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Moving atom-field interaction: Correction to the Casimir-Polder effect from coherent backaction
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The Casimir-Polder force is an attractive force between a polarizable atom and a conducting or dielectric
boundary. Its original computation was in terms of the Lamb shift of the atomic ground state in an electro-
magnetic field modified by boundary conditions along the wall and assuming a stationary atom. We calculate
the corrections to this force due to a moving atom, demanding maximal preservation of entanglement generated
by the moving atom-conducting wall system. We do this by using nonperturbative path integral techniques
which allow for coherent backaction and thus can treat non-Markovian processes. We recompute the atom-wall
force for a conducting boundary by allowing the bare atom-EMF ground state to deolself-dressinto the
interacting ground state. We find a clear distinction between the cases of stationary and adiabatic motions. Our
result for the retardation correction for adiabatic motion is up to twice as much as that computed for stationary
atoms. We give physical interpretations of both the stationary and adiabatic atom-wall forces in terms of
alteration of the virtual photon cloud surrounding the atom by the wall and the Doppler effect.
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[. INTRODUCTION tion of the Casimir-Polder force can be viewed as a demon-
stration of the entangled quantum behavior of the entire sys-
The physical system studied in this paper is an atom in @&em, since it involves the dressing of the atom by the EMF
polarizable ground state near a conducting wall. The interacvacuum.
tion of the atom with the quantum electromagnetic field Although Casimir and Polder and others’ calculations do
(EMF) vacuum, whose spatial modes are restricted by théreat the quantum entanglement in the system, analysis up to
wall with imposed boundary conditions, generates a forcanow has been restricted to stationary atoms. It has been as-
that pulls it toward the conducting wallor general discus- sumed(wrongly, as we shall shosthat such a method can
sion see Refl1]). The details of such a force is important in also treat the adiabatic motion of the atom. Adiabatic motion
any experiments and applications in which an atom is heldneans in this context that as the atom moves, it continuously
near a surface by a trapping scheme using evanescent wavstsfts into the position dependent stationary dressed ground
or magnetic fields. The atom-wall force is divisible into two state on a time scale much shorter than the time scale of
parts. First, there is the electrostatic attraction that the atormotion. Treatments assuming that the atom is stationary or is
feels toward its image on the other side of the wall, called thénstantaneously static exclude correlations that are developed
van der WaalgvdW) force. Second is a quantum-mechanicalin the system during the motion. The key point is that the
modification of the vdW force first calculated by Casimir andadiabatic and stationary dressed vacuum states are not the
Polder[2]. They dubbed the quantum modification “retarda- same. An example where this situation is encountered generi-
tion” of the vdW force, because its source is the noninstancally and dealt with in depth is in cosmology, specifically,
taneous transverse EMF. Extensions of Casimir and Polderguantum field processes in an expanding univgéid¢ For
results for a polarizable atom were later derived by manystationary systems a vacuum state is well defined at all times
authors[3,4], including for an atom in a cavit}s] and near (due to the existence of a Killing veciprbut not for arbi-
a dielectric wall[6,7]. Closest in philosophy to what is done trary dynamics, especially fast motion. However, for slow
in this paper is the work of Milonni in Ref8]. There, the dynamics, adiabatic vacuum states can be defined and renor-
author computes the second-order alteration of the EMHmalization procedures construct¢ii2—14. The adiabatic
mode functions due to the presence of the atom, from whiclmethod we use here is similar in spitthough not in sub-
the ground-state energy shift is the expectation value of thetance, as our purpose is somewhat different from that in
interaction Hamiltonian in the altered vacudi®]. How-  cosmology. To predict motional effects, entanglement in the
ever, the author neglects time dependence in the mode funevolution needs to be accounted for theoretically. We use the
tions and thus neglects effects due to Doppler shifts of thénfluence functional method here, which keeps track of full
EMF modes. Recently, retardation correction of the vdWcoherence in the evolution to derive the force between the
force has been demonstrated experimen{@|§0]. Verifica-  atom and the wall while allowing the atom to move adiabati-
cally. In the case of a stationary atom, our result is in exact
agreement with the Casimir-Polder force. In the case of an

*Electronic address: sanjiv@physics.umd.edu adiabatically moving atom, we find a coherent retardation
"Electronic address: hub@physics.umd.edu correction up to twice the stationary value, thus our coherent
*Electronic address: Nicholas.G.Phillips@gsfc.nasa.gov QED calculation will make verifiable predictions. This paper
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shows the derivation and explains the cause due to cohereatom, the Hamiltonian in minimal coupling form becomes
backaction. Section Il outlines the model and details of thdsee Appendix A of Ref[22] without the rotating wave ap-
calculation. The results for stationary and adiabatic motiorproximation(RWA)]

are then given in Sec. lll, and discussed in Sec. IV. 5

P T
H= W+ﬁwos+s_+ﬁz wkbkbk-i— H|1+H|2=H0+H| .
k
@

In contrast to obtaining the force via the gradient of the
ground-state energy shift, we obtain it through the expectal '€ OperatorsS.. are the up and down operators of the

tion value of an atom’s center-of-mag8OM) momentum atomic qubit, andv, is the atomic transition frequency. The
Our system consists of an atom placed near a conductingPeratorss, andb, are the EMF mode annihilation and cre-
wall. We assume an initially factorized state of the atom ination operators, andv are the frequencies of the EMF
its ground-state and the EMF in its vacuum. A path integramodes. The two parts of the interaction Hamiltonian are
technique is used to derive the ground state-EMF vacuum
transition amplitude of the evolving system. Inclusion of co- _ g it

. H =% —— S, +pgeS_ ] [ub+ub], (3
herent backaction allows the system to self-dfé$s16 and 11 %‘ ‘/wk[peg + ¥ PgeS-]- Uit by, (3)
preserves maximal entanglement in the non-Markovian evo-

