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Decoherence and recoherence from vacuum fluctuations near a conducting plate
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The interaction between particles and the electromagnetic field induces decoherence generating a small
suppression of fringes in an interference experiment. We show that if a double-slit-like experiment is per-
formed in the vicinity of a conducting plane, the fringe visibility depends on the position~and orientation! of
the experiment relative to the conductor’s plane. This phenomenon is due to the change in the structure of
vacuum induced by the conductor and is closely related to the Casimir effect. We estimate the fringe visibility
both for charged and for neutral particles with a permanent dipole moment. The presence of the conductor may
tend to increase decoherence in some cases and to reduce it in others. A simple explanation for this peculiar
behavior is presented.
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I. INTRODUCTION

The interaction of a quantum system with its environm
is responsible for the process of decoherence, which is on
the main ingredients to understand the quantum-class
transition @1#. In some cases, the interaction with the en
ronment cannot be switched off. This is the case for char
particles that unavoidably interact with the electromagne
field. As this interaction is fundamental, its effect is pres
in any interference experiment. In this paper we will analy
the influence of a conducting boundary in the decay of
visibility of interference fringes in a double slit experime
performed with charged particles~or neutral particles with a
dipole moment!. The reduction of fringe visibility is induced
by the interaction between the particles and the electrom
netic field. Some aspects of this problem have been analy
before. In fact, it is known that for charged particles, t
interaction between the system~the particle! and the environ-
ment~the electromagnetic field! induces a rather small deco
herence effect even if the initial state of the field is t
vacuum@2–10#. A particularly simple expression for the de
cay in the fringe visibility was obtained in Refs.@2,3#: As-
suming an electron in harmonic motion~with frequencyV)
along the relevant trajectories of the double slit experime
the fringe visibility decays by a factor (12P)2, whereP is
the probability that a dipolep5eR oscillating at frequency
V emits a photon (R is the characteristic size of the traje
tory!. This result is in accordance with the idea that decoh
ence becomes effective when a record of the state of
system is irreversibly imprinted in the environment. In th
case, after photon emission, if the electron follows the
jectory XW 1(t) of the double slit experiment~see Fig. 1! it
becomes correlated with a state of the environmentuE1(t)&.
This state is different from the one with which the electr
correlates if it follows the trajectoryXW 2(t). The absolute
value of the overlap between these two different state
precisely given by (12P)2.

In this paper we will analyze how the fringe visibility i
modified when performing a double slit interference expe
ment in the vicinity of a conducting plane. One could a
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what is the reason why the presence of a perfect condu
could possibly modify the fringe visibility in a double sl
experiment. The answer to this question is not complicat
It is well known that the presence of a conducting pla
enforces nontrivial boundary conditions on the electrom
netic field. These conditions strongly affect the nature of
space of physical states of the quantum field. As we arg
above, the fringe visibility is determined by the absolu
value of the overlap between two physical states of the fi
~see also below!. Therefore, as the field states are affected
the boundary conditions, it is not unexpected that the ove
between them is affected as well. For this reason, one
pects decoherence to be influenced by the presence of a
ducting plane.

The effect we study here is as fundamental as the Cas
force between two conductors@11#, which is also caused by
the nontrivial boundary conditions. Being the effect of fu
damental origin, one expects that the impact of the cond
tors on decoherence should be understandable in simple
somewhat intuitive terms. However, until now this was n
the case. In fact, the way in which a conductor modifies
fringe visibility in an electron double slit experiment wa
analyzed before by Ford in Refs.@7–9#. The results con-
tained in those papers are far from intuitive. The analysis
present here will serve not only to correct these previo
results@7–9#, which turned out to be erroneous. Thus, w
will also show that the effect of the conductor is quite r
markable and simple to understand. As we will see, the p
ence of the conducting plane may produce more decoher
in some cases and less decoherence in others. For exa
we will show that for a double slit experiment with charge
particles, if a conducting plate is placed perpendicular to
trajectories of the interfering particles, the fringe visibili
decreases with respect to the vacuum case~absence of con-
ducting plate!. However, if the plate lies parallel to the tra
jectories of the charges, the contrast increases~the system
recoheres!. We will show that this peculiar behavior can b
understood in simple terms by using a variation of t
method of images. We will show a similar result for the ca
of neutral particles with permanent electric or magnetic
pole moment. Also, we will show that the magnitude of t
©2003 The American Physical Society06-1
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FIG. 1. Scheme for a double-slit-like exper
ment near a conducting plane. The component
the velocity in the direction from the source t
the detector is assumed to be constant.
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effect can be easily estimated.
There are several interesting physical effects conne

