approach to tunneling~for a semi-
classical treatment concentrating on other aspects of tun
ing see, e.g., Refs.@24,25#! which enabled them to give a
improved statistical distribution of tunneling rates@26#. The
distribution has been tested on a model system and show
faithfully represent the tunneling splitting distribution, pro
vided the classical dynamics is sufficiently chaotic. Howev
this distribution fails for systems when scarred@27–31# wave
functions dominate the process. In order to take into acco
scarring, the same authors@23# developed a more compli
cated semiclassical theory which, in a model system, ac
rately describes the numerically observed tunneling rates

The aim of this paper is threefold. First, we propose
simpler approach to the effect of scarring than that in R
@23#. Our approach is less general, as it is limited to the c
when only one channel contributes to tunneling. This
however, a very frequent situation: because tunneling ty
cally decays exponentially with some parameter, most c
tributions are often hidden by a single dominant one. T
formulas that we obtain are also much simpler. Second,
consider the tunneling rate distribution in a challenging,
alistic system—a hydrogen atom in parallel electric a
magnetic fields. As mentioned by Creagh and Whelan,
expects there the above-mentioned problems due to s
dominated tunneling. Here again we test the proposed di
bution on a vast set of numerical data. Third, in contrast w
most of the previous studies, we do not consider here a s
ation where tunneling manifests itself as a quasidegene
between a pair of even-odd states, but rather the case w
tunneling is followed by a subsequent ionization of the s
tem and manifests itself in the widths~ionization rates! of
resonances. The analysis for both cases is similar, but
identical.

II. THE DISTRIBUTION FOR TUNNELING RATES FOR
SCAR-DOMINATED CHAOTIC TUNNELING

Let us recall first shortly the analysis of chaotic tunneli
used in Ref.@26#, which makes it possible to predict th
distribution of tunneling rates in terms of classical quantiti
This approach is based on the standard semiclassical ex
©2003 The American Physical Society10-1
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sion of the Green function as a sum over classical or
~which is used, e.g., in periodic orbit theory in the manner
Gutzwiller!, but incorporates in addition some complex o
bits, that is, orbits where time, position, and momentum
be made complex. Such orbits may tunnel through the po
tial well and eventually lead to escape at infinity; they a
essential for the calculation of tunneling rates. In the o
dimensional case, it is well understood that tunneling can
quantitatively described using a single complex orbit kno
as the instanton: the orbit propagates under the potential
with a purely real position, and purely imaginary time a
momentum, until it emerges in the real phase space when
potential barrier is crossed~it can be visualized as a standa
real orbit in the inverted potential!. The actionSI of the
instanton is then purely imaginarySI5 iK and the tunneling
rate is, not surprisingly, essentially described by
exp(iSI /\)5exp(2K/\) contribution.

For a multidimensional system, the situation is someh
comparable, except that there are now several instanton
bits. It also turns out that the structure of the tunneling co
plex orbits can be extremely complicated@25,32#. However,
because of the exponential decrease of the tunneling rat
the semiclassical limit\→0, there are cases when the i
stanton orbit with the smallest imaginary action will give t
dominant contribution. Creagh and Whelan succeeded in
pressing the tunneling rate in terms of the action and stab
exponent of the instanton orbit@21#. They were able to de
scribe the situation of a symmetric double well, where tu
neling manifests itself through the existence of pairs
quasidegenerate states, i.e., to calculate the splitting of
doublets. Comparison with ‘‘exact’’ numerical results for
model system showed a very good agreement@20,21#. They
were also able to describe the situation of tunneling outsid
single potential well~with chaotic dynamics inside the wel!
followed by ‘‘ionization,’’ that is, particle directly escapin
toward infinity. The quantity of interest is the ‘‘weighted
density of states, where the weight is given by the widthsGn
of the resonances with energiesEn :

f ~E!5(
n

Gnd~E2En!. ~1!

In the semiclassical approximation, it can be written—in t
spirit of periodic orbit theory—as the sum of smooth a
oscillatory terms:

f ~E!' f 0~E!1 f osc~E!, ~2!

Explicitly, the smooth term reads

f 0~E!5
1

2p

exp~2K/\!

A~21!d21det~W2I !
, ~3!

whereK is the ~imaginary! action of the periodic instanton
~that is the full orbit back and forth across the potential we!,
d the number of freedoms of the system, andW the
2(d21)32(d21) stability matrix of the instanton. The os
cillatory term is not explicitly written by Creagh an
Whelan, but it is rather simple to calculate it from their p
06211
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pers. In the simple case where the classical orbit which is
real continuation of the instanton inside the potential wel
a periodic orbit~this is, for example, the case where th
instanton is along a symmetry axis of the potential!, it is not
surprising that the oscillatory terms will be governed by t
properties of this real periodic orbit. Indeed, it is known th
the eigenstates inside the well will be scarred by such
orbit, thus showing either an increased or decreased p
ability density at the point where the instanton emerges. I
thus reasonable to expect that scarred~antiscarred! states will
show an increased~decreased! tunneling probability. The
modulations of the weighted density of states are thus rela
to the action of the real periodic orbit. More specifically, o
gets

f osc~E!5
1

p
Re(

j 51

`
exp@~2K1 i jS!/\#

A~21!d21det~WMj2I !
, ~4!

whereS is the ~real! action of the periodic orbit in the wel
and M its stability matrix. The sum overj just takes into
account the repetitions of this orbit. This approach is
stricted to a low tunneling rate when repetitions of the
stanton give negligible contributions. The fact that, in t
contribution of the instanton, there is a 1/2p prefactor, half
the prefactor for the oscillatory term, is not trivial, but e
plained in Ref.@20#.

III. THE HYDROGEN ATOM IN PARALLEL FIELDS

We consider a hydrogen atom placed in static para
magnetic and electric fields. The Hamiltonian of the syst
is ~for infinite mass of the nucleus, neglecting relativistic a
QED corrections, in atomic units!

H5
p2

2
2

1

r
2Fz1

g2

8
~x21y2!1

g

2
Lz, ~5!

whereg stands traditionally for the magnetic field in atom
units ('2.353105 T) while F is the static electric field~in
atomic units of'5.131011 V/m! assumed to be oriented
together with the magnetic field, along theOz axis. The sys-
tem obeys cylindrical symmetry andLz is a constant of mo-
tion. The last Zeeman term in the Hamiltonian gives thu
constant shift~for a givenLz) and will be omitted for sim-
plicity.

