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Interpretation of non-Markovian stochastic Schrödinger equations as a hidden-variable theory
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Do diffusive non-Markovian stochastic Schro¨dinger equations~SSEs! for open quantum systems have a
physical interpretation? In a recent paper@Phys. Rev. A66, 012108~2002!# we investigated this question using
the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE
represents the state the system would be in at that time if a measurement was performed on the environment
at that time, and yielded a particular result. However, the linking of solutions at different times to make a
trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal~hidden
variable! interpretation of quantum mechanics. We find that the noise functionz(t) appearing in the non-
Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property
~beable! of the environment has a definite valuez(t) even in the absence of measurement on the environment.
The non-Markovian SSE gives the evolution of the state of the system ‘‘conditioned’’ on this environment
hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit
SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit.

DOI: 10.1103/PhysRevA.68.062104 PACS number~s!: 03.65.Ta, 03.65.Yz, 42.50.Lc
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I. INTRODUCTION

In nature it is very unlikely to find a system existing
isolation; usually it is immersed in an environment~or bath!.
In quantum mechanics we label this type of system an o
quantum system@1#. To determine the evolution we mus
solve the Schro¨dinger equation

dtuC~ t !&5
2 i

\
Ĥuni~ t !uC~ t !&, ~1.1!

whereuC(t)& andĤuni(t) are the quantum state and Ham
tonian for the complete universe~system and bath!. That is,
uC(t)& belongs to the Hilbert spaceHuni5Hsyŝ Hbath. Due
to the large Hilbert space of the bath (Hbath) it is convenient
to describe the system by its reduced state. This is define

r red~ t !5Trbath@ uC~ t !&^C~ t !u#, ~1.2!

and operates only in theHsys.
It has been shown@2,3# by a projection-operator metho

that we can write a general master equation for the redu
state as

dtr red~ t !52
i

\
@Ĥ~ t !,r red~ t !#1E

0

t

K̂~ t,s!r red~s!ds,

~1.3!

whereĤ(t) operates only inHsysandK̂(t,s) is the ‘‘memory
time’’ superoperator. It operates onr red(s) and represents
how the bath has affected the system in the past. The p
lem with this equation is that in generalK̂(t,s) cannot be
explicitly evaluated.
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In recent papers@4–13# non-Markovian stochastic Schro¨-
dinger equations~SSEs! have been proposed which allow a
alternative procedure for solving the reduced state. A n
Markovian SSE is a stochastic equation for the system s
ucz(t)&, conditioned on some noise functionz(t). We con-
sider only continuous SSEs, although discontinuous o
have also been proposed@14#. The SSE has the property tha
when the projector forucz(t)& is averaged over all the pos
sible z(t) one obtainsr red(t). That is,

r red~ t !5E@ ucz~ t !&^cz~ t !u#, ~1.4!

where E@ . . . # denotes an ensemble average over all poss
z(t)’s.

When using non-Markovian SSEs to solve the reduc
state it turns out that in general we cannot explicitly evalu
ucz(t)&. However, as shown in Refs.@15,16# we can use
perturbative techniques to find approximate solutions. H
we are interested not in how to solve the non-Markov
SSEs, but in how tointerpret them.

When Markovian SSEs~the Markovian limit of non-
Markovian SSEs! were introduced in quantum optics the
first interpretations was as a numerical tool@17#. Another
interpretation was that Markovian SSEs representobjective
~that is, independent of any observer! trajectories for the sys-
tem @18–20#. In this interpretation the SSE is seen as a~sto-
chastic and nonlinear! modification of the Schro¨dinger equa-
tion, modelling how state reduction~collapse of the wave
function! occurs in open quantum systems. However, in
cent times it has been generally accepted that Markov
SSEs are evolution equations for the system state co
tioned on continuous measurement of the bath@1,21–23#.

A Markovian bath is one for which the bath correlatio
time is much less than the decoherence time of the sys
For such a system one can envisage making repeated
surements on the bath on a time scale infinitesimal compa
to the system decoherence time but large compared to
bath correlation time. Thus these measurements do not
©2003 The American Physical Society04-1
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to any back action of the system from the bath. But
measurement of the bath does yield information about
system. This can be described as the action of a measure
operator~as appears in generalized quantum measurem
theory@24#! for an infinitesimal time interval@23#, and keeps
the system in a pure state. It can be reexpressed as a S
which the stochastic variablez(t) is related to the results o
the continuous measurements. The stochastic trajector
this conditioned system state generated by the Markov
SSE is often referred to as a quantum trajectory@1#. Different
detection procedures~measurements on the bath! result in
different unravelings. A few common examples are dir
detection @1#, homodyne@1,21#, and heterodyne detectio
@22#.

