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Violations of Bell inequalities as lower bounds on the communication cost of nonlocal correlations
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To reproduce in a local hidden variables theory correlations that violate Bell inequalities, communication
must occur between the parties. We show that the amount of violation of a Bell inequality imposes a lower
bound on the average communication needed to produce these correlations. Moreover, for every probability
distribution there exists an optimal inequality for which the degree of violation gives the minimal average
communication. As an example, to produce using classical resources the correlations that maximally violate the
Clauser-Horne-Shimony-Holt inequality2 —1=0.4142 bits of communication are necessary and sufficient.

For Bell tests performed on two entangled states of dimerdi8 where each party has the choice between
two measurements, our results suggest that more communication is needed to simulate outcomes obtained from
certain nonmaximally entangled states than maximally entangled ones.
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[. INTRODUCTION In the quantum version of the Bell scenario, Alice and
Bob share an entangled quantum state on which they perform
Characterizing the features of quantum mechanics thdbcal measurements. The inpuwtsandy then correspond to
differentiate it from classical theories is an important issuethe possible settings of their measuring apparatus and the
for quantum information theory, as well as from a fundamen-outcomesa andb correspond to the results of these measure-
tal perspective. One such peculiarity is the nonlocal charactefents.
of quantum mechanics, i.e., the fact that quantum correla- |n the classical version of the Bell scenario, Alice and
tions are incompatible with local realistic theories. Apartgop may use only classical resources, i.e., shared random-
from being one of the most intriguing aspects of nature, noNpesy(ocal hidden variablésand classical communication, to
Iocal!ty is deeply relate(_i to several quantum information PrO-determine their outcomes and b. If the two parties have
cessing taskpl,2], and is at the core of quantum communi- reqiricted access to shared randomness, the classical cost
catllon cogpllleglty{ﬁA]f.. h dth lati btained of producing the correlationp is the minimum amount of
b twas e [5] who first showed that correlations o tame. cammunication they must exchange in a classical protocol to
Yy measuring two separated subsystems cannot be explainé hi thi | Diff N  thi t of )
by a classical realistic theory if no communication betweerf C < Ve tiS goal. DIlterent measures ot this amount of com
the subsystems is allowed. The question which then followgnur_ucatlon are possible. L .
is how much communication is required to reproduce these () Cw(P). Worst case communicatiorthe maximal
correlations? This is a natural way to quantify the nonloca@Mount of communication exchanged between Alice and
character of quantum correlations in terms of classical reBob in any particular execution of the protocol. $ée-9].
sources. We will show that the inequalities introduced by (i) C(p). Average communicatiorthe average commu-
Bell 40 years ago not only tell us that some communicatiomication exchanged between Alice and Bob, where the aver-
is necessary to produce the correlations but also how muclage is taken over the inputs and the shared randomness. See
The situation we consider is the one encountered in bipaf-10—12.
tite Bell scenarios. Two spatially separated parties, Alice and (i) C.(p). Asymptotic communication the limit
Bob, receive local inputg andy and subsequently produce |im, ... C(p")/n, wherep" is the probability distribution ob-
outputsa andb. We denote byM , the number of possible tained whenn runs of the Bell scenario are carried out in
inputs on Alice’s side and by the number of inputs on parallel, that is when the parties receivinputs and produce
Bob’s side and restrict ourselves to the case where a finita outputs in one go. Sdd 3].

number of distinct outcomes is associated to each input. The |n each of these definitions the costs are defined with
scenario is completely characterized by the probabilitiesespect to the optimal protocol that gives the lowest value for
Pabjxy that Alice outputsa when givenx and Bob outputd  each quantity.

when giveny. We therefore associate to each Bell scenario a The asymptotic measui@,, may be the most appropriate
correlation vectop with entriesp,p,, . Note that these en- when one is concerned with practical applications that make

tries satisfy the normalization constraints use of the correlations but is less preoccupied with whether
the measurements are performed individually or collectively.

2 Pabpy=1 for x=0,..Ma—1 and y=0,..Mg—1. On the other hand, the first two measures of commynication

ab relate to protocols where the outcomes are determined after

(1) each single pair of inputs is chosen. This is in particular the
situation encountered in Bell tests. These two measures thus
more properly count the communication necessary to simu-

*Electronic address: spironio@ulb.ac.be late classically nonlocality and it could be expected that they
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are closely connected to Bell inequalities. Relations betweeng,} of deterministic protocolsi®. That is any correlation
the worst case situation and Bell inequalities were examineggctor p can be written ap=3,0q,d" whereq,=0 and

in [8] where the authors introduced new Bell inequalities thatEx =1
are satisfied by correlations that necessitate at most 1 bit of " paterministic protocols for whick and 8 depend only on
communication to be simulated. the measurements performed locally by each party, &e.,