Classically, the atom may ionize for energiesEcl.
22AF. Note that ionization occurs in thez direction—the
diamagnetic term provides a two-dimensional harmon
oscillator binding potential in the perpendicular directions

The character of the classical motion depends on the
ergy as well as on the relative magnitude of electric a
magnetic fields, as discussed long time ago in Refs.@33,34#.
In fact, the system obeys the standard classical scaling l
@35,36#. Explicitly, scaling with respect to the magnetic fie
as r̃5rg2/3, p̃5pg21/3, e5Eg22/3, f 5Fg24/3, L̃z5Lzg

1/3

leads to a new Hamiltonian dependent on two parame
only, the scaled energye, and scaled electric fieldf,
0-2
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H̃5
p̃2

2
2

1

r̃
2 f z̃1

1

8
~ x̃21 ỹ2!5e. ~6!

Later on we shall drop the; sign using classically scale
variables only.

With this scaling and forf 50 ~pure magnetic field!, the
motion is predominantly regular for smalle,20.5; for
largere a gradual transition to chaos takes place so that,
e.20.12, practically all the available phase space beco
chaotic@35,36#. This character of the motion is basically pr
served forf .0, provided

e,e ion522Af , ~7!

i.e., below the classical ionization threshold.
Quantum mechanics does not preserve the scaling. Ins

of finding, however, eigenenergies at given values of m
netic (g) and electric~F! fields, it is a celebrated tradition
now to consider scaled spectra@35,36#, i.e., choose values o
external fields as to obtain eigenenergies at fixede. This
procedure is straightforward. Rewriting the Schro¨dinger
equation, one may obtain a generalized eigenvalue prob
for fixed e ~and f in our case! from which quantized field
valuesgn

21/3 are obtained. If one were to get back to t
original problem, then a givengn value together with the
definition of e yields the energyEn , which is an eigenvalue
of the original Schro¨dinger equation for thatgn field value.
The set ofgn obtained for fixed values ofe and f corre-
sponds to the very same classical dynamics while differ
gn

21/3 play the role of different values of the effective Plan
constant\eff .

One may then expect that to study quantum tunneling
the semiclassical regime with a well-defined classical m
chanics, it is sufficient to diagonalize a standard scaled p
lem. This is, however, not completely true: indeed, beca
tunneling implies that the electron ionizes, the energy sp
trum is not a discrete spectrum of bound states, but ra
composed of resonances. Far below the classical ioniza
threshold, the widths of the resonances are extremely s
and can be neglected. Then diagonalization of the Ham
tonian in a convenient basis set may produce a discrete
ergy spectrum which very well approximates the true re
nances. On the other hand, far above the ioniza
threshold, the spectrum is continuous and basically unst
tured. We are interested in the intermediate situation, in
vicinity of the classical ionization threshold, where the res
nances have a small but significant width due to tunne
followed by ionization. The treatment of tunneling res
nances necessitates a further standard extension, known
the pure magnetic-field case above the ionization thresh
@37,38#: a complex rotation approach@39–41#. The idea is to
apply the following complex scaling~or rotation if viewed in
the complex plane!: r→r exp(iQ), p→p exp(2iQ) to the
Hamiltonian of the system, whereQ is a real positive param
eter representing the complex rotation angle~typically of the
order of 0.1 rad!. The transformed Hamiltonian is no longe
a Hermitian operator, and its diagonalization yields comp
eigenvaluesEn2 iGn/2, whereEn is the energy of the reso
06211
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nance andGn its width, i.e., the inverse of its lifetime. Wel
below the classical ionization threshold, Eq.~7!, the widths
should be vanishingly small; with increasingf, some states
notably those extended inz direction, i.e., along the ‘‘ioniza-
tion direction,’’ should have increased imaginary parts in
cating tunneling ionization. Above the threshold, Eq.~7!,
ionization becomes classically allowed and the widths
expected to be large. Moreover, in the tunneling regime,
widths should on an average exponentially decrease in m
nitude with decreasing\ according to an exp(2K/\) law,
with K being a characteristic tunneling action.

IV. NUMERICAL RESULTS—SHIFT OF THE EFFECTIVE
IONIZATION THRESHOLD

The expectations described in the preceding section
based on a rough classical analysis of the ionization proc
In order to test these ideas and the semiclassical predic
for the widths of the resonances, we have performed ex
sive numerical studies of the energy spectrum of the syst
The matrix representing the complex rotated Hamiltonian
a Sturmian basis set@42# is easily obtained, as matrix ele
ments have strong selection rules and are all known
simple analytic expressions. The matrix in then diagonaliz
using the Lanczos algorithm@43#, producing several hun
dreds or thousands fully converged eigenvalues. We h
carefully checked that all eigenvalues presented in this pa
are fully converged. The only limitation is that the calcul
tion is performed in double precision, yielding about 12 s
nificant digits. This also implies that widths~tunneling rates!
smaller than 10212 cannot be accurately computed.

It turns out that, below the classical ionization thresho
Eq. ~7!, the widths of the resonances are usually very sm
Moreover, as we are interested in the situation where
classical dynamics inside the potential well is chaotic,
have to use a rather large value of the scaled ene
e—typically e520.1—which in turn corresponds to a rath
small value of the scaled electric field at the ionizati
threshold, that is, typicallyf 50.0025 from Eq.~7!. For these
values, we observed that the numerically computed wid
are all vanishingly small, smaller than the 10212 accuracy of
the numerics.

This can be understood from Eq.~3!. Indeed, the stability
exponent of the instanton orbit is, in our specific case, en
mous. The reason is that the potential in the vicinity of t
saddle point is very anisotropic. It is strongly bound by t
diamagnetic term in the transverse (x,y) plane but has a only
a very smooth potential maximum in the field~z! direction.
The instanton can be seen as a real orbit propagating in
inverted potential. This inverted potential has a shall
minimum in thez direction but falls down very rapidly in the
transverse directions: the instanton moves along a sharp
tential ridge and is thus extremely unstable. We show in
Appendix how to calculate the actionK and stability matrix
W of the instanton. For smallf ~the regime we are intereste
in!, the following approximate expressions are sufficient:

K~e!52
2p~e12 f 1/2!

21/2f 3/4
~8!
0-3



a

be
n
la
th
o

a
t

po
an
ob

ab
l
r

r.
e

n

by

thal
tri-
u-
re

tly
ave

pted:
ion

e. A
is
an
s

y,

i-

tion

res-
-
ely,
ld

tion

e
ized
s
-
sh-
te
te.

and
nge

old
tes
tive
the
is
the

the

tic-

er
, t
g
th

o
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and

~21!d21det~W2I !5expS p

21/2f 3/4D . ~9!