In the light of the quantum trajectory interpretation
Markovian SSEs, we return to the interpretation of no
Markovian SSEs. Obviously one interpretation is that th
are simply a numerical tool used to generate the redu
state. However, after the success in finding a physical in
pretation for Markovian SSEs, it is natural to seek someth
beyond this trivial interpretation. Moreover, we have pre
ously shown@10# that there are different non-Markovian un
ravelings, and that these correspond to different meas
ment schemes~homodyne and heterodyne! in the Markovian
limit. Thus it is natural to seek an interpretation of no
Markovian SSEs beyond that of being just numerical to
@25#.

In Ref. @10# we came to the conclusion that under t
orthodox interpretation@24# of quantum mechanics, the so
lution of a non-Markovian SSE at timet is the state the
system will be in, if at that time a measurement was p
formed on the bath and yielded a resultz. Thus the non-
Markovian SSE under this view has no interpretation; it
just a stencil used to calculate the conditioned system sta
a particular timet. In other words, the linking ofucz(t)& ~or
z(t)) with itself at times less thent turns out to be a conve
nient fiction.

Unlike the Markovian case, it is not possible to derive t
SSE by continuously measuring the bath because a
Markovian bath has a non-negligible correlation time. Th
if a measurement is made at timet, collapsing the bath stat
at that time, this will affect the state of the bath interacti
with the system in the future. That is, the measurement
the bath will cause a backaction on the system and hence
average evolution for a system state conditioned on cont
ous measurement of the bath will not be that of Eq.~1.2!. In
fact, a continuous measurement on a bath with a nonz
correlation time will lead to a quantum Zeno effect, radica
altering the average evolution of the system. If, on the ot
hand, the measurement on the bath is not done continuo
then the system state will not remain in a pure state as
system and bath will become entangled in the time betw
measurements on the bath. Thus it seems safe to conc
that there is no continuous measurement interpretation,
in fact we are forced to accept that SSEs are only a nume
tool which could be used to determine the system state
particular time conditioned on a particular measurement
sult z.
06210
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Since orthodox quantum mechanics fails to give a sa
fying interpretation for non-Markovian SSEs, in this pap
we turn to anonorthodox approach: the modal interpretatio
of quantum mechanics@26–32#. This interpretation, unlike
the orthodox interpretation, has as its basic goal to keep
ality intact. That is, the values of some observables~the hid-
den variables! really exist before we measure them. Becau
the observables have an objective reality from now on
will refer to them as properties or beables~after Bell @26#!.
Just as in the orthodox theory, where it is impossible to
multaneously measure all observables, in the modal theo
is impossible to give all observables property status. T
best-known example of such an interpretation is Bohm
mechanics for particles@33# in which position is the pre-
ferred observable~property!.

We expect a modal interpretation to be applicable to n
Markovian SSEs because we can use it to assign defi
properties to the bath, as occurs in the orthodox theory w
the bath is measured,without invoking such a measuremen
In this way we avoid the backaction problem which arose
the orthodox theory. While the bath is ascribed definite pr
erties, the system is described as a purely quantum sys
But, because of the entanglement between the system an
bath, we can define a system state associated with~or ‘‘con-
ditioned’’ on! a particular value for the bath property. If th
bath properties are described by rank-one projective m
sures onHbath, then the conditioned system state will b
pure. Averaging over the conditioned system state would
produce the non-Markovian reduced state matrixr red(t), just
as in Eq.~1.4!.

Since the bath hidden variables change in time, the c
ditioned system state will evolve in time also, and this tim
there is a meaningful relation between the conditioned s
tem state at different times. A particular set of bath proper
amounts to a particulardecomposition~of the unit operator
on Hbath), and leads to a particularunravelingof the non-
Markovian master equation~1.3!. We will use these terms
interchangeably.

In this paper we show that for a suitable choice of ba
properties we can reproduce all of the non-Markovian SS
discussed above, as well as one which has not been p
ously considered. The noise functionz(t) appearing in the
non-Markovian SSE is simply a function of the values of t
bath hidden variables. The system stateucz(t)& is the system
state conditioned on the bath properties having the va
giving z(t). Moreover, the system state guides the values
the hidden variables of the bath.

The format of this paper is as follows: In Sec. II a sum
mary of the modal interpretation of quantum mechanics
presented. In Sec. III we give the microscopic model
non-Markovian dynamics for an open quantum system t
underlies all of our work. In Sec. IV we show how mod
dynamics can be applied to such models, and derive the
den variable interpretation of non-Markovian SSEs for th
different unravelings. These correspond to objective val
for the position of each bath harmonic oscillators~as in the
Bohmian interpretation!, for the quadrature of the collectiv
bath field, and for the coherent amplitude of the collect
bath field. The first of these has no Markovian limit, whi
the latter two have homodyne and heterodyne detection
4-2
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their Markovian limit. Lastly in Sec. V we conclude with
discussion and directions for future work.

