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Chaos and quantum-classical correspondence via phase-space distribution functions
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Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uni-
form structure measure for quantal and classical phase-space distribution functions. The similarities and dif-
ferences between quantum and classical time-evolving distribution functions are exposed by both analytical
and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied.
The results shed considerable light on quantum-classical correspondence.
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[. INTRODUCTION stantially extended. The extension is from one-dimensional
chaotic systems in previous wofk1,12 to two-dimensional
The quantum dynamics of systems that are classicallgonservative systems, from the special case of uniform dy-
chaotic has been a subject of considerable interest for nearljamical instabilities to the general case of nonuniform
three decades. Chaos, usually defined as the exponential s&tretching and contraction rates fluctuating with time and
sitivity of phase-spacérajectoriesto slight changes of the Phase-space location. That is, armed with a measure of the
initial conditions, resists direct translation to the natural Hil- structure of phase-space distribution functions, it becomes
bert space setting of quantum mechanics since there do nBpssible to quantitatively investigate the similarities and dif-
exist well-defined trajectories within the conventional inter-ferences between quantal and classical distribution functions
preta’[ion of quantum mechanitfs]_ Hence, many studies on in a broad class of smooth, conservative, and strongly cha-
quantum chaos in the literature have been dedicated to tHic Hamiltonian systems. In particular, this paper displays
relatively modest study of quantum manifestations of classi{1) the rich transient behavior of the dynamics of distribution
cal chaos[2,3]. Actual quantum-classical correspondencefunctions shared by quantum and classical dynamics before a
(QCO in classical chaotic systems is still one of the out-QCC break timet,, a quantity which scales with the loga-
standing issues in quantum theory. rithm of #, (2) a simple but enlightening description of the
Considerations of quantum-classical correspondence th&reak regime of QCC in the time development of phase-
rely upon the standard formulations of quantum and classicapace structure, arn@) interesting QCC in low-order statis-
mechanics are at a great disadvantage. Specifically, classidigal moments during a complex relaxation process with a
mechanics does not admit wave functions and quantum méime scale much larger thag.
chanics does not admit trajectories. Hence one is faced with We note in passing that the distribution function strategy
trying to connect two theories which do not even have thds also of considerable interest to the fundamental under-
same basic rudimentary elements. standing of decoherence in quantum vs classical mechanics.
A far more enlightening approach is to utilize the Hilbert- For example, the structure of the classical or quantum distri-
space formulation of both quantud] and classica]5] me-  bution functions determines properties of the system when
chanics where the central element is the density operator ifoupled to an environmeft4,15. Hence, QCC from a dis-
both formulations. By choosing to deal with the phase-spac#ibution function viewpoint is useful to the understanding of
representation of quantum mechanics one can then compaggort-time quantum decoherence rates vs rates of classical
the classical and quantum dynamics of distributions in phasentropy productioi16]. Furthermore, QCC between quantal
space. Indeed, all the associated machinery of commutatiotnd classical distribution functions is closely related to the
rules, eigenvalues, eigenstates, etc., can be used to formaisue of decoherence in the presence of an environment that
analyze the quantum-classical correspondence of both intéas a chaotic classical limit.7].
gral and chaotic systeni$]. The model calculations in this paper are based on a
Recognizing that phase-space distributions allow for &trongly chaotic system: the quartic oscillator mogies].
common view of classical and quantum mechaitge= also The Hamiltonian is, in dimensionless scaled varialple3,
Refs.[7—10]) suggests that we consider the nature of chaogiven by
as it manifests itself in phase-space distributions, as distinct
from classical phase-space trajectories. To this endid pi p% o B
and otherd12,13, have developed a criterion for chaos in H(q1,92,P1.P2) = 7+ 7+ Eq§q§+ Z(q‘1‘+ a3). (1)
terms of the structure of phase-space distribution functions.
In this paper, the distribution function approach to QCC in
classically chaotic systems is carefully examined and subwhena= g or 38, this system is completely integrable. For
very large values of/ B the system is strongly chaotic, with
the characteristic Lyapunov exponent being an order of mag-
*Present address: Department of Chemistry and The Jamestude larger than that of other conservative chaotic systems,
Franck Institute, University of Chicago, Chicago, IL 60637, USA. e.g., the Haon-Heiles system.

1050-2947/2003/68)/06210312)/$20.00 68 062103-1 ©2003 The American Physical Society



J. GONG AND P. BRUMER PHYSICAL REVIEW A8, 062103 (2003

This paper is organized as follows. Section Il briefly re-Further, usingd>=—1 andJM'J=—M "1, one obtains
views the distribution function approach to QCC in chaotic
systems. Special emphasis is put on a structure measure of MIV pol ¥(0)]=IVp ¥()]. (6)
classical and quantal distribution functions, and on our defi- _— : .
nitions of classical and quantal finite-time Lyapunov expo-SUbSt'tu'[Ing Eq(6) into Eq.(2) yields
nents. The paper then proceeds to present results in order of
increasing time scales. In Sec. lll, QCC is studied for ini- N v(0),t]=1
tially positive-definite Wigner functions at early times. In t
Sec. IV, a simple analytical understanding of the break time
regime of QCC is provided, followed by supporting numeri-
cal results. We then consider, in Sec. V, QCC in some low-

order statistical moments for much larger time scales. A sum- ] .
mary is given in Sec. VI. Note that Eq(7) defines the Lyapunov exponent in terms of

phase-space distribution propertiedpecifically, the faster
the structure ofp, increasesthe largerA is.