In the present paper we concentrate on the average con: ,(x), B=B(y), are local protocols. No communication at
municationC. We first point out that the amount by which all is required to implement them. On the other hand, if
the probagilitiesp violate a Bell inequality imposes a lower «(x,y) or B(x,y) depends on the input of the other party,
bound onC(p). This bound is simply a bound on the amount some (deterministi¢ communicationc(x,y) between the
of communication needed to simulate classically a violationparties is necessary to carry out the protocol.
of the inequality. It isa priori unclear that one particular It will be convenient to group in subsefy deterministic
manifestation of the nonlocal content of correlations, the vio-strategies that need the same comunicatioto be imple-
lation of a specific Bell inequality, suffices to characterizemented. Since in the present paper we are interested in the

exactly the communicatio®(p) necessary to reproduce the average communicatio@, we will group the deterministic

entire set of correlation&ll the less since in general corre- strategies with respect to the minimal average communica-

lations violate more than one inequalityret, to each prob- tion needed to implement them, expressed in bits. Indexing

ability distributionp is associated an opimal inequality such strategies irD; by \;, we thus have(_;(d%i)zci V. We

that the bound the violation imposes @{p) is saturated, also arrange the subsef (i=0,...N) in increasing order

i.e., it gives the minimal average communication needed tavith respect to their communication cost<c;,,. Local

reproduce these correlations. We then investigate in detail théeterministic strategies thus belong®g for which cy=0,

case of the Clauser-Horne-Shimony-H@EHSH) inequality ~ while the maximum communication cosi, is associated

[14]. We show that for two-settings and two-outcomes Bellwith strategies irDy . This occurs when both parties need to

scenarios, the CHSH inequality is optimal for all quantumsend the value of their input to the other, sg=log, M,

correlations. This implies in particular tha®2 —1=0.4142  +log, Mg [17]. We will further illustrate this grouping of

bits are necessary and sufficient on average to reproduaterministic strategies in Sec. IV.

classically the correlations that lead to the maximal violation With the above notation, a decompositionpin term of

of the inequality. We then apply our approach to the Collins-deterministic strategies can be written

Gisin-Linden-Massar-Popes¢G@GLMP) inequality[15]. We

find that for two-measurements scenarios more communica- =E 2 e @)

tion is needed to reproduce the effect of measuring certain P TN Iy

nonmaximally entangled states of two qutrits than is neces-

sary for maximally entangled ones. Our results, combinedt then directly follows that the average communication

w@th those 01_[16], suggest that this is also the case for quitsg(p’{q}\}) associated with the protoc@®) is given by

with d=3. Finally we ask whether for quantum correlations

the optimal inequalities from the communication point of __ _

view are always facet inequalities. We give an example C(p.{a\})=2 2 0, C(d")=2> > ) ¢=2> qci,

where this is not the case. PN PN ' 3
This paper is organized as follows. We first describe in

Sec. Il how the average communicatiGnrelates to the de- whereq;==, g, is the probability to use a strategy from
gree of violation of Bell inequalities. We then apply these o

ideas to the CHSH inequality in Sec. Ill and to the CGLMP Di - The minimum amount of communicatidd(p) neces-

inequality in Sec. IV. In Sec. V we discuss the relations beS&'Y 0 reproduce the correlations is the minimum of

tween optimal and facet inequalities. C(p,{a,}) over all possible decompositions of the fot@).
If there exists a decomposition such tlgt=1, i.e., if the
Il. GENERAL EORMALISM correlations can be written as a convex combination of local

deterministic strategies, the@(p)=0 and the correlations

are local. If for every decompositioy<<1, the correlations
To state our results it is necessary to consider particula@re nonlocal and they violate a Bell inequality.

classical protocols, the deterministic ones which do not use

any kind of randomness. These protocols therefore always B. Bell inequalities

produce the same pair of outcomes for given inpuédy.

The entries of the associated correlation vectbase thus of

the form d,pxy= 5‘3(“) 52(”) where a(x,y) and B(X,y)

A. Deterministic protocols

A Bell inequality can be viewed as a linear form, repre-
sented by a vectds, which associates with each set of prob-

specify Alice’s and Bob’s outcomes for measuremenésd ;bll|r|es?ghe n(uBmEerB(p)Ebd-)g. OETe partlcu]?r numbelr IS
y. Since there are a finite number of functionéx,y) and e local boundBo=max, [b-d"c}. By convexity, every lo-

B(x.y), there are a finite number of different deterministic ¢&l probability distribution|==, q, d° satisfies the in-
strategies® which we index by\. Their interest is that any equality B(I)<B,. Correlationsp that violate it, B(p)
classical protocol can be viewed as a probability distribution>B,, are therefore nonlocal. To extract more information
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from B(p) than a simple detection of nonlocality it is neces-

sary to consider not only the upper bouBg the inequality

takes on the local subs®y, but also on all the other subsets

Dy,
Bi:ma){b'd)\i}. (4)

A
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Proof. Define the normalized version of the inequality
Cix

as
Bo
b'= 57— (b— 1),
Bj*_BO MAMB

(10

where j* is taken as in Proposition 1. Note thatp
=MMjg since the entries of all correlations vectqrsat-

Given this extra knowledge, a constraint on the decomposiisfy the normalization constraintd). The effect of the term

tion (2) can be deduced from the amount by whichiolates

the Bell inequality. This turns into a bound 51p) which is
the basis of the present paper.

