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Violations of Bell inequalities as lower bounds on the communication cost of nonlocal correlation

Stefano Pironio*
Service de Physique The´orique, CP 225, Universite´ Libre de Bruxelles, 1050 Brussels, Belgium

~Received 5 May 2003; published 4 December 2003!

To reproduce in a local hidden variables theory correlations that violate Bell inequalities, communication
must occur between the parties. We show that the amount of violation of a Bell inequality imposes a lower
bound on the average communication needed to produce these correlations. Moreover, for every probability
distribution there exists an optimal inequality for which the degree of violation gives the minimal average
communication. As an example, to produce using classical resources the correlations that maximally violate the
Clauser-Horne-Shimony-Holt inequality,&21.0.4142 bits of communication are necessary and sufficient.
For Bell tests performed on two entangled states of dimensiond>3 where each party has the choice between
two measurements, our results suggest that more communication is needed to simulate outcomes obtained from
certain nonmaximally entangled states than maximally entangled ones.
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I. INTRODUCTION

Characterizing the features of quantum mechanics
differentiate it from classical theories is an important iss
for quantum information theory, as well as from a fundame
tal perspective. One such peculiarity is the nonlocal chara
of quantum mechanics, i.e., the fact that quantum corr
tions are incompatible with local realistic theories. Apa
from being one of the most intriguing aspects of nature, n
locality is deeply related to several quantum information p
cessing tasks@1,2#, and is at the core of quantum commun
cation complexity@3,4#.

It was Bell@5# who first showed that correlations obtaine
by measuring two separated subsystems cannot be expla
by a classical realistic theory if no communication betwe
the subsystems is allowed. The question which then follo
is how much communication is required to reproduce th
correlations? This is a natural way to quantify the nonlo
character of quantum correlations in terms of classical
sources. We will show that the inequalities introduced
Bell 40 years ago not only tell us that some communicat
is necessary to produce the correlations but also how m

The situation we consider is the one encountered in bip
tite Bell scenarios. Two spatially separated parties, Alice
Bob, receive local inputsx andy and subsequently produc
outputsa and b. We denote byMA the number of possible
inputs on Alice’s side and byMB the number of inputs on
Bob’s side and restrict ourselves to the case where a fi
number of distinct outcomes is associated to each input.
scenario is completely characterized by the probabili
pabuxy that Alice outputsa when givenx and Bob outputsb
when giveny. We therefore associate to each Bell scenari
correlation vectorp with entriespabuxy . Note that these en
tries satisfy the normalization constraints

(
a,b

pabuxy51 for x50,...,MA21 and y50,...,MB21.

~1!
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In the quantum version of the Bell scenario, Alice a
Bob share an entangled quantum state on which they perf
local measurements. The inputsx and y then correspond to
the possible settings of their measuring apparatus and
outcomesa andb correspond to the results of these measu
ments.

In the classical version of the Bell scenario, Alice a
Bob may use only classical resources, i.e., shared rand
ness~local hidden variables! and classical communication, t
determine their outcomesa and b. If the two parties have
unrestricted access to shared randomness, the classica
of producing the correlationsp is the minimum amount of
communication they must exchange in a classical protoco
achieve this goal. Different measures of this amount of co
munication are possible.

~i! Cw(p). Worst case communication: the maximal
amount of communication exchanged between Alice a
Bob in any particular execution of the protocol. See@6–9#.

~ii ! C̄(p). Average communication: the average commu
nication exchanged between Alice and Bob, where the a
age is taken over the inputs and the shared randomness
@10–12#.

~iii ! C`(p). Asymptotic communication: the limit
limn→` C̄(pn)/n, wherepn is the probability distribution ob-
tained whenn runs of the Bell scenario are carried out
parallel, that is when the parties receiven inputs and produce
n outputs in one go. See@13#.

In each of these definitions the costs are defined w
respect to the optimal protocol that gives the lowest value
each quantity.

The asymptotic measureC` may be the most appropriat
when one is concerned with practical applications that m
use of the correlations but is less preoccupied with whet
the measurements are performed individually or collective
On the other hand, the first two measures of communica
relate to protocols where the outcomes are determined a
each single pair of inputs is chosen. This is in particular
situation encountered in Bell tests. These two measures
more properly count the communication necessary to sim
late classically nonlocality and it could be expected that th
©2003 The American Physical Society02-1
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are closely connected to Bell inequalities. Relations betw
the worst case situation and Bell inequalities were exami
in @8# where the authors introduced new Bell inequalities t
are satisfied by correlations that necessitate at most 1 b
communication to be simulated.

