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Do diffusive non-Markovian stochastic Schiinger equation§SSE$ for open guantum systems have a
physical interpretation? In a recent papehys. Rev. 466, 012108(2002 ] we investigated this question using
the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE
represents the state the system would be in at that time if a measurement was performed on the environment
at that time, and yielded a particular result. However, the linking of solutions at different times to make a
trajectory is, we concluded, a fiction. In this paper we investigate this question using the ¢hinlifn
variable interpretation of quantum mechanics. We find that the noise fundfonappearing in the non-
Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property
(beable of the environment has a definite valag) even in the absence of measurement on the environment.
The non-Markovian SSE gives the evolution of the state of the system “conditioned” on this environment
hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit
SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit.
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I. INTRODUCTION In recent paperf4—13] non-Markovian stochastic Schro
dinger equation$SSE$ have been proposed which allow an
In nature it is very unlikely to find a system existing in alternative procedure for solving the reduced state. A non-
isolation; usually it is immersed in an environméat bath. Markovian SSE is a stochastic equation for the system state
In quantum mechanics we label this type of system an opehy,(t)), conditioned on some noise functiaft). We con-
guantum systenfl]. To determine the evolution we must sider only continuous SSEs, although discontinuous ones
solve the Schrdinger equation have also been proposgt4]. The SSE has the property that
when the projector fof,(t)) is averaged over all the pos-
—i. sible z(t) one obtaing(t). That is,
di| W (1)) = 2Hun()| ¥ (1)), (1.9
pred(t):E[|¢z(t)><¢z(t)|]i (1.9

where| ¥ (t)) andﬂum(t) are the quantum state and Hamil-
tonian for the complete univergeystem and bajh That is,
|W(t)) belongs to the Hilbert spadk = Hsyd® Hpath. Due
to the large Hilbert space of the bath{,) it is convenient
to describe the system by its reduced state. This is defined

where K . . . ] denotes an ensemble average over all possible
z(t)’s.

When using non-Markovian SSEs to solve the reduced
tate it turns out that in general we cannot explicitly evaluate
,(t)). However, as shown in Ref$15,16 we can use

Pred ) = Troael | ¥ (D) )T(1)]], (1.2 perturba_tive technique; to find approximate solutions. Here
we are interested not in how to solve the non-Markovian
and operates only in th&gs. SSEs, but in how tinterpretthem.

It has been showf2,3] by a projection-operator method When Markovian SSEgthe Markovian limit of non-

that we can write a general master equation for the reducelf@rkovian SSEpwere introduced in quantum optics their
state as first interpretations was as a numerical t¢@l7]. Another

interpretation was that Markovian SSEs represahjective
i t (that is, independent of any observaajectories for the sys-
dipredt) =— %[H(t),preo(t)]Jrj K(t,8)predS)ds, tem[18-20. In this interpretation the SSE is seen ast®-
0 chastic and nonlineamodification of the Schminger equa-
(1.3 tion, modelling how state reductioftollapse of the wave
. ) A _ function) occurs in open quantum systems. However, in re-
whereH(t) operates only ift{s,sand(t,s) is the “memory  cent times it has been generally accepted that Markovian
time” superoperator. It operates Qfle{S) and represents SSgs are evolution equations for the system state condi-
how the bath has affected the SyStem ”’:] the paSt. The proli)i'oned on continuous measurement of the k{atﬁl_za
lem with this equation is that in gener&l(t,s) cannot be A Markovian bath is one for which the bath correlation
explicitly evaluated. time is much less than the decoherence time of the system.
For such a system one can envisage making repeated mea-
surements on the bath on a time scale infinitesimal compared
*Electronic address: j.gambetta@agriffith.edu.au to the system decoherence time but large compared to the
"Electronic address: h.wiseman@griffith.edu.au bath correlation time. Thus these measurements do not lead
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to any back action of the system from the bath. But the Since orthodox quantum mechanics fails to give a satis-
measurement of the bath does yield information about théing interpretation for non-Markovian SSEs, in this paper
system. This can be described as the action of a measureméHg turn to anororthodox approach: the modal interpretation
operator(as appears in generalized quantum measuremef duantum mechanicf26—33. This interpretation, unlike
theory[24]) for an infinitesimal time intervd23], and keeps the orthodox interpretation, has as its basic goal to keep re-

the system in a pure state. It can be reexpressed as a SSEQHY BE%, AL TR 2 TS RERATISTE
which the stochastic variablgt) is related to the results of y .