with the one we are analyzing here. As we mentioned abo
it is well known that a conducting boundary modifies t
properties of the zero-point fluctuations, and therefore co
affect the interference experiments of particles that inte
with the electromagnetic field. Apart from the above me
tioned Casimir force between conductors, other con
quences of this same phenomenon is the Casimir-Po
force @12# affecting a probe particle in the vicinity of a con
ductor. These phenomena, that have been experimen
verified @13#, are close relatives of the process we are stu
ing here. In fact, the Casimir-Polder force can be though
the dispersive counterpart of the decoherence effect we
discuss. The influence of boundaries on the electromagn
vacuum is also responsible for changes in atomic lifetim
and interference phenomena for light emitted by atoms n
conducting surfaces@14#.

The paper is organized as follows: In Sec. II we outli
the main calculation that needs to be done to compute
fringe visibility in a double slit experiment with charges an
neutral particles with permanent dipole moment. In Sec.
we show how to evaluate the fringe visibility in vacuum.
Sec. IV we show how to compute the effect induced by
nontrivial boundary condition generated by the perfect c
ductor. We also discuss there how to evaluate the fringe
ibility for experimentally relevant situations estimating th
significance of the effect and showing how it can be in
itively understood. In Sec. V we present a short summary
our results.

II. FRINGE VISIBILITY IN A DOUBLE SLIT EXPERIMENT

Let us first outline a simple method to compute the eff
of electromagnetic interactions on the fringe contrast.
consider two electron wave packets that follow well defin
trajectoriesXW 1(t) and XW 2(t) that coincide at initial (t50)
and final (t5T) times as shown in Fig. 1. In the absence
environment, the interference depends on the relative ph
between both the wave packets att5T. Because of the in-
teraction with the quantum electromagnetic field, the int
ference pattern is affected. This effect can be calculated
follows: We assume an initial state of the combined partic
field system of the formuC(0)&5(uf1&1uf2&) ^ uE0&. Here
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uE0& is the initial ~vacuum! state of the field anduf1,2& are
two states of the electron that are localized around the in
point and that in the absence of other interaction continue
be localized along the trajectoriesX1,2(t), respectively. At
later times, due to the particle-field interaction, the state
the combined system becomes

uC~ t !&5~ uf1~ t !& ^ uE1~ t !&1uf2~ t !& ^ uE2~ t !&). ~1!

Thus, the two localized statesuf1(t)& and uf2(t)& become
correlated with two different states of the field. Therefo
the probability of finding a particle at a given position tur
out to be

prob~XW ,t !5uf1~XW ,t !u21uf2~XW ,t !u212Re„f1~XW ,t !f2* ~XW ,t !

3^E2~ t !uE1~ t !&…. ~2!

The overlap factorF5^E2(t)uE1(t)& is responsible for
two effects. Its phase produces a shift of the interfere
fringes ~the Aharonov-Bohm effect can be obtained in th
way when the initial state of the magnetic field has a nonz
expectation value!. The absolute valueuFu is responsible for
the decay in the fringe contrast, which is the phenomenon
will analyze here. Calculating it is conceptually simple sin
F is nothing but the overlap between two states of the fi
that arise from the vacuum under the influence of two diff
ent sources~this factor is identical to the Feynman-Verno
influence functional@15#!. Each of the two states of the fiel
can be written as

uEa~ t !&5TFexpS 2 i E d4xJa
m~x!Am~x! D G uE0&, ~3!

whereJa
m(x) is the conserved four-current generated by

particle following the classical trajectoryXW a(t), i.e.,

Ja
m(XW ,t)5„e,eXẆ a(t)…d3

„XW 2XW a(t)…, (a51,2). Using this, it
is simple to derive an expression for the overlap: The s
plest way to do this is based on the observation that as
QED action is quadratic in the fields, the overlap must b
Gaussian functional of the two currentsJ1 andJ2. Thus, we
can write the most general Gaussian functional ansatz foF
as
6-2
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F5expS 2 i E E d4x1d4x2Ja
m~x1!Gmn

ab~x1 ,x2!Jb
n~x2! D

3expS 2 i E d4xJa
m~x!Cm

b ~x! D , ~4!

where a summation over the indicesa,b51,2 is implicit. On
the other hand, we can explicitly write down the express
for the overlap as

F5^E0uT̃FexpS i E d4xJ2
m~x!Am~x! D G

3TFexpS 2 i E d4xJ1
m~x!Am~x! D G uE0&. ~5!