In accord with Ref[11], we define a particular ensemble
average of the gradients of distribution functiongas, i.e.,

1
im=In[JVp [ y(t)]]

—

1
im—In|Vp[y()]]. @

—

=1
t

II. LYAPUNOV EXPONENTS IN DISTRIBUTION
FUNCTION DYNAMICS

A. Classical distribution function dynamics 12

Classical chaos is usually defined as the extreme sensitiv- j |V pi(y)|2dy
ity of trajectories to slight changes in initial conditions. X2 =| ———
Quantitatively, it is described by a positive maximum f p2(y)dy

Lyapunov exponent or by the Kolomogorov entropy. Con- L !

sider a conservative Hamiltonian system with two degrees - 1/2

of freedom with dimensionless canonical variables fpt(Y)Vzpt( y)dy

d1.02,P1,P2- A phase-space point is characterized by a four- | _ ®)
dimensional column vectop=(q;,9,,p1,p,)". For brevity f 2(:d

we introduce the antisymmetric matrik= (% 3), where0 i pr(y)dy
and 1 are 2x2 zero and unit matrices, respectively. The
canonical equations of motiofi.e., Hamilton’s equations
then read agy/=JJdH/dy. The sensitivity of classical trajec- 1 12
tories to initial conditions is described by the stability matrix =~ y,.(t)= f |[IM (y,£)IV po(y)|?dy
M;;[ v(0),t]=3dvi(t)/dy;(0), and themaximal Lyapunov Jp(z)(y)dy

exponent\ is given by

Using Eqgs.(6) and(8), we have

9

Iimlln{|M[y(O),t]7;|}=)\[y(0)], (20 The physical significance  of x,c(t) becomes
— apparent when one considers the Fourier transform
of the distribution function. That is, suppose:(y)
where is a vector in the tangent space. The stability matrix=[1/(27)*]/ dk exp(2mik - y) p;(k), where p,(k) denotes
M is symplectic and its time evolution is governed by thethe Fourier component evaluated at the 4-dimensional wave

differential equation vectork. Then
. 9*H 2 2
M=J—M, (3) , fdkk lpi(K)|
dy Xoc(t)= ——, (10
dk|p.(k)|?
M(0)=1. 4) showing thaty. is the root-mean-square radius of the Fou-

rier transform of the distribution function, and thus serves as
a measure of classical phase-space structure. That is, the
darger x, is, the more structurep(y) is.

For completely integrable dynamics there exists a special

A simple application of Liouville’s theorem leads to an
alternative expression for the maximal Lyapunov exponent i
terms of classical distribution function dynam[d®,11]. Let _ X ) i

set of generalized coordinates: action variabled, and

p; denote a well-behaved classical probability distribution | bl n thi : he Hamil
and¢ denote an arbitrary infinitesimal vector in phase space".’mg_e variablesdy, 6. In this representation, the Hamil-
Then, from the incompressibility of the Liouville density tonian depends only on the action variables that are constants
functi,on one has of motion. For such cases, E() has the simple solution

2
P ¥(D)]+ Vo YO IME=pol ¥(0) ]+ V pol 7(0) I£. M=1+ 300 (11
(5 ay?
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1/2

Substituting this explicit time dependence of the stability
matrix into Eq.(9) gives the following long-time behavior of J Vo™ (y)[?dy
X2c- Xeg=| —( ) (16)
Wh 2 d
R L 2h 2 7 f(p )(y)dy
lim = ——IVpo(y)| dy _ _ _
tow L Jpz(y)dy d where p*(y) is the Wigner function of a quantum state.
0 Accordingly, in the Fourier space of quantal distribution
(12)  function,
Hence, for regular dynamics the structure of distribution
functions, as measured by, asymptotically shows a lin- f dkk2|p:N(k)|2
ear time dependence in the action-angle representation. How- ng:—, (17)
ever, x,.(t) may show a polynomial time dependence in fdk|pw(k)|2
other canonical representations. t

By contrast, for chaotic dynamics it was shown tfEt]

where p(y)=[1/(27)*]f dk exp(2mik- v)p, (k). Hence,
1 X2q 1S the root-mean-square Fourier radius of the Wigner
lim T In x2c(t) =N, (13 function. Further, finite-time Lyapunov exponentg,(t) for
o quantum distribution function dynamics can be defined by

where, is the so-called second-order generalized maxima?'reCt analogy toz(t), i.e.,

Lyapunov exponent. That is, in the chaotic case the root- 1 (t)
mean-square Fourier radius of distribution functions in- Nag(D)==In X2q ) (18)
creases, asymptotically, at an exponential rate 0fSince a t 1 x2q(0)

given resolution limité corresponds to the inability to ac- _ _ . .

count for Fourier modes larger thansLkhaos can be under-  Nterestingly, x,q has an equivalent expression that is

stood as a kind of exponential loss of accuracy, or of infor-€asier to handle. Suppogeis the density-matrix operator

mation, encoded in the Fourier basis expansion of the initiahssociated with the Wigner functig! and , is the opera-

distribution function. tor associated with the classical canonical variapld€e.g.,
By definition, the(generalizeglLyapunov exponenk, is  q;,p;). A simple calculatior{11,12 then shows that

an asymptotic property, relevant as time goes to infinity. Re-

alistically, however, it is finite-time properties of classical ) Tr(p>y2—pYipyi)
chaotic dynamics that are of real interest to the study of qu=22 P (19
QCC. To this end it is useful to introduce a finite-time ! h=Tr(p%)

Lyapunov exponent. Based upon Ed.3), we define the . _ _ . o
finite-time Lyapunov exponent in terms of the average expoOf particular interest is the pure state case, in whiék p

nential increase rate of,.(t) over timet: and, as a result,
_1 X2c(t) 9 2 ~y ~ o
Mac(O= TIN5 | (14) Xaa= 73 2 (D =w?), (20)
with

where (- --) represents ensemble expectation values. As
shown below, the analogous classical expression is far more
complex.