) . ) the observables have an objective reality from now on we
the continuous measurements. The stochastic trajectory @i refer to them as properties or beabléster Bell [26]).

this conditioned system state generated by the Markoviayst as in the orthodox theory, where it is impossible to si-
SSE is often referred to as a quantum trajecfalyDifferent  multaneously measure all observables, in the modal theory it
detection procedure@measurements on the batresult in  is impossible to give all observables property status. The
different unravelings. A few common examples are directbest-known example of such an interpretation is Bohmian
detection[1], homodyne[1,21], and heterodyne detection mechanics for particle33] in which position is the pre-
[22]. ferred observabléproperty.

In the light of the quantum trajectory interpretation of Ve expect a modal interpretation to be applicable to non-
Markovian SSEs, we return to the interpretation of non-Markovian SSEs because we can use it to assign definite

Markovian SSEs. Obviously one interpretation is that theyproperties to the bath,. as occurs .in the orthodox theory when
are simply a numerical tool used to generate the reduceﬁ‘e path IS measur_ewthoutmvok_mg such a mea_surement._
state. However, after the success in finding a physical inter, this way we avoid the_ backacﬂon_ proble_m Wh'ch arose in
: ' .~ the orthodox theory. While the bath is ascribed definite prop-

S . .%rties, the system is described as a purely quantum system.
beyond this trivial mterpretatlon.. Moreover, we havg PreV-gt, because of the entanglement between the system and the
ously shown 10] that there are different non-'Markowan un- path. we can define a system state associated (ithcon-
ravelings, and that these correspond to different measurgjisioned” on) a particular value for the bath property. If the
ment schemeghomodyne and heterodynim the Markovian — path properties are described by rank-one projective mea-
limit. Thus it is natural to seek an interpretation of non- g, res oNHyam, then the conditioned system state will be
Markovian SSEs beyond that of being just numerical toolsyure Averaging over the conditioned system state would re-
[25]. produce the non-Markovian reduced state mairix(t), just

In Ref. [10] we came to the conclusion that under theas in Eq.(1.4).
orthodox interpretatioi24] of quantum mechanics, the so-  Since the bath hidden variables change in time, the con-
lution of a non-Markovian SSE at timeis the state the ditioned system state will evolve in time also, and this time
system will be in, if at that time a measurement was perthere is a meaningful relation between the conditioned sys-
formed on the bath and yielded a resmltThus the non- tem state at different times. A particular set of bath properties
Markovian SSE under this view has no interpretation; it isamounts to a particuladecompositior(of the unit operator
just a stencil used to calculate the conditioned system state ah H,,4), and leads to a particulamraveling of the non-
a particular timet. In other words, the linking ofi,(t)) (or  Markovian master equatiofl.3). We will use these terms
z(t)) with itself at times less thehturns out to be a conve- interchangeably.
nient fiction. In this paper we show that for a suitable choice of bath

Unlike the Markovian case, it is not possible to derive theproperties we can reproduce all of the non-Markovian SSEs
SSE by continuously measuring the bath because a nomliscussed above, as well as one which has not been previ-
Markovian bath has a non-negligible correlation time. Thusously considered. The noise functiaft) appearing in the
if a measurement is made at tirhecollapsing the bath state non-Markovian SSE is simply a function of the values of the
at that time, this will affect the state of the bath interactingbath hidden variables. The system statg(t)) is the system
with the system in the future. That is, the measurement ostate conditioned on the bath properties having the values
the bath will cause a backaction on the system and hence tlygving z(t). Moreover, the system state guides the values of
average evolution for a system state conditioned on continuthe hidden variables of the bath.
ous measurement of the bath will not be that of Bg2). In The format of this paper is as follows: In Sec. Il a sum-
fact, a continuous measurement on a bath with a nonzemmary of the modal interpretation of quantum mechanics is
correlation time will lead to a quantum Zeno effect, radically presented. In Sec. Ill we give the microscopic model for
altering the average evolution of the system. If, on the othenon-Markovian dynamics for an open quantum system that
hand, the measurement on the bath is not done continuouslynderlies all of our work. In Sec. IV we show how modal
then the system state will not remain in a pure state as théynamics can be applied to such models, and derive the hid-
system and bath will become entangled in the time betweeden variable interpretation of non-Markovian SSEs for three
measurements on the bath. Thus it seems safe to concludéferent unravelings. These correspond to objective values
that there is no continuous measurement interpretation, arfdr the position of each bath harmonic oscillatéas in the
in fact we are forced to accept that SSEs are only a numeric@ohmian interpretation for the quadrature of the collective
tool which could be used to determine the system state at laath field, and for the coherent amplitude of the collective
particular time conditioned on a particular measurement rebath field. The first of these has no Markovian limit, while
sult z the latter two have homodyne and heterodyne detection as
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their Markovian limit. Lastly in Sec. V we conclude with a  For the purposes of this paper EQ.3 is actually not
discussion and directions for future work. general enough. In Ref32] we showed that this theory can
be extended to positive operator measyROMS [34], that