In the present paper we concentrate on the average c
municationC̄. We first point out that the amount by whic
the probabilitiesp violate a Bell inequality imposes a lowe
bound onC̄(p). This bound is simply a bound on the amou
of communication needed to simulate classically a violat
of the inequality. It isa priori unclear that one particula
manifestation of the nonlocal content of correlations, the v
lation of a specific Bell inequality, suffices to characteri
exactly the communicationC̄(p) necessary to reproduce th
entire set of correlations~all the less since in general corre
lations violate more than one inequality!. Yet, to each prob-
ability distributionp is associated an optimal inequality su
that the bound the violation imposes onC̄(p) is saturated,
i.e., it gives the minimal average communication needed
reproduce these correlations. We then investigate in detai
case of the Clauser-Horne-Shimony-Holt~CHSH! inequality
@14#. We show that for two-settings and two-outcomes B
scenarios, the CHSH inequality is optimal for all quantu
correlations. This implies in particular that&21.0.4142
bits are necessary and sufficient on average to reprod
classically the correlations that lead to the maximal violat
of the inequality. We then apply our approach to the Collin
Gisin-Linden-Massar-Popescu~CGLMP! inequality@15#. We
find that for two-measurements scenarios more commun
tion is needed to reproduce the effect of measuring cer
nonmaximally entangled states of two qutrits than is nec
sary for maximally entangled ones. Our results, combin
with those of@16#, suggest that this is also the case for qud
with d>3. Finally we ask whether for quantum correlatio
the optimal inequalities from the communication point
view are always facet inequalities. We give an exam
where this is not the case.

This paper is organized as follows. We first describe
Sec. II how the average communicationC̄ relates to the de-
gree of violation of Bell inequalities. We then apply the
ideas to the CHSH inequality in Sec. III and to the CGLM
inequality in Sec. IV. In Sec. V we discuss the relations b
tween optimal and facet inequalities.

II. GENERAL FORMALISM

A. Deterministic protocols

To state our results it is necessary to consider partic
classical protocols, the deterministic ones which do not
any kind of randomness. These protocols therefore alw
produce the same pair of outcomes for given inputsx andy.
The entries of the associated correlation vectorsd are thus of
the form dabuxy5da(x,y)

a db(x,y)
b where a(x,y) and b(x,y)

specify Alice’s and Bob’s outcomes for measurementsx and
y. Since there are a finite number of functionsa(x,y) and
b(x,y), there are a finite number of different determinis
strategiesdl which we index byl. Their interest is that any
classical protocol can be viewed as a probability distribut
06210
n
d
t
of

m-

t
n

-

to
he

ll

ce
n
-

a-
in
s-
d
s

e

n

-

ar
e

ys

n

$ql% of deterministic protocolsdl. That is any correlation
vector p can be written asp5(lqldl where ql>0 and
(lql51.

Deterministic protocols for whicha andb depend only on
the measurements performed locally by each party, i.e.a
5a(x), b5b(y), are local protocols. No communication
all is required to implement them. On the other hand,
a(x,y) or b(x,y) depends on the input of the other part
some ~deterministic! communicationc(x,y) between the
parties is necessary to carry out the protocol.

It will be convenient to group in subsetsDi deterministic
strategies that need the same comunicationci to be imple-
mented. Since in the present paper we are interested in
average communicationC̄, we will group the deterministic
strategies with respect to the minimal average commun
tion needed to implement them, expressed in bits. Index
strategies inDi by l i , we thus haveC̄(dl i)5ci ;l i . We
also arrange the subsetsDi ( i 50,...,N) in increasing order
with respect to their communication cost:ci,ci 11 . Local
deterministic strategies thus belong toD0 for which c050,
while the maximum communication costcN is associated
with strategies inDN . This occurs when both parties need
send the value of their input to the other, socN5 log2 MA
1log2 MB @17#. We will further illustrate this grouping of
deterministic strategies in Sec. IV.

With the above notation, a decomposition ofp in term of
deterministic strategies can be written

p5(
i

(
l i

ql i
dl i. ~2!

It then directly follows that the average communicati
C̄(p,$ql%) associated with the protocol~2! is given by

C̄~p,$ql%!5(
i

(
l i

ql i
C̄~dl i !5(

i
(
l i

ql i
ci5(

i
qici ,

~3!

where qi5(l i
ql i

is the probability to use a strategy from

Di . The minimum amount of communicationC̄(p) neces-
sary to reproduce the correlationsp is the minimum of
C̄(p,$ql%) over all possible decompositions of the form~2!.
If there exists a decomposition such thatq051, i.e., if the
correlations can be written as a convex combination of lo
deterministic strategies, thenC̄(p)50 and the correlations
are local. If for every decompositionq0,1, the correlations
are nonlocal and they violate a Bell inequality.

B. Bell inequalities

A Bell inequality can be viewed as a linear form, repr
sented by a vectorb, which associates with each set of pro
abilities p the numberB(p)5b•p. One particular number is
the local boundB05maxl0

$b•dl0%. By convexity, every lo-

cal probability distribution l5(l0
ql0

dl0 satisfies the in-

equality B( l)<B0 . Correlations p that violate it, B(p)
.B0 , are therefore nonlocal. To extract more informati
2-2
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from B(p) than a simple detection of nonlocality it is nece
sary to consider not only the upper boundB0 the inequality
takes on the local subsetD0 , but also on all the other subse
Di ,

Bi5max
l i

$b•dl i%. ~4!

Given this extra knowledge, a constraint on the decomp
tion ~2! can be deduced from the amount by whichp violates
the Bell inequality. This turns into a bound onC̄(p) which is
the basis of the present paper.

C. Main results

Proposition 1.For every inequalityb and probability dis-
tribution p, the following bound holds:

C̄~p!>
B~p!2B0

Bj* 2B0
cj* , ~5!

where j * is the index such that (Bj* 2B0)/cj* 5maxjÞ0$(Bj
2B0)/cj%.