For f 50.0025, the denominator in Eq.~3! is thus of the
order of 1043, which explains that the widths cannot be me
sured in a numerical experiment.1

An alternative, equivalent, ‘‘quantum’’ explanation can
given. The magnetic-field term in the Hamiltonian is respo
sible for a harmonic potential in the direction perpendicu
to the fields. Thus the quantum-mechanical energy of
motion in thex-y plane cannot be smaller than the energy
the lowest state of the corresponding oscillator. ForLz5m
50 the energy in question is the ground-state energyE0
5g/2 while for other ~conserved! m values it is Em
5(umu11)g/2. Reaching the energy of the classical ioniz
tion threshold is thus not sufficient for the quantum system
ionize. It requires the additional zero-point energyEm to be
able to overcome the potential barrier. As the harmonic
tential is quite strong, this excess energy is rather high
has the effect of tremendously reducing the ionization pr
ability. For the scaled problem, the energy shiftEm translate
into a shift of the scaled energy:

em5Emg22/35
umu11

2
g1/35

umu11

2
\eff . ~10!

The equivalence of the two points of view can be est
lished by noting that expression~9! has itself an exponentia
dependence, which can be combined with the numerato
Eq. ~3!. We obtain

f 0~E!5
1

2p
expF2p~e12 f 1/22\eff/2!

\eff2
1/2f 3/4 G , ~11!

which can also be written as

f 0~E!5
1

2p
expF2K~ ê !

\eff
G , ~12!

where~here form50)

ê5e2em . ~13!

The physical meaning of these equations is rather clea
effect, tunneling can be described with a standard expon
tial ~action/\eff), provided the amounte05\eff/2 of energy is
subtracted from the total available energye. The global ef-
fect of the degrees of freedom transverse to the instanto

1This effect was not observed in the various numerical exp
ments of Creagh and Whelan. This is because, in their case
potential varies quite rapidly along the instanton trajectory, havin
shallow minimum in the transverse direction. This results in
denominator being of the order of unity, several tens of orders
magnitude smaller than in our case.
06211
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nothing but a shift of the energy available for tunneling
the zero-point energy in the transverse direction.

Such an analysis does not take into account the azimu
symmetry around the field’s axis and the fact that the con
butions of the variousm values can be separated in the n
merical calculation. Not surprisingly, tunneling is much mo
effective for m50 states which are not repelled from thez
axis by a centrifugal potential and thus feel more efficien
the instanton. In the quantum point of view, such states h
the lowest transverse zero-point energye0 . For otherm val-
ues, the treatment of Creagh and Whelan has to be ada
instead of considering the full semiclassical Green funct
of the system, one must expand it on the variousm subspaces
and use only the relevant component in each subspac
similar problem occurs in periodic orbit theory when one
interested in the contribution to the density of states of
orbit along thez axis. How to deal with such a problem ha
been described in a general manner by Bogomolny@44,45#
and in a specific case by Shaw and co-workers@46#. The rule
is that higher powers of the stability matrix come into pla
for example,M umu11 instead ofM for the real orbit. The
situation is similar for the instanton, resulting in the denom
nator being raised to powerumu11. The net effect is again
taken into account by shifting the scaled energy byem
5(umu11)e0 , i.e., the transverse zero-point energy in them
subspace. Thus results in an effective quantum ioniza
threshold

e ion
q 522Af 1

umu11

2
\eff . ~14!

Because of the transverse zero-point energy, in the p
ence of magnetic field,larger electric-field strengths are nec
essary to observe the same ionization yield, or, convers
larger scaled energy is required for a fixed electric fie
strength. We have thus performed numerical diagonaliza
of the scaled Hamiltonianabove the classical ionization
threshold, Eq.~7!. The results are shown in Fig. 1, where th
widths of the resonances are plotted versus the quant
value ofg21/351/\eff , the inverse of the effective Planck’
constant. At lowg21/3, i.e., large\eff , the transverse zero
point energy is so large that the quantum ionization thre
old, Eq. ~14!, is far above the scaled energy of the sta
which consequently has a vanishingly small ionization ra
This corresponds to the regiong21/3,28 in Fig. 1~a!, where
the widths are smaller than the numerical accuracy. Asg21/3

is increased, the quantum ionization threshold decreases
significant tunneling takes place, as observed in the ra
28,g21/3,35. Finally, at sufficiently highg21/3 value, the
scaled energy is higher than the quantum ionization thresh
and direct ionization takes place. There, the ionization ra
are large, comparable to the spacing between consecu
resonances, and the tunneling regime is left. In the figure,
g21/3 value where the quantum ionization threshold
reached is marked by the dotted line, and agrees with
numerical results. The two values ofe for m50 andm53
have to be chosen quite different in order to observe
transition within the range ofg21/3 available from numerical
diagonalization. Let us note that also in the pure magne
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field case, the statistics of level spacings in the vicinity of
ionization threshold is sensitive to the very same quan
threshold law@38,47#.

V. NUMERICAL RESULTS AT CONSTANT MODIFIED
SCALED ENERGY

The behavior observed in Fig. 1 has important con
quences. To study tunneling, we should consider only
region just below the threshold; this region is very small a
the tunneling rate changes very rapidly withg. Thus, scaled
spectroscopy is not appropriate for the analysis of statist
properties of tunneling. As is clear from the discussion ab
and the examples depicted in the figures, the proper par
eter characterizing the spectrum is note but rather ê5e
2em . In order to overcome the difficulty described in th
preceding section, a simple solution is to scale the prob
following the effective quantum ionization threshold inste
of the classical one. One then gets rid of the huge deno
nator due to the transverse motion and may more easily
centrate on the interesting dynamics, namely, the interp
between the instanton and the chaotic dynamics inside
potential well. We will thus solve the Schro¨dinger equation,
not at constant scaled energye, but at constant modified
scaled energyê, Eq. ~13!. This results in the following gen
eralized ~nonlinear! eigenvalue problem for the effectiv

FIG. 1. The ionization rates~widths! of resonances of the hy
drogen atom in parallel electric and magnetic fields, as a functio
the effective principal quantum numberg21/351/\eff , which plays
the role of the inverse of the effective Planck’s constant. The dia
nalization is performed at a fixed value of the scaled energye and
yields complex eigenvalues, their real part corresponds to quan
values of magnetic fieldg for fixed values ofe andf. ~a! shows data
obtained for angular momentumm50, scaled electric fieldf
50.0025, ande520.085, i.e., above the classical ionizatio
threshold as given by condition~7!. Observe very small ionization
widths for g21/3,28, then a rapid, on an average increase a
saturation forg21/3.33.3. The region of rapid increase corr
sponds to tunneling, as explained in the text. The dashed ver
line gives the quantum ionization threshold, Eq.~14!. ~b! shows the
data form53, f 50.0025, ande50.005 showing a similar behav
ior. Now the threshold is atg21/3'19.
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Planck’s constant\n and the eigenstatesfn(r ):

S 2
\n

2

2
D1\n

umu11

2
2 ê2

1

r
2 f z1

x21y2

8 Dfn~r !50,

~15!

with D being the Laplace operator.
This equation is solved by expansion over a Sturm

basis and a modified version of the Lanczos algorit
adapted to such a generalized eigenvalue problem@48#. We
have been able to obtain a few thousands of resona
widths for a givenm value, all lying in the tunneling regime
An example is presented in Fig. 2.

