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Chaos and quantum-classical correspondence via phase-space distribution functions

Jiangbin Gong* and Paul Brumer
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Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uni-
form structure measure for quantal and classical phase-space distribution functions. The similarities and dif-
ferences between quantum and classical time-evolving distribution functions are exposed by both analytical
and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied.
The results shed considerable light on quantum-classical correspondence.
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I. INTRODUCTION

The quantum dynamics of systems that are classic
chaotic has been a subject of considerable interest for ne
three decades. Chaos, usually defined as the exponentia
sitivity of phase-spacetrajectories to slight changes of the
initial conditions, resists direct translation to the natural H
bert space setting of quantum mechanics since there do
exist well-defined trajectories within the conventional inte
pretation of quantum mechanics@1#. Hence, many studies o
quantum chaos in the literature have been dedicated to
relatively modest study of quantum manifestations of cla
cal chaos@2,3#. Actual quantum-classical corresponden
~QCC! in classical chaotic systems is still one of the o
standing issues in quantum theory.

Considerations of quantum-classical correspondence
rely upon the standard formulations of quantum and class
mechanics are at a great disadvantage. Specifically, clas
mechanics does not admit wave functions and quantum
chanics does not admit trajectories. Hence one is faced
trying to connect two theories which do not even have
same basic rudimentary elements.

A far more enlightening approach is to utilize the Hilbe
space formulation of both quantum@4# and classical@5# me-
chanics where the central element is the density operato
both formulations. By choosing to deal with the phase-sp
representation of quantum mechanics one can then com
the classical and quantum dynamics of distributions in ph
space. Indeed, all the associated machinery of commuta
rules, eigenvalues, eigenstates, etc., can be used to form
analyze the quantum-classical correspondence of both
gral and chaotic systems@6#.

Recognizing that phase-space distributions allow fo
common view of classical and quantum mechanics~see also
Refs.@7–10#! suggests that we consider the nature of ch
as it manifests itself in phase-space distributions, as dist
from classical phase-space trajectories. To this end we@11#,
and others@12,13#, have developed a criterion for chaos
terms of the structure of phase-space distribution functio

In this paper, the distribution function approach to QCC
classically chaotic systems is carefully examined and s
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stantially extended. The extension is from one-dimensio
chaotic systems in previous work@11,12# to two-dimensional
conservative systems, from the special case of uniform
namical instabilities to the general case of nonunifo
stretching and contraction rates fluctuating with time a
phase-space location. That is, armed with a measure of
structure of phase-space distribution functions, it becom
possible to quantitatively investigate the similarities and d
ferences between quantal and classical distribution funct
in a broad class of smooth, conservative, and strongly c
otic Hamiltonian systems. In particular, this paper displa
~1! the rich transient behavior of the dynamics of distributi
functions shared by quantum and classical dynamics befo
QCC break timetb , a quantity which scales with the loga
rithm of \, ~2! a simple but enlightening description of th
break regime of QCC in the time development of pha
space structure, and~3! interesting QCC in low-order statis
tical moments during a complex relaxation process with
time scale much larger thantb .

We note in passing that the distribution function strate
is also of considerable interest to the fundamental und
standing of decoherence in quantum vs classical mecha
For example, the structure of the classical or quantum dis
bution functions determines properties of the system w
coupled to an environment@14,15#. Hence, QCC from a dis-
tribution function viewpoint is useful to the understanding
short-time quantum decoherence rates vs rates of clas
entropy production@16#. Furthermore, QCC between quant
and classical distribution functions is closely related to
issue of decoherence in the presence of an environment
has a chaotic classical limit@17#.

The model calculations in this paper are based on
strongly chaotic system: the quartic oscillator model@18#.
The Hamiltonian is, in dimensionless scaled variables@19#,
given by

H~q1 ,q2 ,p1 ,p2!5
p1

2

2
1

p2
2

2
1

a

2
q1

2q2
21

b

4
~q1

41q2
4!. ~1!

Whena5b or 3b, this system is completely integrable. F
very large values ofa/b the system is strongly chaotic, wit
the characteristic Lyapunov exponent being an order of m
nitude larger than that of other conservative chaotic syste
e.g., the He´non-Heiles system.
es
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This paper is organized as follows. Section II briefly r
views the distribution function approach to QCC in chao
systems. Special emphasis is put on a structure measu
classical and quantal distribution functions, and on our d
nitions of classical and quantal finite-time Lyapunov exp
nents. The paper then proceeds to present results in ord
increasing time scales. In Sec. III, QCC is studied for i
tially positive-definite Wigner functions at early times.
Sec. IV, a simple analytical understanding of the break ti
regime of QCC is provided, followed by supporting nume
cal results. We then consider, in Sec. V, QCC in some lo
order statistical moments for much larger time scales. A su
mary is given in Sec. VI.

II. LYAPUNOV EXPONENTS IN DISTRIBUTION
FUNCTION DYNAMICS

A. Classical distribution function dynamics

Classical chaos is usually defined as the extreme sens
ity of trajectories to slight changes in initial condition
Quantitatively, it is described by a positive maximu
Lyapunov exponent or by the Kolomogorov entropy. Co
sider a conservative Hamiltonian system with two degr
of freedom with dimensionless canonical variab
q1 ,q2 ,p1 ,p2. A phase-space point is characterized by a fo
dimensional column vectorg[(q1 ,q2 ,p1 ,p2)†. For brevity
we introduce the antisymmetric matrixJ5(21

0
0
1), where0

and 1 are 232 zero and unit matrices, respectively. T
canonical equations of motion~i.e., Hamilton’s equations!
then read asġ5J]H/]g. The sensitivity of classical trajec
tories to initial conditions is described by the stability mat
M i j @g(0),t#[]g i(t)/]g j (0), and themaximal Lyapunov
exponentl is given by

lim
t→`

1

t
ln$uM @g~0!,t#hu%5l@g~0!#, ~2!

whereh is a vector in the tangent space. The stability mat
M is symplectic and its time evolution is governed by t
differential equation

Ṁ5J
]2H

]g2
M , ~3!

with

M ~0!51. ~4!