The kernelsGmn
ab andCm

a appearing in Eq.~4! can be deter-
mined by identifying the functional derivatives of Eqs.~4!
and~5!. In this way, one can relateCa andGab with the one
and two point functions of the field operators. As we are o
interested in the absolute value of the overlap, we will o
present the result for this quantity here. DenotinguFu5exp
(2Wc), we get

Wc5
1

2E d4xE d4y~J12J2!m~x!Dmn~x,y!~J12J2!n~y!,

~6!

whereDmn is the expectation value of the anticommutator
two field operators

Dmn~x,y!5 1
2 ^$Am~x!,An~y!%&. ~7!

From this derivation, it is clear that the probability fo
vacuum persistence in the presence of a sourceJ1

m , which is
given by u^0uEi&u2, can be obtained from the above expre
sion by simply settingJ2

m50. Taking this into account, it is
possible to attach a simple physical interpretation to
overlap. The square of the overlap,F25u^E1(t)uE2(t)&u2, is
equal to the vacuum persistence probability in the prese
of a sourcej m5(J12J2)m . This source corresponds to
time dependent electric dipolee„XW 1(t)2XW 2(t)…, which is di-
rected from one trajectory towards the other@5#. Then, deco-
herence arises when this~fictitious! dipole emits a photon
imprinting a record in the electromagnetic environment t
could in principle be used to distinguish between the t
paths.

A conceptually similar and physically interesting proble
can be analyzed along the same lines: the decoherenc
neutral particles with a nonvanishing permanent dipole m
ment. In such case we can model the particle-field interac
using a LagrangianLint5Pmn(x)Fmn(x). Here, Fmn is the
field strength tensor andPmn is a totally antisymmetric ten
sor whose nonvanishing components can be interprete
the electric and magnetic dipole densities~in the laboratory
frame!. In fact, the electric dipole momentpW and magnetic
dipole momentmW of the particles moving along a trajector
XW (t) are obtained in terms of the dipolar tensor asP0i

5pi(t)d
3
„XW 2XW (t)…/2 andPi j 5e i jkmk(t)d

3
„XW 2XW (t)…/2. In
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this case we can perform a calculation which is,mutatis
mutandi, similar to the one above and show that the over
F5exp(2Wd) is

Wd5
1

2E E d4xd4y~P12P2!mn~x!Kmnrs~x,y!

3~P12P2!rs~y!. ~8!

The kernel appearing in this equation, defined
Kmnrs(x,y)5^$Fmn(x),Frs(y)%&, can be expressed in term
of derivatives ofDmn(x,y)

Kmnrs~x,y!5@]x
m]y

rDns~x,y!1]x
n]y

sDmr~x,y!

2]x
m]y

sDnr~x,y!2]x
n]y

rDms~x,y!#. ~9!

III. EVALUATING THE FRINGE VISIBILITY IN VACUUM

In what follows we will present results for thedecoher-
ence factors Wc andWd ~the subscripts stand for ‘‘charges
and ‘‘dipoles’’!. To computeWc we need the two point func
tion appearing in Eq.~6!. In the Feynman gauge and in th
absence of conducting plates it is

Dmn
(0)~x,y!52hmnE d3kW

~2p!32k
eikW (xW2yW )cos„k~x02y0!…,

~10!

where the superscript (0) identifies this as the vacuum c
tribution. We will assume that the trajectories are symme
and writeXW 1(t)52XW 2(t)5x(t)x̂. This is enough to describe
a typical double slit experiment from the point of view of a
observer moving at constant velocity from the source to
detector. In such case we can evaluate the overlap and o
a relatively simple expression for the decoherence factorWc,

Wc
(0)5e2E d3kW

8p3k
S 12

kj
2

k2DU E
2`

`

dt ẋ~ t !cos@kxx~ t !#eiktU2

.

~11!