II. MODAL INTERPRETATION OF QUANTUM
MECHANICS

In this section we give a brief overview of the mod
interpretation of quantum mechanics; for a more detailed
scription see Refs.@26–32#. The basic idea of this view o
quantum mechanics is that certain observables have a
nite reality independent of measurement, whereas in the
thodox interpretation the measurement defines the realit
the observables. To explain this we consider measureme
the observableZ. The notation we use to represent an obse
able is

Z5$~zn ,p̂n!%. ~2.1!

That is, Z is represented by a set of paired elements. E
pair represents the valuezn and the corresponding projecto
p̂n . The projectors are orthogonal and form a decomposi
of unity:

(
n

p̂n51̂. ~2.2!

In Eq. ~2.1! for simplicity we have only considered the ca
whereZ is time independent. We can in this case also de
an operatorẐ which is equivalent to Eq.~2.1!, by

Ẑ5(
n

znp̂n . ~2.3!

In the orthodox interpretationZ has a definite valuezn if
and only if uC(t)&5uCn(t)& ~an eigenstate ofẐ). However,
in general uC(t)&5(ncn(t)uCn(t)&, which implies thatZ
has all values contained in the sum; it is not well defin
Upon measurement, by the introduction of a reduction eq
tion @ uC(t)&→uCn(t)&] the value of Z becomeszn with
probability ucnu2.

In the modal interpretation we choose one projective m
sure$p̂n(t)% as the preferred measure. This then determi
which observables can be given property status. To exp
why the property takes the valuezn we introduce an extra
quantum state, theproperty state,

uCn~ t !&5p̂nuC~ t !&/AN, ~2.4!

whereN is a normalization constant. This state propagate
time along with uC(t)&, except it is stochastic in natur
~jumps between differentn). It is interpreted as the actua
state of the universe, by the eigenstate eigenvalue it h
definite value (zn) for Z. The stochastic dynamics~rates at
which it jumps between differentn) is determined byuC(t)&
and so in this interpretationuC(t)& is called the guiding
state.
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For the purposes of this paper Eq.~2.3! is actually not
general enough. In Ref.@32# we showed that this theory ca
be extended to positive operator measures~POMs! @34#, that
is

Z5$~zn ,F̂n!%, ~2.5!

whereF̂n is an effect~or POM element! with (nF̂n51̂. In
Eq. ~2.5!, zn is the value of the effect, which could be a re
number, a complex number, a string of numbers, or eve
statement~yes/no!.

In Ref. @32# we showed that by implementing Naimark
theorem, modal dynamics can be extended to include PO
Naimark’s theorem says that if we enlarge the Hilbert sp
of the universe fromHuni to K5Huni^ Haux, we can define a

projectorP̂n in K such that

^C~ t !uF̂nuC~ t !&5^C~ t !u^fuP̂nuf&uC~ t !&, ~2.6!

for all uC(t)&PHuni and for all possiblen. uf&^fu is called
the Naimark projection ofK onto Huni . To work out the set

$P̂n(t)% it is necessary to introduce another projec

P̂N11(t), such that

(
n

N11

P̂n~ t !51̂uni1aux, ~2.7!

and

P̂n~ t !P̂m~ t !5P̂n~ t !dnm ~2.8!

is satisfied forn, m,51, . . . ,N11. The set of projectors in
this enlarged Hilbert space is called the Naimark extens
of F̂n(t) @34#. Worked examples of this are shown in@34#. In
this enlarged space the observable defined by Eq.~2.5! be-
comes the property

Z5$~zn ,P̂n!%, ~2.9!

or equivalently

Ẑ5 (
n

N11

znP̂n . ~2.10!

Here $P̂n(t)% is the preferred measure inK. The guiding
state becomes

uF~ t !&5uC~ t !& ^ uf&, ~2.11!

where uC(t)& is still the solution to the Schro¨dinger equa-
tion ~1.1!. The property state becomes

uFn~ t !&5P̂nuF~ t !&/AN. ~2.12!

That is, when describing POMs the universe is described
a property state in the enlarged Hilbert space, which does
factorize into a universe state and an auxiliary state. This
be regarded merely as a mathematical construction to
reality to POMs. Note that the value ofzN11 is irrelevant as
4-3
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P̂N11 projects into the null space ofuF(t)&. That is, this
value will occur with zero probability.

The modal dynamics@the stochastic evolution of th
states in Eq.~2.4! or Eq. ~2.12!# is found using the method
originally proposed by Bell@26# and generalized in Refs
@29,30,32# to include time dependent projectors and POM
DefinePn(t) as the probability that the system is in thenth
state at timet. Assuming a Markovian process, by which w
mean that the probability of being in statem at time t1dt
only depends on the state at timet, we can write a maste
equation forPn(t) as

dtPn~ t !5(
m

@Tnm~ t !Pm~ t !2TmnPn~ t !#, ~2.13!

where Tnm are transition rates. Forn5m, Tnn ~which is
negative! is a measure of the rate at which staten losses
probability.