Proof. From Eqs. ~2! and ~4! we deduceB(p)5b•p
5( i(l i

ql i
b•dl i<( iqiBi . Since( iqi51 we find

B~p!2B0<(
iÞ0

qi~Bi2B0! ~6!

or

qj* >
B~p!2B0

Bj* 2B0
2 (

iÞ0,j*
qi

Bi2B0

Bj* 2B0
. ~7!

We thus obtain

C̄~p!5(
i

qici

>
B~p!2B0

Bj* 2B0
cj* 1 (

iÞ0,j*
qi S ci2

Bi2B0

Bj* 2B0
cj* D

>
B~p!2B0

Bj* 2B0
cj* , ~8!

where in the last line we used (Bj* 2B0)/cj* >(Bi2B0)/ci
which follows from the definition ofj * . j

The bound~5! the inequalityb imposes on the averag
communicationC̄(p) is proportional to the degree of viola
tion B(p) times a normalization factorcj* /(Bj* 2B0) ex-
pressed in units of ‘‘communication per amount of viol
tion.’’ This naturally suggests to rewrite Bell inequalities
natural units wherecj* /(Bj* 2B0)51 so that Eq.~5! takes a
simpler form.

Proposition 2.Every Bell inequalityb can be rewritten in
a normalized formb8 such thatBi8<ci ; i . For the normal-
ized inequality the bound~5! becomes

C̄~p!>B8~p!. ~9!
06210
i-

Proof. Define the normalized version of the inequalityb
as

b85
cj*

Bj* 2B0
S b2

B0

MAMB
1D , ~10!

where j * is taken as in Proposition 1. Note that1•p
5MAMB since the entries of all correlations vectorsp sat-
isfy the normalization constraints~1!. The effect of the term
2(B0 /MAMB)1 in Eq. ~10! is thus to shift the value the
inequality takes on an arbitrary vectorp from B(p) to
B(p)2B0 . We therefore get Bi85maxli

$b8•dl i%
5@cj* /(Bj* 2B0)#(Bi2B0)<ci , where the last inequality
holds by definition ofj * .

We then immediately deduce~9! since B8(p)5b8•p
5( i(l i

ql i
b8•dl i<( iqiBi8<( iqici5C̄(p). j

Assuming Bell inequalities are written in this standa
way whereBi<ci , it follows from Eq. ~9! that for a given
set of probabilitiesp, the inequality that leads to the stron
gest bound onC̄(p) is the one for whichB(p) takes the
greatest value. In fact we have the following.

Proposition 3. Let b* be the normalized inequality tha
gives the maximum violationB* (p)5maxb$B(p)% for the
correlationsp, then

C̄~p!5B* ~p!. ~11!

Proof. This follows from the duality theorem of linea
programming@18#. IndeedB* (p) is the solution to the fol-
lowing linear programming problem:

max b•p

subject to b•dl i<ci ;l0 ,...,l i ,...,lN ~12!

for the variableb. The dual of that problem is

min (
i

(
l i

ciql i
5(

i
ciqi

subject to (
i

(
l i

ql i
dl i5p,

ql i
>0 ;l0 ,...,l i ,...,lN ~13!

for the variablesql i
. The solution to the dual problem i

C̄(p) since it just amounts to search for the optimal deco
position $ql i

% of p which leads to the lowest average com

munication~note that the condition( i(l i
ql i

51 is in fact

already implied by the normalization conditions thatdl i and
p satisfy!. Now, the duality theorem of linear programmin
states that if the primal~dual! has an optimal solution, then
the dual~primal! problem also has an optimal solution an
moreover, the two solutions coincide, i.e.,B* (p)5C̄(p). j

This last result introduces the concept of an optimal
equality b* from the communication point of view for the
correlationsp. Indeed the bounds~5! and ~9! can be inter-
preted as bounds on the communication necessary to s
late classically a violation of the inequalityb by the amount
2-3
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STEFANO PIRONIO PHYSICAL REVIEW A68, 062102 ~2003!
B(p). Of course this is also a bound on the average com
nicationC̄(p) necessary to reproduce the entire set of co
lationsp. In general, however, more communication may
necessary to carry out the latter task than the former. For
optimal inequalityb* , though, the communication is ident
cal in the two cases. If we quantify nonlocality by th
amount of communication needed to simulate it classicall
violation of the inequalityb* by the amountB* (p) therefore
exhibit the complete nonlocality contained in the correlatio
p.

D. Comparing Bell inequalities

The bound~5! simply expresses that the most efficie
strategy to simulate a violation of a Bell inequality uses lo
deterministic protocols~which do not necessitate any com
munication! and deterministic protocols fromDj* for which
the ratio of violation per communication (Bj* 2B0)/cj* is
maximal. Indeed, for that strategy a violation by the amo
B(p)5(12qj* )B01qj* Bj* implies

qj* 5
B~p!2B0

Bj* 2B0
~14!

and thus a communication

C̄5qj* cj* 5
B~p!2B0

Bj* 2B0
cj*

which is nothing more than the right-hand side of Eq.~5!.
The bound~5! can thus be viewed as the minimal com

munication needed to produce a given violation of the
equality b. This allows us to compare the amount of viol
tion of different Bell inequalities, possibly corresponding
different Bell scenarios. If the inequalities are normalized
thatBi<ci , the bound takes the form~9! and the comparison
is even more direct: the greater the violation, the greater
nonlocality exhibited by the inequality.