To obtain this equation from Eq.~6! one should first explic-
itly perform the spatial integration, write the kern
Dmn

(0)(x,y) in momentum space and finally use the conser
tion of the four-current to cancel the contribution of the te
poral and longitudinal components of the current. This res
was obtained first in Ref.@2# using the Coulomb gauge and
slightly different but equivalent method. It can be simplifie
further by assuming the validity of the dipole approximati
cos@kxx(t)#.1 ~which is consistent in the nonrelativisti
limit !. Doing this, one can evaluate the decoherence fa
for some special trajectories. In fact, for adiabatic trajec
ries, where x(t)5Rexp@2t2/T2#, we find that Wc

(0)

52e2v2/3p, wherev5R/T is a characteristic velocity. This
result is finite and free of any cutoff dependence. Howev
for trajectories evolving over a finite time the situation
different. Thus, assuming that the motion starts att50, ends
at t5T, and that is composed of periods of constant veloc
v, or constant accelerationv/t, we obtain a result that di-
6-3
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verges logarithmically whent→0, Wc
(0)52e2v2log@T/t#/p2

~if t/T!1). Previous results@5# were obtained for trajecto
ries with discontinuous velocity using a natural UV cuto
arising from the finite size of the electron. The results of R
@5# agree with ours if the high-frequency cutoff is identifie
with 1/t ~the results of Refs.@7–9# are incorrect, see below!.
Thus, the cutoff dependence disappears in the adiabatic
and is a consequence of abrupt changes in velocity and
instantaneous preparation of the initial state.

The concept of a decoherence rate can also be introd
in this context as follows: Let us now assume that the t
wave packets are superposed after oscillatingN times, and
that the time to complete one oscillation is much shorter t
the period between oscillations. Ifv(t) denotes the velocity
during one oscillation of periodT for a sequence ofN iden-
tical oscillations separated byDT@T, we can write the ve-
locity as

ẋN~ t !5 (
n50

N21

v~ t2nDT!. ~12!

Therefore, the temporal integral appearing in the deco
ence factor~11! can be evaluated as

I N[E
2`

`

dt ẋN~ t !eikt5I
e2 ikNDT21

eikDT21
, ~13!

where I is the result of the temporal integral for a sing
oscillation. Inserting Eq.~13! into Eq.~11! we find that, after
a large number of oscillations, the decoherence factor is
portional toN: Wc

(0)5NWc
(0)(1), whereWc

(0)(1) is the deco-
herence factor in a single oscillation.

We now describe the results for the case of neutral p
ticles with permanent dipole moments. The calculation i
bit more tedious than for the case of charges. To avoid c
bersome details we will evaluate the decoherence factor
under somewhat simplified assumptions. We will consi
that the dipole momentspW andmW remain constant along th
trajectories. We will also assume symmetric trajectories
write XW 1(t)52XW 2(t)5x(t) ê̂. In this case, we can perform
the spatial integration in Eq.~8! and use the antisymmetri
nature of the polarization tensorPmn ~which has the same
effect than the conservation of the four-current in the pre
ous case and enables us to cancel the contribution of tem
ral and longitudinal modes of the field!. Finally, we can use
the momentum representation for the two point function
tained by replacing Eq.~10! into Eq. ~9!. In this way we
obtain a relatively simple final expression for the decoh
ence factor. It reads

Wd
(0)5E d3kW

8p3
kH pW 2S 12

kp
2

k2D 1mW 2S 12
km

2

k2 D J
3U E

0

t

dt8sin@kjx~ t8!#eikt8U2

. ~14!

Using again the dipole approximation for the adiabatic t
jectory we can show that the above decoherence facto
06210
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such thatWd
(0)/Wc

(0).p2/e2T2 for a purely electric dipole~a
similar expression is obtained for the purely magnetic ca!.
This ratio is typically much smaller than one~i.e., it is of the
order of the square of the typical dipole length in units of t
total length of the trajectory!.

IV. FRINGE VISIBILITY IN THE PRESENCE
OF A CONDUCTOR

We will now show how the above results are modified
the presence of a perfect conductor located in the planz
50. To consider the effect of the conductor we only need
use the appropriate two point functions that obey the cor
boundary conditions. For the case of charges, the kernelDmn

is the sum of two terms@16#

Dmn5Dmn
(0)1Dmn

(B) . ~15!

The vacuum term is the same as in Eq.~10!. The contribution
of the boundary conditions@identified by the superscrip
(B)] can be obtained by the method of images and is

Dmn
(B)~x,y!5~hmn12nmnn!E d3kW

~2p!32k
exp„ikW~xW2yW 8!…

3cos„k~x02y0!…. ~16!