As expected from Eq.~12!, the ionization rate shows a
overall exponential decrease with 1/\eff . The rate of this
decrease is directly related to the tunneling action of
instanton: the prediction of Eq.~12! is shown as a dashe
line in the figure. Obviously, the agreement is excellent
should be noted that the semiclassical prediction is enti
obtained from classical ingredients and free of any para
eter. Note also the existence of very large fluctuations
expected for chaotic tunneling—around the mean value.

In order to make a more quantitative test, we remove
global exponential decrease and define, following Ref.@21#,
a rescaled width

yn5
r0~En!

f 0~En!
Gn , ~16!

wherer0(E) is the density of states.

of

-
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FIG. 2. Widths~ionization rates! of the resonances of the hydro
gen atom in parallel electric and magnetic fields, computed at c

stant modified scaled energy, Eq.~13!, ê520.1005, i.e., 0.0005
below the quantum ionization threshold, Eq.~14!. Parameters are
m50, f 50.0025. The widths~in logarithmic scale! are plotted vs
g21/351/\eff . The data show the exponential decrease of the
for \eff→0 characteristic for tunneling process. The dashed line
the average behavior predicted from the semiclassical analysis
~12!. One may also notice periodic short-range modulations of
ionization rates~with a period close to 0.4!; this is a manifestation
of scarring by the periodic orbit along the fields axis and is d
cussed in Sec. VI.
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D. DELANDE AND J. ZAKRZEWSKI PHYSICAL REVIEW A68, 062110 ~2003!
From its definition,yn should have average value unity
the semiclassical limit. The distribution ofyn ~same data as
in Fig. 2! is shown in Fig. 3, on a linear scale. It has ve
large fluctuations—several orders of magnitude with a la
proportion of very small ionization rates—but we check
that the average value ofyn is constant across the spectru
within a few percent~althoughGn themselves vary over five
orders of magnitude! and equal to 0.9560.03. This is only
slightly smaller than unity. The difference might be due
deviations from harmonicity of the potential in the vicinity o
the saddle point~an assumption made in our calculation!.
Another plausible source of deviation is the assumpt
made in the calculation of Creagh and Whelan that ev
electron which tunnels through the barrier will eventua
ionize; although this is very likely to happen, the chann
along thez axis may also reflect a small part of the electron
wave function, even after tunneling took place. This wou
manifest itself by theyn being smaller than unity.

The main point remains that semiclassics are able to
dict quantitatively the average behavior of the ionizati
rates in the tunneling regime.

VI. FLUCTUATIONS OF THE IONIZATION
RATES—EFFECT OF SCARRING

Beyond the average behavior discussed in the prece
section, we are also interested in the fluctuations of the
ization rates. The most probable origin of these fluctuati
is the fact that the classical dynamics inside the poten
well is chaotic. This implies that the resonance wave fu
tions in the well display apparently erratic fluctuations fro
state to state. States with a large probability density near
classical saddle point are more likely to tunnel and ionize
ones with small probability density. As a simple approxim
tion, the tunneling probability and thus the ionization rate
proportional to the squared overlap between the eigens

FIG. 3. Rescaled widths~ionization rates! yn , Eq. ~16!, of the
resonances of the hydrogen atom in parallel electric and magn
fields ~same data as in Fig. 2!. As expected from the semiclassic
analysis, theyn values have an average value close to unity, w
large fluctuations. Note especially the large proportions of v
small widths, characteristic of chaos assisted tunneling with a si
open channel.
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and a wave packet optimally tuned for tunneling, i.e., built
follow the instanton trajectory. Creagh and Whelan ha
shown how to explicitly build such a wave packet@23#. For a
quantum chaotic system, the simplest model for describ
the statistical properties of the energy spectrum and eig
states is to use RMT@16,17#. There, it is assumed that an
unknown matrix element will be statistically described by
Gaussian distribution. In our case, although the system is
time-reversal invariant~because of the magnetic field!, it has
a generalized time-reversal symmetry and the Gaussian
thogonal ensemble of random matrices must be used. T
the matrix element is purely real and its square, and con
quently the ionization rate, will be described by a Port
Thomas distribution@16,49#:

P~y!5
1

A2pyȳ
exp~2y/2ȳ! , ~17!

whereȳ is the mean value ofy, unity in our case. In Fig. 4,
we show the numerically obtained distribution for them
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y
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FIG. 4. Statistical distribution of the rescaled ionization ra
~widths! y of the resonances of the hydrogen atom in parallel el
tric and magnetic fields. The data are taken at fixed modified sc

energyê, Eq. ~13!, and rescaled according to Eq.~16! in order to
take into account the exponential decrease due to the tunne
through the potential barrier. These data are obtained for them
53 series at scaled electric fieldf 50.0025. In order to improve the

statistics, several distributions obtained for various values oê
slightly below20.1 are used. The inset shows the distributionP(y)
on a double logarithmic scale, with ay21/2 behavior at smally,
characteristic of ionization with only one open channel, and
exponential tail at largey. The numerical results are shown by th
histogram, the dashed line is theuniversalPorter-Thomas distribu-
tion, Eq. ~17!, predicted by random matrix theory, while the sol
line is the prediction of Eq.~22! obtained by taking into account th
scarring of the eigenstates by the orbit along the field axis. Note
there is no adjustable parameter. The main figure shows the d
bution of Ay, which is not singular asy→0, on a double linear
scale. The prediction of random matrix theory is a pure Gauss
For them53 series, the effect of scarring is small and both the
retical distributions agree well with the numerical results.
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EXAMPLE OF CHAOTIC TUNNELING: THE HYDROGEN . . . PHYSICAL REVIEW A68, 062110 ~2003!
53 series compared with the Porter-Thomas prediction o
double-logarithmic scale which is more convenient to d
play the large fluctuations. The agreement is excellent, wh
proves that the distribution of ionization rates in our realis
problem can be quantitatively predicted, using a combina
of semiclassics~for the mean value! and random matrix
theory ~for the fluctuations!.