This way of weighing Bell inequalities is correct, how
ever, only if B(p)<Bj* . Indeed if this is not the case, th
strategy just described no longer works since in Eq.~14!
qj* .1. Though the bounds~5! and ~9! are still valid, it is
then, in principle, possible to infer strongest bounds from
violation of the Bell inequality. This should be taken in
account when comparing Bell inequalities in this way.

In the remainder of the paper, we will only be concern
with two-settings Bell scenarios. Note that in that ca
B(p)<Bj* is always satisfied for quantum correlations. I
deed the minimal possible communication in a~nonlocal!
deterministic protocol is 1 bit and is associated with stra
gies in D1 . However, every quantum correlation of a tw
settings Bell scenario can be reproduced with 1 bit of co
munication ~indeed since quantum correlations satisfy t
no-signaling conditions, it suffices for one of the parties
send his input to the other so that they are able classical
simulate them!. It therefore follows thatB(p)<B1<Bj* .
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E. Other measures of communication

The general arguments we presented in this section
main valid independently of the precise way communicat
is counted and the way determinist strategies are accordi
partitioned. Depending on the physical quantity one is int
ested in, different measures for the communication cosci
are thus possible. For example, to obtain bounds on the
erage communication needed to reproduce quantum cor
tions in classical protocols that use only one-way commu
cation, the cost of deterministic strategies using two-w
communication would be taken to bec5`. Our results
therefore apply to all averaged-type measures of comm
cation.

Note that one can also count the communication us
Shanon’s entropy if it is assumed that the parties may p
form block coding. This is natural, for instance, if the parti
perform several runs of the protocol at once as in the defi
tion of the asymptotic communicationC` . The resulting
bound, however, will not be a lower bound on the asympto
communicationC` . This is because for Bell scenarios co
responding ton runs in parallel, there are deterministic stra
egies than cannot be written as the product ofn one-run
strategies. Asn increases, there thus exist new ways of d
composing the correlations in terms of deterministic pro
cols that can possibly result in lower communication per r
but which are not taken into account in the one-run deco
position ~2!.

Finally, note that computing the communication costs
sociated with deterministic strategies is in general a diffic
task. It is a particular problem of the field of communicatio
complexity for which several techniques have been speci
developed@19#. However, in the case of the CHSH and th
CGLMP inequality, the bound~5! can easily be deduced.

III. CHSH INEQUALITY

Let us now focus on the simplest inequality, the CHS
inequality @14#. The CHSH inequality refers to two-setting
and two-outcomes Bell scenarios. The value the inequa
takes on an arbitrary vectorp is

B~p!5p~a05b0!1p~b0Þa1!1p~a15b1!1p~b15a0!

2@p~a0Þb0!1p~b05a1!1p~a1Þb1!

1p~b1Þa0!#, ~15!

where p(ax5by)5p00uxy1p11uxy and p(axÞby)5p10uxy
1p01uxy . The local bound of this inequality isB052. The
maximal violation of the CHSH inequality by quantum m
chanics is 2& and is obtained by performing measureme
on Bell states. On the other hand, the maximum value it
take for all possible correlations is 4, when the four ter
with a plus sign are equal to one.

To derive a bound onC̄(p) from Eq. ~15!, we need to
compute maxjÞ0$(Bj2B0)/cj%. Note that in a deterministic
protocol, either the two parties do not communicate at all
one of the parties start speaking to the other. In the la
case, the minimum communication he can send is 1 bit. T
implies that the minimum possible average communicat
2-4
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for nonlocal deterministic strategies isc151. The following
protocol with entriesdabuxy5da(x,y)

a db(x,y)
b , where

a~x,y!50 for x,y50,1

b~0,0!50, b~1,0!51, b~0,1!50, b~1,1!50
~16!

can be implemented with 1 bit of communication. Indeed
suffices for Alice to send the value of her input to Bo
Moreover, the valueB(d) it takes on the inequality~15! is
the maximum possibleB(d)54. It thus follows that
maxjÞ0$(Bj2B0)/cj%5(422)/152, so that for the CHSH in-
equality the bound~5! becomes

C̄~p!>
1

2
B~p!21. ~17!

This implies, for instance, that to reproduce the optim
quantum correlations at least&21.0.4142 bits of commu-
nication are necessary. Note that to reproduce all poss
von Neumann measurements on a Bell state 1 bit is suffic
@9#.

Is it possible to find a protocol that reproduces these c
relations with that amountC̄(p)5&21 of communication?
It turns out, in fact, that the CHSH inequality is optimal, i.e
the bound~17! is saturated for all quantum correlations. I
deed, quantum correlations satisfy the no-signaling con
tions:

(
b

pabuxy5(
b

pabuxy8 ;y,y8

(
a

pabuxy5(
a

pabux8y ;x,x8 ~18!

which express that Alice’s marginal probabilities are ind
pendent of Bob’s input and conversely. For correlations t
obey these constraints, we have the following.