1. MODAL INTERPRETATION OF QUANTUM IS

MECHANICS Z={(z, ,|“:n)}, (2.5

In this section we give a brief overview of the modal . L
interpretation of quantum mechanics; for a more detailed dewhereF, is an effect(or POM elementwith >F,=1. In
scription see Refg26—-32. The basic idea of this view of EQ.(2.9), z, is the value of the effect, which could be a real
quantum mechanics is that certain observables have a defiumber, a complex number, a string of numbers, or even a
nite reality independent of measurement, whereas in the ostatementyes/no.
thodox interpretation the measurement defines the reality of In Ref.[32] we showed that by implementing Naimark’s
the observables. To explain this we consider measurement #ieorem, modal dynamics can be extended to include POMs.

the observabl&. The notation we use to represent an observNaimark’s theorem says that if we enlarge the Hilbert space
able is of the universe front,; to K= Hn,i® Haux, We can define a

projectorﬁn in IC such that
Z2={(z,,m)} (2.1

(POIF P O)=(TO(S[TT| ) (D), (2.6
That is, Z is represented by a set of paired elements. Each . .
pair represents the valug and the corresponding projector for all |¥(t)) € M,y and for all possiblen. |$){¢| is called

- . —_the Naimark projection ok onto H,,. To work out the set
Ty The projectors are orthogonal and form a decomposmo?ﬁ ()} it is necessary to introduce another projector
of unity: n y proj

fIN+1(t), such that

> m=1. (2.2 R )
n " ; In () = Lynitauxs 2.7
In Eq. (2.1) for simplicity we have only considered the case 5

whereZ is time independent. We can in this case also define
an operatoZ which is equivalent to Eg(2.1), by T, ()T () =TT,(t) 8 (2.9

. . is satisfied fom, m,=1,... N+ 1. The set of projectors in
2=2 z,m,. (2.3 this enlarged Hilbert space is called the Naimark extension
n

of F,(t) [34]. Worked examples of this are shown[B¥]. In
this enlarged space the observable defined by(E®) be-

In the orthodox interpretatiod has a definite value,, if comes the property

and only if[W(t))=|¥,(t)) (an eigenstate af). However,

in general |V (t))==,c,(t)|¥,(t)), which implies thatZ ZI{(Zn,ﬁn)}, 2.9

has all values contained in the sum; it is not well defined.

Upon measurement, by the introduction of a reduction equasr equivalently

tion [|‘If(t)>—>2|‘lfn(t))] the value of Z becomesz, with

probability |c,,|“. A S
In the m|od<LI interpretation we choose one projective mea- Z= E Zpll,. (2.10

sure{m,(t)} as the preferred measure. This then determines

which observables can be given property status. To explaipgre {f[n(t)} is the preferred measure 5. The guiding

why the property takes the valug we introduce an extra state becomes

quantum state, thproperty state

[P)=[¥(1)e|e), (2.11

W)= W (D)), (2.4 where| ¥ (t)) is still the solution to the Schdinger equa-
tion (1.1). The property state becomes

whereN is a normalization constant. This state propagates in
time along W|th|‘lf(t)), except it is stochastic in nature |D (1)) =11, ®(t))/N. (2.12
(jumps between differemt). It is interpreted as the actual
state of the universe, by the eigenstate eigenvalue it has Ehat is, when describing POMs the universe is described by
definite value £,) for Z. The stochastic dynamiqsates at a property state in the enlarged Hilbert space, which does not
which it jumps between differemt) is determined byW(t))  factorize into a universe state and an auxiliary state. This can
and so in this interpretatiof (t)) is called the guiding be regarded merely as a mathematical construction to give
state. reality to POMs. Note that the value of, ; is irrelevant as
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ﬁN+1 projects into the null space dfb(t)). That is, this The above dynamics only describe a discrete decomposi-
value will occur with zero probability. tion. For non-Markovian SSEs we must consider continuous