II. MODEL AND APPROACH

lution of an atom-EMF quantum system. The expectation A2
value of the momentum operator is then computed. In the  Hj,=#>, ———[uy-ubb,+uj-u(8q+2bb)
path integral, Grassmannian and bosonic coherent states are K Voo
used to label the atomic and EMF degrees of freedom, re- t ottt
+ul-u'b/b. 4

spectively. The position and momentum basis are used for

the atom's center-of-mass degree of freedom. The major aprng yectorp,, is the dipole transition matrix element, which
pro>§|mat|o_n applied here is a second-order vertex approXiis gefined a&peg=(elplg>= —imwo(€|r|g). The vectors,
mation. With the second-order vertex, the propagator is par- . o - .
tially resummed to all orders of the coupling constant. Thecondtawfl thi. ph;t(();)pc?larlza?;r; V?(}to(ei)arfh the sp?t|al
result is a nonperturbative propagator which yields coherenf100€ Tunctionsr (1), I.e., U((X)=&T(X). 1he coupling
long-time dynamicg20,21]. The mass of the atom and the constants arg= — y8w“ac/m* and\ = y47“fiac/m, with
size of its external wave packet are kept finite throughout thex being the fine-structure constant.
calculation. Only at the end of the calculation do we allow In the presence of a conducting plane the spatial mode
the mass of the atom to go to infinity and its extensionfunctions of the EMF which satisfy the imposed boundary
shrunk to a point, while retaining finite terms due to theirconditions are the TE and TM polarization moda$
effect on the dynamics.

Highlights of the calculation are given in this section and 2. L e
details are given in the Appendixes. In Sec. Il A the Hamil- Uk1(X) = \/;kxz sin(kzZ)e"%, ®)
tonian and spatial mode functions that describe the system
are introduced. In Sec. Il B the transition amplitude of the
EMF vacuum with the atom in its groynd state is (_:alculat_ed Ua(X) = \ﬁl[klz cos{kZZ)—isz” sin(k,Z) etk X,
in a coherent state path integral, with an effective action L3k
expanded to second-order in the couplif@gjuivalent to a (6)
second-order vertex resummatipand semiclassically in the ) .
COM motion. The momentum expectation value and the re@nd their complex conjugates.
tardation correction force are then calculated from the tran-

sition amplitude in Sec. Il C. B. The transition amplitude
The transition amplitude between the initial and final co-
A. The Hamiltonian herent states with initial and final positions is given by
The spinless nonrelativistic QED Hamiltonian is given by . i (ter
[25] (Xt Azueh et T|eXF{ - gft H(s)ds||X; {zq}, #i:t).
P2 1 ) ()
H—m+ﬁ(p—eA) +eV(X)+Hb. (1)

The transition amplitude relevant to the atom-wall force is
the amplitude that the atom moves frofpto X; without the

The first term is the COM kinetic energy of an atom with emission of any physical photons. This is a very good as-
massM. The second term is the kinetic energy of the electrorsumption, since the probability fgrthysicalphoton emission
sitting in the transverse EMF. The third term is the potentialis extremely smal[16]. The initial and final states are thus
energy of the electron around the atomic nucleus. The lastharacterized by the atom being in its ground state and the
term is the energy of the free EMF. After taking the dipole EMF in vacuum, with arbitrary COM position states. The
approximation, and restricting to two internal levels of theinitial and final coherent-state labels can be set to zero to
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reflect those states, although during the evolution the system 312 t+ 1] M X2
evolves freely, and the motion of the COM is affected by K[ X;;t+ r,X; ;t]=(+ ex if ° tip?
recoil from emission and reabsorption of virtual photons, 2mihT t 2h

s gz )
XJ drE 2 e—l(wk+w0)(s—r)uk
t k

i [t+r Wy
K[ X :t+ 7, X ;t]=(X; ;t+ 7ex —%f H(s)ds||X;;t). ,
t A
®) X(XY($))- U (XA = 2 T
Normally, a variational approach would be a sensible way to X (X2(s))- U (XO(s))+ O(e*/M) |ds
compute the functional integrals that make up the transition ¢ Kte '
amplitude. However, since in this case both the antiresonant (11)

as well as resonant rotating wave terms are included in the
Hamiltonian(i.e., no RWA), the variational equations for the
Grassmann variables will have bosonic sources even whedsing the spatial mode functions of Ed$) and (6) in the

the EMF is taken to be in the vacuum. We know from earlierabove gives the semiclassical transition amplitude in the
work that when a Grassmann field variable has a bosonipresence of a conducting wélee Eq(B1)].

source, the variational technique cannot unambiguously de-
fine the evolution of the Grassmann variable. A better way is
to leave the transition amplitude as a discrete product of
infinitesimal propagators. The necessary functional integrals Given the above expression for the transition amplitude
can then be computed recursively. Details are in Appendix Aand an initial center-of-mass wave function for the atom,
After the EMF and Grassmann path integrals are evaluated (P), the momentum expectation and the force on the atom
the transition amplitude from the initial motional stateto  (the time derivative of the expectation momenjucan be
the final motional staté; (while keeping the same initial computed. The momentum expectation is

and final atomic ground states and EMF vaciisrgiven to
0O(e?) vertex by

C. Momentum expectation and force

N _h dPs , _
<P>(t+7)—ﬁf WPfJ dXIdXI K[Pf,t

[t MXZ (s + 71X 5] W)W (X)) K*[Pyt+7|X{ 5t],
K[Xf,t+T,Xi,t]=f DX ex |ft >7 +|pit dr (12)
9>
x> — e i(ektea(s=ny, with the normalization factor
kK g
« o dP
X (X(S))- Uk (X(r)— >, —uf N:f _fJ dX;dX; K[P;:t
k Wk (27T)3 i i ’
. * ! * . ! .
X(X(S))-Uk(X(S))+O(e4) dS], (9) +T|Xirt] ‘P(X|)“P (X|) K [Pf,t+7-|xi ut]-
(13

where p2=(g|p?|g) is the ground-state expectation value The initial wave function can be taken to be a Gaussian
of p centered at R,Py) with the standard deviationso(1/o).
;-