It should be emphasized that large fluctuations of the i
ization rate should also be observed in multidimensional s
tem where the classical dynamics is regular. Indeed, in s
a case, the eigenstates are described by series of energ
els labeled by several quantum numbers~one good quantum
number per dimension!. The tunneling rate is a smooth func
tion of these quantum numbers, implying that the spectrum
composed of several interleaved series of states. In a g
series, the ionization rates vary smoothly, but, because o
interleaving of the various series, wildly fluctuating ioniz
tion rates are observed for consecutive energy levels. In s
a case, the statistical distribution of the ionization rates is
no meansuniversal, but depends on the specific properties
the tunneling actions in the various series. On the contr
random matrix theory predicts a universal statistical distri
tion of the ionization rates, which is thus characteristic o
chaotic classical dynamics.

The results for them50 series are shown in Fig. 5. Th
overall agreement is rather good, with a cleary21/2 behavior
at smally and an exponentially small tail at largey. How-
ever, a significant deviation is clearly visible at intermedia
values. What is the origin of this deviation? We have be
able to show that it is directly related to the unstable perio
orbits inside the chaotic potential well. The quantitative
terpretation is based on the semiclassical prediction, E
~1!–~4!. A clue is provided by a careful inspection of Fig.

0 1 2                  3                  4
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FIG. 5. Same as Fig. 4, but for them50 series. The effect of
scarring is much more important and large deviations from
Porter-Thomas~random matrix theory! distribution ~dashed line!
are observed. In contrast, the agreement with the model taking
account the scarring by thez orbit, Eq.~22! and solid line, is much
better. This proves that our model—with no adjustable paramete
describes properly the physics of tunneling and ionization of c
otic states in the presence of scarring.
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which shows that fluctuations around the average trend
not random but clearly display a short-range oscillati
~about 100 oscillations in the covered range!. The simplest
way of measuring this oscillation is to perform a Fouri
transform with respect to 1/\eff , a standard tool in periodic
orbit theory. We define

g~s!5
2p

D (
n

Gn exp~K/\n!exp~2 is/\n!, ~18!

where the sum is taken over some range of 1/\ of lengthD.
The functiong(s) is shown in Fig. 6 both form50 andm
53. As expected,g(0) is very close to unity@this proves that
the actual average width is well predicted by the semicla
cal formula, Eq.~12!#. g(s) has a very large peak aroun
s/2p52.655, with harmonics at integer multiples, but al
smaller peaks at other values. From Eq.~4!, the peaks are
expected to take place at the actions of the periodic or
inside the well, which are real continuations of the imagina
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FIG. 6. Fourier transforms of the distribution of widths~ioniza-
tion rates! with respect to 1/\eff , Eq. ~18!, obtained forf 50.0025

and ê520.1005 in them50 ~a! andm53 ~b! series. It displays a
large peak~hardly visible! at s50 with amplitude being unity, as
expected from semiclassics; this peak describes the average b
ior of the widths. The other peaks correspond to modulations of
width associated with periodic orbits inside the inner potential w
The peaks are much more pronounced for them50 series~a! than
for the m53 series~b!, because the former are more strong
scarred by the orbit along the field axis, with actionSclas/2p
52.655. The repetitions of this orbit are clearly visible, with am
plitudes forming a geometric series. The heights of these peaks
directly related to the instability of the periodic orbit along th
fields axis. In~a!, the amplitude of the first peak is 0.58960.005 in
excellent agreement with the semiclassical prediction 0.592, wh
involves exclusively classical properties of the periodic orbits. T
other peaks, appearing at actions clustered slightly below the
etitions of the main orbit, correspond to other orbits in the inn
potential well, which are slightly off thez axis but approach the
saddle point. In~b!, the centrifugal potential prevents the period
orbits from strongly scarring the quantum states, and the amplitu
of the peaks~especially the ones associated with repetitions of thz
orbit! are much smaller.
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D. DELANDE AND J. ZAKRZEWSKI PHYSICAL REVIEW A68, 062110 ~2003!
instanton. In our case, this orbit is entirely along thez axis
and its classical actionSclas is easily computed. We find
Sclas/2p52.655 for the parameters of the figure, in perfe
agreement with the numerical quantum calculation. It sho
be noticed that we use for the classical calculation the sc
energy20.1005, i.e., the value of themodifiedscaled energy
of the quantum calculation.2 The fact that both agree vali
dates our correction and fully confirms the important role
the zero-point transverse energy.

The semiclassical formula~4! also predicts the amplitud
of the peak that should be observed in the Fourier transf
g(s). There is however an important subtlety here. T
monodromy matrix of the real orbit along thez axis enters
the formula. It turns out that, because the orbit is very cl
to the saddle point~reached ate522Af ), it undergoes an
infinite series of bifurcation ase→22Af . At closely spaced
e values, the orbit loses and regains stability. At each bif
cation, a new periodic orbit is born, which is off thez axis,
but close to it. Such a phenomenon is well known whe
particle either approaches a saddle point~see, for example
the Henon-Heiles model in Ref.@50#! or explores a channe
with a long-range potential, as, for example, is the case f
Rydberg series converging to an ionization threshold@51#.
We show in Fig. 7 the trace of the stability matrix of thez
orbit as a function of the scaled energye for f 50.0025,
which clearly shows this series of stable-unstable bifur
tions. However, we also plot in the same figure the deno

2For the\eff values used in our calculation, the scaled energy
far abovethe classical threshold.

0.11 0.108 0.106 0.104 0.102 0.1
Scaled energy ε

4

2

0

2

4
T

ra
ce

FIG. 7. Trace of the stability matrixM of the periodic orbit
along the fields axis, as a function of the scaled energy~dotted line!.
The orbit is stable when the trace is in the@-2,2# range, unstable
otherwise. There is a series of stable-unstable bifurcations accu
lating at the saddle-point energye520.1 (f 50.0025 in this plot!.
In contrast, the contributionuA2det(WM21)/A2det(W21)u,
plotted as a solid line, is a smooth function ofe. It is precisely this
contribution which enters the denominator of the semiclassical
pansion, Eq.~4!.
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nator of the semiclassical contribution, Eq.~4!, to the ioniza-
tion rate, whose calculation is detailed in the Appendix. T
fact that what counts is not the real orbit itself but its co
bination with the instanton completely eliminates the ser
of bifurcations and gives a smooth contribution as the sca
energy is varied, as observed in the numerical quantum
periment. Moreover, the semiclassical formula~4! predicts
for g(s) a peak atSclas/2p52.655 with amplitude 0.592
while the numerical result is 0.58960.005, in excellent
agreement. Similarly, the harmonics of the peak form
proximately a geometric series with amplitude'0.59j for
the j th repetition of the primitive real orbit. The physica
interpretation is clear: because the motion in the inner po
tial well is chaotic, each time the quantum particle leaves
vicinity of the saddle point~along thez axis!, it explores
some part of the chaotic phase space and roughly only 5
of the electronic density is reflected by the nucleus ba
along thez axis.