The modal dynamicgthe stochastic evolution of the decompositions. In Ref.32] we showed that provided the

: : ; Hamiltonian is at most quadratic in the conjugate variable to
states in Eq(2.4) or Eq.(2.12] is found using the method ; . :
originally proposed by Bel[26] and generalized in Refs. the chosen hidden variable, then the above dynamics reduces

; . . to a deterministic theory. The only stochasticity is due to the

Ezsf'iig’gf(:(; ;nscmgepimjzgﬁge;i?T;}grggtcéxsisa&dufg MS'rgndom initial co_ndition)é of t_he hiﬁden var?ablg. That s, it is
state at timd. Assuming a Markovian process, by which we S|m_|lar_to Bohmian r_nechanld[§3]. In fact i th.G. preferr_ed .
mean that the probability of being in stateat time t+dt prolecnveAmeasure is chosen tg be the pogtpn projective
only depends on the state at tihewe can write a master Mmeasure fr«=[x)(x|) then Bohmian mechanics is the con-
equation forP,(t) as tinuum limit. . - _

We define continuous decompositions by the projector
fl{qk}: [{a}){{ai}|, which in turn define$q,} as the opera-

tors for the hidden variables. Here we have introduced a
notation for the set of hidden variablegéq(}) whose rel-

where T, are transition rates. Fon=m, T,, (which is  eyance will become important in the following sections. The
negative is a measure of the rate at which statdosses  gecomposition of unity is

probability.
Defining a probability currend,,(t) as A
g&p y () f |{Qk}><{QK}|1;[ dge=1. (2.22

Jnm() = Tam(H) Pn(t) = TmnPn(t), (2.14
_ _ For this set of hidden variables we will see later that it is also
results inJnn(t)=—Jnn(t) and allows us to rewrite the yseful to define a single propergas

probability master equation as
Z(t)={{ad ). {ad){a D} (2.23

t)=2 Jam(t). (2.15 where z({q,},t) is a function of the values of the hidden
m variables{q,} andt.
As in Bohmian mechanics the evolution of each hidden
variable g, (t) (or the corresponding property statan be
found by the differential equation

dtPn<t>=§[Tnma)Pm(t)—TmnPn(t)], (2.13

Given J, (1) andP,(t), there are many possible transition
rates satisfying Eq2.15. One solution, chosen by Bg26]

is as follows.
For Jnm(t) <0, diqy(t) :Uk({qj}yt)|qk=qk(t) ; (2.24
Tom(1)=0, (216 whereuv,({q;}.t) is the velocity field. This is defined 482]
Tonn(H) == Jnm()/Pp(1), (2.17 G0 Re[(®(t)[{a;})({a} o] P ()]
Ukljss ) = . )
and forJ,,,(t)>0 (@ [{a;hH){a} ) (225
Tam(D)=JInm(1)/Pr(t), (2.18 Hereu,(t) is thekth component of the velocity operator and
is defined as
T, (1)=0. (2.19
- S PN A
This is only one of the infinitely many solutions. These are Vi) = 7= [k, Hun() ® Lad. (2.26
found by adding an extra terrﬁﬂm(t) to Tym(t), where
Tom(t) is constrained only by IIl. NON-MARKOVIAN DYNAMICS FOR OPEN

0 0 QUANTUM SYSTEMS
(D Pm(t) = Tr(HPa(t)=0. (2.20 _ _ o _ _
The aim of this section is to outline the underlying dy-
In Ref.[32] we showed that one possible solution 3qp,(t) namics used to generate non-Markovian SSEs. Firstly we
is assume that there are only two systems, a system of interest
. and a bath. That is, the Hamiltonian of the universe is
Jom(H) =2 Im{{D(t L[ F (1) ® Lagd T @ (1)) 5. - A A A -
( {< | n[ Unl aux] m| ( ))} (22 Hsys®1+l®Hbath+V. (31)
Note that this is only one of infinitely many possible cur- The system H?-m”tonia";lsys is split into two terms, these
rents, as we can add any currelf} () to J,(t) which  beingHg, andH. The bath is modeled by a collection of
satisfies2 ,J°,,=0, to give a valid probability current. For one-dimensional harmonic oscillators. In terms of the bath
the purposes of this paper we only consider the simple soluannihilation and creation operatora;k and ak, the Hamil-
tions[not containing the extra"nm(t) andJnm(t) termg. tonian for the bath is
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choices of|[{qy}){{qi}|pat- FOr the overcomplete unravel-
ings, like the coherent state unraveliftg10] we have to use
a POM[32]. This means we have to use the enlarged Hilbert

space preferred project(ﬁ[{qk}(t), which in general form is

H bath— EK ﬁ wkéiék . (32)