Consider then the quantum counterpart of Edp). Since

We examine this quantity over various time scales below. Eq.(19) indicates thaly3,=<23,;Tr(p?y;%)/4*Trp?, we have
that x,q has an upper bound for any bounded Hamiltonian
system. As such, for fixel and bounded systems,

t— 4o

B. Quantal analog of classical finite-time Lyapunov exponents

From the ensemble point of view, QCC is best understood lim N,q(t)=0. (21
by comparing the classical Liouville equation with the quan- t—+o
tum von Neumann equation in a phase-space representation,
e.g., the Wigner-Weyl representation. Specifically, given EqThis reproduces the widely accepted result that bounded
(9), which provides a quantitative diagnostic for characteriz-quantum systems cannot exhibit chaos in the strict sense.
ing classical chaos using classical distribution functions, it However, as noted above, what is of interest to the study
becomes straightforward to define the quantum analog obf QCC are the transient properties)of;(t) vsA,¢(t). Con-
classical Lyapunov exponents using quantal distributiorsider, for example, a two-degree-of-freedom systém
functions. By analogy with Eq(8) we define the measure =H(q;,92,p1,P»). The quantum von Neumann equation in
X2q for quantal phase-space structure as terms of the Wigner functiop" is given by
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gpW #/2i)(1t12-1) of Eq. (23). As A,.(0) reflects an ensemble average of in-
WZ{H,P P S <R YT DU stantaneous density fluctuations, it depends strongly on the
(I1+12)>1, 0 e shape and location of the initial classical distribution func-
a11712V/(qy ,qp) 911D pW tion. _Hence, as_in fche quantum case, there exists very rich
T T (22)  transient behavior in the time development of phase-space
99,99y Ipap; structure, an interesting feature that has often been ignored in

, . S . previous QCC studies.
where the first term on the right-hand side is the classical T consider quantum effects induced solely by the dy-

Poisson bracket and the second term represents the sum o¥@{mics suggests that we choose an initial quantal distribution
an infinite series of “quantum corrections.” Consider the fynction that is as classical as possible so that differences
short-time limit ofA 54(t). Using Eqgs(16) and(22) we have  petween classical and quantum dynamics evidently arise
from the dynamics. This suggests that the initial Wigner

1 9°H function should be chosen as iti ini [
_ wyT 91 W positive definite, so that it can
N2q(0)= W2 f (Veo) ( (7),2)‘] (Vpo)dy be interpreted as a classical probability distribution. It is well
f [Vpol“dy known that for one-dimensional pure state dynamics the only
il positive-definite Wigner function is the Gaussian distribution
W T (hf2i)a*l2= D) function[20,21], which takes the following general form:
+ | (VpghTdy —_—
(1 +13%10dd  Iq!15! o
w 1 29—, (q-Q)?
&('1*'2)V(ql ) &('1*'2)’)\6\’ Prynvagz%ex - ?(p_p) _22—2
XV — — (23) 7°(1=1%)
dq; 99, ap; dp, or
where, obviously, the first term on the right-hand side of Eq. +ﬁ(1_ r2)1/2(q_q)(p_ P 26

(23) corresponds to the contribution from the classical Pois-
son bracket and all other terms represent quantum corregyherer, 7, a Eare parameters and where
tions.

Some aspects of the distribution function strategy outlined (@y=q, (p)=p, (G*—q?) =77
above have been applied to the Arnold-cat map model
[11,12], where the stretching and contraction mechanism is _ 52 hr
uniform over the entire phase space. However, rich transient{p*—p?)= 5 o PPN =1
behavior of finite-time Lyapunov exponents, as implied in 4n~(1—r%) 2(1-r%)
our derivation of the explicit state dependencea gf(0), has (27

not been explored thus far. The following section is devotedryis Gaussian form corresponds to the so-called correlated
to both analytical and numerical studies on this subject.  gnerent stateg22], whose coordinate representation is

given by
Ill. SHORT-TIME CORRESPONDENCE
2 .
To examine the QCC in short-time dynamics itis usefulto  y(q)= # xg — a 1— o + «q
. . s (q) 2 1/4e 2 2\1/2
consider the classical analog b,(0), i.e., Apc(0) as the (2m7n°) 4n (1-r9) Y
extreme short-time limit of classical finite-time Lyapunov L
exponents. Using Eg$3), (4), and(9), we have
p g Q$) () () _i(a2+|a|2) , (28)
im3Xze Voo | 28] 50w pod — =
dt Po 2 po)dY- where « is a complex constant given by/(27) +i[p7/h
t—0 2( )d (9’)/ —
Poty)8Y —qr/(29y1—r?)]. In particular, for the case af=0, (qg?

(24 —g®(p?-p?)=h%4, corresponding to the minimum-
uncertainty-product state, i.e., the coherent state.

Substituting Eq(24) into Eqg. (14) gives the zero-time limit For the two-degree-of-freedom system examined below,

o haell) one would choose two-dimensional Gaussian states. The ini-
J2H tial quantal distribution functiopy’ and classical distribution
f (VPO)T(—2>J(Vp0)d7 function p, are thus chosen as the following:
Jy
A2c(0)= (25 w_  _ W W
2¢c J’ |Vp |2dy Po = Po pflynqul,p1®pr2,nz,q2,p2- (29
0

Substituting this initial state into E¢25) and approximating

Here,\,.(0) is seen to be the averagedH/y? weighted ~ the average of the derivatives ¥{q;,q,) as the derivative
by gradients of the initial distribution function. Not surpris- evaluated at the centroid of the Gaussian distribution, de-

ingly, Eq.(25) resembles the first term on the right-hand sidenoted42V(q;,q,)/dg?, one gets
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Noc(0)=

ﬁZ
+—
2(1-r))7n?

ai ( - aZV(ElE»)

-
(1-rf)"? 9a;

27?