Defining a probability currentJnm(t) as

Jnm~ t !5Tnm~ t !Pm~ t !2TmnPn~ t !, ~2.14!

results in Jnm(t)52Jmn(t) and allows us to rewrite the
probability master equation as

dtPn~ t !5(
m

Jnm~ t !. ~2.15!

Given Jnm(t) and Pn(t), there are many possible transitio
rates satisfying Eq.~2.15!. One solution, chosen by Bell@26#
is as follows.

For Jnm(t),0,

Tnm~ t !50, ~2.16!

Tmn~ t !52Jnm~ t !/Pn~ t !, ~2.17!

and forJnm(t).0

Tnm~ t !5Jnm~ t !/Pm~ t !, ~2.18!

Tmn~ t !50. ~2.19!

This is only one of the infinitely many solutions. These a
found by adding an extra termTnm

0 (t) to Tnm(t), where
Tnm

0 (t) is constrained only by

Tnm
0 ~ t !Pm~ t !2Tmn

0 ~ t !Pn~ t !50. ~2.20!

In Ref. @32# we showed that one possible solution forJnm(t)
is

Jnm~ t !52 Im$^F~ t !uP̂n@Ĥuni~ t ! ^ 1̂aux#P̂muF~ t !&%/\.
~2.21!

Note that this is only one of infinitely many possible cu
rents, as we can add any currentJnm

0 (t) to Jnm(t) which
satisfies(mJnm

0 50, to give a valid probability current. Fo
the purposes of this paper we only consider the simple s
tions @not containing the extraTnm

0 (t) andJnm
0 (t) terms#.
06210
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The above dynamics only describe a discrete decomp
tion. For non-Markovian SSEs we must consider continuo
decompositions. In Ref.@32# we showed that provided th
Hamiltonian is at most quadratic in the conjugate variable
the chosen hidden variable, then the above dynamics red
to a deterministic theory. The only stochasticity is due to
random initial conditions of the hidden variable. That is, it
similar to Bohmian mechanics@33#. In fact if the preferred
projective measure is chosen to be the position projec
measure (p̂x5ux&^xu) then Bohmian mechanics is the co
tinuum limit.

We define continuous decompositions by the projec

P̂$qk%5u$qk%&^$qk%u, which in turn defines$q̂k% as the opera-
tors for the hidden variables. Here we have introduced
notation for the set of hidden variables ($qk%) whose rel-
evance will become important in the following sections. T
decomposition of unity is

E u$qk%&^$qk%u)
k

dqk51̂. ~2.22!

For this set of hidden variables we will see later that it is a
useful to define a single propertyZ as

Z~ t !5ˆ„z~$qk%,t !,u$qk%&^$qk%u…‰, ~2.23!

where z($qk%,t) is a function of the values of the hidde
variables$qk% and t.

As in Bohmian mechanics the evolution of each hidd
variableqk(t) ~or the corresponding property state! can be
found by the differential equation

dtqk~ t !5vk~$qj%,t !uqk5qk(t) , ~2.24!

wherevk($qj%,t) is the velocity field. This is defined as@32#

vk~$qj%,t !5
Re@^F~ t !u$qj%&^$qj%uv̂k~ t !uF~ t !&#

^F~ t !u$qj%&^$qj%uF~ t !&
.

~2.25!

Herev̂k(t) is thekth component of the velocity operator an
is defined as

v̂k~ t !5
2 i

\
@ q̂k ,Ĥuni~ t ! ^ 1̂aux#. ~2.26!

III. NON-MARKOVIAN DYNAMICS FOR OPEN
QUANTUM SYSTEMS

The aim of this section is to outline the underlying d
namics used to generate non-Markovian SSEs. Firstly
assume that there are only two systems, a system of inte
and a bath. That is, the Hamiltonian of the universe is

Ĥsyŝ 1̂11̂^ Ĥbath1V̂. ~3.1!

The system HamiltonianĤsys is split into two terms, these
being ĤV and Ĥ. The bath is modeled by a collection o
one-dimensional harmonic oscillators. In terms of the b
annihilation and creation operators,âk and âk

†
, the Hamil-

tonian for the bath is
4-4
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Ĥbath5(
k

\vkâk
†âk . ~3.2!

The interaction HamiltonianV̂ we assume is linear in th
bath amplitude, and has the form

V̂5 i\(
k

@ L̂gk* âk
†2L̂†gkâk#, ~3.3!

whereL̂ is the system lowering operator andgk is the cou-
pling strength of thekth mode to the system. Without loss o
generality we can take thegk’s to be real, absorbing an
phases in the definitions of the bath operators.

For calculation purposes we define an interaction fra
such that the fast dynamics placed on the state by the Ha
toniansĤV andĤbath is moved to the operators. The unita
evolution operator for this transformations is

Û0~ t,0!5e2 i (ĤV ^ 1̂11̂^ Ĥbath)(t20)/\. ~3.4!