A semiclassical approximation to the transition amplitude,SUCh a choice will allow for the possibility that the atom and

Eq. (9), is obtained by evaluating the action along its classi-N€ Wall are moving toward or away from one another. Fol-
lowing the line of calculation detailed in Appendix B, a mo-

cal path. This will neglect the fluctuation terms of order ) o . .
O(1/M). The classical path is the straight line path IOlusmentum moment generating function is computed in the lim-
its M—o ando—0 such thaPy/M —V ando?M —x [see

terms of ordeiO(e?/M), . .
( ) Eg. (B12)]. From the generating function the momentum ex-

pectation value can be computed,

2

e 2

€
M/ [CYAN)

Xi—
T

Xe(8)=X+

Xi
@—U+o()=x&$+o(

<

Evaluating the transition amplitude along that path gives In the above limits
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2iN%h « k,cog6

P(t+7)=Py—
(t+7)=Po L3 Ek wy 400
2,2 i
Xft+7ds @ 2iky [RHV(s—)] 1 g7pa > kcos o 200
t L3 %  w R
IS EVA
t+7 S .
X_f de dr e7|Q{2R+V@+r720] \\/
t t -200
0 5000 10000 15000 20000

X[eii(ww%)(s*r)_ei(wk+w0)(37r)]- (15 self-dressing time

The momentum depends on the position and velocity only FIG- 1. This plot shows the value of the atom-wall forceRat
through the distance from the wall and the velocity toward or— 3000 VS time in atomic units. The spike &t 6000 is the time at

away from the wall, so motions parallel to the wall have nowhich a photon emitted at=0 will have just returned. Before
fects. DefineR N R q 2.V with & defined =6000 the force is experiencing transient behavior, and afterward it
effects. DefineR=¢,-R andv=e¢,-V, with e, defined as

b 4 _ el rings down to the stationary atom value.
positive away from the wall. Taking the time derivative of
the momentum expectation value will give the force that is

: 2
exerted on the atom by the transverse EMF in the presence o0} , = 0+ 7)= — 2mi aoh g > k; cos'0 o 2ik,R
the wall. Doing so, as well as applying the Thomas-Reiche- ¢ * ’ L3 K Wy
Kuhn sum rule, 5
Taghw k,cos@ (t+r .
- Tttt J ds e ZkzR
2 g pZ L3 k wk t
\= , (16
(2] X[e—i(wk+mo)(t+7—s)_ei(mk+w0)(t+r—s)]_ (18

and rewriting in terms of the static ground-state polarizabil-compining the correction force with the electrostatic force

ity aq the force is gives the total force on a stationary atom,
27 aghw? k,cos6 . - 3aphiw
F.(Ru,t+7)=— % s o 2iky (R+V?) FoaRt+7) = —60——L+FO(Rp=0t+7). (19
L3 K wy 8R*
maghwd k,cog 6 The stationary atom force exhibits a transient behavior when
+ L3 ; @x the atom first “sees” itself in the wall. Then, on a time scale

of several atom-wall round trip light travel times it asymp-
T ik [2REV(rs—1)] totes to a constant steady state value. The transient behavior
X ft dse '™ is plotted in Figs. 1 and 2 for an optical transition frequency

X [e—i(wk+w0)(t+r—s)_ ei(wk+w0)(t+ T—S)].

7

0.0

0.92]
0.0

s0.01f 0 em T e

-0.02]

The subscript t” is a reminder that the force calculated -
from the transverse field is the retardation correction to the
electrostatic force. Inspection of the force reveals that it is a
sum over recoil momenta weighted by amplitudes which de-
pend on the distance of the atom from the wall and the ve-
locity of the atom. As will be discussed in Sec. IV, the recoill
momenta come from virtual photon emission and reabsorp-
tion. In that sense the net force reflects an interference phe-
nomenon, since it is the net sum of many different possible FIG. 2. This plot shows a snapshot of the coefficient of tti¢ 1/
virtual processes. behavior of the atom-wall force at a time=6000 in atomic units.
The location of the spike &=3000 corresponds to the location at
which a photon emitted at=0 will have just returned toR
ll. RESULTS =3000. At locationsR< 3000 the force has begun to asymptote to
its steady state behavior, and thos®at3000 are still experiencing
transient behavior. The inset image is a magnification near the wall.
If the atom is stationary, then setting=0 gives the re- The dotted line is the coefficient of theRf/ dependence of a sta-
tardation force to be tionary atom.

o o o O

560 1000 1500 2000 2500 3000
R

R4

O RN W s

0 2000 4000 6000 8000
atom-wall distance, R

A. Stationary atom
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in an alkali-metal atom. The steady-state value of the station- 1. Adiabatic evaluation
ary atom-wall force can also be determined analytically to be
The retardation force for a moving atom can be deter-

d)3 mined from Eq.(17) by applying a separation of short time
ﬁ) scale dynamics from long time scale dynamics, and how they
affect each other. The adiabaticity condition is applied here
= dk sin(2kR) in the same way that it is applied in standard methods for
f Kot o kR’ (20 determining the dipole force on an atom in a laser bE2Bh
0 0 There, assuming that the atom’s position is constant on short
time scales, the optical Bloch equations are solved for the
steady-state values of the internal state density-matrix ele-

E. (R 75 2RIc) = ~ 3ayhwg Aaohwg
sa( T C)_ eZ 8R4 eZ A1r

which can be simplified to

el d\31 (= dx ments. On long time scales the matrix elements are replaced
F.(R m2R/c)=6——2 —| = g 2RXc, by their steady-state values and put into the Heisenberg
sl 87 \dR/ RJox21 o2
™ 0 X+ wg equation of motion for the atomic COM momentum. Such a