A simple application of Liouville’s theorem leads to a
alternative expression for the maximal Lyapunov exponen
terms of classical distribution function dynamics@12,11#. Let
r t denote a well-behaved classical probability distributi
andj denote an arbitrary infinitesimal vector in phase spa
Then, from the incompressibility of the Liouville densit
function, one has

r t@g~ t !#1“r t@g~ t !#Mj5r0@g~0!#1“r0@g~0!#j.
~5!
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Further, usingJ2521 andJM†J52M21, one obtains

MJ“r0@g~0!#5J“r t@g~ t !#. ~6!

Substituting Eq.~6! into Eq. ~2! yields

l@g~0!,t#5 lim
t→`

1

t
lnuJ“r t@g~ t !#u

5 lim
t→`

1

t
lnu“r t@g~ t !#u. ~7!

Note that Eq.~7! defines the Lyapunov exponent in terms
phase-space distribution properties.Specifically, the faster
the structure ofr t increases,the largerl is.

In accord with Ref.@11#, we define a particular ensemb
average of the gradients of distribution functions asx2c , i.e.,

x2c~ t ![F E u“r t~g!u2dg

E r t
2~g!dg

G 1/2

5F 2

E r t~g!“2r t~g!dg

E r t
2~g!dg

G 1/2

. ~8!

Using Eqs.~6! and ~8!, we have

x2c~ t !5F 1

E r0
2~g!dg

E uJM ~g,t !J“r0~g!u2dgG 1/2

.

~9!

The physical significance of x2c(t) becomes
apparent when one considers the Fourier transfo
of the distribution function. That is, supposer t(g)
5@1/(2p)4#*dk exp(2pik•g)r t(k), where r t(k) denotes
the Fourier component evaluated at the 4-dimensional w
vectork. Then

x2c
2 ~ t !5

E dkk2ur t~k!u2

E dkur t~k!u2
, ~10!

showing thatx2c is the root-mean-square radius of the Fo
rier transform of the distribution function, and thus serves
a measure of classical phase-space structure. That is
largerx2c is, the more structuredr t(g) is.

For completely integrable dynamics there exists a spe
set of generalized coordinates: action variablesI 1 ,I 2 and
angle variablesu1 ,u2. In this representation, the Hami
tonian depends only on the action variables that are const
of motion. For such cases, Eq.~3! has the simple solution

M511J
]2H

]g2
t. ~11!
3-2
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Substituting this explicit time dependence of the stabi
matrix into Eq.~9! gives the following long-time behavior o
x2c :

lim
t→`

x2c~ t !

t
5F 1

E r0
2~g!dg

E U]2H

]g2
J“r0~g!U2

dgG 1/2

.

~12!

Hence, for regular dynamics the structure of distributi
functions, as measured byx2c , asymptotically shows a lin-
ear time dependence in the action-angle representation. H
ever, x2c(t) may show a polynomial time dependence
other canonical representations.

By contrast, for chaotic dynamics it was shown that@11#

lim
t→`

1

t
ln x2c~ t !5l2 , ~13!

wherel2 is the so-called second-order generalized maxim
Lyapunov exponent. That is, in the chaotic case the ro
mean-square Fourier radius of distribution functions
creases, asymptotically, at an exponential rate ofl2. Since a
given resolution limitd corresponds to the inability to ac
count for Fourier modes larger than 1/d, chaos can be under
stood as a kind of exponential loss of accuracy, or of inf
mation, encoded in the Fourier basis expansion of the in
distribution function.

By definition, the~generalized! Lyapunov exponentl2 is
an asymptotic property, relevant as time goes to infinity. R
alistically, however, it is finite-time properties of classic
chaotic dynamics that are of real interest to the study
QCC. To this end it is useful to introduce a finite-tim
Lyapunov exponent. Based upon Eq.~13!, we define the
finite-time Lyapunov exponent in terms of the average ex
nential increase rate ofx2c(t) over timet:

l2c~ t ![
1

t
lnF x2c~ t !

x2c~0!G , ~14!

with

lim
t→1`

l2c~ t !5l2 . ~15!

We examine this quantity over various time scales below

B. Quantal analog of classical finite-time Lyapunov exponents

From the ensemble point of view, QCC is best understo
by comparing the classical Liouville equation with the qua
tum von Neumann equation in a phase-space representa
e.g., the Wigner-Weyl representation. Specifically, given
~9!, which provides a quantitative diagnostic for character
ing classical chaos using classical distribution functions
becomes straightforward to define the quantum analog
classical Lyapunov exponents using quantal distribut
functions. By analogy with Eq.~8! we define the measur
x2q for quantal phase-space structure as
06210
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x2q[F E u“rW~g!u2dg

E ~rW!2~g!dg
G 1/2

, ~16!

where rW(g) is the Wigner function of a quantum stat
Accordingly, in the Fourier space of quantal distributio
function,

x2q
2 5

E dkk2ur t
W~k!u2

E dkur t
W~k!u2

, ~17!

where r t
W(g)5@1/(2p)4#*dk exp(2pik•g)r t

W(k). Hence,
x2q is the root-mean-square Fourier radius of the Wign
function. Further, finite-time Lyapunov exponentsl2q(t) for
quantum distribution function dynamics can be defined
direct analogy tol2c(t), i.e.,

l2q~ t ![
1

t
lnF x2q~ t !

x2q~0!G . ~18!

Interestingly, x2q has an equivalent expression that
easier to handle. Supposer̂ is the density-matrix operato
associated with the Wigner functionrW and ĝ i is the opera-
tor associated with the classical canonical variableg i ~e.g.,
qi ,pi). A simple calculation@11,12# then shows that

x2q
2 52(

i

Tr~ r̂2ĝ i
22 r̂ ĝ i r̂ ĝ i !