Thus the combined state in the interaction frame is define

uC~ t !&5Û0
†~ t,0!uC~ t !Sch&, ~3.5!

and an arbitrary operatorÂ becomes

Âint~ t !5Û0
†~ t,0!ÂÛ0~ t,0!. ~3.6!

This allows us to write the Schro¨dinger equation as

dtuC~ t !&52
i

\
Ĥuni~ t !uC~ t !&, ~3.7!

whereĤuni(t)5Ĥ int(t)1V̂int(t). HereĤ int(t) refers toĤ(t)
in the interaction picture and the form of the latter is

V̂int~ t !5 i\(
k

@ L̂gke
iVktâk

†2L̂†gke
2 iVktâk#, ~3.8!

whereVk5vk2V. Here we have finally restricted the form
of ĤV to be such thatL̂ in the interaction picture simply
rotates in the complex plane at frequencyV. That is L̂ int(t)
5L̂e2 iVt.

IV. NON-MARKOVIAN STOCHASTIC SCHRO ¨ DINGER
EQUATIONS DERIVED

In this section we show that diffusive non-Markovia
SSEs have an interpretation under the modal interpretatio
quantum mechanics. To do this we choose a decompos
such that the preferred projectors have the form

p̂$qk%~ t !5u$qk%&^$qk%ubatĥ 1̂sys. ~4.1!

This means the bath is given definite properties, while
system is treated as a purely quantum system, which ne
theless influences the bath values via the coupling Ha
tonian. The different unravelings correspond to differe
06210
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choices ofu$qk%&^$qk%ubath. For the overcomplete unrave
ings, like the coherent state unraveling@5,10# we have to use
a POM@32#. This means we have to use the enlarged Hilb
space preferred projectorP̂$qk%(t), which in general form is

P̂$qk%~ t !5u$qk%&^$qk%ubath1aux̂ 1̂sys. ~4.2!

With these projectors, the property statesuCn(t)& @simi-
larly for uFn(t)&] can be factorized as

uCn~ t !&5u$qk%&uc$qk%~ t !&, ~4.3!

where uc$qk%(t)& is called the conditioned system state.

receives this name because it lives entirely inHsys and is
conditioned on the bath values$qk%. The form of uc$qk%(t)&
is

uc$qk%~ t !&5^$qk%uC~ t !&/AN, ~4.4!

where the normalization constant is defined as

N5^C~ t !u$qk%&^$qk%uC~ t !&. ~4.5!

This is the state of the system conditioned on the bath hid
variables having values,$qk%.

For an actual trajectory~in the sense of Ref.@10#!, the
bath values$qk(t)% are time dependent. This state becom
uc$qk(t)%(t)& and represents the state of the system con
tioned on the bath having this trajectory. That is, it is co
tinuous in time and the differential equation of this state w
represent its evolution. In Refs.@10# and@11# we showed that
by starting with Eq.~4.4!, the time derivative of this equation
gives diffusive non-Markovian SSEs. Thus in this paper
will not reproduce these derivations, but instead show tha
using our velocity operator technique we can rederive
actual trajectories for$qk(t)%. This shows that diffusive non
Markovian SSEs have a modal interpretation. If fact, beca
the orthodox interpretation only gives an interpretation
the solutions of non-Markovian SSE at a particular tim
~time of measurement!, we believe that the only nontrivia
interpretation of non-Markovian SSEs is a modal interpre
tion.

Before we consider specific unravelings we would like
note that the velocity field, Eq.~2.25!, can be written in
terms of the conditioned system state as

~4.6!

where

~4.7!

This results in the following differential equation for the ba
values:
4-5
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~4.8!

whereuc$qk(t)%(t)&5uc$qk%(t)&u$qk5qk(t)% .

A. Position unraveling

The first unraveling we consider is the position unrav
ing. This results when we chose a preferred projective m
sure of the form

$p̂$qk%5p̂$xk%5u$xk%&^$xk%ubatĥ 1̂sys% , ~4.9!

whereu$xk%& is the multimode eigenstate of the position o
eratorsx̂k5(âk

†1âk)/A2.
To simplify the overall equation we define a noise fun

tion z(t) as

z~ t !5(
k

gkA2xk~ t !e2 iVkt. ~4.10!

In Ref. @11# we showed that the non-Markovian SSE for t
position unraveling is

dtucz~ t !&5H 2 i

\
Ĥ int~ t !1~ L̂2^L̂& t!z* ~ t !2~ L̂2^L̂& t!@B̂z~ t !

1D̂z~ t !#1^~ L̂2^L̂& t!@B̂z~ t !1D̂z~ t !#& t

2~ L̂†2^L̂†& t!@Âz~ t !1Ĉz~ t !#1^~ L̂†2^L̂†& t!