It is important to remark that the oscillations of th
widths, Eq.~4!, induced by the orbit along thez axis and all
its repetitions addcoherently. Indeed, if we assume fo
simplicity3 that thej th repetition contributes with amplitud
Rj ~with R'0.59 in our case! and phasej f, the series, in-
cluding the smooth termf 0 can be summed exactly, leadin
to the following contribution to the ionization width:

f ~\!5
1

2p
exp~2K/\!

12R2

11R222Rcos~Sclas/\2f!
.

~19!

This, in turn, predicts that the average normalized widths
not uniformly distributed, but should follow the distributio

ȳ~\!5
12R2

11R222Rcos~Sclas/\2f!
. ~20!

The physical interpretation of this distribution is simple. It
nothing, but the function giving the intensity transmitte
through a Fabry-Perot optical cavity with reflection coef
cientsR for the combination of the two mirrors, phase sh
f at the reflections, and optical lengthSclas/\ in units of the
wavelength. This is of course aperiodic function of the vari-
able 1/\ with period 2p/Sclas. It has maxima atSclas/\
2f equal to an integer multiple of 2p—where the value of
the function is (11R)/(12R)—and minima at half-integer
multiples where the function is (12R)/(11R). If R is large,

s

3Strictly speaking, the amplitudes and phases associated with
repetitions do not form a geometric series, but should be given b
rather complicated formula, as explained in Appendix A of R
@23#. Only for smallR does it reduce to a geometrical series. Ho
ever, it turns out that although ourR value is not very small~0.59!,
the full result does not differ very much from a simple geomet
series—as is also visible in the heights of the repetition peak
Fig. 6—which has the advantage that the summation over rep
tions can be explicitly carried out, see Eq.~20!. In any case, the
deviation from an exact geometric series is small and does
affect our statistical analysis.
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EXAMPLE OF CHAOTIC TUNNELING: THE HYDROGEN . . . PHYSICAL REVIEW A68, 062110 ~2003!
the maxima are sharp peaks. The analogy with the Fa
Perot cavity is more than formal: it actually describes h
the electronic density can be resonantly trapped inside
inner potential well along thez axis, resulting in enhance
tunneling amplitude and ionization rate. Because the dyn
ics is chaotic, such a resonant enhancement is only partiaR
must be smaller than unity!, resulting in scarring of the
wavefunction rather than complete localization.

In order to test whether this distribution adequately d
scribes the numerical result, we have ‘‘folded’’ all the n
merical valuesyn inside a single ‘‘free spectral range’’ of th
Fabry-Perot cavity, by plotting them against

xn5
Sclasgn

21/3

2p
~mod 1!5

Sclas

2p\n
~mod 1! , ~21!

wherea(mod 1) denotes the fractional part of the numb
a. The result is shown in Fig. 8. Clearly the largestyn values
are grouped around a well-definedx value, as expected
Large fluctuations still exist; in order to smooth them, w
plot also the running average~over 100 values! which clearly
presents a resonant behavior aroundx50.54. The semiclas
sical prediction, using theR value deduced from the classic
stability of the orbit, is shown as a dashed line and agr
fairly well with the numerical result. This proves that th
orbit along thez axis plays the dominant role in our problem
To be completely honest, we must mention that the ph
f50.5432p, which is directly related to the position of th
maximum in the plot, has not been extracted from the c
sical dynamics but fitted to the numerical data.

The last step is to characterize precisely the fluctuati
of the individual widths that appear on top of the glob

FIG. 8. Rescaled ionization ratesyn , Eq. ~16!, of the m50
series forf 50.0025 ande520.1005, as a function ofx, Eq. ~21!.
x represents~within a multiplicative 2p factor! the phase accumu
lated by the wave function along the periodic orbit in the inn
potential well. There are large fluctuations, as expected in a cha
system, but the average behavior is obviously dependent ox,
which proves that the periodic orbit strongly affects the width.
pure random matrix approach predicts a uniform distribution in
pendent ofx. The solid line is a running average which smooth
the fluctuations and clearly shows the resonant behavior of theav-
eragewidth with x. The dashed line is the semiclassical predictio
Eq. ~23!, which incorporates the effect of the periodic orbit.
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exponential decrease and the modulations discussed ab
Such fluctuations are thought to be unavoidable in a cha
system, and display universal properties~described by RMT!
in the presence of chaos. In a semiclassical point of vi
they can be seen as the effect of the whole set of~unstable!
periodic orbits in the inner potential well. Each orbit a
proaching the saddle point contributes an oscillatory te
analogous to Eq.~4! to the width, and the individual widths
are just the result of the superposition of plenty of such ter
which oscillate rapidly: it results in apparently random flu
tuations around the mean value. A number of peaks are
ible in the Fourier-transformed spectra in Fig. 6; semiclas
cal theory tells us that they appear at the actions of perio
orbits. In our specific case, it is visible that most of them a
clustered at actions slightly smaller than the action of thz
orbit and its repetitions. Physically, they correspond to orb
mainly located close to thez axis, born from thez orbit at the
bifurcations discussed above. There is actually a very la
number of such orbits with similar shapes, but differing
small details. Thus, it is in general difficult to associate
peak in the Fourier transform with a single periodic orb
Except for the lowest members, we could not assign una
biguously such peaks. This is not a simple problem: inde
many orbits are very close in phase space and, for a fi
value of \eff , cannot be considered as isolated in the se
that the saddle point approximation around each orbit—a
ingredient of periodic orbit theory—is not valid. In such ci
cumstances, it is not possible to separate the contribution
the various orbits which have to be grouped together us
for example, a uniform approximation@52#. The origin of the
difficulty is that the neighborhood of the simplest period
orbit along thez axis is rather complicated. In Ref.@22#, it
has been shown that it can be treated also using homoc
orbits. Note that this is a fundamental difficulty of period
orbit theory, not a practical problem related to the prolife
tion of the number of orbits.