(21) procedure is justified when the internal and external dynam-
ics evolve on vastly different time scales. The analogous
separation here will be of the short time scale describing the
self-dressing of the atom-EMF system and the long time

From Eq.(21) the potential which a stationary atom experi-
ences is easily found to be

aoﬁwg d\21 r= dx v scale describing the motion of the atom.
Uso(R) =— 8+ |dR ﬁfo ﬁ ' In order to be explicit about the time scale separation let
X" T wo 22) us first rewrite Eq(17) with the definitionx=s—t, and re-
member that is the time at which the atom-EMF system
with asymptotic limits begins to evolve from a factorized state,
aoﬁwo 1 C
Uga(R)—— — for R<—, . )
8 R o 2w aphwg k,Ccos 6 i
Fe(Rewu == —3 > e MR
K k
Uo(R)r— 2ol L Rs © 23
sa(R)— 87 R* or wo’ 23 raghwd k,cog6
t— > » f dx
which exactly reproduces the results of energy gradient ap- L “ k7o
proaches. Although the results are the same as those previ- X @~ 1Kz (2R +Vi(71x))
ously derived, the interpretation behind how the results are _ _
obtained is different. The energy gradient approach can be X [e~(ext@)(r=X) _gllertwol(r=0] = (24)

described as a kinematic approach since the atom-EMF sys-
tem is assumed to be held static in its entangled dressed

ground state. The self-dressing approach used here, on tQg that the short time scale dynamiparametrized by and
other hand, allows the atom-EMF entanglement t0 evolVg is ey icitly separated from the long time scale dynamics

d%na{n'r?;”g’ tthat‘t 'S’\}hﬁl atoirr?t and ':ElxanS)r/Stgrm, beogl;znnlng II')(parametrized by) on whichR, andV, evolve. An adiabatic
a factorized state, evolves Into a stationary dressed staie evaluation of the retardation correction for a moving atom

it self-dresses When the atom is stationary the two forces an be extracted from a Taylor series expansion of(24)
match because after some time to “get acquainted,” the self® y P ?

dressing atom does indeed evolve into the stationary dressed
state. It should be stressed that the agreement between the
results of the two methods demonstrates the coherence of the
self-dressing method as applied here.

n
t

i 1
Fc(Rt,vt,7)=n§0mF(”)(Rt,vt=0,r), (25)

B. Adiabatic motion

We now show that the prediction given by the self- wheren denotgs thenth delrivaFive with rgspect to velocity..
dressing method of the retardation correction force for al N€ Taylor series expansion is an equivalent representation
slowly moving atom differs from the energy gradient predic-of the left-hand side as long as the right-hand side converges.
tion [26]. The key difference is that as a moving atom andEach functionF"(R;,v;=0,7) exhibits a transient behavior
the EMF get acquainted, they evolve into an entangledvhile the atom first “sees” itself in the wallduring times
dressed state which is different from the stationary atonv~2R/c) and asymptotes to steady-state behavior on a time
dressed state. The reason for the difference is the Dopplecale of several round trip light travel times. The adiabatic
shift of the EMF modes in combination with the presence ofapproximation is applied at this point by replacing each func-
the wall. We will discuss this point in more detail in Sec. IV. tion FW(R,,v,=0,7) by its asymptotic behavior,
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F(R, ,vt=0,7)—>F(s';)(Rt,T) The convective Qiﬁereptial change is.the diﬁereqtial change
in the force not including any short time scale time depen-
. ™ aohwg d\"*3 dence, in other words, the steady-state expressior=&,
~ %50 4n |dR
<5 dF,
= dk sin(2kR,) 6 dF.=dFe - o+d5g (32

o kct+twy 2kR
with, from Eq. (27), dFSY,_o=dF{?). The behavior of the
force on long time scales is computed by integrating the
differential change from an initial time at whiah=0 up to
S the final time,
Fe(Rion, )= FeRy v )= 2 1 FI(R 7).
n=

which means replacing the Taylor expansion, &%), by its
steady-state form,

(27) Fo()=FO(t)+ f dsi—(sl) (33

This step is analogous to replacing the internal state density
matrix by its steady-state value in adiabatic computations of
the dipole force on an atom in a laser beam. Replacing the
Taylor expansion by its steady-state behavior is adiabatic be
cause it assumes that the expansion terms asymptote to th
dressed state form on a time scale much shorter than the time
scale on which either the position or velocity of the atom d(
changes. More specifically, for the change in position, the
adiabatic condition means that during a round trip light travel
time the atom-wall distance has very little relative change¢om which
v2R/c<R, which is equivalent to the condition that the
atomic velocity be nonrelativistic, oF, vs, d 4o fsld oF, ,

v 1 o SU=5 grFe (sU+ o S P (s2). (39

Where it has been substituted tHa(to) = F%)(t,) (sincev
=0 atty). A similar analysis for the differential of the first
Qartlal time derivative gives

dF¢ 4 IFg® g J aFc) »
s )N Ts | T as 39

as

Carrying on similar analysisand rewriting in terms of the

Similarly, the adiabatic condition for the change in velocit , )
Y g yzeroth-order expansion tejrteads to the general expression

is that it has very little relative change during a round trip
light travel time, E,e/M)(2R/c)<<V, which can be re-
stated as the net force not changing the kinetic energy of the 3"Fe¢ Us,Us,- Vs, d"

atom much during a light travel time, e (Sn)= Y= FO(sn)
R 1
(Fnetv)E<EMU2: (29) Sn 5n+1Fc
. dSle(Snu)- (36)

since F; v is the power that the net force puts into the

atoms’ mechanical motion. Both conditions are satisfied in
typical experimental setups. Concatenating Eq33) with Egs.(36) leads to an expression