C. Main results

Proposition 1.For every inequalityp and probability dis-
tribution p, the following bound holds:

— B(p) —Bo
C(P)chpy 5
wherej* is the index such thatBjx —Bg)/cjx = max .o{(B;

Proof. From Eqgs.(2) and (4) we deduceB(p)=b-p

=22 0y, b-d<3;q;B;. Since=;q;=1 we find
B(p)~Bo=2, di(Bi~Bo) )
or
B(p)—Bo Bi—Bo
W, B 2, 9B, By
i* 0 i#0j* i* 0
We thus obtain
E(IO)=2i aiCi
B(p)— BO B,—B
> oot 3 ala-giogoor
Bj+—Bg o —Bg
B(p)—Bo
= —B B, (8)
where in the last line we use®(» —Bg)/cjx =(Bj—Bg)/c;
which follows from the definition of *. |

The bound(5) the inequalityb imposes on the average
communicationC(p) is proportional to the degree of viola-

tion B(p) times a normalization factoc;« /(Bjx —Bg) ex-

pressed in units of “communication per amount of viola-
tion.” This naturally suggests to rewrite Bell inequalities in

natural units where;« /(Bj+ —
simpler form.

Proposition 2.Every Bell inequalityb can be rewritten in
a normalized formb’ such thatB{<c; Vi. For the normal-
ized inequality the boun¢b) becomes

By) =1 so that Eq(5) takes a

C(p)=B’(p). 9)

—(Bg/MsMg)1 in Eg. (10) is thus to shift the value the
inequality takes on an arbitrary vectq@r from B(p) to
B(p)—By. We therefore get Bi’=ma>g\i{b’-d"i}
=[cjx /(Bjx —Bo)1(Bi—Bg)=c;, where the last inequality
holds by definition ofj*.

We then immediately deducéd) since B'(p)=b’'-p
=32, q)b - dN<3;q;B{ <Z;qgic;=C(p). u

Assuming Bell inequalities are written in this standard
way whereB;<c;, it follows from Eq.(9) that for a given
set of probabilities, the inequality that leads to the stron-
gest bound orC(p) is the one for whichB(p) takes the
greatest value. In fact we have the following.

Proposition 3 Let b, be the normalized inequality that
gives the maximum violatioB, (p) =max,{B(p)} for the
correlationsp, then

C(p)=B.,(p). (11)

Proof. This follows from the duality theorem of linear
programming[18]. IndeedB, (p) is the solution to the fol-
lowing linear programming problem:

max b-p

subject tob-dM<c; VAg,...\j,...Any (12

for the variableb. The dual of that problem is

Zi ; CiQxi:E CiQi

min

subject to >, >, q, dhi=p,
I )\i !

q)\iZO V}\(),...,)\i,...,)\N (13)

for the variablesq, . The solution to the dual problem is

E(p) since it just amounts to search for the optimal decom-
position{qki} of p which leads to the lowest average com-

munication(note that the conditio®;X, g, =1 is in fact

already implied by the normalization conditions tit and

p satisfy). Now, the duality theorem of linear programming
states that if the primaldua) has an optimal solution, then

the dual(primal) problem also has an optimal solution and,

moreover, the two solutions coincide, i.8, (p)=C(p). &

This last result introduces the concept of an optimal in-
equality b, from the communication point of view for the
correlationsp. Indeed the boundé) and (9) can be inter-
preted as bounds on the communication necessary to simu-
late classically a violation of the inequalibyby the amount
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B(p). Of course this is also a bound on the average commu- E. Other measures of communication

nicationC(p) necessary to reproduce the entire set of corre- The general arguments we presented in this section re-
lationsp. In general, however, more communication may bemain valid independently of the precise way communication
necessary to carry out the latter task than the former. For this counted and the way determinist strategies are accordingly
optimal inequalityb, , though, the communication is identi- partitioned. Depending on the physical quantity one is inter-
cal in the two cases. If we quantify nonlocality by the ested in, different measures for the communication cpst
amount of communication needed to simulate it classically, are thus possible. For example, to obtain bounds on the av-
violation of the inequalityp, by the amounB, (p) therefore erage communication needed to reproduce quantum correla-
exhibit the complete nonlocality contained in the correlationgions in classical protocols that use only one-way communi-
p. cation, the cost of deterministic strategies using two-way

communication would be taken to be=«. Our results

therefore apply to all averaged-type measures of communi-

D. Comparing Bell inequalities cation.

The bound(5) simply expresses that the most efficient Note that one can also count the communication using
strategy to simulate a violation of a Bell inequality uses localShanon’s entropy if it is assumed that the parties may per-
deterministic protocolgwhich do not necessitate any com- form block coding. This is natural, for instance, if the parties
munication and deterministic protocols from;« for which ~ perform several runs of the protocol at once as in the defini-
the ratio of violation per communicatiorB(x —Bo)/c;+ is ~ tion of the asymptotic communicatio@... The resulting
maximal. Indeed, for that strategy a violation by the amountound, however, will not be a lower bound on the asymptotic