\2Tr~ r̂2!
. ~19!

Of particular interest is the pure state case, in whichr̂25 r̂
and, as a result,

x2q
2 5

2

\2 (
i

~^ĝ i
2&2^ĝ i&

2!, ~20!

where ^•••& represents ensemble expectation values.
shown below, the analogous classical expression is far m
complex.

Consider then the quantum counterpart of Eq.~15!. Since
Eq. ~19! indicates thatx2q

2 <2( iTr( r̂2g î
2)/\2Trr̂2, we have

that x2q has an upper bound for any bounded Hamilton
system. As such, for fixed\ and bounded systems,

lim
t→1`

l2q~ t !50. ~21!

This reproduces the widely accepted result that boun
quantum systems cannot exhibit chaos in the strict sens

However, as noted above, what is of interest to the st
of QCC are the transient properties ofl2q(t) vs l2c(t). Con-
sider, for example, a two-degree-of-freedom systemH
5H(q1 ,q2 ,p1 ,p2). The quantum von Neumann equation
terms of the Wigner functionrW is given by
3-3
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]rW

]t
5$H,rW%1 (

( l 11 l 2).1, odd

~\/2i !( l 11 l 221)

l 1! l 2!

3
] ( l 11 l 2)V~q1 ,q2!

]q1
l 1]q2

l 2

] ( l 11 l 2)rW

]p1
l 1]p2

l 2
, ~22!

where the first term on the right-hand side is the class
Poisson bracket and the second term represents the sum
an infinite series of ‘‘quantum corrections.’’ Consider th
short-time limit ofl2q(t). Using Eqs.~16! and~22! we have

l2q~0!5
1

E u“r0
Wu2dg

F E ~“r0
W!TS ]2H

]g2 D J ~“r0
W!dg

1E ~“r0
W!Tdg (

( l 11 l 2).1,odd

~\/2i !( l 11 l 221)

l 1! l 2!

3“

] ( l 11 l 2)V~q1 ,q2!

]q1
l 1]q2

l 2

] ( l 11 l 2)r0
W

]p1
l 1]p2

l 2 G , ~23!

where, obviously, the first term on the right-hand side of E
~23! corresponds to the contribution from the classical Po
son bracket and all other terms represent quantum cor
tions.

Some aspects of the distribution function strategy outlin
above have been applied to the Arnold-cat map mo
@11,12#, where the stretching and contraction mechanism
uniform over the entire phase space. However, rich trans
behavior of finite-time Lyapunov exponents, as implied
our derivation of the explicit state dependence ofl2q(0), has
not been explored thus far. The following section is devo
to both analytical and numerical studies on this subject.

III. SHORT-TIME CORRESPONDENCE

To examine the QCC in short-time dynamics it is useful
consider the classical analog ofl2q(0), i.e., l2c(0) as the
extreme short-time limit of classical finite-time Lyapuno
exponents. Using Eqs.~3!, ~4!, and~9!, we have

lim
t→0

dx2c
2

dt
5

2

E r0
2~g!dg

E ~“r0!TS ]2H

]g2 D J~“r0!dg.

~24!

Substituting Eq.~24! into Eq. ~14! gives the zero-time limit
of l2c(t),

l2c~0!5

E ~“r0!TS ]2H

]g2 D J~“r0!dg

E u“r0u2dg

. ~25!

Here,l2c(0) is seen to be the average of]2H/]g2 weighted
by gradients of the initial distribution function. Not surpri
ingly, Eq. ~25! resembles the first term on the right-hand s
06210
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of Eq. ~23!. As l2c(0) reflects an ensemble average of i
stantaneous density fluctuations, it depends strongly on
shape and location of the initial classical distribution fun
tion. Hence, as in the quantum case, there exists very
transient behavior in the time development of phase-sp
structure, an interesting feature that has often been ignore
previous QCC studies.

To consider quantum effects induced solely by the d
namics suggests that we choose an initial quantal distribu
function that is as classical as possible so that differen
between classical and quantum dynamics evidently a
from the dynamics. This suggests that the initial Wign
function should be chosen as positive definite, so that it
be interpreted as a classical probability distribution. It is w
known that for one-dimensional pure state dynamics the o
positive-definite Wigner function is the Gaussian distributi
function @20,21#, which takes the following general form:

r r ,h,q̄,p̄
W

5
1

p\
expF2

2h2

\2
~p2 p̄!22

~q2q̄!2

2h2~12r 2!

1
2r

\~12r 2!1/2
~q2q̄!~p2 p̄!G , ~26!

wherer, h, q̄, p̄ are parameters and where

^q&5q̄, ^p&5 p̄, ^q22q̄2&5h2,

^p22 p̄2&5
\2

4h2~12r 2!
, ^pq&2^p&^q&5

\r

2~12r 2!1/2
.

~27!

This Gaussian form corresponds to the so-called correla
coherent states@22#, whose coordinate representation
given by

C~q!5
1

~2ph2!1/4
expF2

q2

4h2 S 12
ir

~12r 2!1/2D 1
aq

h

2
1

2
~a21uau2!G , ~28!

wherea is a complex constant given byq̄/(2h)1 i @ p̄h/\
2q̄r /(2hA12r 2)#. In particular, for the case ofr 50, ^q2

2q̄2&^p22 p̄2&5\2/4, corresponding to the minimum
uncertainty-product state, i.e., the coherent state.

For the two-degree-of-freedom system examined bel
one would choose two-dimensional Gaussian states. The
tial quantal distribution functionr0

W and classical distribution
function r0 are thus chosen as the following:

r0
W5r05r r 1 ,h1 ,q̄1 ,p̄1

W
^ r r 2 ,h2 ,q̄2 ,p̄2

W . ~29!