Note that rather than tending to a constant steady-stalfé)r the retardation correction force, which is the sum of a
value, the terms in the Taylor expansion, E2f), asymptote series of imbedded integrals,
to steady-state polynomial time dependence, the source of g
the polynomial time dependence being tkg VV Doppler
shiftpter):n in the exponeﬁts of EqR4). Ingdistﬁction t%pthe ()= Fgo)(tHJ’ ds 7 d_RF(O)(Sl)
stationary atom case those polynomial time dependencies
will lead to nonzeropartial time derivatives as well as the
convective changes due simply to motion the of the atom: J dSlJ dSz 22 dR2 FO(sy) + - -

d __(dR9 dva
ds ¢ |dsdR dsdv ds

The differential Change iﬁc can then be sp||t into two parts, This result could have been written down directly since it has

one coming from the convective change and the other fron straightforward interpretation of being the sum of the inte-
the partial time derivative, grated effects of each of the partial time derivatives. Each

term in Eq.(37) can be evaluated by making a change of
variables from time to position with the identity=dR/dt.
For example, the first term gives

Fe. (30) 37

JF.
dF ch|convect|ve+dS E (31)
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t o d RO 1d achwd( d\21 (= dx
ds, = ——FOs :f dR.> —=FO(R T _f &
fto 12dR c ( 1) R(ty) 12 drR ¢ ( l) Uam(R) oy drR/ R o X2+wg
1 2 2
= 5[FO(R)-FORy)], (39 wo-2Ruc, 2ol d
A7 \dr
and further terms give Xf dk M ) (42)
oketwg 2kr |,
0
t s Si-1 UsUs, *Us " ©) Since the first term in the potential is the stationary atom-
J d%f dsp- - dSnT FFC (sn) wall potential, in the regions near and far from the wall it
to to to R will have the expected inverse powers of distance depen-
1 dence, as shown in ER3). The second term is the residual
— §[FEO)(R0— F(co)(Ro)]- (39 potential due to the motion.
IV. DISCUSSION
Substituting these into E437) gives a geometric series with A. Physical interpretation
the result: In the energy gradient approach, one interprets the force

between a polarizable atom and a wall as arising from the
=N Lamb shift in the atomic ground-state energy. Spatial varia-
F.(R)=FO(R)+ >, (_> [FOR)—FO(Ry)] tion of the ground-state energy is expected to generate a
n=1\2 force which pushes the atom to lower energy positions, but
the mechanism for such a force is not given explicitly. In the
final analysis, since the only players in the full system are the
atom and the EMF field, such a force must come from the
whereR,=R(t,) is the distance from the conducting wall at emission and reabsorption of photons. Our approach pro-
which the atom was originally at rest. The forE€)(R) is vidgs an interpreta_tion of how a _net force arises from the
the stationary atom retardation correction to the vdW force €mission-reabsorption processes in the presence of a bound-
ary.
2. Force and potential The connection between the Lamb shift calculation and
] ) ) our calculation is the dressed ground state of the atom, which
Inspection of Eq(40) shows that if the atom is released s the true ground state of the full Hamiltonian. Expanded in
but remains stationary, then the retardatlon. force will b_e thgne free(or bare Hamiltonian basis, the dressed ground state
stationary atom value. On the other hand if the atom is reis 3 quantum superposition of bare atom-EMF states, and is
leased infinitely far from the condgctmg wall and it moves iN often described as an atom surrounded by a cloud of virtual
toward the wall, then the retardation force near the wall W'"photons which it continually emits and reabsorbs. In the en-
be twice the stationary value. At a finite initial distance theergy gradient approach, the atom EMF is assumed to always
retardation.force will vary between th.e.se values. The force _"be in the stationary dressed ground state. By contrast, in our
all cases will depend only on the position. Thus the atom stillyyhr0ach a bare state is allowed to evolve quantum mechani-
moves as if it were in a conservative potential and the pog|ly into the dressed ground state. The difference between
tential it feels depends on where it started. these two is crucial to understanding how the coherent QED
Combining the retardation correction force with the elec-cqrection comes about. By allowing the atom EMF to
trostatic force and simplifying as in EQ1) give the atom-  ayglve into a dressed ground state we leave open the possi-

wall force to be bility that the motion of the atom can affect how closely to
the stationary dressed ground state the system evolves, or in

=2FO(R)—FO(Ry), (40)

ahwl! d\31 (= dx the language of the virtual photon cloud, the distribution of
Fan(R)=8,— 0(_) _f —— e 2RMC virtually occupied modes is allowed to differ from the sta-
87 1dR] RJo x2+wj tionary atom case.
_ézaohw%(i)s‘ = dk sin(2kr)[R 1. Stationary atom
4m \dr] Jokctawo  2kr Ro Even without motion, the atom’s virtual photon cloud is
41) altered by the presence of the wall. For a perfectly conduct-

ing wall, the TE and TM spatial mode functions of the EMF
are given by Eqs(5) and (6). Those mode functions are
The first term is the stationary atom-wall force and the secdetermined by solving the wave equations with the given
ond term is a residual force which pulls the atom back to itshoundary conditions on the wall, and are constructed by lin-
original point of release. The force can easily be turned inteear combinations of plane wave modes. The creation and
the potential which the atom feels: annihilation operators of the TE and TM EMF modég,p)
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are thus combinations of the creation and annihilation operaalong the surface. The atom-wall interaction pulls the atoms
tors of plane wave modes{,a) moving toward and away towards the wall. The dipole potential of the evanescent
from the wall. Inspection of the Hamiltonian and the propa-wave, on the other hand, causes a repulsion of the atoms
gator shows that it is emission followed by absorption, whichfrom the crystal. The combination of those two creates a
is the source of the force. In the interest of finding a physicabarrier through which some fraction of the atoms tunnel and
interpretation, one can think of virtual processes in the presthe rest reflect back out. The authors measure the fraction of
ence of the wall in terms of plane waves. Then the emissiomeflected atoms versus the barrier height. As the barrier