>

i=1,2

X2 and X2q

X
i=12

. (30

It is seen that\,.(0) depends strongly on both the shape
parameters |,r, and the phase-space locations of the initial
distribution function. Two particular situations are worthy
noting. First, for the minimum-uncertainty-product state (
=r,=0), i.e., the two-dimensional coherent state that is
commonly used as initial states in QCC studies, E3f)
gives \,,(0)=0. Second, whenr;[1—4?V(q;,q,)/3q°]
<0 for eitheri=1 ori=2, \,.(0) can be negative. That is,
for appropriate shape parametersr, and central coordi-

natesq; ,q,, the contraction mechanism associated with cha-
otic dynamics may initially dominate over the stretching
mechanism, giving rise to a reduction in phase-space struc- .
ture. 0 0.25 0.5 0.75
The quantum analog of this transient behavior can be ex- tme
amined by considering ,,4(t) in a similar fashion. Specifi- 3.5 - - -
cally, substituting the initial positive-definite Wigner func-
tion (29) into Eq. (23), keeping the leading-order quantum 34
correction term in the quantum Liouville equation, one ob-
tains

X2c and X2q

X2¢ and X2q

IV

12 92
167TJ |Vp\(’)v|2dy 741905

)\ZQ(O) =N2c(0)—

35 0.5 05 075

) W 2
XL 1—r§)1/2J dawdpilVer, . 0, 5y FIG. 1. Time dependence of,:(t) (dashed ling and xq(t)
(solid ling) for three initial Gaussian distributionsi €0.5). The
r W ) three panels correspond te) r,=r,=0, (b) r;=r,=0.6, (c) ry
+ —zuzf dapd F’2|VP,2,,72 EATANE =r,=—0.6. Note that the initial slope of these solid and dashed
(1=r3) lines is zero, positive, and negative (@, (b), and(c), respectively.
(3D All variables are in dimensionless units.

Evidently, initial states withr;=r,=0 give \,.(0) consider a coupled quartic oscillator system given by (&p.
=N24(0)=0. Thus, in this sense, the coherent state is thavith «=1.0 and3=0.01, and fori=0.5, 0.05, and 0.005.
most classical state of the correlated coherent states; oth@lassical calculations are done by Monte Carlo methods
types of initial states have a leading-order quantum effecbased on Eq(9), and quantum calculations use the fast
proportional tod*V/dq2dq. After carrying out the integrals Fourier-transform split operator techniqi23]. For each
in Eq. (31) for p:/Y”__ given by Eq.(26), one sees that case we examine three sets of initial distributions, i@a).,

274, . . r{=r,=0, (b) r;=r,=0.6, and(c) r;=r,=—0.6. For all
[N2c(0)—X24(0)] is proportional to the first power of. 12 Sl . I
Therefore, for relatively largé, depending upon the sign of [NfE€ €asesy=7,=1h/2, and the centroid of the initial

ryandry, hoq(t) can be significantly larger or smaller than Stéte is fixed atq,=0.40, 4,=0.60, p,=0.50, andp,
M,(t) at early times. In addition, if there is no quartic term =0.414. Note that this initial location of the Gaussian dis-
in the potential, i.e.9°V/dg2dq2=0 (e.g., in the Heon- tribution gives (+4°V/dq7)>0 and (1-43°V/dq3)>0, a
Heiles mode), Eq. (31) shows that[A,.(0)—A,4(0)] is fact that is relevant to the discussions below.

given by smaller terms that are proportional to higher powers Figures 1-3 display comparisons betwegg(t) and
of . X24(t). Consider Fig. 1 for the case oi=0.5. Here

Thus far we have only examined correspondence betweem“V/aaio?agzz.O, and one expects thab,(0) can deviate
Aoc(t) andA,4(t) att=0. For nonzero times, one can utilize considerably from\,;(0) for nonzerar; andr,. Further, the
numerical methods to compare these quantities. For examplexpectationfrom Eq. (31)] is that the initial quantum cor-
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FIG. 2. Same as Fig. 1 except=0.05 and that botly,.(t) and
X24(t) are plotted in the logarithmic scale. The average slope of th
curves (up to a certain time is indicative of the finite-time
Lyapunov exponents ,¢(t) and\,(t). The break regime of QCC
is clearly betweert=1.0 andt=1.5. All variables are in dimen-
sionless units.

FIG. 3. Same as Fig. 2 except=0.005. The break regime of
%CC is clearly betweet=2.0 andt=2.5. For 0.5xt<2.5 and for
all three initial conditions ina), (b), and(c), there is an exponential
increase of phase-space structure for both classical and quantum
dynamics. All variables are in dimensionless units.