Substituting this initial state into Eq.~25! and approximating
the average of the derivatives ofV(q1 ,q2) as the derivative
evaluated at the centroid of the Gaussian distribution,
noted]2V(q̄1 ,q̄2)/]q̄i

2 , one gets
3-4
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l2c~0!5
1

(
i 51,2

F2h i
21

\2

2~12r i
2!h i

2G
3 (

i 51,2
F \r i

~12r i
2!1/2S 12

]2V~ q̄1 ,q̄2!

]q̄i
2 D G . ~30!

It is seen thatl2c(0) depends strongly on both the sha
parametersr 1 ,r 2 and the phase-space locations of the init
distribution function. Two particular situations are worth
noting. First, for the minimum-uncertainty-product state (r 1
5r 250), i.e., the two-dimensional coherent state that
commonly used as initial states in QCC studies, Eq.~30!

gives l2c(0)50. Second, whenr i@12]2V(q̄1 ,q̄2)/]q̄i
2#

,0 for eitheri 51 or i 52, l2c(0) can be negative. That is
for appropriate shape parametersr 1 ,r 2 and central coordi-
natesq̄1 ,q̄2, the contraction mechanism associated with c
otic dynamics may initially dominate over the stretchi
mechanism, giving rise to a reduction in phase-space st
ture.

The quantum analog of this transient behavior can be
amined by consideringl2q(t) in a similar fashion. Specifi-
cally, substituting the initial positive-definite Wigner func
tion ~29! into Eq. ~23!, keeping the leading-order quantu
correction term in the quantum Liouville equation, one o
tains

l2q~0!5l2c~0!2
1

16pE u“r0
Wu2dg

]4V

]q̄1
2]q̄2

2

3F r 2

~12r 2
2!1/2E dq1dp1u“r r 1 ,h1 ,q̄1 ,p̄1

W u2

1
r 1

~12r 1
2!1/2E dq2dp2u“r r 2 ,h2 ,q̄2 ,p̄2

W u2G .

~31!

Evidently, initial states with r 15r 250 give l2c(0)
5l2q(0)50. Thus, in this sense, the coherent state is
most classical state of the correlated coherent states; o
types of initial states have a leading-order quantum ef
proportional to]4V/]q̄1

2]q̄2
2. After carrying out the integrals

in Eq. ~31! for r r ,h,q̄,p̄
W given by Eq. ~26!, one sees tha

@l2c(0)2l2q(0)# is proportional to the first power of\.
Therefore, for relatively large\, depending upon the sign o
r 1 and r 2 , l2q(t) can be significantly larger or smaller tha
l2c(t) at early times. In addition, if there is no quartic ter
in the potential, i.e.,]4V/]q̄1

2]q̄2
250 ~e.g., in the He´non-

Heiles model!, Eq. ~31! shows that@l2c(0)2l2q(0)# is
given by smaller terms that are proportional to higher pow
of \.

Thus far we have only examined correspondence betw
l2c(t) andl2q(t) at t50. For nonzero times, one can utiliz
numerical methods to compare these quantities. For exam
06210
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consider a coupled quartic oscillator system given by Eq.~1!
with a51.0 andb50.01, and for\50.5, 0.05, and 0.005.
Classical calculations are done by Monte Carlo meth
based on Eq.~9!, and quantum calculations use the fa
Fourier-transform split operator technique@23#. For each
case we examine three sets of initial distributions, i.e.,~a!
r 15r 250, ~b! r 15r 250.6, and~c! r 15r 2520.6. For all
three casesh15h25A\/2, and the centroid of the initia
state is fixed atq̄150.40, q̄250.60, p̄150.50, and p̄2
50.414. Note that this initial location of the Gaussian d
tribution gives (12]2V/]q̄1

2).0 and (12]2V/]q̄2
2).0, a

fact that is relevant to the discussions below.
Figures 1–3 display comparisons betweenx2c(t) and

x2q(t). Consider Fig. 1 for the case of\50.5. Here
]4V/]q̄1

2]q̄2
252.0, and one expects thatl2q(0) can deviate

considerably froml2c(0) for nonzeror 1 andr 2. Further, the
expectation@from Eq. ~31!# is that the initial quantum cor-

FIG. 1. Time dependence ofx2c(t) ~dashed line! and x2q(t)
~solid line! for three initial Gaussian distributions (\50.5). The
three panels correspond to~a! r 15r 250, ~b! r 15r 250.6, ~c! r 1

5r 2520.6. Note that the initial slope of these solid and dash
lines is zero, positive, and negative in~a!, ~b!, and~c!, respectively.
All variables are in dimensionless units.
3-5
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rection should be positive whenr 1 ,r 2 are negative and nega
tive whenr 1 ,r 2 are positive. All these predictions are co
firmed nicely in our computations. In particular,~i! in Fig.
1~a! (r 15r 250), bothx2c(t) and x2q(t) assume an initial
zero slope;~ii ! in Fig. 1~b! (r 15r 250.6), the positive slope
of x2q(t) at t50 is seen to be smaller than that ofx2c(t);
and~iii ! in Fig. 1~c! (r 15r 2520.6), it is indeed seen that a
very short timesx2q(t).x2c(t), both of which have nega
tive initial slopes. For all three situations, the quantum
fects are so large that QCC is essentially lost at very s
times.