reabsorption of a wall-constrained mode is height is lowered it will at some point drop below the energy
. X XXt X of the incoming atoms. At that point, all the atoms will be
bybu(X)~(ae™ " —a_e " ") (ae " " —al e ") able to classically roll over the barrier, and no atoms will be
- . reflected. The evanescent laser power required to reach that
~aaj+a_al —a_ale 7 *—aal X b N

barrier height depends sensitively on the atom-wall attrac-
(43)  tion. By comparison of measurement with theory, the authors

show that the electrostatic attraction alone does not accu-
The first two terms are emission reabsorption of the sameately predict the threshold laser power. They show that the
photon and contribute no net momenta to the atom. The segrediction of a retardation corrected force is closer to the
ond two terms are emission of one photon and reabsorptiofeasured value. When we combine the motional modifica-
of the reflected photon. Each of those contributekaro-  tion to the retardation correction we are able to make a fur-
mentum to the atom. The effect of those processes on th@er modified prediction for the threshold. The calculations
force can be seen explicitly in E(R4). The first term in Eq.  done in this paper are for a perfect conductor, not a dielectric
(24) originates from theH,, interaction and the second terms houndary, so the modifications predicted here should not be
from theH,, interaction. In both terms, the sum over wave applied directly to the case of a dielectric boundary. How-
vectors is a sum over emission followed by reflected absorpever, a general statement can be made that a coherent QED
tion processes, with each contributing &,2momentum. correction will cause a lowered prediction for the threshold
Thus, the presence of the wall alters the atoms virtual photoraser power, since it will tend to decrease the atom-wall at-
cloud by reflecting some of the modes. The process of emisraction. If one naively applies a dielectric factor to our result
sion and reabsorption puts the photon cloud into a steadyfor the conducting plate to compensate for the difference, the
state distribution with the net effect on the atom of a retarpresent prediction for the threshold enefgy.8T") is close
dation force. to the measured valu€l4.9 I'). Extension of the present

work to a dielectric wall is ongoing.
2. Moving atom

Once the stationary retardation force is understood in 2. Transmission between parallel plates

terms of the wall effect on the virtual photon cloud, the  Another experiment which has been able to observe the
modification of it for an adiabatically moving atom can be retardation of the van der Waals force involves a stream of
interpreted as part of the Doppler effect. The effect is eaSie'ﬁround-state atoms passing between two plg#sDue to

to explain in the reference frame of the atom, in which it iSthe attraction of the atoms toward the plates, some of the
the wall which will be moving toward or away from the atoms fall onto and stick to the plates. The fraction of atoms
atom. Then, as in the stationary case, the virtual photomat pass through the gap depends on the atom-wall potential.
cloud will be altered by reflection off the wall. However, in By measuring the opacit§fraction of atoms that do not pass
the case 01_‘ the moving wall, the ref_lected photons will bethrough for different gap widths, the authors probe the at-
Doppler shifted due to the walls motion. In the language ofyactive atom-wall potential. This experiment holds less
the \(|rtual photqn cloud, the dlst.r|but|on pf ph.otong arounq dromise of observing a coherent QED correction to the re-
moving atom will be Doppler shifted. This shift builds up in tardation than the previous example. The reason being that in
the photon cloud much like charge in a capacitor connectegis experiment the atoms first come into interaction with the
to a loop of wire in a changing magnetic field, and it canyya)is at a distance of only a few resonant atomic wave-
only be discharged through absorption into the atom. The Ngbngths. The atom and EMF thus do not have as much mo-
effect, over the retardation force, will be to push the atomjon gver which to develop a coherent effect. Within that
against such built up Doppler shift, back to its original point cayeat, a general prediction can be made that the coherent
of release. correction will tend to decrease the opacity.

B. Prospects for experimental observation .
P P C. Conclusion

1. Reflection from an evanescent laser Our result exactly reproduces the Lamb shift result for a

A situation in which the motional modification of the re- stationary atom. For an adiabatically slowly moving atom, a
tardation correction will be important is for the reflection of correction due to the Doppler shift is found. Our result for
cold atoms off the evanescent field of an otherwise totallythe retardation correction for adiabatic motion is up to twice
internally reflected laser beam. For example, in a recent exas much as that computed for stationary atoms. Agreement
periment by Landragiret al. [10], cold alkali-metal atoms with the energy gradient result in the stationary atom case
are dropped onto a crystal with an evanescent wave runninghows that our nonperturbative approach captures the effects
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of entanglement which we sought. The physical interpreta- -

tion is that the atom-EMF system evolves from an initially <X2,{sz}1lﬂz;t+26
factorizable bare state into the interacting Hamiltonian

ground state, which is an entangled state in the free Hamil- o o
tonian basis. This process is known as self-dressing. The =f d,u(Xl)exr{AerE Yoz Boket > ZokZ21Cou
correction for a slowly moving atom shows how our ap- ke W

h

Xoa{ok},O;t>

i
ex;{—Z—He

proach can go beyond Lamb shift calculations. The correc- 2
tion is due to the Doppler shift in that the virtual photon +2

: s > (A4)
cloud which dresses the atom is shifted. j=1 2¢h

For definitions of the coefficients see E@6) with n=2.
The two-step transition amplitude can be generalized to an
n-step transition amplitude:

APPENDIX A: RECURSIVE CALCULATION OF
EFFECTIVE ACTION

The Hamiltonian is given in Eq2). The evaluation of the n
transition amplitude as a path integral begins with slicing |t<x {an} (/,n ,t+ne|ex;{ 2 Hje |X0,{04},0;t)
into infinitesimal steps. A single-infinitesimal-step transition h =1
amplitude for initial EMF vacuum and atomic ground state n
(i.e., the initial EMF and Grassmannian labels set to g&ro :f ,1:[1 d,u(XJ-)ex;{ Aﬁ% 'anznanke"i'% 20ZnCod
n
_ i iM(X, —X;_1)%€
(Xl,{zlk},z/fl;t+e|ex;{—%He X0,{04},0it) t2 Py T (A5)