The interaction Hamiltonialv we assume is linear in the
bath amplitude, and has the form

ﬁ{qk}(t):|{qk}><{qk}|batMaux® isys- (4.2)

V=in2 [Logat—LTgad, (3.3
K With these projectors, the property stafds,(t)) [simi-
larly for |®,(t))] can be factorized as

|\Pn(t)>: |{qk}>| w{qk}(t»,

whereL is the system lowering operator agg is the cou-
pling strength of th&th mode to the system. Without loss of
generality we can take thg,’s to be real, absorbing any
phia:ses in the (.jEfm't'onS of the bath_ operatprs. . where|z,/;{q y(t)) is called the conditioned system state. It
or calculation purposes we define an interaction frame Kf o . _ _
such that the fast dynamics placed on the state by the Hamil€C€ives this name because it lives entirelyHg, and is

toniansH, andH,,is moved to the operators. The unitary conditioned on the bath valugg}. The form Of|¢{qk}(t)>

4.3

evolution operator for this transformations is

Oo(t,o):e—i(|3|0®1+i®|3|baﬂ)(t—0)/ﬁ_ (3.4)

is

| (g0 (D)= {aH T ()N, (4.4

Thus the combined state in the interaction frame is define awhere the normalization constant is defined as

W(1))=03(t,0[¥(D)ser, (3.5
and an arbitrary operatdx becomes
An(t)=U05(t,0A0(t,0). (3.6
This allows us to write the Schdinger equation as
i
dt|qf(t)>= - gHuni(t)|\P(t)>y (3.7

whereH ,(t) = Hin(t) + V(). HereH(t) refers toH (t)
in the interaction picture and the form of the latter is

\“/ima):ih; [Loe'Mal—LTge " ™q,], (3.9

whereQ = w,— Q. Here we have finally restricted the form

of Ay, to be such thal in the interaction picture simply
rotates in the complex plane at frequerf@y That isEim(t)
=Le 0,

IV. NON-MARKOVIAN STOCHASTIC SCHRO DINGER
EQUATIONS DERIVED

In this section we show that diffusive non-Markovian
SSEs have an interpretation under the modal interpretation of
guantum mechanics. To do this we choose a decomposition

such that the preferred projectors have the form

7AT{qk}(t): [{ai})({ Ak} batr® isys- (4.1

This means the bath is given definite properties, while the

N=(¥ () [{a){ad| ¥ (D).

This is the state of the system conditioned on the bath hidden
variables having valuegqy}.

For an actual trajectoryin the sense of Ref[10]), the
bath valueqq,(t)} are time dependent. This state becomes
|¢{qk(t)}(t)> and represents the state of the system condi-

tioned on the bath having this trajectory. That is, it is con-
tinuous in time and the differential equation of this state will
represent its evolution. In Refgl0] and[11] we showed that
by starting with Eq(4.4), the time derivative of this equation
gives diffusive non-Markovian SSEs. Thus in this paper we
will not reproduce these derivations, but instead show that by
using our velocity operator technique we can rederive the
actual trajectories fofq(t)}. This shows that diffusive non-
Markovian SSEs have a modal interpretation. If fact, because
the orthodox interpretation only gives an interpretation for
the solutions of non-Markovian SSE at a particular time
(time of measuremeptwe believe that the only nontrivial
interpretation of non-Markovian SSEs is a modal interpreta-
tion.