Figure 2 shows the corresponding results~with different
abscissa scale! with the value of\ decreased by a factor o
10. This case is different from that in Fig. 1 insofar as e
cellent QCC is seen for short times for all three initial co
ditions. In particular, in Fig. 2~b! the time dependence o
both x2c(t) andx2q(t) is seen to be very close to expone
tial for t<1.5. However, this is partially because the initi

FIG. 2. Same as Fig. 1 except\50.05 and that bothx2c(t) and
x2q(t) are plotted in the logarithmic scale. The average slope of
curves ~up to a certain time! is indicative of the finite-time
Lyapunov exponentsl2c(t) andl2q(t). The break regime of QCC
is clearly betweent51.0 andt51.5. All variables are in dimen-
sionless units.
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slope of the curves@i.e., l2q(0) and l2c(0)] in Fig. 2~b!
both happen to be close to the average slope~i.e., finite-time
Lyapunov exponents! for longer times~e.g., t;4). In Fig.
2~c! the transient behavior of the finite-time Lyapunov exp
nents assumes a completely different nature, i.e., the incr
of both x2c(t) and x2q(t) is significantly suppressed fo
times up tot50.5. Variations in the finite-time Lyapuno
exponents can be further seen by comparingx2c(t54.0) and
x2q(t54.0) in Fig. 2~b! to those in Figs. 2~a! and 2~c!: they
can differ by a factor as large as 1.5. Note also that Fig
shows that the break regime of QCC~i.e., the time when
classical and quantum dynamics no longer agree! is between
t51.0 andt51.5, which is of the order of one average p
riod of motion. With increasing time, the agreement betwe
x2q(t) and x2c(t) in Fig. 2 worsens: the classical phas
space structure is seen to increase exponentially on the a
age, whereas there is no clear sign of a similar exponen
increase in the quantum distribution dynamics.

e
FIG. 3. Same as Fig. 2 except\50.005. The break regime o

QCC is clearly betweent52.0 andt52.5. For 0.5,t,2.5 and for
all three initial conditions in~a!, ~b!, and~c!, there is an exponentia
increase of phase-space structure for both classical and qua
dynamics. All variables are in dimensionless units.
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Besides, we note that since the structure of quantal di
bution functions may determine the early-time decohere
rate if the quantum system is open@14#, these variations in
finite-time Lyapunov exponents imply that even in clas
cally strongly chaotic systems it is still possible to pick o
some initial states which are relatively robust to decohere
effects.

As shown in Fig. 3, with a further large decrease of\, the
break regime of QCC is considerably shifted tot52.0–3.0.
The transient behavior caused by different initial states
persists fort<0.5. After the transient period and before t
break time, all quantal distribution functions in Figs. 3~a!–
~c! emanating from the three different initial conditions a
seen to undergo an exponential increase of structure on
average, in excellent agreement with the behavior of cla
cal distribution functions.

IV. THE BREAK REGIME FOR CORRESPONDENCE

Understanding the QCC break regime is a central prob
in the study of correspondence. From the viewpoint adop
here, i.e., via phase-space distribution functions, the br
regime is when the classical distribution function begins
develop significantly different structure from the quantal d
tribution function, i.e.,x2c(t) begins to deviate appreciabl
from x2q(t).

It is tempting to try to use the quantum Liouville equatio
@Eq. ~22!# to study the breakdown of QCC with time. How
ever, this is not an easy task, since, for nonzero times,
cannot analytically deal with distribution function dynamic
Rather, we present a simple description of the QCC br
regime by first reinterpretingx2c

2 (t) and then comparing i
with x2q

2 (t). As will be quite clear, our description also re
lates the distribution function strategy to the trajectory vie
point of chaos.

It is convenient to restrict the discussion to the case of
minimum-uncertainty-product state, although the followi
considerations can be readily extended to the most gen
case. Further, we focus on pure state dynamics bec
mixed state dynamics simply makes the study of QCC m
complicated, without adding new physical insight.

We begin with the Taylor-series expansion of the stabi
matrix M @g(0),t# aroundḡ(0); i.e.,

M kl@g~0!,t#5M kl@ ḡ~0!,t#1(
m

dgm~0!
]M kl@ ḡ~0!,t#

]ḡm~0!

1
1

2 (
mn

dgm~0!dgn~0!
]2M kl@ ḡ~0!,t#

]ḡm~0!]ḡn~0!

1O„@dg~0!#3
…

[Akl1(
m

dgm~0!Bklm

1(
mn

1

2
dgm~0!dgn~0!Cklmn1O„@dg~0!#3

…,

~32!

where we have definedAkl , Bklm , andCklmn as the zeroth-,
first-, and second-order derivatives of the stability matrix
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ḡ(0), respectively. The summation indicesm,n, etc., run
from 1 to 4 for a two-degree-of-freedom system, a
dg(0)[@g(0)2ḡ(0)#. The time dependence ofAkl , Bklm ,
and Cklmn is governed by the following set of first-orde
differential equations together with the canonical equatio
for classical trajectories:

dAkl

dt
5(

k8 l 8
Jkl8

]2H

]g l 8]gk8

Ak8 l ,

dBklm

dt
5(

k8 l 8
Jkl8S (

n8

]3H

]g l 8]gk8]gn8

An8mAk8 l

1
]2H

]g l 8]gk8

Bk8 lmD ,

dCklmn

dt
5(

k8 l 8
Jkl8S (

m8

]3H

]g l 8]gk8]gm8

Am8nBk8 lm

1
]2H

]g l 8]gk8

Ck8 lmnD 1 (
k8 l 8n8

Jkl8

]3H

]g l 8]gk8]gn8

3~Bk8 lnAn8m1Bn8mnAk8 l !1 (
k8 l 8n8m8

Jkl8

3
]4H

]g l 8]gk8]gm8]gn8

Ak8 lAn8mAm8n . ~33!

Consider two initial points in the phase space,g(0) and
ḡ(0). They generate two classical trajectories, denoted
g(t) and ḡ(t), respectively. From the trajectory viewpoin
of most interest is the differencedg j (t)[@g j (t)
2ḡ j (t)#, which is a differentiable function ofḡ(0),
dg(0), and t. Fixing ḡ(0), and thus ḡ(t), gives a
reference trajectory. Consider now the Taylor-ser
expansion of dg j (t) in terms of dg(0). Obviously
dg j (t)50 if dg(0)50, ]dg j (t)/]dg l(0)udg(0)505Ajl ,
]2dg j (t)/]dgk(0)]dg l(0)udg(0)505Bjkl , and so on. In fact,
the nth-order derivative ofdg j (t) with respect todg(0) is
simply given by the (n21)th-order derivative of the stability
matrix M @ ḡ(0),t# with respect toḡ(0). Based on this ob-
servation, one obtains the following relation:

(
l

Ajl dg l~0!5dg j~ t !2
1

2 (
lk

dgk~0!dg l~0!Bjkl

2
1

6 (
jklm

dgk~0!dg l~0!dgm~0!Cjklm

2O„@dg~0!#4
…. ~34!
3-7
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Consider now the initial classical distribution functio
corresponding to the coherent state

r0@g~0!,ḡ~0!#5S 1

4p2sq1
sq2

sp1
sp2

D expF2
~q12q̄1!2

2sq1

2

2
~q22q̄2

2!