B(p) = (1—d;j+)Bo+0;+Bj» implies commur!icationcm. This is because for Bell scgngri_os cor-
responding tan runs in parallel, there are deterministic strat-
B(p)—Bg egies than cannot be written as the productnobne-run
*=B._B. (14 strategies. As i there thus exist f de-
Bjx—Bg strategies. As1 increases, there thus exist new ways of de

composing the correlations in terms of deterministic proto-
cols that can possibly result in lower communication per run

and thus a communication but which are not taken into account in the one-run decom-
position (2).
Finally, note that computing the communication costs as-
C=qiiCix= B(pP)—Bo . sociated with deterministic strategies is in general a difficult
T B« —Bg task. It is a particular problem of the field of communication

complexity for which several techniques have been specially
developed 19]. However, in the case of the CHSH and the

which is nothing more than the right-hand side of Ex). CGLMP inequality, the bounéb) can easily be deduced.
The bound(5) can thus be viewed as the minimal com-
munication needed to produce a given violation of the in- lIIl. CHSH INEQUALITY

equality b. This allows us to compare the amount of viola-
tion of different Bell inequalities, possibly corresponding to  Let us now focus on the simplest inequality, the CHSH
different Bell scenarios. If the inequalities are normalized sdnequality[14]. The CHSH inequality refers to two-settings
thatB;<c;, the bound takes the forf8) and the comparison and two-outcomes Bell scenarios. The value the inequality
is even more direct: the greater the violation, the greater thtéakes on an arbitrary vectqris
nonlocality exhibited by the inequality.

This way of weighing Bell inequalities is correct, how- B(P)=P(80=Dbo)+p(bo#ay)+p(a;=by)+p(b;=ao)

ever, only ifB(p)<Bj+ . Indeed if this is not the case, the —Tp(an®ba)+p(ba=a:)+pla#b
strategy just described no longer works since in Edgl) [P(307bo) + P(bo=ay) +p(ay ~b,)
gjx>1. Though the boundé) and (9) are still valid, it is +p(by#ag)], (15

then, in principle, possible to infer strongest bounds from the
violation of the Bell inequality. This should be taken into Where p(a,=Dby)=pooxyT P1yxy and p(ax#by)=pigxy
account when comparing Bell inequalities in this way. +Poyxy- The local bound of this inequality iBo=2. The

In the remainder of the paper, we will only be concernedmaximal violation of the CHSH inequality by quantum me-
with two-settings Bell scenarios. Note that in that casechanics is 22 and is obtained by performing measurements
B(p)<B;« is always satisfied for quantum correlations. In- On Bell states. On the other hand, the maximum value it can
deed the minimal possible communication in(reonloca) take for all possible correlations is 4, when the four terms
deterministic protocol is 1 bit and is associated with strateWith a plus sign are equal to one.
gies inD,. However, every quantum correlation of a two-  To derive a bound or€(p) from Eq. (15), we need to
settings Bell scenario can be reproduced with 1 bit of comcompute max.q{(Bj—Bg)/cj}. Note that in a deterministic
munication (indeed since quantum correlations satisfy theprotocol, either the two parties do not communicate at all, or
no-signaling conditions, it suffices for one of the parties toone of the parties start speaking to the other. In the latter
send his input to the other so that they are able classically toase, the minimum communication he can send is 1 bit. This
simulate them It therefore follows thaB(p)<B;<Bjx . implies that the minimum possible average communication
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This implies, for instance, that to reproduce the optima
guantum correlations at leag? — 1=0.4142 bits of commu-
nication are necessary. Note that to reproduce all possib
von Neumann measurements on a Bell state 1 bit is sufficient!4!
[9].

Is it possible to find a protocol that reproduces these Cory )65, Half of these probabilities appear with a plus sign in
relations with that amour(p) =v2—1 of communication? the CHSH expressiofil5) and half of them with a minus
It turns out, in fact, that the CHSH inequality is optimal, i.e., sign. Since entriesd gy, = 56()( 2 of deterministic

. . - A a(x,y) “B(x,y) s
the bound(17) is saturated for all quantum correlations. In- sirategies are either equal to 0 or 1, for a deterministic strat-
Qeed, quantum correlations satisfy the no-signaling condlegyd to satisfyB(d) =2, it must contribute to E¢(15) with
tions: one — and three+. For local strategies, which assign local

valuesa(x) and B(y) to Alice’s and Bob’s outcomes, this
2 pab‘xyzz Pabjxy:  VY.Y’ Igaves eight possibi_litie_s. Indeed,. if we c.hoose one of the

b b eight entries appearing in E(L5) with a — sign to be equal
to one, the requirement that three entries appearing with a
sign must also be equal to one fully determines the functions
a(x) and B(y). The resulting eight possible local strategies
d*o (\(=0,...,7) are given in Table |. On the other hand, for
which express that Alice’s marginal probabilities are inde-a deterministic strategy to attaB(d) =4, it must contribute
pendent of Bob’s input and conversely. For correlations thato Eq.(15) with four terms weighted by &. The assignment
obey these constraints, we have the following. of outcomes of 1-bit strategied*: are either of the form