An interesting illustration of this problem may be ob
tained by launching a bunch of trajectories from the sect
z5z0 close to the saddle point. Following the real trajec
ries ~all started with positive momentum inz) until they hit
again the same planez5z0 with positive momentum one ca
get a feeling of the relevant dynamics. For a fully chao
system one could naively expect that a plot of, say, acti
calculated along the trajectory versus the initial moment
along thez axis will not show any structure. This is not tru
in our system as visualized in Fig. 9. Observe a strongly
ergodic behavior with allowed actions forming almost par
lel strips. A clear accumulation of actions in strips correla
nicely with peaks in the Fourier transform, Fig. 6~a!, in the
range just below the second repetition at 2Sclas/2p55.31 of
the straight line periodic orbit. Each strip contains of cou
mainly nonperiodic orbits, but also periodic orbits with va
ous shapes~and actions!, and homoclinic orbits. As all thes
orbits have very similar actions, they all contribute ve
similarly to the semiclassical formula. It is not clear to us
and to some extent irrelevant for the present statist
analysis—which semiclassical approach, either using
moclinic orbits or sets of periodic orbits, would be mo
adapted for dealing with our specific situation.
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D. DELANDE AND J. ZAKRZEWSKI PHYSICAL REVIEW A68, 062110 ~2003!
The basic assumption, usual in studies of quantum ch
is that the effect of long orbits is to create fluctuations w
described by random matrix theory. As—see above—the
ization rate appears as the square of some real matrix
ments, the simplest hypothesis is to assume that the fluc
tions are described by a Porter-Thomas distribution, Eq.~17!.
However, the mean valueȳ is now taken as predicted by th
semiclassical theory, i.e., Eq.~20!. As thexn values are uni-
formly distributed, this results in a global statistical distrib
tion:

P~y;R!5E
0

1 1

A2pyȳ~x!
expS 2

y

2ȳ~x!
D dx, ~22!

where

ȳ~x!5
12R2

11R222R cos 2px
. ~23!

This distribution is plotted in Fig. 5 as a solid line.
clearly, very significantly, improves over the Porter-Thom
distribution and is in excellent agreement with our numeri
data. Especially, it correctly describes the excess of la
ionization widths.

The same approach can be used for the data in othem
series. However, as is obvious in Fig. 6~b!, the contribution
of the z orbit is much smaller in, e.g., them53 series. As
mentioned above, this is well understood semiclassically
simple words, as the centrifugal term is more important
keeps the electron away from thez axis and strongly dimin-
ishes the contribution of this orbit. TheR parameter for the
m53 series can be extracted from the Fourier transform
Fig. 6~b! and is close to 0.1. The semiclassical predictio
which can be calculated in the spirit of Refs.@45,46#, is
@R(m50)#4'0.12 in reasonably good agreement. For su

FIG. 9. Distribution of actions of trajectories launched from
plane z5z058.82 towards the saddle point as a function of t
momentum along thez axis for m50, f 50.0025, ande5
20.1005. The action is calculated along a given trajectory till it h
the same plane also with positive momentum. Observe a clear s
ture of strips. Arrows indicate actions corresponding to peaks in
Fourier transform of the widths. The circle indicates the seco
repetition of the orbit along thez axis with maximum action
2Sclas/2p55.31 and momentumpz50.2643.
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a small R value, the deviation of distribution~22! from
Porter-Thomas is very small. This explains why the Port
Thomas distribution correctly reproduces the results of
numerical experiment, see Fig. 4. We have also obtained
sults for them51 andm52 series, shown in Figs. 10 an
11. Significant deviations from Porter-Thomas are observ
although smaller than for them50 series. Again, the modi
fied distribution, Eq.~22!, agrees very well with the numeri
cal results.

An alternative approach to the statistical properties of
ionization widths is possible. From the semiclassical a
proach, we know both the average trend and the mod
tions; we can thus subtract~or rather divide! these factors in
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FIG. 10. Same as Figs. 4 and 5, but for them51 series. The
effect of scarring is intermediate and some deviations from
Porter-Thomas~random matrix theory! distribution ~dashed line!
are observed. In contrast, the agreement with the model taking
account the scarring by thez orbit, Eq.~22! and solid line, is much
better.
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FIG. 11. Same as Figs. 4 and 5, but for them52 series. The
effect of scarring is small and only marginal deviations from t
Porter-Thomas~random matrix theory! distribution ~dashed line!
are observed.
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EXAMPLE OF CHAOTIC TUNNELING: THE HYDROGEN . . . PHYSICAL REVIEW A68, 062110 ~2003!
order to concentrate on the fluctuations. We thus rescale
numerical data to the expected average1oscillatory behavior,
that is, define

zn5
yn

ȳ~\n!
~24!

with ȳ is defined in Eq.~20!.
The statistical distribution of thez variable is shown in

Fig. 12 for them50 series. As can be seen, it agrees v
well with a pure Porter-Thomas distribution. This fully co
firms that, once the average and oscillatory behavior h
been properly taken into account, only the standard fluc
tions described by random matrix theory persist.

Finally, we have studied a slightly less realistic syste
the two-dimensional hydrogen atom in parallel electric a
magnetic fields, obtained from the previous system by
posing that the motion takes place in the (x,z) plane. The
classical dynamics isexactly the same as form50 states
~obviously the motion is planar for such cases!. One could
thus naively expect the same properties for the ioniza
widths for the quantum system. This is however not entir
true for the following two reasons.

~1! The zero-point transverse motion is now in one dime
sion instead of two. Thus, the shift energy is reduced b
factor of 2 compared to Eq.~10!:

e2D5 1
4 g1/35 1

4 \eff . ~25!

The modified scaled energy, Eq.~13!, must be modified ac-
cordingly.
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FIG. 12. Statistical distribution of the ionization widths, re
caled according to Eq.~24!, to take into account tunneling and th
effect of the periodic orbit along the field axis. A good agreemen
obtained with the Porter-Thomas distribution, Eq.~17!, shown as a
dashed line. The data are the same as in Fig. 5. The fact that a
agreement is obtained indicates that our model describes sca
and tunneling in a satisfactory manner.
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~2! The stability matrix is a 232 matrix instead of a 4
34 matrix. As explained in the Appendix, this results
denominators in Eqs.~1!–~4! to be square roots of the three
dimensional results form50.