Proposition 4. C̄(p)5 1
2 B(p)21 bits of communication

are necessary and sufficient to simulate two-settings
two-outcomes correlationsp that violate the CHSH inequal
ity ~15! and satisfy the no-signaling conditions~18!.

Proof. As the ‘‘necessary’’ part follows from the boun
~17!, we just have to exhibit a classical protocol that rep
duces the correlations with that communication.

First note that when the bound~5! is saturated, it follows
from the proof of Proposition 1 that the optimal protoc
uses only strategies fromD0 andDj* and, moreover, in thes
subsets only strategies that attain the maximal valuesB0 and
Bj* on the inequalityb @there could be more than one subs
Dj* if they are several indexesj * for which (Bj*
2B0)/cj* is maximum#. In our case, this implies that th
optimal protocol must be built from local strategiesdl0 and
from 1-bit strategiesdl1 such that b•dl05B052 and
b•dl15B154.

The entries of the vectorsp corresponding to the Bel
scenario associated with the CHSH inequality consists o
probabilitiespabuxy sincea, b, x, andy each take two possible
06210
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values. Half of these probabilities appear with a plus sign
the CHSH expression~15! and half of them with a minus
sign. Since entriesdabuxy5da(x,y)

a db(x,y)
b of deterministic

strategies are either equal to 0 or 1, for a deterministic st
egyd to satisfyB(d)52, it must contribute to Eq.~15! with
one2 and three1. For local strategies, which assign loc
valuesa(x) and b(y) to Alice’s and Bob’s outcomes, this
leaves eight possibilities. Indeed, if we choose one of
eight entries appearing in Eq.~15! with a 2 sign to be equal
to one, the requirement that three entries appearing with1
sign must also be equal to one fully determines the functi
a(x) andb(y). The resulting eight possible local strategi
dl0 (l050,...,7) are given in Table I. On the other hand, f
a deterministic strategy to attainB(d)54, it must contribute
to Eq.~15! with four terms weighted by a1. The assignment
of outcomes of 1-bit strategiesdl1 are either of the form
a(x), b(x,y) ~when Alice sends her input to Bob!, or
a(x,y), b(y) ~when it is Bob who sends his input to Alice!.
For each of the four possible functionsa(x), the require-
ment that all the entries of the deterministic vector equa
one appear with a1 in the CHSH inequality fixes the func
tion b(x,y) and similarly for the four possible function
b(y). There are thus eight protocols inD1 that attain the
boundB154. These strategies are given in Table II.

Having characterized the deterministic strategies fr
which the protocol is built, it remains to determine the pro
abilitiesql with which these strategies are used. These m
be chosen so that

pabuxy5 (
l050

7

ql0
dabuxy

l0 1 (
l150

7

ql1
dabuxy

l1 ~19!

holds for the 16 entriespabuxy . Let us focus first on the
entries that enter in Eq.~15! with a 2 sign. For each of these
eight entries, the only contribution to the right-hand side
Eq. ~19! different from zero comes from a local determinist

TABLE I. The eight local deterministic strategies for whic
B(dl0)52.

d00 d10 d20 d30 d40 d50 d60 d70

d00u00 1 1 0 0 1 0 0 0
d10u00 0 0 0 0 0 1 0 0
d01u00 0 0 1 0 0 0 0 0
d11u00 0 0 0 1 0 0 1 1
d00u10 1 0 0 0 0 0 0 0
d10u10 0 1 0 0 1 1 0 0
d01u10 0 0 1 1 0 0 1 0
d11u10 0 0 0 0 0 0 0 1
d00u01 1 1 1 0 0 0 0 0
d10u01 0 0 0 1 0 0 0 0
d01u01 0 0 0 0 1 0 0 0
d11u01 0 0 0 0 0 1 1 1
d00u11 1 0 1 1 0 0 0 0
d10u11 0 1 0 0 0 0 0 0
d01u11 0 0 0 0 0 0 1 0
d11u11 0 0 0 0 1 1 0 1
2-5
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strategydl0. This therefore fixes the value of the correspon
ing probability ql0

. For instance, q00
5p00u10 or q10

5p10u11.
We now have to determine the value of the probabilit

ql1
so that the eight entriespabuxy that enter~15! with a 1

sign satisfy Eq.~19!. For simplicity let us focus on one o
these entries:p00u00. Using Tables I and II, Eq.~19! becomes

p00u005q00
1q10

1q40
1q01

1q21
1q41

1q61
~20!

or

q01
1q21

1q41
1q61

5p00u002p00u102p10u112p01u01,
~21!

where we replaced each of the probabilitiesql0
with their

value previously determined. From Eq.~15! and using the
no-signaling conditions~18! and the normalization condi
tions~1!, it is not difficult to see that the left-hand side of th
equation is equal to@B(p)22#/4. The same argument can b
carried for all the seven other entries that contribute to
CHSH inequality with a1 sign, each time finding that th
sum of four probabilitiesql1

equals@B(p)22#/4. Taking

ql15@B(p)22#/16 for l150,...,7 one therefore obtains
solution to~19!.