Proposition 4 C(p)=3B(p)—1 bits of communication «(X), B(x,y) (when Alice sends her input to Babor
are necessary and sufficient to simulate two-settings and(X,y), B(y) (when it is Bob who sends his input to Alice
two-outcomes correlations that violate the CHSH inequal- For each of the four possible functiorgx), the require-
ity (15) and satisfy the no-signaling conditiof3). ment that all the entries of the deterministic vector equal to

Proof. As the “necessary” part follows from the bound one appear with a in the CHSH inequality fixes the func-
(17), we just have to exhibit a classical protocol that repro-tion B(x,y) and similarly for the four possible functions
duces the correlations with that communication. B(y). There are thus eight protocols M, that attain the

First note that when the bour{8) is saturated, it follows boundB;=4. These strategies are given in Table II.
from the proof of Proposition 1 that the optimal protocol Having characterized the deterministic strategies from
uses only strategies froM, andD;« and, moreover, in these which the protocol is built, it remains to determine the prob-
subsets only strategies that attain the maximal vaBjeand  abilities g, with which these strategies are used. These must
Bj« on the inequalityb [there could be more than one subsetbe chosen so that
Dj« if they are several indexeg, for which (Bj«

10111
|d 111

for nonlocal deterministic strategiesds=1. The following TABLE I. The eight local deterministic strategies for which
protocol with entriesdap = 65« v 5Z(ny), where B(d")=2.

a(x,y)=0 for x,y=0,1 do dlo d% d% d% d% d% d
B0.0=0, B(LO=1, BODH=0, A(L1H=0 dogo L L0010 00
16) Y00 0 0 0 0 0 1 0 0
dogo0 0 0 1 0 0 0 0 0
can be implemented with 1 bit of communication. Indeed itd;qo 0 0 0 1 0 0 1 1
suffices for Alice to send the value of her input to Bob. dyg10 1 0 0 0 0 0 0 0
Moreover, the valudd(d) it takes on the inequalityl5) is  dyqo 0 1 0 0 1 1 0 0
the maximum possibleB(d)=4. It thus follows that dgy, 0 0 1 1 0 0 1 0
max .of(Bj—Bp)/cj}=(4—2)/1=2, so that for the CHSH in- di1j10 0 0 0 0 0 0 0 1
equality the bound5) becomes dogos 1 1 1 0 0 0 0 0
1 digor 0 0 0 1 0 0 0 0
E(p)?—B(p)—l. (17) dogoa 0 0 0 0 1 0 0 0
2 d1os 0 0 0 0 o0 1 1 1
dgu 1 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1

; pab\xyzé Pabjx’y Vx,x' (18

7 7
—Bop)/cjx is maximuni. In our case, this implies that the _ o N
optimal protocol must be built from local strategié®® and pab\xy—}\éo qxodab\xy+}\éo quab\xy (19
from 1-bit strategiesdr such thatb-d*o=By=2 and
b-d*=B,;=4. holds for the 16 entriep,pyy, . Let us focus first on the

The entries of the vectorp corresponding to the Bell entries that enter in Eq15) with a — sign. For each of these
scenario associated with the CHSH inequality consists of 1@ight entries, the only contribution to the right-hand side of
probabilitiesp,px, Sincea, b, x andy each take two possible Eqg. (19) different from zero comes from a local deterministic
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TABLE Il. The eight 1-bit deterministic strategies for which inequality takes on an arbitrary vectpris
B(d'1)=4.

[d/2]-1 ok

d dh o dhn dht dn o dt dh B(p) = kzl (1—m {P(ap=bo+k)+P(by=a;+k
dgo 1 O 1 0 1 0 1 0
dgoo O O O O 0 0 0 0 +1)+P(a;=by+k)+P(b;=ag+k)
gjjzz O S S ~[P(ag=bo—k— 1)+ P(by=a;—k)+P(a,=b,
dgo O O O O O 0 0 0 —k—1)+P(by=a,—k-1)]}, 22
d1g10 0 0 1 1 1 0 1 0
doyj10 1 Lo 00101 whereP(a,=by+k)==0_5pwm-kpxy iS the probability that
diyj10 0 0 0 0 0 0 0 0  Alice and Bob results satisfg=b-+k mod d when measur-
dogor 1 0 1 0 1 1 0 0 ing x andy. As shown in[15], the local bound of the inequal-
d10101 0 0 0 0 0 0 0 0 ity is Bg=2.
dogjor 0 0 0 0 0 0 0 0 Whend=2 we recover the CHSH inequality and in that
dyjo 0 1 0 1 0 0 1 1 = casethe maximal quantum violation B =2.828. Ford
dog11 1 1 0 0 1 1 0 0 >2, the (conjecturedl maximal violations obtained from
dig11 0 0 0 0 0 0 0 0 maximally entangled qudits are given[ib5]. For quitrits the
dogp O O 0O 0O 0 0 0 0  maximum isB}z=2.8729 and this value increases with
dyn 0 0 11 0o 0 1 1 This suggests that the CGLMP inequality exhibits stronger