Before we consider specific unravelings we would like to
note that the velocity field, Eq2.25, can be written in
terms of the conditioned system state as

4.9

v ({gx}st) =Re[<¢{qk}(t)|6k({4k},t)| ¢{qk}(t)>,
(4.6

where

vi{gi}s0) lﬂ{q,{}(f)E<{¢1k}|ljk(1)|‘l’(f)>/\/ﬁ-
4.7

system is treated as a purely quantum system, which never-
theless influences the bath values via the coupling HamilThis results in the following differential equation for the bath
tonian. The different unravelings correspond to differentvalues:
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_ . _ "
d,g(8) = Re[ (Y403 (O DR GO 1D Yy () gy, e crosen e inital conditiony’ (1))
(4.9 To show that Eq(4.8) does give the same trajectories for
_ the values{x,(t)} as in Eq.(4.13, we apply the Hamilto-
where| g, )(0) = #1640 g, = a0} - nians defined in Sec. Ill to Eq2.26), with g,=x,. This
gives
A. Position unraveling
The first unraveling we consider is the position unravel- V(1) =[x ML +gre WL T/2, (4.19
ing. This results when we chose a preferred projective mea- o
sure of the form as [X¢,a]=—1/y2 and[x,,al]=1/\/2. Substituting this
. . . into Eq. (4.6) gives a velocity field of the form
{70 = Tixg = DX barr® Lsyd (4.9

ok({Xih ) =[ gk K (Y (DL Y (D)
where|{x,}) is the multimode eigenstate of the position op- K “ B B

eratorsx= (aj +a,)/ 2. +gke M iy y (DL |y (D)2,
To simplify the overall equation we define a noise func-
tion z(t) as (4.16

. Thus Eqg. (4.8 immediately reproduces Eq(4.12),
2(1) =2 guV2x(t)e N, (4.10  thereby confirming that the modal theory does give the same
k non-Markovian SSEs, as found with the orthodox theory.

In Ref.[11] we showed that the non-Markovian SSE for the _
position unraveling is B. Quadrature unraveling

i The next unraveling we consider is what we call the
Al =1 —F (O + (= (D) 2% (1) = (L = (EVIB(t quadrature unraveling. In RgfLO] we show that this unrav-
(1) [ i Hin(0+ (L=(Lp)z (0= (L=(L)IIBAAY) eling only exists for certain environments, such that for ev-
. A oA a - ery modek in the bath there exists another mode, which we
+ D) ]+ {((L—=(L))[B(t) + D(t)])¢ can label—k, such thatQ_,=—-Q, andg_,=g,. These
Rt PR A - At nt simply imply that the modes coupled to the system come in
(LT=(LDIIAD + CoO]+H((LT=(L ) symmetric pairs about the system frequeityThe form of
R . the preferred projective measure for this unraveling is
><[Az<t>+cz<t>]>t]|wz<t>>. (4.11 . o
{00 = 70x v = X YD EX Y Hbar® Lsyd

where| (1)) = (1)) and(L)= ()| L[y(1)). The (4.17

four operators,(t), B,(t), C/(t), D(t) are defined as an- where [{X; ,Y; 1) =T, X; .Y ) where|X;,Yc) is the
satzen to functional derivatives. It turns out that in generajyo-mode entangle@EPR state
these operators are not solvable. The perturbation techniques

outlined in Refs[15] and[16] can be applied to this non- dx’ | XF—x' Xy’
Markovian SSE to give a perturbative solution. Given that X ,YOZJ K > K > ek X'
there is no Markovian limit to this equation, however, it is V2m| 2 k V2 K
unclear whether such perturbative methods would be effec- (4.18
tive.

We also showed, after considerable effort, that Here|(X;+x’)/J§>k is an eigenstate of,, and similarly

|(Xy —x")/\/2)_ for x_. Equation(4.18 is an eigenstate

do()=[(L) g M +(LThge  ™N2. (412 Ok operators

Integrating this gives

X =X+ X2, (4.19
t

X (1) =%, (0 +fd L)sgye' 26+ (LT gee ™' 4]/4/2, G A A

k() =x(0) . (L) sk (LT)s0k 12 =Gy 0IV2, (4.20
(4.13
wherex,(0) is the random variable chosen from the distri- VNerex. andy, are the quadratures a:

bution A A

A= (Xt 1Y)/ V2. (4.2
exp(—x¢) . iy : : : .
P({x,0) = |({xJ{o =11 T (4.14  Asinthe position unraveling we define a noise functagt)
k T as
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+opyt v
2(0)= 3, 20, (1 GOS0, +Y, (1 S ok (X Vi)

(4.22 =0k ¥ix; ,Y;}(t)||:x| Pix v (D)cod ),

which by definition is real. In Ref.10] we showed that the (4.3)
non-Markovian SSE for the quadrature unraveling is b ot
Uk({xk lYk}7t)

(0 =)~ (D)~ (L= (L0 Qe +(( L, =90, v DIE Y vy (1) sin().
(4.32
(L0 Q)+ 2 (L—(L)) [[¢(1)), Thus Eq.(4.8) simply yields Eqs(4.24) and(4.25. Thus the

modal theory gives the correct non-Markovian SSE.