3@Âz~ t !1Ĉz~ t !#& tJ ucz~ t !&, ~4.11!

whereucz(t)&[uc$xk(t)%(t)& and^L̂& t5^cz(t)uL̂ucz(t)&. The

four operatorsÂz(t), B̂z(t), Ĉz(t), D̂z(t) are defined as an
satzen to functional derivatives. It turns out that in gene
these operators are not solvable. The perturbation techni
outlined in Refs.@15# and @16# can be applied to this non
Markovian SSE to give a perturbative solution. Given th
there is no Markovian limit to this equation, however, it
unclear whether such perturbative methods would be ef
tive.

We also showed, after considerable effort, that

dtxk~ t !5@^L̂& tgke
iVkt1^L̂†& tgke

2 iVkt#/A2. ~4.12!

Integrating this gives

xk~ t !5xk~0!1E
0

t

ds@^L̂&sgke
iVks1^L̂†&sgke

2 iVks#/A2,

~4.13!

wherexk(0) is the random variable chosen from the dist
bution

P~$xk%,0!5 z^$xk%u$0k%& z25)
k

exp~2xk
2!

Ap
. ~4.14!
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That is, we have chosen the initial conditionuC(t)&
5u$0k%&uc(0)&.

To show that Eq.~4.8! does give the same trajectories f
the values$xk(t)% as in Eq.~4.13!, we apply the Hamilto-
nians defined in Sec. III to Eq.~2.26!, with qk5xk . This
gives

v̂k~ t !5@gke
iVktL̂1gke

2 iVktL̂†#/A2, ~4.15!

as @ x̂k ,âk#521/A2 and @ x̂k ,âk
†#51/A2. Substituting this

into Eq. ~4.6! gives a velocity field of the form

vk~$xk%,t !5@gke
iVkt^c$xk%~ t !uL̂uc$xk%~ t !&

1gke
2 iVkt^c$xk%~ t !uL̂†uc$xk%~ t !&#/A2.

~4.16!

Thus Eq. ~4.8! immediately reproduces Eq.~4.12!,
thereby confirming that the modal theory does give the sa
non-Markovian SSEs, as found with the orthodox theory.

B. Quadrature unraveling

The next unraveling we consider is what we call t
quadrature unraveling. In Ref.@10# we show that this unrav-
eling only exists for certain environments, such that for e
ery modek in the bath there exists another mode, which
can label2k, such thatV2k52Vk and g2k5gk . These
simply imply that the modes coupled to the system come
symmetric pairs about the system frequencyV. The form of
the preferred projective measure for this unraveling is

$p̂$qk%5p̂$Xk
1 ,Y

k
2%5u$Xk

1 ,Yk
2%&^$Xk

1 ,Yk
2%ubatĥ 1̂sys% ,

~4.17!

where u$Xk
1 ,Yk

2%&5)k.0uXk
1 ,Yk

2& where uXk
1 ,Yk

2& is the
two-mode entangled~EPR! state

uXk
1 ,Yk

2&5E dx8

A2p
U Xk

12x8

A2
L

2k

U Xk
11x8

A2
L

k

eiYk
2x8.

~4.18!

Here u(Xk
11x8)/A2&k is an eigenstate ofx̂k , and similarly

u(Xk
12x8)/A2&2k for x̂2k . Equation~4.18! is an eigenstate

of both the operators

X̂k
15~ x̂k1 x̂2k!/A2, ~4.19!

Ŷk
25~ ŷk2 ŷ2k!/A2, ~4.20!

wherex̂k and ŷk are the quadratures ofâk :

âk5~ x̂k1 i ŷ k!/A2. ~4.21!

As in the position unraveling we define a noise functionz(t)
as
4-6



f.
is

is

it

un-
by

er-

.

r

ive.
xist

the

INTERPRETATION OF NON-MARKOVIAN STOCHASTIC . . . PHYSICAL REVIEW A 68, 062104 ~2003!
z~ t !5 (
k.0

2gk@Xk
1~ t ! cos~Vkt !1Yk

2~ t ! sin~Vkt !#,

~4.22!

which by definition is real. In Ref.@10# we showed that the
non-Markovian SSE for the quadrature unraveling is

dtucz~ t !&5F2
i

\
Ĥ int~ t !2~ L̂x2^L̂x& t!Q̂z~ t !1^~ L̂x

2^L̂x& t!Q̂z~ t !& t1z~ t !~ L̂2^L̂& t!G ucz~ t !&,

~4.23!

whereucz(t)&[uc$Xk
1(t),Y

k
2(t)%(t)& andL̂x5L̂1L̂†. Again the

operatorQ̂z(t) is an ansatz to a functional derivative. In Re
@16# we outlined a perturbation technique for finding th
operator, if an exact solution cannot be found.