The communication associated with this protocol is th
C̄5(lqlC̄(dl)5(l150

7 ql1
5 1

2 B(p)21. j

IV. MORE DIMENSIONS: THE CGLMP INEQUALITY

The CGLMP inequality@15# generalizes the CHSH in
equality ford-dimensional systems. This inequality refers
measurement scenarios where Alice’s and Bob’s local
tings take two valuesx,y50, 1 and each measurement giv
d possible outcomesa,b50,...,d21. The value the CGLMP

TABLE II. The eight 1-bit deterministic strategies for whic
B(dl1)54.

d01 d11 d21 d31 d41 d51 d61 d71

d00u00 1 0 1 0 1 0 1 0
d10u00 0 0 0 0 0 0 0 0
d01u00 0 0 0 0 0 0 0 0
d11u00 0 1 0 1 0 1 0 1
d00u10 0 0 0 0 0 0 0 0
d10u10 0 0 1 1 1 0 1 0
d01u10 1 1 0 0 0 1 0 1
d11u10 0 0 0 0 0 0 0 0
d00u01 1 0 1 0 1 1 0 0
d10u01 0 0 0 0 0 0 0 0
d01u01 0 0 0 0 0 0 0 0
d11u01 0 1 0 1 0 0 1 1
d00u11 1 1 0 0 1 1 0 0
d10u11 0 0 0 0 0 0 0 0
d01u11 0 0 0 0 0 0 0 0
d11u11 0 0 1 1 0 0 1 1
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inequality takes on an arbitrary vectorp is

Bd~p!5 (
k51

@d/2#21 S 12
2k

d21D $P~a05b01k!1P~b05a11k

11!1P~a15b11k!1P~b15a01k!

2@P~a05b02k21!1P~b05a12k!1P~a15b1

2k21!1P~b15a02k21!#%, ~22!

whereP(ax5by1k)5(b50
d21p(b1k)bux,y is the probability that

Alice and Bob results satisfya5b1k mod d when measur-
ing x andy. As shown in@15#, the local bound of the inequal
ity is B0

d52.
Whend52 we recover the CHSH inequality and in th

case the maximal quantum violation isBME
2 .2.828. Ford

.2, the ~conjectured! maximal violations obtained from
maximally entangled qudits are given in@15#. For qutrits the
maximum isBME

3 .2.8729 and this value increases withd.
This suggests that the CGLMP inequality exhibits stron
nonlocal correlations for largerd. This has been made mor
precise by connecting the violation of the CGLMP inequal
to the resistance of the correlations to the admixture of no
@15#. It has, however, been argued in@16# that the resistance
to noise is not a good measure of nonlocality. Quite surp
ingly it was also found in@16# that for d.2 the strongest
violation of the CGLMP inequality is obtained using certa
nonmaximally entangled states. For qutrits, for instance,
maximal violation obtained from a nonmaximally entangl
state isBNME

3 .2.9149 which is higher than the maximum
BME

3 .2.8729 for the maximally entangled one. Moreov
this discrepancy between maximally and nonmaxima
states grows with the dimension. This raises several qu
tions on how one should interpret and compare these m
festations of nonlocality.

A natural answer is through the bound~5!. The derivation
of the bound for the CHSH inequality in the previous secti
can directly be applied to the CGLMP inequality. This yiel

C̄d~p!> 1
2 Bd~p!21. ~23!

This bound is the same for all the inequalities of the fam
~22!, and the strength of these different inequalities c
therefore simply be measured by the degree by which t
are violated. This confirms the intuition that the nonlocal
displayed by the CGLMP inequality grows with the dime
sion.

On the other hand, the fact that ford.2 the CGLMP
inequality is maximally violated for nonmaximally entangle
states translates into more severe constraints on the ave
communication necessary to reproduce correlations obta
by measuring certain nonmaximally entangled states t
maximally entangled ones. For instance, for qutrits~23! im-
plies thatC̄ME

3 >0.4365 whileC̄NME
3 >0.4575. It could, how-

ever, be that for these particular correlations the CGLM
inequality is not optimal and that another inequality will im
pose stronger bounds for maximally entangled states.
2-6
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To verify that assertion, we numerically solved the line
programming problem~13! for the correlations that maxi
mally violate the CGLMP inequality both on maximally an
nonmaximally entangled states ford<8. There exists many
different algorithms for linear programming and the only d
ficulty in solving Eq.~13! is to characterize the setsDi of
deterministic strategies and their corresponding commun
tion costsci . A deterministic strategy assigns a definite val
a(x,y) to Alice’s outcomes andb(x,y) to Bob’s outcomes
for each of the four possible pair of inputs$x,y%. To simplify
the notation we writeax(y)5a(x,y) and by(x)5b(x,y).
There are two possibilities forax : either ax is constant
~const!, i.e.,ax(0)5ax(1), andgiven inputx Alice does not
need any information from Bob to determine her output;
axÞconst, that isax(0)Þax(1), andAlice’s outcome de-
pends not only on her local settingx but also on Bob’s one
In that case Alice needs one bit of information from Bob
output her result. The situation is similar for Bob. This lea
to four possible sets of deterministic strategies.

~i! D0 : the set of local deterministic strategies for whi
ax5const andby5const forx50,1 andy50,1. These do
not need any communication to be implemented:c050.

~ii ! D1 : the strategies whereax5const forx50,1 and at
least one of thebyÞconst. These strategies necessitate 1
of communication from Alice to Bob. This set also contai
the reverse strategies which need 1 bit of communica
from Bob to Alice. The communication cost associated toD1
is thereforec151.