; with the finite difference equations:

\/—kpeg l‘Ik . )\2

|M(X1_X0) €
=ex —2"2 YnZyi
2€°h T
An:An71_|62 _(unk'unk)
k Wk

—i E Zk?u

ul- u.*] (A1)

VR —IeE r(noge Un)Bn_1xet O(€?),  (AB)

iM(X;—Xg)?%€e — . . On +
= - T 1- - By iye—i€e— .
exr{ Py +Al+% 121k B1ke Brke=(1—iwoe—imwye) Bp_1ge |E\/w—k(peg Un)
+2 ?lk?ucm ) (AZ) ‘HGE gn (pge"UnI)Bn 1Ie’Bn lke
q " Vo
2\2
—iey, ——=(ul-u,)B
with the obvious definitions oA, , By, andC, . The first T Voo, kT e
infinitesimal step transition amplitude, E@1), can be used )
to derive the two-infinitesimal-step amplitude: . g
b amp i€ T (Peg Un)Coo1O(), (AT)
o

2

. i
(Xza{zkz},¢2;t+2€|exl{_ZﬁHf [X0,{04},0:t) anlz(l_iwkf_iwlf)cn—l,kl_iEm(ulk'uzl)
= | du(Xy)du(z,)d Xy {Zoh o t+2 . 2\?
f (X)) du(z)dpu(P1)(Xz {Za}, 2 €l —ie>, n(uil.unq)(%_lvkq
. Uadthed
[
Xex%_%Hf |Xll{zlk}1¢-1;t+6> 2)\2

- t
_|52 —(u k' Un )Cnfl, I
q \wqwk " . a

R — i
X<X1a{zlk},l//1§t+6|eXF{—ng |X0.,{0k},0;t).
_ifz gn (pge unq)cn quBn 1ke
(A3) £ Vo
. gn 5
The result is —|€§e: \/;(pge Un)Bn—1ket O(€2). (A8)
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In the continuous limit those become first-order differential

equations with the following integral solutions:

t+7 )\2
A(t+r)=—ift ds}k: w—k[ul(s)-uk(s)]

t+7
i ft D) r[pge U(S)Bre(S),

(A9)
_ T 9 i(ept e (t+—9) T
Bie(t7)=—i | - ds—=e (ot [Peg UL(S)]
k
. t+7 5
+|J1 dsz \/_gl[pge"ul(s)]BIe’(S)Bke(S)
C(tHT 222 +
—i ft olsEI m[uk(syu'(sn&e(s)
t+7 29
—i ft olsEI J—a[pegu.(s)]ckl(s), (A10)
t+7 )\2
ck|<t+r>=—ift ds =—[u{()-u{(5)]
k|

2

t+7
_|ft ds% m[u,(s) Ug(8)1Ciq(S)

2

t+7
_- — T .
i ft dsS) T L9 91Cq(9

29
\/Tq[pge~ Ug(S)1Ciq(S) Bke(S)

t+7
—iJ ds>,
ge

t
t+ T
—i f [pge U (S ]Bke(s) (All)

The transition amplitude of EA5) can be further simpli-
fied by setting the final EMF and atomic states to vacuum
and ground, respectively. The transition amplitude is then

t+7

i
<Xn1{0k} 0:t+ T|eX[{ ﬁ Hds |X0,{Ok},0,t>

ttr  iMX2(s)
=f Du[X(s)]exg A(t+ 7-)+ft dsT .

(A12)

The equations foB(s) andC(s), Egs.(A10) and(Al1l), are

\olterra-type integral equations. Their solutions are infinite
Born series in orders of the coupling. Approximations in the
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t+71 )\2
A(t+r>=—ijt 4 - [ul[X(9)]-u(X(9)]

t+7 S 2
—f dsJ drz g e
t t ke Wy

X [Uk(X(S))~ pg(—:'][u’kc (X(r)) peg]-

The transition amplitude with a®(g?) vertex is thus

i(wg+wg)(s—r)

(A13)

i t+71
(X¢5t+ ﬂexp{ - %ft Hds||X;;t)

ZJDXW4¢”T

JdrE

ke Wk

MX? s G
T w—kuk(X(S))-uk(X(S))

e (@t 050U (X(S))- Pgel

X[U: (X(r)) peg]

d s] . (A14)

In the above transition amplitude the polarization mode
functions are dotted with the dipole vector of the atom. The
direction that the atom’s dipole vector takes will depend on
the quantization direction chosen for the atom’s internal
state, but we are not free to choose a quantization direction.
That is because the atom’s dipole is induced by the vacuum
fluctuations, and is free to point in any direction. In that
light, choosing a particular direction seems invalid. Due to
the form of the dipole-EM polarization function couplings,
the induced atomic dipoles in different directions do not in-
terfere, and a set of excited statesd thus different quanti-
zation directions can be summed over. Such a set of inde-
pendent excited states will form a resolution of unity and
thus give a factor of unity contribution. The above transition
amplitude can then be generalized to reflect the induced di-
pole:

i (t+r
(Xf;t+r|exp{—%f Hds
t

[ oxen 1[0

2
+ipZJ drz o e~ (@t @SNy, (X(s))- uf (X(r))

1Xi;t)

M X2

2% _;

uk (X(s))- uc(X(s))

+0(e*) |d

S] , (A15)

with p2=(g|p?|g) (the ground state expectation valuepdj.