rection should be positive when ,r, are negative and nega- slope of the curvesi.e., N,4(0) and\,,(0)] in Fig. 2(b)
tive whenr,,r, are positive. All these predictions are con- both happen to be close to the average slope, finite-time
firmed nicely in our computations. In particuldi) in Fig.  Lyapunov exponenjsfor longer times(e.g.,t~4). In Fig.
1(@) (ry=r,=0), both x,.(t) and x4(t) assume an initial 2(c) the transient behavior of the finite-time Lyapunov expo-
zero slopefii) in Fig. 1(b) (r;=r,=0.6), the positive slope nents assumes a completely different nature, i.e., the increase
of xo4(t) att=0 is seen to be smaller than that pf.(t); of both x,c(t) and x,4(t) is significantly suppressed for
and(iii) in Fig. 1(c) (r;=r,=—0.6), it is indeed seen that at times up tot=0.5. Variations in the finite-time Lyapunov
very short timesy(t)> x2c(t), both of which have nega- exponents can be further seen by compayipgt=4.0) and
tive initial slopes. For all three situations, the quantum ef-y,4(t=4.0) in Fig. 2b) to those in Figs. @ and 2c): they
fects are so large that QCC is essentially lost at very shortan differ by a factor as large as 1.5. Note also that Fig. 2
times. shows that the break regime of QQCe., the time when
Figure 2 shows the corresponding resuitsth different  classical and quantum dynamics no longer agiebetween
abscissa scalavith the value off decreased by a factor of t=1.0 andt=1.5, which is of the order of one average pe-
10. This case is different from that in Fig. 1 insofar as ex-riod of motion. With increasing time, the agreement between
cellent QCC is seen for short times for all three initial con- x,4(t) and x,c(t) in Fig. 2 worsens: the classical phase-
ditions. In particular, in Fig. @) the time dependence of space structure is seen to increase exponentially on the aver-
both x,c(t) and x,4(t) is seen to be very close to exponen- age, whereas there is no clear sign of a similar exponential
tial for t<1.5. However, this is partially because the initial increase in the quantum distribution dynamics.
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Besides, we note that since the structure of quantal dlStri;(O), respective|y_ The summation indicas,n, etc., run

bution functions may determine the early-time decoherenc§om 1 to 4 for a two-degree-of-freedom system, and
rate if the quantum system is opgh4], these variations in — . ’
L g ; : . 0y(0)=[¥(0)— y(0)]. The time dependence &, By,
finite-time Lyapunov exponents imply that even in classi and Cy,.... is governed by the following set of first-order

cally strongly chaotic systems it is still possible to pick out i ol . h th th ical .
some initial states which are relatively robust to decoherencgifferential equations together with the canonical equations

effects. for classical trajectories:
As shown in Fig. 3, with a further large decreaséipthe
break regime of QCC is considerably shiftedtte2.0—3.0. )
The transient behavior caused by different initial states still dAg 9°H A
persists fort<0.5. After the transient period and before the dt 5 ™ ayame <
break time, all quantal distribution functions in Figga)3-
(c) emanating from the three different initial conditions are
seen to undergo an exponential increase of structure on the 3
average, in excellent agreement with the behavior of classi- dByim Jur 2 J°H N
cal distribution functions. dt A7 7O Ve Y n'm

IV. THE BREAK REGIME FOR CORRESPONDENCE 9%H
Biiim | »

Understanding the QCC break regime is a central problem AV Y
in the study of correspondence. From the viewpoint adopted
here, i.e., via phase-space distribution functions, the break
regime is when the classical distribution function begins to 3
develop significantly different structure from the quantal dis- de'm“: > Ju JH A B,
tribution function, i.e.,y»c(t) begins to deviate appreciably dt & o OV OV Y
from x,4(1).

It is tempting to try to use the quantum Liouville equation 9%H 93H
[Eq. (22)] to study the breakdown of QCC with time. How- +————Cximn |+ E N —
ever, this is not an easy task, since, for nonzero times, one I IV K'l'n’ I119Yk IYnr
cannot analytically deal with distribution function dynamics.

Rat_her, we _prese_nt a sim_plezdescription of the QC_C b_reak X (BrrinAn/m+ BryrmAir)) + E Jurr
regime by first reinterpreting5.(t) and then comparing it K'l'n'm’

with ng(t). As will be quite clear, our description also re- 4
lates the distribution function strategy to the trajectory view- > JH AuiA, A (33)
point of chaos. IV Ve Iy Iy

It is convenient to restrict the discussion to the case of the
minimum-uncertainty-product state, although the following
considerations can be readily extended to the most general Consider two initial points in the phase spag€Q) and
case. Further, we focus on pure state dynamics becauyo). They generate two classical trajectories, denoted by

mixed state dynamics simply makes the study of QCC mor ) . . .
complicated, without adding new physical insight. v(t) and y(t), respectively. From the trajectory viewpoint,

We begin with the Taylor-series expansion of the stabilityof _most interest is  the differencedy;(t)=[y;(t)

matrix M[ y(0),t] aroundy(0); i.e., —7()], which is a differentiable function ofy(0),
M [_(0) . 6y(0), and t. Fixing 7y(0), and thus v(t), gives a
_ — kL YY), reference trajectory. Consider now the Taylor-series

M"'[Y(O)’t]_Mk'[y(o)’t]JrEm: Oym(Q) Ivm(0) expansion of 8y;(t) in terms of &y(0). Obviously
o — 52}’j(t):0 if 8y(0)=0, 367;(1)/36%(0)|sy0)=0=Aji »

1 My [ v(0),t] 9*8y;(t)/ 98(0)38%,(0)| 550)=0=Bjw » and so on. In fact,
+ 2 % 8Ym(0) 6vn(0) 97m(0)374(0) the nth-order derivative ofoy;(t) with respect tosy(0) is

Ym n simply given by the 61— 1)th-order derivative of the stability

+0([6¥(0)]13) matrix M[ y(0),t] with respect toy(0). Based on this ob-

servation, one obtains the following relation:
EAkI"'% 0Ym(0)Byim

1
+3 2 03(0)57:(0) e+ O 51O ), F Arn(0=o% (05 & on(0o7(0)By.