2sq2

2
2

~p12 p̄1!2

2sp1

2
2

~p22 p̄2!2

2sp2

2 G .

~35!

After lengthy calculations~see the Appendix! using Eqs.~9!,
~32!, ~34!, and~35!, we obtain an enlightening expression f
x2c

2 (t),

x2c
2 ~ t !5

2

\2 (
j

@^@g j~ t !#2&02^g j~ t !&0
2#

2
2

\2 (
jkk8 l l 8

S 1

4
BjklBjk8 l 81

1

3
AjkCjk8 l l 8D

3^dgk~0!dgk8~0!dg l~0!dg l 8~0!&0

1 (
jkk8 l l 8

S 1

4
BjklBjk8 l 81

1

4
AjkCjk8 l l 8D

3^akak8dg l~0!dg l 8~0!&01
1

\2
O„@dg~0!#6

….

~36!

Here ^•••&0 represents the average over the initial class
ensemble. Note that the factor\2 in the above equation is
due to the fact thatsq1

sp1
5sq2

sp2
5\/2 for any classical

distribution function corresponding to a minimum
uncertainty-product state.

Equation~36! provides a quantitative connection betwe
the development of phase-space structure and the insta
characteristics of classical trajectories. Further, it allows fo
closer examination of when and how classical distribut
functions begin to develop a structure that differs from qu
tal distribution functions. Consider then, for simplicity,
special case in which the initial coordinate variances
identical to the initial momentum variances, i.e.,sq1

5sp1

5sq2
5sp2

. One obtains

x2c
2 ~ t !5

2

\2 (
j

@^@g j~ t !#2&02^g j~ t !&0
2#1 f ~ t !1O~\!,

~37!

where f (t) is given by
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f ~ t !52 (
jkk8 l l 8

S 1

2
BjklBjk8 l 81

2

3
AjkCjk8 l l 8D

3F3

4
dkk8 l l 81

1

4
@~dkk8d l l 81dkl8d lk8!~12dkl!

1dkldk8 l 8~12dkk8!#G1 (
jkk8 l l 8mm8

JkmJk8m8

3~BjklBjk8 l 81AjkCjk8 l l 8!F3

4
dmm8 l l 8

1
1

4
@~dmm8d l l 81dml8d lm8!~12dml!

1dmldm8 l 8~12dmm8!#G . ~38!

This expression affords perspectives into QCC. Rec
first, as shown in the preceding section@see Eq.~20!#, that
for pure state dynamics the quantal measurex2q

2 (t) of phase-
space structure can be expressed in terms of the sum
second-order moments. This is more or less a consequen
quantization: the smallest scale in coordinates is related
the largest momentum component of the wave function,
vice versa. Clearly, this is in general not the case for class
distribution functions. Nevertheless, Eqs.~36! and~37! indi-
cate that, to the lowest order,x2c

2 (t) can still be related to the
sum of second-order statistical moments. Specifically,
shown in Eq.~37!, for an initially symmetric coherent stat
the first term contributing tox2c

2 (t) is given by the sum of
second-order moments divided by\2/2, which is exactly the
same as the result in Eq.~20! for x2q

2 (t). In addition,x2c
2 (t)

contains additional contributions absent in the quantum
namics. For example, the leading-order correction termf (t)
is independent of\. As shown by Eq.~38!, this term is
determined by the stability characteristicsAjk , Bjkm , and
Cjkmn associated with the trajectory starting from the ce
troid of the initial Gaussian distribution. These results sh
intriguing similarities and differences betweenx2c(t) and
x2q(t).

As a simple example of Eq.~37!, consider a quadratic
Hamiltonian systems such as the harmonic oscillator or
inverted harmonic-oscillator system, where classical a
quantum mechanics are expected to agree. Here the
evolution is a linear canonical transformation in phase spa
hence the stability matrix elementsM jk@ ḡ(0),t# do not de-
pend on ḡ(0) and Bjkl ,Cjklm , and all other higher-orde
derivatives of the stability matrix with respect toḡ(0) are
zero. Thus, in such linear systems,x2c

2 (t) is precisely given
by the sum of some second-order moments divided by\2/2,
in perfect correspondence withx2q

2 (t) @see Eq.~20!#.
For the case of chaotic systems, one can estimate tha

stability matrix increases exponentially, i.e.,Akl;exp(lt),
with l being the average exponential increase rate up to t
t. Likewise, one expectsBklm;exp(lt), Cklmn;exp(lt), etc.
Equation~38! then suggests thatf (t); f 0 exp(2lt). By con-
trast, the first term on the right-hand side of Eq.~37! is de-
termined by second-order moments and cannot increase
3-8
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FIG. 4. Time dependence of (x2c
2 2x2q

2 ) compared withf (t) in our analytical considerations@see Eqs.~37! and ~38! in the text#. The
initial condition is the minimum-uncertainty-product state considered in Sec. III. Dashed lines denote (x2c

2 2x2q
2 ) based on direct calcula

tions in Sec. III and solid lines denotef (t) obtained by directly integrating Eq.~38!. \ equals 0.05 in~a! and equals 0.005 in~b!. The
agreement between (x2c

2 2x2q
2 ) and f (t) for the QCC break regime is excellent. All variables are in dimensionless units.
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all time for bounded systems. Indeed, assuming that the c
acteristic magnitude of the second-order mome
@^(g j (t))

2&02^g j (t)&0
2# ( j 51,2,3,4) is given byV2, then

the first term on the right-hand side of Eq.~37! would be
bounded by 8V2/\2. Thus, in Eq.~37! the f (t) term will be
comparable to the preceding term after a timetb , approxi-
mately given by

tb5
1

l
lnFA8V2/ f 0

\ G . ~39!