~iii ! D2 : the protocols whereax5const for one of the two
valuesx50 or x51, a x̄Þconst for the other valuex̄ and at
least one of thebyÞconst. These strategies can be imp
mented by Alice sending 1 bit to Bob, the value of her inp
and then Bob sending back to Alice the value of his inpu
Alice’s input equals x̄. The average communication ex
changed is 3/2 bits so thatc253/2. This set also contains th
strategies where Alice’s and Bob’s positions are permute

~iv! D3 : axÞconst andbyÞconst for x50,1 and y
50,1. To implement these strategies both parties nee
know the input of the other, soc352.

With this assignment of communication costs to determ
istic strategies and for the correlations considered (d<8), it
turns out from the results of the numerical optimization~13!
that the CGLMP inequality is optimal, i.e., the bound~23! is
saturated. For these particular measurements, those that
rise to the maximal violation of the CGLMP inequality, mo
communication is thus necessary to reproduce outcomes
tained on nonmaximally entangled states than on maxim
entangled ones.

It is nevertheless possible that these measurements ar
optimal to detect the nonlocality of maximally entangl
states. We performed numerical searches ford53, optimiz-
ing the two von Neumann measurements the parties carry
on the maximally entangled state. We found that the m
surements that necessitate the maximal communication t
simulated are the ones that maximize the CGLMP inequa

These results therefore suggest that two measuremen
tings on each side do not optimally detect the nonlocality
maximally entangled states ford>3. It is still possible that
the simulation of positive-operator-valued measures wo
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necessitate further communication. However, concurr
with @16#, we believe that more settings per site and a cor
sponding new Bell inequality are needed@20#.

V. OPTIMAL INEQUALITIES AND FACET INEQUALITIES

The CHSH and the CGLMP inequalities are special
equalities: they are facet inequalities. Local correlationsl are
convex combinations of a finite number of points, the loc
deterministic strategies:l5(l0

ql0
dl0. The set of local cor-

relations thus forms a convex polytope. Every polytope c
be characterized either by its vertices~the local deterministic
strategies! or by its facets which are a finite set of inequa
ties bi ( i 51,...,M )

l5(
l0

ql0
dl0 ⇔ bi

• l<B0
i i 51,...,M . ~24!

Facet inequalities thus form a minimal set of inequalities t
fully characterize the local correlations. They can theref
be viewed as tight detectors of non-locality. Complete sets
facet inequalities are known in some cases@21–24#. For two-
settings, two-outcomes Bell scenarios, the CHSH is
unique~up to symmetries and besides trivial inequalities th
are always satisfied by quantum correlations! facet inequal-
ity. It turns out that it is also optimal with regard to th
average communicationC̄ for all quantum correlations. Fo
Bell scenarios involving more outcomes, we have seen
the CGLMP inequality is optimal for certain correlations.

Is it the case that for quantum correlations, optimal
equalities are always facet inequalities? Consider, for
stance, the following correlations belonging to a tw
settings, three-outcomes Bell scenario: Alice and Bob sh
the maximally entangled state of two qutritsuc&
51/)(u00&1u11&1u22&). The measurements they perfor
consist of each carrying out the transformationu i &
→eif( i )u i &, followed by a Fourier transformUFT for Alice
andUFT* for Bob and then a measurement in the compu
tional basis. The settings of their measuring apparatus
thus determined by the three phases they use. For Ali
settingx50 andx51 the phases are~0, 0, 0! and~0, 0,p/2!,
while for Bob’s settingsy50 andy51 they are~0, 0, p/4!
and ~0, 0, 2p/4!. This results in the probabilities

p~ax5by!5@51~21! f ~x,y!2&#/9,

p~ax5by11!5@22~21! f ~x,y!&#/9,

p~ax5by12!5@22~21! f ~x,y!&#/9, ~25!

where f (x,y)5x(y11).
These correlations violate the CGLMP inequality by t

amountB3(p)52/3(112&).2.5523. On the other hand
consider the inequality~15!, which has to be viewed now a
a three-outcomes inequality, i.e.,p(ax5by)5(kpkkuxy and
p(axÞby)5(kÞ l pkluxy , where the sum overk and l runs
from 0 to 2. The above correlations violate this straightf
ward generalization of the CHSH inequality to more ou
comes by the amountB3c(p)52/9(118&).2.7364. Since
2-7
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for both inequalities C̄(p)> 1
2 B(p)21, the generalized

CHSH inequality is stronger than the CGLMP ones for the
particular correlations. Moreover, numerically solving t
linear problem ~13! we found C̄(p)50.3682 so that the
bound C̄(p)>0.3682 implied by the generalized CHSH
saturated, i.e., the inequality is optimal.

The generalized CHSH inequality, however, is not a fa
inequality. Indeed, for an inequality to be a facet, the lo
deterministic strategies that attain the local boundB0 ~i.e.,
the vertices that belong to the facet! must generate a space
dimension one less than the dimension of the polytope, s
they form its boundary. It is shown in@25# that the two-
settings, three-outcomes polytope lies in a hyperplane of
mension 24. For the inequality~15!, it is easily checked tha
there are only 21 local deterministic strategies that attain
limit B052. They thus generate at best a space of dimen
21 which is less than the expected value of 23 for~15! to be
a facet.