nonlocal correlations for larget. This has been made more
) ] precise by connecting the violation of the CGLMP inequality
strategyd*°. This therefore fixes the value of the correspond-tg the resistance of the correlations to the admixture of noise
ing probability g, . For instance,do,=Pogi0 OF i,  [15]. It has, however, been argued[it6] that the resistance
=P1g11- to noise is not a good measure of nonlocality. Quite surpris-
We now have to determine the value of the probabilitiesingly it was also found inf16] that for d>2 the strongest
0y, so that the eight entries,pxy that enter(15) with a +  violation of the CGLMP inequality is obtained using certain
sign satisfy Eq(19). For simplicity let us focus on one of nonmaximally entangled states. For quitrits, for instance, the

these entriesogoo- Using Tables I and 11, Eq19) becomes maximal violation obtained from a nonmaximally entangled
state isB3,,z=2.9149 which is higher than the maximum

Pogoo= o, + A1, + da, T do, + A2, + 0, + e, (20 BfAEzZ.8729 for the maximally entangled one. Moreover,

this discrepancy between maximally and nonmaximally
or states grows with the dimension. This raises several ques-
tions on how one should interpret and compare these mani-

0o, + 2,4, + e, = Poojoo™ Pog 10~ P1g11~ Pojo1 festations of nonlocality.
(21 A natural answer is through the bouf®). The derivation
of the bound for the CHSH inequality in the previous section
where we replaced each of the probabilitigs with their ~ can directly be applied to the CGLMP inequality. This yields

value previously determined. From E@.5) and using the -

no-signaling conditiong18) and the normalization condi- Cd(p)B%Bd(p)_l_ (23
tions(1), it is not difficult to see that the left-hand side of this

equation is equal tpB(p) —2]/4. The same argument can be This hound is the same for all the inequalities of the family
carried for all the seven other entries that contribute to thgzz) and the strength of these different inequalities can
CHSH inequality with a+ sign, each time finding that the arefore simply be measured by the degree by which they
sum of four probabilitiesq,, equals[B(p)—2]/4. Taking  are violated. This confirms the intuition that the nonlocality
dx1=[B(p)—2]/16 for A;=0,...,7 one therefore obtains a displayed by the CGLMP inequality grows with the dimen-

solution to(19). sion.
The communication associated with this protocol is thus On the other hand, the fact that fdr>2 the CGLMP
C=3,q,C(d") = Elequ: iB(p)—1. B inequality is maximally violated for nonmaximally entangled

states translates into more severe constraints on the average
_ communication necessary to reproduce correlations obtained
IV. MORE DIMENSIONS: THE CGLMP INEQUALITY by measuring certain nonmaximally entangled states than
The CGLMP inequality[15] generalizes the CHSH in- Maximally entangled ones. For instance, for quif#s) im-
equality ford-dimensional systems. This inequality refers to plies thatC}=0.4365 whileC3,,=0.4575. It could, how-
measurement scenarios where Alice’s and Bob’s local setver, be that for these particular correlations the CGLMP
tings take two valueg,y=0, 1 and each measurement givesinequality is not optimal and that another inequality will im-
d possible outcomes,b=0,...d—1. The value the CGLMP pose stronger bounds for maximally entangled states.
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To verify that assertion, we numerically solved the linearnecessitate further communication. However, concurring
programming problen(13) for the correlations that maxi- with [16], we believe that more settings per site and a corre-
mally violate the CGLMP inequality both on maximally and sponding new Bell inequality are needgzD].
nonmaximally entangled states fd<8. There exists many
d_ifferem algor.ithms for Iingar programmir)g and the only dif- \, opTIMAL INEQUALITIES AND FACET INEQUALITIES
ficulty in solving Eq.(13) is to characterize the sefd; of
deterministic strategies and their corresponding communica- The CHSH and the CGLMP inequalities are special in-
tion costsc; . A deterministic strategy assigns a definite valueequalities: they are facet inequalities. Local correlatioase
a(x,y) to Alice’s outcomes angB(x,y) to Bob’s outcomes convex combinations of a finite number of points, the local
for each of the four possible pair of inputsyt. To simplify ~ deterministic strategied:= Ehoq)\odkc). The set of local cor-
the notation we writea,(y)=a(X,y) and B, (x) = B(X,y). relations thus forms a convex polytope. Every polytope can
There are two possibilities foe, : either a, is constant be characterized either by its vertiogise local deterministic
(consy, i.e., a,(0)=a,(1), andgiven inputx Alice does not  strategiesor by its facets which are a finite set of inequali-
need any information from Bob to determine her output; ortiesb' (i=1,...M)
ay# const, that isa,(0)+# ay(1), andAlice’s outcome de-
pends not only on her local settingbut also on Bob’s one.
In that case Alice needs one bit of information from Bob to
output her result. The situation is similar for Bob. This leads

to four possible sets of deterministic strategies. . Facet inequalities thus form a minimal set of inequalities that