Herenm is the normal to the plane andyW 8 is the position of
the image point ofyW ~a prime denotes a vector reflected wi
respect to the plane, i.e.,yW 85(yx ,yy ,2yz). Inserting Eq.
~16! into Eq.~6! we can derive a formula for the contributio
of the boundary to the decay of the interference fringes. T
complete equation is involved but it becomes considera
simpler if we restrict to the case where the trajectories
either perpendicular or parallel to the conductor’s plane.
this case we can writeXW 1,25z0ẑ6x(t) ê̂, where ê̂ defines a
fixed vector aligned either along theẑ axis or along the plane
perpendicular to it. The contribution of the conductor to t
decoherence factor is

Wc
(B)52 ê̂ê̂8e2E d3kW

8p3k
S 12

kj
2

k2D
3e2ikzz0U E

0

t

dt8ẋ~ t8!cos@kjx~ t8!#eikt8U2

. ~17!

It is interesting to note that the sign ofWc
(B) is determined

by the orientation ofê̂8 relative to ê̂. Wc
(0) is negative when

the trajectories are parallel to the conductor’s plane~since in
that caseê̂85 ê̂). On the other hand,Wc

(0) is positive when

the trajectories are perpendicular to the plane~where ê̂85

2 ê̂). At small distances to the plane (z0.0) we can see
from Eq. ~17! that uWc

(B)u.Wc
(0) . Therefore, if the trajecto-

ries are perpendicular to the plane, in the limit of small d
tances the decoherence factor isWc5Wc

(0)1Wc
(B).2Wc

(0) .
The effect of the conductor is to double the decohere
factor. However, if the trajectories are parallel to the cond
6-4
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tor the effect is exactly the opposite. AsWc
(B) is negative, the

conductor producesrecoherenceincreasing the contrast o
the fringes. In fact, for small distances the decoherence
tor tends to vanish sinceWc5Wc

(0)1Wc
(B).0.

It is remarkable that these results can be understood u
the method of images. For this, we should take into acco
that, as mentioned above, the decoherence factor for a do
slit experiment with charge can be related to the probab
of photon emission from a source characterized by a fo
current j m5(J12J2)m , which is the difference between th
two interfering currents. This source corresponds to that
varying dipolep5ex(t). So, to understand our result on
has to analyze how does the conductor affects the ph
emission from this fictitious dipole. When the conducti
plane is parallel to the dipole, the image dipole ispW im5

2pW . Therefore, the total dipole moment vanishes, and
does the probability to emit a photon. The image dipole c
cels the effect of the real dipole and this produces the rec
ery of the fringe contrast. On the other hand, when the c
ductor is perpendicular to the trajectories, the image dipol
equal to the real dipolepW im51pW . Therefore, the total dipole
is twice the original one. This in principle would lead us
conclude that the total decoherence factorWc5Wc

(0)1Wc
(B)

should be four times larger thanWc
(0) . However, one should

take into account that in the presence of a perfect mi
photons can only be emitted in thez>0 region. This intro-
duces an additional factor of 1/2 that gives rise to the fi
result Wc.2Wc

(0) . One should remark that the dipole us
in the above reasoning is not a real dipole but the effec
~fictitious! dipole created by the opposite charges followi
the two interfering trajectories.

In the case when the interfering particles are neutral
carry a permanent dipole moment, the effect of the condu
can also be taken into account using the method descr
above. For simplicity we will only consider trajectories th
are parallel to the plane@i.e., XW 1,25z0ẑ6x(t) ê̂] and assume
that the dipole moments are either perpendicular or para
to the conductor~the general case is more complex but t
essential features can be seen here!. Using this we obtain

Wd
(B)52E d3kW

32p3
kH pW pW 8S 12

kp
2

k2D 2mW mW 8S 12
km

2

k2 D J
3e2ikzz0U E

0

t

dt8sin@kjx~ t8!#eikt8U2

. ~18!

Thus, if the reflected dipolepW 8 has the opposite directio
thanpW ~which is the case whenpW is parallel to the plate! the
conductor tends to increase decoherence~since the contribu-
tion of the electric dipole toWd

(B) is positive!. Likewise,

whenpW is perpendicular to the plane,pW 5pW 8 and the contri-
bution of the electric dipole toWd

(B) is negative. Therefore, in
this case the conductor producesrecoherenceinstead of de-
coherence. The opposite effect is found for the magnetic
pole. Indeed, whenmW 852mW ~magnetic dipole perpendicula
to the plane! the conductor produces recoherence while m
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decoherence is produced if the magnetic dipole is paralle
the plane. These features can also be understood by thin
in terms of the image dipoles that are generated by the c

ductor. Thus, both whenpW is perpendicular to the plane o

whenmW is parallel, the direction of the image dipoles coi
cide with the source dipoles. In such case the decohere

increases. In the opposite situation (pW parallel ormW perpen-
dicular to the plane! the effect of the conductor is to intro
duce recoherence. Again, in the limit of small distances
absolute value ofWd