Does there exist a facet inequality that imposes the s
bound C̄(p)>0.3682 as the generalized CHSH inequalit
There exist algorithms that compute all the facets of a po
tope given its vertices. Using both the reverse search ve
enumeration algorithm@26# and the double descriptio
method@27# we obtained the complete set of facet inequa
ties of the two-settings, three-outcomes local polytope wh
consists of 1116 inequalities. The correlations descri
above violate 23 of these inequalities.

Note that there are various ways of writing a Bell inequ
ity which are equivalent for local and quantum correlatio
Indeed local and quantum correlations satisfy the normal
tion ~1! and no-signaling conditions~18! which we express
as the constraints

gj
•p5Gj , j 51,...,J. ~26!

For probabilities that satisfy these conditions, the inequa
b•p<B can be rewritten in the equivalent form

S m0b1(
j

m jg
j D •p<m0B1(

j
m jG

j . ~27!

In particular, with that rewriting, a facet inequality will re
main a facet inequality and an inequality which is violat
by correlations satisfying~26! will still be violated. This can
be geometrically understood as follows. Probabilities t
satisfy the constraints~26! lie in a hyperplaneG of dimension
less than the total dimension of the spaceP of all vectorsp.
An inequalityb•p<B defines a half-space inP. The fact that
for probabilities inG, Bell inequalities can be written in dif
ferent equivalent ways corresponds to the fact that they
different half-spaces ofP that have the same intersectio
with the hyperplaneG. It is shown in@25# that the dimension
of the two-settings, three-outcomes polytope~the set of all
local correlations! is the same as the hyperplaneG defined by
the conditions~26! of normalization and no-signaling. I
therefore follows that the rewriting~27! based on these con
straints is the unique way to rewrite Bell inequalities in
equivalent form for local correlations.
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However, for probabilities which do not satisfy the n
signaling conditions, such as nonlocal deterministic stra
gies inDiÞ0 , the rewritten inequalities~27! are not equiva-
lent to the original one. They will thus lead to differen
bounds onC̄(p). Since an inequality can always be writte
in the normalized form of Propostion 2 using the normaliz
tion constraints in Eq.~26! ~which are satisfied by all corre
lations!, the strongest bound onC̄(p) a facet inequalityb
will impose on the correlationsp is the solution to the fol-
lowing linear programming problem for the variablesm j :

max m0B~p!1(
j

m jG
j

subject toS m0b1(
j

m jg
j D •dl i<ci . ~28!

We numerically solved this linear problem for the corre
tions described above and each of the 23 facet inequal
they violate. The highest bound obtained was given by
CGLMP inequality and isC̄(p)>0.2764.

This example shows that there exist quantum correlati
for which the strongest bound onC̄(p) deduced from facet
inequalities is lower than the~optimal! bound given from a
nonfacet inequality. This is contrary to the common vie
according to which facet inequalities are ‘‘optimal’’ tests
nonlocality @25#.

VI. CONCLUSION

In summary, we have shown that the average commu
cation necessary to simulate classically a violation of a B
inequality is proportional to the degree of violation of th
inequality. Moreover, to each set of correlations is associa
an optimal inequality for which that communication is al
sufficient to reproduce the entire set of correlations. The
ingredient was to compare the amount of violation of B
inequalities not only with the maximum value they take
local deterministic strategies, but also on nonlocal ones
necessitate some communication to be implemented.

Part of the interest of this work is that it gives a physic
meaning to the degree of violation of Bell inequalities a
thus provides an objective way to compare violation of d
ferent inequalities. It also gives a way to view and und
stand Bell inequalities that could shed light on some of th
aspects. For instance, it was commonly assumed that f
inequalities are optimal tests of nonlocality because they
tight ‘‘detectors’’ of nonlocality. However, if we measur
nonlocality by the communication needed to reproduce it
certain situations nonfacet inequalities are better ‘‘meters’
nonlocality than are facet ones.

This work also provides a tool to characterize and qu
tify the nonlocality inherent in quantum correlations. As
result, for instance, for two measurements on each sid
seems that the correlations that necessitate the most com
nication to be reproduced are obtained on nonmaximally
tangled states rather than on maximally entangled ones
d.2. It would be interesting to know whether this is still th
case for more settings and if not, what is the correspond
Bell inequality.
2-8
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@4# C. Brukner, M. Żukowski, J. Pan, and A. Zeilinger, e-prin

quant-ph/0210114.
@5# J. S. Bell, Physics~Long Island City, N.Y.! 1, 195 ~1964!.
@6# G. Brassard, R. Cleve, and A. Tapp, Phys. Rev. Lett.83, 1874

~1999!.
@7# J. A. Csirik, Phys. Rev. A66, 014302~2002!.
@8# D. Bacon and B. F. Toner, Phys. Rev. Lett.90, 157904~2003!.
@9# B. F. Toner and D. Bacon, Phys. Rev. Lett.91, 187904~2003!.

@10# T. Maudlin, inPSA 1992, edited by D. Hull, M. Forbes, and K
Okruhlik ~Philosophy of Science Association, East Lansin
1992!, Vol. 1, pp. 404–417.

@11# M. Steiner, Phys. Lett. A270, 239 ~2000!.
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