The differential equations forXk
1(t) and Yk

2(t) were
shown, using the method of characteristics, to be

dtXk
1~ t !5gk cos~Vkt !^L̂x& t , ~4.24!

dtYk
2~ t !5gk sin~Vkt !^L̂x& t . ~4.25!

Integrating these differential equation from time 0 tot we get

Xk
1~ t !5Xk

1~0!1E
0

t

gk cos~Vks!^L̂x&sds, ~4.26!

Yk
2~ t !5Yk

2~0!1E
0

t

gk sin~Vks!^L̂x
†&sds. ~4.27!

As in the position unraveling the random variablesXk
1(0)

andYk
2(0) are chosen from the initial distribution. For th

unraveling and the initial conditionuC(t)&5u$0k%&uc(0)&
this distribution is

P~$Xk
1 ,Yk

2%,0!5)
k.0

e2(Xk
121Yk

22)

p
. ~4.28!

To show that Eqs.~4.24! and ~4.25! can be derived from
the modal theory~velocity operator technique! we apply the
Hamiltonians defined in Sec. III to Eq.~2.26!. For this un-
raveling the set of velocity operators$v̂k% will be the union
of $v̂k

1% and$v̂k
2%, where

v̂k
1~ t !5

2 i

\
@X̂k

1 ,Ĥuni#5gkL̂x cos~Vkt !, ~4.29!

v̂k
2~ t !5

2 i

\
@Ŷk

2 ,Ĥuni#5gkL̂x sin~Vkt !, ~4.30!

which are both real by definition. Substituting these veloc
operators into Eq.~4.6! gives
06210
y

vk
1~$Xk

1 ,Yk
2%,t !

5gk^c$Xk
1 ,Y

k
2%~ t !uL̂xuc$Xk

1 ,Y
k
2%~ t !&cos~Vkt !,

~4.31!

vk
1~$Xk

1 ,Yk
2%,t !

5gk^c$Xk
1 ,Y

k
2%~ t !uL̂xuc$Xk

1 ,Y
k
2%~ t !& sin~Vkt !.

~4.32!

Thus Eq.~4.8! simply yields Eqs.~4.24! and~4.25!. Thus the
modal theory gives the correct non-Markovian SSE.

C. Coherent unraveling

The last unraveling we consider is the coherent state
raveling. This non-Markovian SSE was first presented
Diósi, Gisin, and Strunz@5#. In Ref. @10# we showed that it
could be derived in the orthodox interpretation by consid
ing a bath measurement in terms of the Husimi POM@35#.
This has POM elements

F̂ $ak%5
1

pK
u$ak%&^$ak%u, ~4.33!

where âkuak&5akuak& and K is the total number of modes
The noise functionz(t) for this unraveling is

z~ t !5(
k

gkak~ t !e2 iVkt. ~4.34!

In Refs. @5,10# it is shown that the non-Markovian SSE fo
the coherent unraveling is

dtucz~ t !&5F2
i

\
Ĥ int~ t !2~ L̂†2^L̂†& t!Ĉz~ t !1^~ L̂†

2^L̂†& t!Ĉz~ t !& t1z* ~ t !~ L̂2^L̂& t!G ucz~ t !&,

~4.35!

where ucz(t)&[uc$ak(t)%(t)&. The operatorĈz(t) as in the
previous unravelings is an ansatz to a functional derivat
As in the quadrature unraveling perturbation techniques e
for finding a perturbative solution for this ansatz@15,16#.

Using the same procedure as the other unravelings,
differential equation forak(t) is

dtak* ~ t !5gke
2 iVkt^L̂†& t , ~4.36!

which integrates to give

ak* ~ t !5ak* ~0!1E
0

t

gke
2 iVks^L̂†&sds. ~4.37!

For an initial vacuum bath state, the random variableak* (0)
is defined by the initial distribution
4-7
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P~$ak%,0!5)
k

e2uaku2

p
. ~4.38!

To show that the modal theory can be used to describe
non-Markovian SSE we have to find the projector inK
which is equivalent to the POM elements defined in E
~4.33!. In Ref. @32# we showed that for a single mode th
projector isux1,y2&^x1,y2u where

ux1,y2&5E dx8

A2p
U x12x8

A2
L

aux

U x11x8

A2
L

uni

eiy2x8,

~4.39!

where the states in the integrand arex states. Thus the mul
timode projector used to define this unraveling is

P̂$qk%5P̂$ak%5u$xk
1 ,yk

2%&^$xk
1 ,yk

2%ubath1aux̂ 1̂sys,
~4.40!

whereak is defined by

ak5xk
11 iyk

2 . ~4.41!

This allows us to define the operatorÂk , such that

Âkux1,y2&5akux1,y2&, ~4.42!

as

Âk5 x̂k
11 i ŷ k

25âk1b̂k
† , ~4.43!

which is a normal operator@36#. Herex̂k
1 andŷk

2 are defined
as

x̂k
15@ âk1âk

†1b̂k1b̂k
†#/2, ~4.44!