APPENDIX B: MOMENTUM COMPUTATION

Putting in the spatial mode functions of E¢) into the

above coefficients are approximations in the basic vertex. Tabove gives the semiclassical transition amplitude in the

0(g?)

presence of a conducting wall:
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M3 iM(X¢=X)?  2i\? [tr . e
KIXpst 7 Xist]=| 5] ex e ), sE —+O(e/M)+—
2,2
XE COSZH[ezlk X (s)+e—2|k X (5)] 9 pzf dsf drE _e—l(wk+wo)(s r)+ik- [X (s)— Xc(r)]
K
2n2 t+r1
[k DX X201 4 g ik X2 - X201 4. %J ’ dsfser cos'd
L3 Jt t wy
—i @yt wo)(s— 1) +iky - [X2(8) = XUANI[ @iky [XAS)+XANT 1 a=iky [XA(S) +X(N)]
Xe [e +e 1. (B1)

gngfur Js 1
ds| dr2, —
L3 Jq t ; Wy

« @i (@t o) (s=r) +ik- [Xg(s)xg(r)]]

“ 1 gzp2 non t+r
Z n_( L3 Hlf dsmf A

functions the sums over momentum space are now over the
positive half space. Despite its complicated appearance, the
transition amplitude above is in a useful form for computing
the evolution of the momentum expectation value. The key
point is that the transition amplitude of E@®1) is the prod-
uct of several exponentials of exponentials, and contains
only ¢ numbers. Therefore, each exponential can be ex-
panded out into a series, the summands of all the series col-
lected together, and the necessary integrations performed on
the collected summand before redistributing the summand
and resuming each exponential; that is, the individual expo- 2
Km

With the inclusion of the conducting boundary spatial mode p{
exp, —

m=

R i(wkmJr ©0)(Sm—Tm)
Wy

nentials in Eq(B1) can be expanded in terms such as
o
ox ifﬁr dsS coszeezikz.xg(s) xexp{iz km.[Xg(sm)—xg(rm)]}_ (B3)
L3 Jt K oy =
~ 1 |)\2 non t+7 C0520
=1 2 _l(_g) [I ] dsnX
n=o0 N\ L m=1 Jt K,

Xexp{Zi% Kz X2(Sm) (B2)

The resulting collected summand is

ny n2 n3

Summand{n})=exp{ +2imZ1 kmlz.xg(sml)—Zimzl kmzz.xg(smz)ﬂle (Kmngl| + Km,2) - [X2(Sm,) = X2 m,)]
1= 2= 3=

ns N5

i 2 Ky~ Kimyz) - [XUSm,) = XA m)1+1 2 K [XA(Sm)) = XA ) 141 20 Ky [X2USm)
my=1 mg=1 mg=1

ng Ne

XU 14 2 Ko DX = XC( )11 2 K [XS(Smg) + X ] (B4)

=explic{n})- (X¢—X;) +ib{n})- X} (BS)

with definitions
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Ny S N2 S "3
my ma
c)=+2 2 knz—=22 Knz—+ 2 (Kny
my=1 T m,= T my=1

—I'm —Tm,

Sm Sm4
+km3z) + 2 (km4|| mAZ)f

Ns Sm.— I Ns ST
ms Mg mg * ~ Mg
+ E kK, j——+ E ko, ,—
et mg|| r ~ mgz T

5=

n
26 Sm3 +r mg
kaZ T

mg=

Mo Sm.— I'm
+ 2 Ky ———— (B6)
mg=1 T

and

ny ny N5
bnH=2 > Kmz=2 2 Kmyt2 2 K
my=1 my=1 mg=1

-2 2 I(msz

me=1

(B7)

The momentum expectation value is then

P(t+7)=

Py
{nn} )

xfdxidx(dxfdx; W (X;)W*(X!)

X exp{—iPs- X;+iPg- X texgic{n}) - (X¢— X))
+ib({n})-Xj—ic({n'}- (X;=X{)—ib{n'}- X{]

(B8)

20) . i)\ZJHTd » co< o
=ex — s, ——
L3 Jt K oy

t+7

s cogé
drY, ——e
t k k

+0(e*M)+0(ad?) ;.

eikZ-J[eZikZ-(R+VS) —c C] —
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The momentum expectation value, the normalization factor,
and other moments of the momentum operator can be com-
puted with the generating function:

Z<J>—{E} A({n,n'})

X\I’(Xi)\lf*(xi')exp[—iPf~Xf+in~Xf’
+i PfJ}eX[{lC({n})(Xf_X|)+|b({n})X,

dX;dX/ dXdX|

—ic({n'})-(X;=X{)—=ib{n'}-X{] (B9)
from which
B A dz(J)
P(t+r)——iz(o)—dJ s (B10)

The factorA({n,n’}) is the summation measure. The initial
wave function is taken to be a Gaussian centeredRaR{)

with the standard deviationgr(1/0). This choice allows the
possibility that the atom is slowly moving toward the wall.
Slowly, in this case, means adiabatically such that the exter-
nal motion is much slower than internal time scales:

W(Xj)=

1 |3 ( )2
KN LT )
mTo g

(B11)

In the limits M—c and o0—0 such thatP,/M—V and
o’M —x the generating function is

sdl’z i[efi(wk+w0)(sfr)+ik-V(sfr)+C_C_]
t k @k

2

ikZ~J[efi(wk+w0)(sfr)+ikz<[2R+V(s+r72t)]+ikH-V(sfr)+C.C']_ J +iJ- PO

(B12)

Finally, in the limitsM —o0 andoc—0 the momentum expectation value is

2iN%h « k,cos6
P(t+7)=Po—
(tH7)=Po——5= 2 —

. g%p2h s k,cos6
L3 & i

t+7
j deSdr e—ikz~(2R+V(S+r—2t))[e—i(wk+w0)(s—r)_ei(wk-%—wo)(s—r)].
t t

t+7
f ds e—ZikZ-(R+Vs)
t

(B13)
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