(0) and Wd
(B) coincide and therefore the

decoherence factor doubles with respect to the vacuum c
Both for the case of charges and for the case of dipo

the boundary contribution to the decoherence factor dec
algebraically with the distance to the conductor~in the limit
of large distances!. In the opposite case, for small separ
tions, explicit expressions can be obtained. For example,
charges moving close and parallel to the conductor, the l
est order contribution ofWc can be shown to depend qua
dratically onz0. As expected, it exactly coincides with th
decoherence factor produced by an electric dipolep52ez0
in vacuum~with an additional factor of 1/2 that takes int
account that photons can only be emitted withz>0).

V. CONCLUSIONS

The impact of conducting boundaries on the fringe visib
ity for the case of electrons was previously examined
Refs.@7–9#. The results reported in such papers are not c
rect because of the use of an erroneous approximation
low velocities. In fact, the author performed a low veloci
expansion by neglecting the spatial components of the fo
currents appearing in Eq.~6!, which are indeed linear in ve
locity. However, this approximation clearly violates the co
servation of the four-current and makes the final res
unphysical. In fact, the final expressions obtained in Re
@7–9# are gauge dependent and could violate unitarity allo
ing for uFu.1 ~thus, the decoherence factor computed
such papers is not positive defined!. As mentioned above, in
the correct result the contribution of the temporal compon
of the four-current is canceled out by the one correspond
to the longitudinal component. Thus, only the transve
modes are physical and determine the value of the deco
ence factorW, which being manifestly positive ensures th
uFu<1 @note that positivity of the decoherence factorW is
manifested from Eqs.~11! and ~14!#.

Another interesting point discussed in Refs.@7,8# is the
possibility of observing decoherence induced by vacu
fluctuations in a vetolike experiment. In such experiment o
ideally surrounds the setup with photon detectors and ke
only the data coming from those runs where no photons w
actually detected. In Ref.@8# the author argues that the de
coherence factor in such experiments is different from
one we analyzed here. In our view, in this kind of veto e
periment the decoherence factor actually vanishes and
fringe visibility is not affected. Indeed, in an ideal vetolik
experiment one is really performing a projective measu
ment of the state of the electromagnetic field~which is de-
6-5
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tected to be the vacuum!. Therefore, the state of the com
bined system~particle plus field! is obtained from Eq.~1! by
projecting the electromagnetic field into the vacuum st
~and normalizing accordingly!. The probability of finding a
particle at a given position turns out to be

prob~XW ,t !5uZ1f1~XW ,t !u21uZ2f2~XW ,t !u2

12Re„Z1f1~XW ,t !Z2f2* ~XW ,t !…, ~19!

where

Zi5
1

Au^0uE1&u21u^0uE2&u2
^0uEi&. ~20!

This shows that, although the particular values ofZi depend
on the position and orientation of the conducting plane,
visibility of the fringes is not affected by the interaction wi
the field ~note also that for the simplest case of symme
trajectories we always haveZi51/A2). Thus, as there is no
decoherence factor in the last term of Eq.~19!, contrary to
what was claimed in Refs.@7–9#, no decoherence can b
seen in this kind of veto experiment.

As we mentioned in the Introduction, our work not on
serves the purpose of correcting previous results. In fact,
showed that the effect of conducting boundaries on the fri
visibility of double slit interference experiments can be in
C.
r-

06210
e

e

c

e
e
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itively understood in simple terms. The way in which dec
herence is affected is similar to the manner in which atom
emission properties are modified by the presence of cond
ing boundaries. Thus, the effect of the boundaries does
have a well defined sign and may produce either more de
herence or complete recoherence~i.e., smaller or higher
fringe visibility than in vacuum! depending on the orienta
tion of the relevant trajectories with respect to the cond
tor’s plane. Most notably, one can predict the sign of t
effect ~i.e., whether the conductor decreases or enhances
fringe visibility! by using a reasoning based on the meth
of images. The effect discussed here is conceptually imp
tant due to its fundamental origin~i.e., it is always present!,
but its magnitude is too small to be under the reach of c
rent experiments involving interference of neutral atoms
the vicinity of conducting planes@17#. However it may be
possible to enhance the effect by considering other ge
etries, like a periodically corrugated conducting plane. Wo
in this direction is in progress.
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