A comparison between Eqs.~20! and ~37! suggests thattb
corresponds to the time scale after which classical desc
tions of phase-space structure no longer agree with quan
results. Thus,tb can be identified as a logarithmic break tim
of QCC. This result is consistent with previous studies on
QCC break time using different approaches@24#. Note that,
since Eq.~39! involves classical variables only, one can c
culatetb without the need for any quantum calculations.

The origin of the classical-quantum difference lies in t
f (t) term in Eq. ~37!. This term does not have a quant
analog since it reflects classical phase-space structure th
beyond the resolution limit of quantal distribution functio
@25#. To demonstrate the role off (t) we compare@x2c

2 (t)
2x2q

2 (t)# from a direct calculation tof (t) given by Eq.~38!.
Specifically, f (t) is obtained from Eq.~38! by numerically
computing the instability characteristicsAjk , Bjkl andCjklm
via Eq.~33!. Two cases with differing values of\ have been
examined. Results are shown in Figs. 4~a! and 4~b! that dis-
play the comparison between@x2c

2 (t)2x2q
2 (t)# and f (t) for

both cases. The agreement is excellent, confirming the
of f (t) in determining the break regime of QCC.

Figure 4 also shows some tiny discrepancies betw
@x2c

2 (t)2x2q
2 (t)# and f (t) ~especially at later times!, corre-

sponding to higher-order contributions in Eq.~37!. Neverthe-
less, the physics is still the same; i.e., the sum off (t) and
these higher-order terms measures very fine phase-s
structure that is unresolvable by the quantum distribut
function.
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V. LONG AFTER THE BREAK REGIME

The logarithmic break timetb of QCC introduces many
issues regarding the relationship between quantum dyna
and classical mechanics. For instance, Zurek and Paz@26#
showed that a logarithmic break time~somewhat different
from that obtained above! can be counterintuitively shor
even for macroscopic objects. This being the case, our
eryday experience in a macroscopic classical world full
chaotic events seems incompatible with the notion that c
sical physics is a large-quantum-number limit of quantu
mechanics. Likewise, the smallness of the QCC break t
seems to imply that classical physics cannot play a role
nonlinear molecular dynamics, contradicting the fact th
classical physics often works well in many dynamics sim
lations. To at least partially resolve these puzzles, this sec
attempts to explore the implications of the quantum-class
discrepancy in phase-space structure for ensemble statis

As already implied by a comparison between Eqs.~20!
and ~37!, what is directly responsible for the logarithm
break time is not the quantum-classical difference in exp
tation values, but simply the exponential increase off (t),
which reflects the richness of fragmentation of classical d
tribution functions. As such, it is interesting to examine QC
in terms of some observables. Figure 5 displays the t
dependence of four variances, i.e.,^q1

2&2^q1&
2, ^q2

2&
2^q2&

2, ^p1
2&2^p1&

2, and ^p2
2&2^p2&

2, for both classical
and quantum dynamics. The initial state corresponds to
used in Figs. 3~a! and 4~b!, and\ still equals 0.005, allowing
direct comparison with the previous results.

Interestingly, results in Fig. 5 show that QCC in the
second-order moments is excellent for times up tot'12.0,
which is much longer than the break timetb;3.0 identified
in Fig. 3. In particular, for times less thant52.5, both quan-
tal and classical variances are seen to increase very rap
in exactly the same manner. This rapid increase is expon
tial in nature because, in this regime, the sum of these v
ances~divided by \2/2) give x2c

2 ~or x2q
2 ), which indeed

increases exponentially on the average@see Fig. 3~a!#. This
confirms a published suggestion that the initial rapid incre
of both quantal and classical variances could be used to id
tify classical chaos from quantum dynamics@7#. For times
3-9
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FIG. 5. Quantum-classica
comparison of the time depen
dence of four second-order statis
tical moments, i.e.,̂q1

2&2^q1&
2 in

~a!, ^q2
2&2^q2&

2 in ~b!, ^p1
2&

2^p1&
2 in ~c!, and^p2

2&2^p2&
2 in

~d!, for times much larger than the
logarithmic break timetb . The
initial distribution function corre-
sponds to that in Figs. 3~a! and
4~b!, and\50.005. Dashed lines
denote classical results and sol
lines denote quantum results. Th
QCC shown here during the com
plex relaxation process (0,t
,12.0) is remarkable. All vari-
ables are in dimensionless units.
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2.5,t,12.0 during which excellent QCC persists, t
second-order moments display a complex evolution. For
ample, there is clearly a diffusive regime betweent55.0 and
t57.0 with very large diffusion constants. After that, seve
very strong oscillations@particularly in Figs. 5~b!–~d!# can
be observed, suggesting that both the quantal and clas
distribution functions alternate between a high degree of
localization and a certain degree of localization over the
tire accessible phase space~this oscillatory behavior also
suggests that the QCC time scale here should scale
power of\, rather than scale as ln\). The impressive QCC
in this complex relaxation pattern is in sharp contrast to
results in Figs. 3~a! and 4~b!, where quantum-classical dif
ferences, as quantitatively described by@x2c

2 (t)2x2q
2 (t)#

and predicted byf (t), are already very large for 3.5,t
,4.0. For even later times (t.12.0), Fig. 5 shows tha
quantum-classical discrepancies begin to show up, but
with very similar trends in the oscillations.

These results indicate that the logarithmic break time m
be quite irrelevant to QCC when viewed from the persp
tive of some low-order statistical moments@28#. This is the
case since considering low-order statistical moments
equivalent to projecting the quantal and classical distribut
functions onto a much smaller subspace. In this project
or coarse-graining procedure, all the information encode
an infinite number of higher-order statistical moments is lo
An accurate QCC is thus restored due to the loss of deta
information.