1
(32 =5 22, O70)oM(0)8yn(0)Ciim
where we have define8ly,, By, andCy,, as the zeroth-,
first-, and second-order derivatives of the stability matrix at —O([6¥(0)1%. (34
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Consider now the initial classical distribution function
corresponding to the coherent state

(4= )  (P1=PD? (P2 P)°?

1 (01— 0y)?

2
20q1

(39

po[y(0>,?<0>]=(

2
v O'q10'q20'p10'p2

2
P2

After lengthy calculationgsee the Appendijxusing Eqs(9),
(32), (34), and(35), we obtain an enlightening expression for

X5o(t),
X5e()= % 2 [Lyi(01% o= (7))l
2 1
X(3(0) 8% (0) 8%(0) 8%/(0))g
N |

1
_B'k|B'k’|’+_A'kC'k’”’
jcn |4 e 477
1 6
X(akay 87(0)6y(0))o+ ﬁo([f?v(o)] ).

1

4 Bjlejk’|’+

(36)
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L.

2
AiCikrir

flty=— >

jkk' 117

EBjk|Bjkr|/+ 3

1
Sk + Z[(5kk’ Ol 1+ Or S ) (1= 0y)

>< —
4
+ 80001 (1= 81 [+ 2 Jkndem
JKK I mm’
3
X (BjkiBjk17 + AikCikrii)| 7 Ommr1n

4

1
+ Z[(gmm’ 5II rt+ 5m|'5lm/)(1_ 5m|)

+ 6mi6m (1= mm) |- (38)

This expression affords perspectives into QCC. Recall
first, as shown in the preceding sectimee Eq.(20)], that
for pure state dynamics the quantal meas@ﬁ(g(t) of phase-
space structure can be expressed in terms of the sum of
second-order moments. This is more or less a consequence of
quantization: the smallest scale in coordinates is related to
the largest momentum component of the wave function, and
vice versa. Clearly, this is in general not the case for classical
distribution functions. Nevertheless, E436) and(37) indi-
cate that, to the lowest orde‘réc(t) can still be related to the
sum of second-order statistical moments. Specifically, as
shown in Eq.(37), for an initially symmetric coherent state
the first term contributing toea.(t) is given by the sum of
second-order moments divided by/2, which is exactly the
same as the result in E(RO) for x5,(t). In addition, x5.(t)
contains additional contributions absent in the quantum dy-
namics. For example, the leading-order correction té¢th
is independent ofi. As shown by EQq.(38), this term is
determined by the stability characteristiég,, Bjyy,, and

Here(- - -), represents the average over the initial classicabkmn associated with the trajectory starting from the cen-

ensemble. Note that the facté? in the above equation is
due to the fact thatrqlgpl:quapZ:ﬁ/Z for any classical
distribution  function corresponding to a minimum-
uncertainty-product state.

j
troid of the initial Gaussian distribution. These results show
intriguing similarities and differences betwegn.(t) and
X2q(t)-

As a simple example of Eq37), consider a quadratic

Equation(36) provides a quantitative connection betweenHamiltonian systems such as the harmonic oscillator or the

the development of phase-space structure and the instabiliiyiverted harmonic-oscillator system, where classical and
characteristics of classical trajectories. Further, it allows for ajuantum mechanics are expected to agree. Here the time
closer examination of when and how classical distributionevolution is a linear canonical transformation in phase space;

functions begin to develop a structure that differs from quanyence the stability matrix elements;, [ 7(0),t] do not de-
tal distribution functions. Consider then, for simplicity, a J

special case in which the initial coordinate variances ar
identical to the initial momentum variances, i.e; =0,

=0y, One obtains

pend ony(0) and By ,Cjxm, and all other higher-order

derivatives of the stability matrix with respect tg0) are
zero. Thus, in such linear systenxaf,c(t) is precisely given
by the sum of some second-order moments divided 42,
in perfect correspondence wi];hﬁq(t) [see Eq.(20)].

For the case of chaotic systems, one can estimate that the
stability matrix increases exponentially, i.é,~exp(t),
with \ being the average exponential increase rate up to time
t. Likewise, one expectB,;m~expi\t), Cyimn~eXpQt), etc.
Equation(38) then suggests thd{(t) ~ f,exp(2t). By con-
trast, the first term on the right-hand side of Eg7) is de-
termined by second-order moments and cannot increase for

1

= qu

2
X5e(1)= Py 2 Ly (0120 (¥ (1)1 + (1) + O(h),
37

wheref(t) is given by

062103-8



CHAOS AND QUANTUM-CLASSICAL CORRESPONDENE. .. PHYSICAL REVIEW A 68, 062103 (2003

50 3500 : . ,
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FIG. 4. Time dependence oi(ﬁc—xgq) compared withf (t) in our analytical consideratiorisee Eqs(37) and(38) in the texi. The
initial condition is the minimum-uncertainty-product state considered in Sec. Ill. Dashed lines dgﬁpte(ﬁq) based on direct calcula-
tions in Sec. Il and solid lines denofgt) obtained by directly integrating E¢38). # equals 0.05 i@ and equals 0.005 ib). The
agreement between(ﬁc—xﬁq) andf(t) for the QCC break regime is excellent. All variables are in dimensionless units.

all time for bounded systems. Indeed, assuming that the char- V. LONG AFTER THE BREAK REGIME
acteristic magnitude of the second-order moments
(7020 (¥(1)3] (1=1,23,4) is given by?, then
the first term on the right-hand side of E@®7) would be
bounded by 82/#2. Thus, in Eq(37) the f(t) term will be
comparable to the preceding term after a titge approxi-
mately given by