(i) Do: the set of local deterministic strategies for which ¢, characterize the local correlations. They can therefore
ay=const andB, =const forx=0,1 andy=0,1. These do e \iewed as tight detectors of non-locality. Complete sets of
not need any communication to be implementegk- 0. facet inequalities are known in some caf2s—24. For two-

(i) Dy: the strategies where,=const forx=0,1 and at  gettings, two-outcomes Bell scenarios, the CHSH is the
least one of theg, # const. These strategies necessitate 1 bifnique(up to symmetries and besides trivial inequalities that
of communication from Alice to Bob. This set also contains 5, always satisfied by quantum correlatiofexet inequal-
the reverse strategies which need 1 bit of communicationyy |t turns out that it is also optimal with regard to the
from Bob to Alice. The communication cost associate®{o average communicatio@ for all quantum correlations. For

is thereforec; =1. N .
Orecy Bell scenarios involving more outcomes, we have seen that

vaI(LJIé)s )2()_2 :Oﬂ(])? fioiOCOIS \::V:r?sr?;o:r fr?erls;tLOJro\?ju(;i;hn%t\;vto the CGLMP inequality is optimal for certain correlations.
-~ — 5 Is it the case that for quantum correlations, optimal in-

Ieastt c()jng cil_thwyig_onstl. J??Seg sérattr(]aglesl canftr)]e Irnplet'equalities are always facet inequalities? Consider, for in-
mented by Alice sending 1 bit to Bob, the value of Nernput,gianee - the following correlations belonging to a two-

Z?d t'hen Botb sendllng b?ﬁk to Alice the value O.f h't.s Input Ifsettings, three-outcomes Bell scenario: Alice and Bob share
ICES Input equalsx. € average communicalion ex- .. maximally entangled state of two qutrit$y)

c?a?ge_d s 342 bifl_so ,tha§=d?;2.bjl'his Si.t also contains ihz =1W3(|00) +[11) +|22)). The measurements they perform
strategies where Alices and Bob's Positions are permuted. ¢qnsist of each carrying out the transformatign)

(iv) Dy: ay#const andp,+const for x=0,1 andy —e'%0)]i), followed by a Fourier transforn gy for Alice

=0,1. To implement these strategies both parties need tgndUFT* for Bob and then a measurement in the computa-

km\)/\\,/\gt;\h;iI:gg;igfnmincitgfgosn?sm:uiication costs to determintional basis. The settings of their measuring apparatus are
- : : . . thus determined by the three phases they use. For Alice’s
istic strategies and for the correlations considermtd 8), it y P Y

: - settingx=0 andx=1 the phases arf@®, 0, 0 and(0, 0, #/2),
turns out from the results of the numerical optimizatiag) : : : _ _
that the CGLMP inequality is optimal, i.e., the bou(®8) is while for Bob's settingsy=0 andy=1 they are(0, 0, m/4)

saturated. For these particular measurements, those that giv"’ler%d (0, 0, =/4). This results in the probabilities

=3 g, d  b.I=B, i=1..M. (24
Ao

rise to the maximal violation of the CGLMP inequality, more p(ay=b,)=[5+(— 1) ¥)2v27/9,
communication is thus necessary to reproduce outcomes ob-
tained on nonmaximally entangled states than on maximally p(ay=by+ 1)=[2—(—1)"*Yv2]/9,
entangled ones.

It is nevertheless possible that these measurements are not p(ax=bhy+2)=[2—(—-1)"*¥v2]/9, (25

optimal to detect the nonlocality of maximally entangled

states. We performed numerical searchesdfer3, optimiz-  wheref(x,y)=x(y+1).

ing the two von Neumann measurements the parties carry out These correlations violate the CGLMP inequality by the

on the maximally entangled state. We found that the meaamountB3(p) = 2/3(1+2v2)=2.5523. On the other hand,

surements that necessitate the maximal communication to @nsider the inequalityl5), which has to be viewed now as

simulated are the ones that maximize the CGLMP inequalitya three-outcomes inequality, i.ep(a,=by) == pyyxy and
These results therefore suggest that two measurement s@ita, # by) ==y Pyijxy, Where the sum ovek and | runs

tings on each side do not optimally detect the nonlocality offrom 0 to 2. The above correlations violate this straightfor-

maximally entangled states fol=3. It is still possible that ward generalization of the CHSH inequality to more out-

the simulation of positive-operator-valued measures wouldomes by the amourg3¢(p) =2/9(1+ 8v2)=2.7364. Since
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for both inequalities C(p)=1B(p)—1, the generalized . However, for probabilities which do not satisfy the no-
CHSH inequality is stronger than the CGLMP ones for these>/gnaling conditions, such as nonlocal deterministic strate-
particular correlations. Moreover, numerically solving the9i€S inDi~o, the rewritten inequalitie&27) are not equiva-

linear problem(13) we found E(p)=0.3682 <o that the lent to the original one. They will thus lead to different

= o . . bounds onC(p). Since an inequality can always be written
boundC(p)_>0.368_2 |mpI|(_ad .by th? generalized CHSH s in the normalized form of Propostion 2 using the normaliza-
saturated, i.e., the inequality is optimal.