The results here also give further support to the idea
applying classical propagation methods to quantum distr
tion functions, as a means of approximating the true quan
mechanics@27#. That is, chaos may not cause a rapid failu
of classical dynamics simulations if one is only interested
expectation values of some observables. More importan
the results provide more insights into a fundamental is
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regarding the role of decoherence in QCC@29,30#. On one
hand, our results here show that during a relaxation proc
whose time scale is much larger than the logarithmic br
time, decoherence may still be unnecessary in order to en
QCC in low-order statistical moments. Thus, at least in o
model system, decoherence effects on correspondence i
pectation values of low-order statistical moments, if a
should be consideredafter the relaxation process is esse
tially completed, e.g., aftert512.0 in Fig. 5. This point sup-
ports the argument of Casati and Chirikov@30#, extending
their considerations from one-dimensional kicked system
conservative systems, and agrees with the recent work@9# by
Emerson and Ballentine. On the other hand, as shown in
previous work using the same model system@19#, QCC for
much larger time scales can be much improved with the
troduction of decoherence.

VI. SUMMARY

We have studied the issue of QCC in conservative cha
systems in detail using a phase-space distribution func
approach. The nature of QCC in three different regimes
exposed. In particular~i! the short-time increase rate o
phase-space structure is studied in connection with fin
time Lyapunov exponents;~ii ! a simple and enlightening de
scription of the break regime of QCC is obtained by succe
fully accounting for the classical phase-space structu
which is beyond the quantum description; and~iii ! excellent
QCC in low-order statistical moments is shown to pers
during a complex relaxation process, whose time scale
much larger than the logarithmic break time.
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APPENDIX: DERIVATION OF EQ. „36…

In this appendix we give a rather detailed derivation
Eq. ~36! using Eqs.~9!, ~32!, ~34!, and~35!. We begin with
the derivation by substituting Eq.~32! and the initial distri-
bution functionr0@g(0),ḡ(0)# @see Eq.~35!# into Eq. ~9!,
evaluating the first derivatives ofr0@ ḡ(0),g(0)#, and finally
rescaling all integration variables by a factor of 1/A2. One
then obtains

x2c
2 ~ t !5

1

2E dg~0!r0@g~0!,ḡ~0!#

3(
j
U(

k
akFAjk1(

m

1

A2
Bjkmdgm~0!

1(
mn

1

4
Cjkmndgm~0!dgn~0!1O„@dg~0!#3

…GU2

,

~A1!

where

a15F2
p1~0!2 p̄1~0!

sp1

2 G , a25F2
p2~0!2 p̄2~0!

sp2

2 G ,

a35Fq1~0!2q̄1~0!

sq1

2 G , a45Fq2~0!2q̄2~0!

sq2

2 G . ~A2!

SinceAjk , Bjkm , andCjkmn do not depend upong(0), and
only the even functions ofdg(0) will contribute when inte-
grated overr0@g(0),ḡ(0)#, Eq. ~A1! can be further reduced
to

x2c
2 ~ t !5 (

jkk8mm8
S 1

4
AjkCjk8mm81

1

4
BjkmBjk8m8D

3^akak8dgm~0!dgm8~0!&0

1
1

2E dgr0@g~0!,ḡ~0# !S (
j
U(

k
AjkakU2D

1O„a2@dg~0!#4
…, ~A3!

where ^•••&0 means the ensemble average over the ini
Gaussian distribution.

To further simplify the expression forx2c
2 (t), we make a

change of the integration variables in the second term on
right-hand side of Eq.~A3!, i.e.,

2~p12 p̄1!→
sp1

sq1

~q2q̄1!, 2~p22 p̄2!→
sp2

sq2

~q22q̄2!,

~q12q̄1!→
sq1

sp1

~p12 p̄1!, ~q22q̄2!→
sq2

sp2

~p22 p̄2!.

~A4!
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Note that the Jacobi matrix of this transformation is a un

matrix and it has no effect on the form ofr0@g(0),ḡ(0)#. As
a result of this coordinate transformation we haveak

→dgk(0)/(sq1
sp1

) 5dgk(0)/(sq2
sp2

). This makes it pos-

sible to reexpress the second term on the right-hand sid
Eq. ~A3! by use of Eq.~34!. Specifically,

1

2E dg~0!r0@g~0!,ḡ~0!#S (
j
U(

k
AjkakU2D

5
1

2~sq1
sp1

!2E dg~0!r0@g~0!,ḡ~0!#

3S (
j

U(
k

Ajkdgk~0!U2D
5

1

2~sq1
sp1

!2 F(
j

„^@g j~ t !#2&02^g j~ t !&0
2
…

2(
jkl

Bjkl^dg j~ t !dgk~0!dg l~0!&0

1
1

4 (
jklk8 l 8

BjklBjk8 l 8^dgk~0!dgk8~0!dg l~0!

3dg l 8~0!&02
1

3 (
jklm

Cjklm^dg j~ t !dgk~0!

3dg l~0!dgm~0!&01O„@dg~0!#6
…G . ~A5!

The second and the fourth terms in the above expression
a linear function ofdg(t) and they can be further trans
formed into some functions ofdg(0) by using Eq.~34! a
second time. We then get

1

2E dg~0!r0@g~0!,ḡ~0!#S (
j

U(
k

AjkakU2D
5

1

2~sq1
sp1

!2 (
j

@^~g j~ t !!2&02^g j~ t !&0
2#

2
1

2~sq1
sp1

!2 (
jkk8 l l 8

S 1

4
BjklBjk8 l 81

1

3
AjkCjk8 l l 8D

3^dgk~0!dgk8~0!dg l~0!dg l 8~0!&0

1
1

~sq1
sp1

!2
O„@dg~0!#6

…. ~A6!

Finally, inserting Eq.~A6! into Eq. ~A3! yields Eq.~36!.
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