The logarithmic break time, of QCC introduces many
issues regarding the relationship between quantum dynamics
and classical mechanics. For instance, Zurek and[P&k
showed that a logarithmic break timisomewhat different
from that obtained aboyecan be counterintuitively short
even for macroscopic objects. This being the case, our ev-
eryday experience in a macroscopic classical world full of

eI chaotic events seems incompatible with the notion that clas-
bzlm M} (39) sical physics is a large-quantum-number limit of quantum
A h mechanics. Likewise, the smallness of the QCC break time

seems to imply that classical physics cannot play a role in

nonlinear molecular dynamics, contradicting the fact that
A comparison between Eq$20) and (37) suggests that,  classical physics often works well in many dynamics simu-
corresponds to the time scale after which classical descrigations. To at least partially resolve these puzzles, this section
tions of phase-space structure no longer agree with quantugttempts to explore the implications of the quantum-classical
results. Thust, can be identified as a logarithmic break time discrepancy in phase-space structure for ensemble statistics.
of QCC. This result is consistent with previous studies on the As already implied by a comparison between E@9)
QCC break time using different approacli@d]. Note that, and (37), what is directly responsible for the logarithmic
since Eq.(39) involves classical variables only, one can cal-preak time is not the quantum-classical difference in expec-
culatet,, without the need for any quantum calculations.  tation values, but simply the exponential increasef @,

The origin of the classical-quantum difference lies in thewhich reflects the richness of fragmentation of classical dis-
f(t) term in Eq.(37). This term does not have a quantal tribution functions. As such, it is interesting to examine QCC
analog since it reflects classical phase-space structure thatiis terms of some observables. Figure 5 displays the time
beyond the resolution limit of quantal distribution functions dependence of four variances, i,g(_q§>_<q1)2, <q§>
[25]. To demonstrate the role df(t) we compare[)(gc(t) —(q)?% <p§>_<pl>2, and(p§>—<p2>2, for both classical
— x54(1)] from a direct calculation té(t) given by Eq.(38).  and quantum dynamics. The initial state corresponds to that
Specifically, f(t) is obtained from Eq(38) by numerically  used in Figs. @) and 4b), and# still equals 0.005, allowing
computing the instability characteristiés, , Bji, andCjn direct comparison with the previous results.
via Eqg. (33). Two cases with differing values d@f have been Interestingly, results in Fig. 5 show that QCC in these
examined. Results are shown in Figéa)4and 4b) that dis-  second-order moments is excellent for times up=d2.0,
play the comparison betwe@éc(t)—xgq(t)] andf(t) for  which is much longer than the break tihg~ 3.0 identified
both cases. The agreement is excellent, confirming the rol@ Fig. 3. In particular, for times less thas- 2.5, both quan-
of f(t) in determining the break regime of QCC. tal and classical variances are seen to increase very rapidly,

Figure 4 also shows some tiny discrepancies betweeim exactly the same manner. This rapid increase is exponen-
[ch(t)—)(gq(t)] and f(t) (especially at later timgscorre-  tial in nature because, in this regime, the sum of these vari-
sponding to higher-order contributions in E§7). Neverthe-  ances(divided by %%/2) give x5, (or x3,), which indeed
less, the physics is still the same; i.e., the sunf(@j and increases exponentially on the averdgee Fig. 8)]. This
these higher-order terms measures very fine phase-spacenfirms a published suggestion that the initial rapid increase
structure that is unresolvable by the quantum distributiorof both quantal and classical variances could be used to iden-
function. tify classical chaos from quantum dynamicd. For times
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18 . . ——— 12 . : ; ; ;
16 a
L L4 )
s s FIG. 5. Quantum-classical
| 1 I comparison of the time depen-
& 08 ¥ dence of four second-order statis-
0.6 tical moments, i.e{q?)—(q,)? in
0.4

@, (a3 —(ax? in_(b), (p3)
—(p)? in (0), and(p)—(p2)? in
(d), for times much larger than the
time logarithmic break timet,. The
initial distribution function corre-
sponds to that in Figs.(8 and
4(b), and#=0.005. Dashed lines
denote classical results and solid
lines denote quantum results. The
QCC shown here during the com-
plex relaxation process (Ot
<12.0) is remarkable. All vari-
ables are in dimensionless units.

0.2

#) - (p)?

10 15 20 25
time time

2.5<t<12.0 during which excellent QCC persists, theregarding the role of decoherence in Q{Z9,30. On one
second-order moments display a complex evolution. For exhand, our results here show that during a relaxation process
ample, there is clearly a diffusive regime betweerb.0 and ~ whose time scale is much larger than the logarithmic break
t=7.0 with very large diffusion constants. After that, severaltime, decoherence may still be unnecessary in order to ensure
very strong oscillationgparticularly in Figs. B)—(d)] can ~ QCC in low-order statistical moments. Thus, at least in our
be observed, suggesting that both the quantal and classic@odel system, decoherence effects on correspondence in ex-
distribution functions alternate between a high degree of deR€ctation values of low-order statistical moments, if any,
localization and a certain degree of localization over the enShould be considerefter the relaxation process is essen-
tire accessible phase spatis oscillatory behavior also Ually completed, e.g., aftar=12.0 in Fig. 5. This point sup-
suggests that the QCC time scale here should scale asfi® % B8P REN 8 R E0 BETERER CHETCt 1o
power of#:, rather than scale as ﬁ) The impressive QCC conservative systems, and agrees with the recent [n)zlk}rtky

in this cpmplex relaxation pattern is in sharp contr'ast to' th merson and Ballentine. On the other hand, as shown in our
results in Figs. @) and 4b), where quantum-classical dif- previous work using the same model systgre], QCC for

ferences, as quantitatively described BYz() = X2(0]  much larger time scales can be much improved with the in-
and predicted byf(t), are already very large for 3& troduction of decoherence.