ŷk
25@2 i âk1 i âk

†1 i b̂k2 i b̂k
†#/2, ~4.45!

where b̂k and b̂k
† are annihilation and creation operato

which act inHaux. In this enlarged Hilbert space the veloci
operators are

v̂k
1~ t !5

2 i

\
@ x̂k

1 ,Ĥuni^ 1̂aux#5@gke
iVktL̂1gke

2 iVktL̂†#/2,

~4.46!

v̂k
2~ t !5

2 i

\
@ ŷk

2 ,Ĥuni^ 1̂aux#

5@2 igke
iVktL̂1 igke

2 iVktL̂†#/2. ~4.47!

With these velocity operators the velocity fields become

vk
1~$xk

1 ,yk
2%,t !5^c$xk

1 ,y
k
2%~ t !u@gke

iVktL̂

1gke
2 iVktL̂†#uc$xk

1 ,y
k
2%~ t !&/2,

~4.48!
06210
is

.

vk
2~$xk

1 ,yk
2%,t !5^c$xk

1 ,y
k
2%~ t !u@2 igke

iVktL̂

1 igke
2 iVktL̂†#uc$xk

1 ,y
k
2%~ t !&/2.

~4.49!

Substituting these into Eq.~4.8! gives

dtxk
1~ t !5@^L̂& tgke

iVkt1^L̂†& tgke
2 iVkt#/2, ~4.50!

dtyk
2~ t !5@2 i ^L̂& tgke

iVkt1 i ^L̂†& tgke
2 iVkt#/2. ~4.51!

Sinceak5xk
11 iyk

2 we once again easily obtain Eq.~4.36!
as found from the orthodox theory.

V. DISCUSSION AND CONCLUSIONS

Given the success of continuous quantum measurem
theory@23# in giving a nontrivial interpretation of Markovian
SSEs, it is natural to seek a similar interpretation for diff
sive non-Markovian SSEs. It turns out that to give a mean
to such non-Markovian SSEs we have to consider the mo
interpretation of quantum mechanics. This is because un
the orthodox interpretation of quantum mechanics, only
solution of the non-Markovian SSE at a timet can be given
a meaning@10#. It corresponds to the state of the system
that time given a measurement on the bath at that time yi
ing a particular result. The bath cannot be measured cont
ously because non-Markovian systems have a memory
past measurements of the bath will in general have a ba
action which disrupts the system’s average evolution. T
the solution at a particular time may have an interpretati
but the linking of these solutions at different times does n
The trajectory generated by the non-Markovian SSE can
regarded only as a numerical tool for calculating a con
tioned state at a particular time.

However, under the modal interpretation, in particula
view which is closest in line with Bell’s beable theor
@26,30#, we find that non-Markovian SSEs do have a no
trivial interpretation. In this interpretation, the bath has de
nite properties even if it is not measured, so the backac
problem disappears. The system is treated as a purely q
tum system which, however, depends upon the values of
bath properties: the bath hidden variables. The evolution
the system is generated by non-Markovian SSEs and the
tem state guides the hidden variable for the bath. The b
hidden variables are similar to Bohmian hidden variab
@33#, as they obey a deterministic differential equation w
stochastic initial conditions. In fact, one unraveling we ha
considered corresponds to Bohmian mechanics of the ba
an interaction frame.

In this paper we also considered the quadrature and
herent unravelings@10#. The different unravelings are dete
mined by choosing which bath observable is to be giv
property status. The noisez(t) which appears in the non
Markovian SSE is simply a linear combination of the tim
dependent values of the bath hidden variables. The qua
ture unraveling is defined such thatz(t) is real, while for the
coherent unraveling it is complex. In the Markovian limit th
4-8
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former becomes the quantum trajectory for homodyne de
tion and the latter becomes the quantum trajectory for h
erodyne detection. Thus quantum trajectories have both
standard continuous measurement interpretation and
above modal interpretation.

In conclusion it seems that to give diffusive no
Markovian SSE a satisfying interpretation we must give
the orthodox interpretation of quantum mechanics and c
sider the lesser known but equally valid modal interpretati
In Refs. @37,38# it is claimed that the formalism presente
there does give a satisfying interpretation of non-Markov
SSEs. If this is correct, we must conclude that said form
ism is a hidden-variable theory. The clarification of this iss
p

-

06210
c-
t-
he
he

p
n-
.

n
l-
e

is beyond the scope of the current paper. Another prob
for future work would be to determine what choices for o
jective properties of the bath will give rise to SSEs with
Markovian limit. Finally, it would be interesting to use th
modal theory to develop discontinuous non-Markovi
SSEs, such as those which corresponds to a number
decomposition.
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@4# L. Diósi and W.T. Strunz, Phys. Lett. A235, 569 ~1997!.
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