The net effect is that the instability of the real orbit in th
potential well is significantly reduced, simply because th
is less space for the electron to escape far from thez axis.
The analysis is similar to the three-dimensionalm50 case,
with the parameterR being now taken at power 1/2, i.e.,R
'0.77 instead ofR'0.59. Stronger deviations from th
Porter-Thomas distribution are thus expected foryn . Figures
13 and 14 show that it is indeed the case. Once more,
agreement with the modified Porter-Thomas distribution,
~22!, is very good.
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FIG. 13. Same as Figs. 4 and 5, but for the two-dimensio
hydrogen atom in parallel electric and magnetic fields. Becaus
the reduced dimensionality, the motion transverse to thez periodic
orbit is less unstable than in the three-dimensional atom, and
effect of scarring is enhanced. Very large deviations from
Porter-Thomas~random matrix theory! distribution ~dashed line!
are observed, but the improved model, Eq.~22! ~solid line!, repro-
duces well the numerical results.
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FIG. 14. Same as Fig. 12, but for the two-dimensional mode
the atom in parallel electric and magnetic fields~data as in Fig. 13!.
Again, scarring is well accounted for by our model.
0-11



th
g

r b
na
ls
idt
n
ts
a

ve
tr
a-

n

t
e
m
r-
la
n
ar
n
co
it

on
sic

fo
ld
ie
ei
c
l
ap

ee

ica
ca
ll

its

he
e-
the
a-

ted

xis,
n in
ge,

gi-

pe-

is

.

can
he
om-
the
ec-

at-

D. DELANDE AND J. ZAKRZEWSKI PHYSICAL REVIEW A68, 062110 ~2003!
VII. CONCLUSION

In this paper, we have studied the widths~ionization rates!
of resonances of a realistic system, the hydrogen atom
parallel electric and magnetic fields, in conditions where
classical dynamics is chaotic. We have shown that, usin
semiclassical approach without any adjustable paramete
only with classical ingredients, we are able to predict a
lytically the average behavior of the widths. We have a
shown the existence of a modulation of the average w
associated with a periodic orbit and have calculated qua
tatively its properties, again using only classical ingredien
Finally, the residual fluctuations have been shown to be
curately described by a random matrix model. This pro
that a proper combination of semiclassics and random ma
theory canpredict the behavior of the system versus ioniz
tion.

Our results are comparable to the ones obtained o
model system in Ref.@23#. For example, their Fig. 1 is
clearly comparable to our Fig. 8. Note however that, due
the specificities of ourrealistic system, the expressions w
obtain have a simpler form. On a different model syste
Bies et al. @31# observed also deviations from the Porte
Thomas distribution. Part of the deviation is due to the re
tively small value of the effective Planck constant, but a
other part is certainly due to scarring. Their Figs. 4 and 5
again very comparable to our Fig. 8. Because they do
consider a scaling system, the classical dynamics—and
sequently the properties of the periodic orbits—change w
energy which makes a comparison with our distributi
rather difficult. We however have little doubt that the ba
process at work is similar to ours.
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APPENDIX: CLASSICAL DYNAMICS NEAR
THE SADDLE POINT

In this appendix, we discuss how the various class
quantities which enter the semiclassical formula can be
culated in our specific system, the hydrogen atom in para
electric and magnetic fields.

The Hamiltonian of the system is given, in scaled un
by Eq. ~6!. The saddle point is located along thez axis at
position
06211
in
e
a
ut
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o
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s
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e
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el

,

zsaddle5
1

Af
, ~A1!

with energye ion522Af .
As we are interested in highly excited states lying in t

immediate vicinity of the saddle-point energy, it is conv
nient to expand the Hamiltonian at second order around
saddle point. The normal modes of this harmonic approxim
tion are along thez axis and in thex-y plane. In thex-y
plane, the saddle point is a potential minimum associa
with a vibration frequency

vr5
A114 f 3/2

2
. ~A2!

Because of the azimuthal symmetry around the field a
this mode is degenerate. In order to have a chaotic motio
the inner potential well, the scaled energy must be lar
typically of the order of20.1, which in turns implies thatf is
rather small. In most cases, one can thus forget thef depen-
dence in Eq.~A2! and use the approximation

vr'
1

2
. ~A3!

Along thez axis, the saddle point is a potentialmaximum.
It is thus associated with an eigenmode with purely ima
nary frequencyivz , where

vz5A2 f 3/4. ~A4!

The corresponding imaginary period is nothing but the
riod of the instanton. Alternatively,vz can be viewed as the
vibration frequency around the saddle point in theinverted
potential. In a harmonic potential, the action of an orbit
simply ~within a 2p factor! the ratio of its excitation energy
~with respect to the equilibrium point! to the frequency. This
yields the~imaginary! action of the instanton given by Eq
~8!.

The harmonic approximation around the saddle point
also be used for the calculation of the stability matrix of t
instanton. Indeed, as the harmonic potential separates c
pletely in a transverse and a longitudinal component,
monodromy matrix of the instanton in each transverse dir
tion, after propagation during timet, is simply of the form

S cosvrt 2sinvrt

sinvrt cosvrt D . ~A5!

The stability matrix of the instanton is obtained by evalu
ing the monodromy matrix at the period of the instantont
52ip/vz :

W5S cosh
2pvr

vz
2 isinh

2pvr

vz

isinh
2pvr

vz
cosh

2pvr

vz

D . ~A6!
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In our case, the ratiovr /vz is very large, so that the
hyperbolic trigonometric functions can be approximated
an exponential, yielding

A2det~W2I !'expS pvr

vz
D . ~A7!

For the three-dimensional hydrogen atom, the stabi
matrix is a 434 matrix which actually splits in two 232
identical blocks~along thex andy directions! of type ~A6!.
Thus, contribution~A7! must be squared to get the corre
semiclassical contribution. In contrast, for the simplifi
two-dimensional model, there is only one such contributi
If one uses the approximate value~A3! in Eq. ~A7!, one
finally gets contribution~9!.

The last ingredient in the semiclassical approximation
the stability matrix of the real periodic orbit in the inne
A

Z.

. E

ys

,

06211
y

y

.

s

potential well. As explained in the main text, the series
bifurcations taking place in the vicinity of the saddle-poi
energy implies that this matrix changes rapidly withe. On
the other hand, whene is varied, the dynamics inside th
potential well is only weakly affected: the main effect is th
the electron spends less or more time in the immediate
cinity on the saddle point. As the transverse potential
rather steep there, the stability matrix varies a lot. Th
modifications are essentially described by a multiplication
a matrix similar to Eq.~A5!. A small variation of the period
of the orbit is enough to affect strongly the matrix. Howev
it is the product of the stability matrices of the instanton a
the real periodic orbit which describes the semiclassical c
tribution, Eq. ~4!. As it is the very same matrix type~A5!
which contributes to the two stability matrixes, it turns o
that themodulusof det(WM2I ) actually depends weakly on
e as shown in Fig. 7.
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