<4.0. For even later timest¥12.0), Fig. 5 shows that
guantum-classical discrepancies begin to show up, but still VI. SUMMARY

with very similar trends in the oscillations. We h tudied the i fOCCi i haoti
These results indicate that the logarithmic break time may e have studied the issue of QCC in conservative chaotic

be quite irrelevant to QCC when viewed from the perspec_systems in detail using a phase-space distribution function

tive of some low-order statistical momeng]. This is the approach. The nature of QCC in three different regimes is

case since considering low-order statistical moments igxposed. In particulafi) the short-time increase rate of

equivalent to projecting the quantal and classical distributiop@Se-space structure is studied in connection with finite-

functions onto a much smaller subspace. In this projectiontIme Lyapunov exponentsii) a simple and enlightening de-

or coarse-graining procedure, all the information encoded hfcl[lptlon of tf;g brefak rtehglmei of .QCIC iobtalned by stucctess-
an infinite number of higher-order statistical moments is lost. “hy ha_ccgun mg thor N tC as;,lca 'pt' ase-space s”ructure,
An accurate QCC is thus restored due to the loss of detaile Ich IS beyond the quantum description, diid) excellen .

information. CC in low-order statistical moments is shown to persist

The results here also give further support to the idea oflufing @ complex relaxation process, whose time scale is

applying classical propagation methods to quantum distribu[nuCh larger than the logarithmic break time.

tion functions, as a means of approximating the true quantum
mechanicg27]. That is, chaos may not cause a rapid failure

of classical dynamics simulations if one is only interested in  This work was supported by the Natural Sciences and
expectation values of some observables. More importantlyingineering Research Council of Canada. We thank Profes-
the results provide more insights into a fundamental issusor Arjendu Pattanayak for useful discussions.
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APPENDIX: DERIVATION OF EQ. (36) Note that the Jacobi matrix of this transformation is a unity

In this appendix we give a rather detailed derivation ofMatrix and it has no effect on the form pf[ ¥(0),(0)]. As
Eq. (36) using Eqgs.(9), (32), (34), and(35). We begin with @ result of this coordinate transformation we haug
the derivation by substituting E¢§32) and the initial distri- — 6¥«(0)/(oq,0p,) =6¥(0)/(oq,07p,). This makes it pos-
bution functionpg[ v(0),y(0)] [see Eq.(35)] into Eq.(9), sible to reexpress the second term on the right-hand side of
evaluating the first derivatives pf[ y(0),7(0)], and finally ~ Ed-. (A3) by use of Eq(34). Specifically,
rescaling all integration variables by a factor of/2/ One
then obtains 2)

1 —
1 - > f dy<0>po[y(0>,y(0)]<2 ‘g Ajere
D=5 [ %070, 500)] ‘

1 _
. - [ a%0d70).500)
X2 | e Ajk+2 —=Bjkmd¥m(0) 2(aq,0p,)
TR m 2 ,
1 2 x| 20 | 2 Ajond0) )
+ 2, 7Cikmnd7m(0) 374(0) + O 37O ) || '
- VT2 (4312
(A1) TN 2 (O~ ()9
where
_ - _ - Biy{6y;(t) 6y (0) 5y, (0
[ pu0)=pi(0) [ pa(0)=py0) 2 Bia{ 97070 9% (0)o
X1~ _0_—2’ @2~ _0_—2’ 1
" " +7 2 BBy 8%(0) 8% (0) 9 (0)
o _ _ kiK1
d:1(0)—q1(0) d2(0)—02(0)
=——F|, =|——|. (A2 1
e i I e X6%:(0)03 3 Cian( % (0%
SinceAjy, Bjxm, andCjmn do not depend uporn(0), and 6
only the even functions ofy(0) will contribute when inte- X 671(0) 8ym(0))o+O([5¥(0)]7) |- (A5)
grated ovelpg[ y(O),;(O)], Eqg.(Al) can be further reduced
to

1 1 The second and the fourth terms in the above expression are
2 (t)= ZAC. “B. B linear function of§y(t) and they can be further trans-
X5(1) Z(Ac,,+BB,,) a _ y(t _
2 47 kEIKImM T g Bk formed into some functions ofy(0) by using Eq.(34) a
second time. We then get

jkk"mm’

X(akay 6ym(0) dym (0))o

1 o 2
+ zf dypo 7(0),¥(0])| 2 | X Aja 1 _ 2
ik 3| 90070501 3 |3 A
+0(e?[57(0)]%), (A3)
where(- - ), means the ensemble average over the initial T Noiol)? 2 ()2 (x(1)3]
Gaussian distribution. (0q,p,)" )
To further simplify the expression fcxgc(t), we make a 1 1 1
change of the integration variables in the second term on the - (—B-k,B-k,|, + 5 ACinn )
right-hand side of Eq(A3), i.e., Z(Uqla'pl)z [Poatl 4 "IKIPj 37K
. op _ Op, _ X(8yk(0) ¥k (0) 81(0) 871:(0))o
~(P1=P1) == (q=01), —(P2=P2)— (A2~ 02), L
q q
' i +———0([67(0)]%). (6)
(O'qlopl)
. 0Oq _ . 0g, _
(d1—=d)——(P1=P1), (d2—d2)— —(P2—P2).
Tp, Tp,

(A4) Finally, inserting Eq(A6) into Eq. (A3) yields Eq.(36).
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