(4.23

where| ¢,(1))=|tx (). v, () (1)) andL,=L+L". Again the C. Coherent unraveling
operatorQZ(t) is an ansatz to a functional derivative. In Ref.
[16] we outlined a perturbation technique for finding this
operator, if an exact solution cannot be found.

The differential equations foiX; (t) and Y, (t) were

The last unraveling we consider is the coherent state un-
raveling. This non-Markovian SSE was first presented by
Diosi, Gisin, and Strung5]. In Ref.[10] we showed that it
could be derived in the orthodox interpretation by consider-
ing a bath measurement in terms of the Husimi PCB4Y].

shown, using the method of characteristics, to be This has POM elements
deXy (1) =gy cog Qt)(L,)y, (4.24 X 1
Flag= gl{ak}x{ak}li (4.33
di Y (1) =g SiN( Q) (Lyy - (4.29

wherea|a,)=a,|a,) andK is the total number of modes.

Integrating these differential equation from time G tge get The noise functiore(t) for this unraveling is

t ~
X=X (0 fogkc"‘ﬂks)“x)sds’ (429 2= geayte 1. (434
k

_ _ L ~t In Refs.[5,10] it is shown that the non-Markovian SSE for
Y (=Y, (0)+ o Jk sins)(Ly)sds. (427 e coherent unraveling is

. . . . [ n “ n R
As in the position unraveling thg .rgndqm .varllabbé$(0) . d| (1)) =| — %Him(t)—(LT—<LT>t)CZ(t)+<(LT
andY, (0) are chosen from the initial distribution. For this
unraveling and the initial conditiofW (t))=[{0,})|#(0)) o o
this distribution is —(MNCA) etz (L= (D)o) |l wAD)),
e~ (% 2+ D (4.3
PUX: Y o =] ——. (4.28
k>0 m

where|z/;z(t))E|z,b{ak(t)}(t)). The operatorC,(t) as in the

To show that Egs(4.24) and (4.25 can be derived from previous unravelings is an ansatz to a functional derivative.
the modal theoryvelocity operator techniqiiave apply the As in the quadrature u_nraveling perturbgtion techniques exist
Hamiltonians defined in Sec. IIl to Eq2.26. For this un-  for finding a perturbative solution for this ansfz,16.

. . ~ . . Using the same procedure as the other unravelings, the
raveihfg the sAe_t of velocity operatofs,} will be the union differential equation fomy(t) is
of {v, } and{v, }, where
day (t)=gee "ML, (4.36

. - ., . -
e (1)=—[Xg Huil =0kl cogQit),  (4.29
U (V) h X Hunil =8l cost i) (429 which integrates to give

. t ) ~
Bg(t)z%[\?k’,Huni]zgkf_xsin(ﬂkt), (4.30 a*k*(t)=a’.§(0)+fogke"”k%LUsds. (4.37)

which are both real by definition. Substituting these velocityFor an initial vacuum bath state, the random varia€0)
operators into Eq(4.6) gives is defined by the initial distribution
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e_‘aklz

P({ak}!o) = H

k

(4.38

PHYSICAL REVIEW A 68, 062104 (2003

v (X Yiht) :<¢{x; ,yk*}(t)|[ —ig,e' L

+ igkeiithI:T:” ‘r//{xlj ,y;}(t)>/2'

To show that the modal theory can be used to describe this

non-Markovian SSE we have to find the projector Anh

which is equivalent to the POM elements defined in Eq
(4.33. In Ref.[32] we showed that for a single mode this