The generalized CHSH inequality, however, is not a face%ion constraints in Eq(26) (which are satisfied by all corre-
inequality. Indeed, for an inequality to be a facet, the locallations, the strongest bound 08(p) a facet inequalityb

deterministic strategies that attain the local bosd(i.e.,,  Will impose on the correlationp is the solution to the fol-
the vertices that belong to the fapetust generate a space of 10Wing linear programming problem for the variables:
dimension one less than the dimension of the polytope, since

they form its boundary. It is shown if25] that the two- max “OB(D)“LEJ.: G’

settings, three-outcomes polytope lies in a hyperplane of di-

mension 24. For the inequalitLt5), it is easily checked that iect t " i e 2
there are only 21 local deterministic strategies that attain the subjec Fob 2 #g |-di=ci. 28

limit Bo=2. They thus generate at best a space of dimension
21 which is less than the expected value of 23(f%) to be ~ We numerically solved this linear problem for the correla-
a facet. tions described above and each of the 23 facet inequalities
Does there exist a facet inequality that imposes the samiéey violate. The highest bound obtained was given by the
bound C(p)=0.3682 as the generalized CHSH inequality?CGLMP inequality and i<C(p)=0.2764.
There exist algorithms that compute all the facets of a poly- This example shows that there exist quantum correlations
tope given its vertices. Using both the reverse search vertefor which the strongest bound dB(p) deduced from facet
enumeration algorithm[26] and the double description inequalities is lower than théptimal bound given from a
method[27] we obtained the complete set of facet inequali-nonfacet inequality. This is contrary to the common view
ties of the two-settings, three-outcomes local polytope whictaccording to which facet inequalities are “optimal” tests of
consists of 1116 inequalities. The correlations describeonlocality[25].
above violate 23 of these inequalities.
Note that there are various ways of writing a Bell inequal- V1. CONCLUSION

ity which are equivalent for local and quantum correlations. |, summary, we have shown that the average communi-

Indeed local and quantum correlations satisfy the normalizagation necessary to simulate classically a violation of a Bell
tion (1) and no-signaling conditiongl8) which we express jnequality is proportional to the degree of violation of the

as the constraints inequality. Moreover, to each set of correlations is associated
el i an optimal inequality for which that communication is also
g-p=G. j=1..J. (26 gufficient to reproduce the entire set of correlations. The key

- . . . __ingredient was to compare the amount of violation of Bell
For probabilities that satisfy these conditions, the 'neq“a“tﬁnequalities not only with the maximum value they take on

b-p<B can be rewritten in the equivalent form local deterministic strategies, but also on nonlocal ones that
necessitate some communication to be implemented.
wob+ > Mjgj) p<poB+> 1iG. (27 Part of the interest of this work is that it gives a physical
] i meaning to the degree of violation of Bell inequalities and

thus provides an objective way to compare violation of dif-
In particular, with that rewriting, a facet inequality will re- ferent inequalities. It also gives a way to view and under-
main a facet inequality and an inequality which is violatedstand Bell inequalities that could shed light on some of their
by correlations satisfying26) will still be violated. This can  aspects. For instance, it was commonly assumed that facet
be geometrically understood as follows. Probabilities thainequalities are optimal tests of nonlocality because they are
satisfy the constraint®6) lie in a hyperplang; of dimension tight “detectors” of nonlocality. However, if we measure
less than the total dimension of the sp&ef all vectorsp.  nonlocality by the communication needed to reproduce it, in
An inequalityb- p<B defines a half-space iR. The fact that certain situations nonfacet inequalities are better “meters” of
for probabilities inG, Bell inequalities can be written in dif- nonlocality than are facet ones.
ferent equivalent ways corresponds to the fact that they are This work also provides a tool to characterize and quan-
different half-spaces ofP that have the same intersection tify the nonlocality inherent in quantum correlations. As a
with the hyperplang. It is shown in[25] that the dimension result, for instance, for two measurements on each side it
of the two-settings, three-outcomes polytojlee set of all seems that the correlations that necessitate the most commu-
local correlationsis the same as the hyperpla@ielefined by  nication to be reproduced are obtained on nonmaximally en-
the conditions(26) of normalization and no-signaling. It tangled states rather than on maximally entangled ones for
therefore follows that the rewritin@27) based on these con- d>2. It would be interesting to know whether this is still the
straints is the unique way to rewrite Bell inequalities in ancase for more settings and if not, what is the corresponding
equivalent form for local correlations. Bell inequality.
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