IX*,y*>=J j:—w

projector is|x*,y~}{x*,y~| where
x++x’> o
gy x ,
uni

xt—x'
7 |
(4.39

where the states in the integrand arstates. Thus the mul-
timode projector used to define this unraveling is

ux

H{qk}: I—I{ak}: |{X;— iyk_}><{xlj vy|:}|bathi-aux® isysl

(4.40
wherea, is defined by
=Xy +iyy - (4.4
This allows us to define the operatdg, such that
AdxtyTy=alxty ), (4.42
as
A=x¢ +iy =a+b], (4.43

which is a normal operatdB6]. Herex;” andy, are defined
as
X, =[a+a)+b+bl1/2,

(4.44

Y. =[—ia +ial+ib,—ib/]/2,

(4.45

(4.49

‘Substituting these into Eq4.8) gives

dx (1) =[(L)0e' ™+ (LT ge ' *]/2,  (4.50

dyy (1) =[—i(L)gxe' ™ +i(LT)gee /2. (4.50)

Sincea,=x, +iy, we once again easily obtain E#.36)
as found from the orthodox theory.

V. DISCUSSION AND CONCLUSIONS

Given the success of continuous quantum measurement
theory[23] in giving a nontrivial interpretation of Markovian
SSEs, it is natural to seek a similar interpretation for diffu-
sive non-Markovian SSEs. It turns out that to give a meaning
to such non-Markovian SSEs we have to consider the modal
interpretation of quantum mechanics. This is because under
the orthodox interpretation of quantum mechanics, only the
solution of the non-Markovian SSE at a tihean be given
a meaning 10]. It corresponds to the state of the system at
that time given a measurement on the bath at that time yield-
ing a particular result. The bath cannot be measured continu-
ously because non-Markovian systems have a memory, so
past measurements of the bath will in general have a back-
action which disrupts the system’s average evolution. Thus
the solution at a particular time may have an interpretation,
but the linking of these solutions at different times does not.
The trajectory generated by the non-Markovian SSE can be
regarded only as a numerical tool for calculating a condi-
tioned state at a particular time.

However, under the modal interpretation, in particular a
view which is closest in line with Bell’s beable theory
[26,30, we find that non-Markovian SSEs do have a non-

where b, and b} are annihilation and creation operators trivial interpretation. In this interpretation, the bath has defi-
which act inH,,,. In this enlarged Hilbert space the velocity hite properties even if it is not measured, so the backaction

operators are

- Sl PR A o g o gn
v (0= =[x Hun® Land = [gie' WL+ gee™ W LT12,

(4.49

. —i .
Uk (t): 7[Yk vHuni® 1aux]
=[—ige ™ L +ige L2, (4.47)

With these velocity operators the velocity fields become
U;({XIZ— ,YE}I) :<¢{x; ,yk’}(t)|[gkemkt|:

+ gkeimktl:T:” l/’{x; ,yk’}(t»/z’
(4.48

problem disappears. The system is treated as a purely quan-
tum system which, however, depends upon the values of the
bath properties: the bath hidden variables. The evolution of
the system is generated by non-Markovian SSEs and the sys-
tem state guides the hidden variable for the bath. The bath
hidden variables are similar to Bohmian hidden variables
[33], as they obey a deterministic differential equation with
stochastic initial conditions. In fact, one unraveling we have
considered corresponds to Bohmian mechanics of the bath in
an interaction frame.

In this paper we also considered the quadrature and co-
herent unravelingfl0]. The different unravelings are deter-
mined by choosing which bath observable is to be given
property status. The noisgt) which appears in the non-
Markovian SSE is simply a linear combination of the time-
dependent values of the bath hidden variables. The quadra-
ture unraveling is defined such th#t) is real, while for the
coherent unraveling it is complex. In the Markovian limit the
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former becomes the quantum trajectory for homodyne deteds beyond the scope of the current paper. Another problem
tion and the latter becomes the quantum trajectory for hetfor future work would be to determine what choices for ob-
erodyne detection. Thus quantum trajectories have both thective properties of the bath will give rise to SSEs with a
standard continuous measurement interpretation and th@arkovian limit. Finally, it would be interesting to use the
above modal interpretation. modal theory to develop discontinuous non-Markovian

In conclusion it seems that to give diffusive non- sSgs, such as those which corresponds to a number state
Markovian SSE a satisfying interpretation we must give updecomposition.

the orthodox interpretation of quantum mechanics and con-
sider the lesser known but equally valid modal interpretation.
In Refs.[37,3§ it is claimed that the formalism presented
there does give a satisfying interpretation of non-Markovian
SSEs. If this is correct, we must conclude that said formal- This work was supported by the Australian Research
ism is a hidden-variable theory. The clarification of this issueCouncil.
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