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Moving atom-field interaction: Correction to the Casimir-Polder effect from coherent backaction
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The Casimir-Polder force is an attractive force between a polarizable atom and a conducting or dielectric
boundary. Its original computation was in terms of the Lamb shift of the atomic ground state in an electro-
magnetic field modified by boundary conditions along the wall and assuming a stationary atom. We calculate
the corrections to this force due to a moving atom, demanding maximal preservation of entanglement generated
by the moving atom-conducting wall system. We do this by using nonperturbative path integral techniques
which allow for coherent backaction and thus can treat non-Markovian processes. We recompute the atom-wall
force for a conducting boundary by allowing the bare atom-EMF ground state to evolve~or self-dress! into the
interacting ground state. We find a clear distinction between the cases of stationary and adiabatic motions. Our
result for the retardation correction for adiabatic motion is up to twice as much as that computed for stationary
atoms. We give physical interpretations of both the stationary and adiabatic atom-wall forces in terms of
alteration of the virtual photon cloud surrounding the atom by the wall and the Doppler effect.
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I. INTRODUCTION

The physical system studied in this paper is an atom
polarizable ground state near a conducting wall. The inte
tion of the atom with the quantum electromagnetic fie
~EMF! vacuum, whose spatial modes are restricted by
wall with imposed boundary conditions, generates a fo
that pulls it toward the conducting wall~for general discus-
sion see Ref.@1#!. The details of such a force is important
any experiments and applications in which an atom is h
near a surface by a trapping scheme using evanescent w
or magnetic fields. The atom-wall force is divisible into tw
parts. First, there is the electrostatic attraction that the a
feels toward its image on the other side of the wall, called
van der Waals~vdW! force. Second is a quantum-mechanic
modification of the vdW force first calculated by Casimir a
Polder@2#. They dubbed the quantum modification ‘‘retard
tion’’ of the vdW force, because its source is the noninst
taneous transverse EMF. Extensions of Casimir and Pold
results for a polarizable atom were later derived by ma
authors@3,4#, including for an atom in a cavity@5# and near
a dielectric wall@6,7#. Closest in philosophy to what is don
in this paper is the work of Milonni in Ref.@8#. There, the
author computes the second-order alteration of the E
mode functions due to the presence of the atom, from wh
the ground-state energy shift is the expectation value of
interaction Hamiltonian in the altered vacuum@24#. How-
ever, the author neglects time dependence in the mode f
tions and thus neglects effects due to Doppler shifts of
EMF modes. Recently, retardation correction of the vd
force has been demonstrated experimentally@9,10#. Verifica-
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tion of the Casimir-Polder force can be viewed as a dem
stration of the entangled quantum behavior of the entire s
tem, since it involves the dressing of the atom by the EM
vacuum.

Although Casimir and Polder and others’ calculations
treat the quantum entanglement in the system, analysis u
now has been restricted to stationary atoms. It has been
sumed~wrongly, as we shall show! that such a method ca
also treat the adiabatic motion of the atom. Adiabatic mot
means in this context that as the atom moves, it continuou
shifts into the position dependent stationary dressed gro
state on a time scale much shorter than the time scal
motion. Treatments assuming that the atom is stationary o
instantaneously static exclude correlations that are develo
in the system during the motion. The key point is that t
adiabatic and stationary dressed vacuum states are no
same. An example where this situation is encountered gen
cally and dealt with in depth is in cosmology, specifical
quantum field processes in an expanding universe@11#. For
stationary systems a vacuum state is well defined at all tim
~due to the existence of a Killing vector!, but not for arbi-
trary dynamics, especially fast motion. However, for slo
dynamics, adiabatic vacuum states can be defined and re
malization procedures constructed@12–14#. The adiabatic
method we use here is similar in spirit~though not in sub-
stance, as our purpose is somewhat different from tha
cosmology!. To predict motional effects, entanglement in t
evolution needs to be accounted for theoretically. We use
influence functional method here, which keeps track of f
coherence in the evolution to derive the force between
atom and the wall while allowing the atom to move adiaba
cally. In the case of a stationary atom, our result is in ex
agreement with the Casimir-Polder force. In the case of
adiabatically moving atom, we find a coherent retardat
correction up to twice the stationary value, thus our coher
QED calculation will make verifiable predictions. This pap
©2003 The American Physical Society01-1
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shows the derivation and explains the cause due to cohe
backaction. Section II outlines the model and details of
calculation. The results for stationary and adiabatic mot
are then given in Sec. III, and discussed in Sec. IV.

II. MODEL AND APPROACH

In contrast to obtaining the force via the gradient of t
ground-state energy shift, we obtain it through the expe
tion value of an atom’s center-of-mass~COM! momentum.
Our system consists of an atom placed near a conduc
wall. We assume an initially factorized state of the atom
its ground-state and the EMF in its vacuum. A path integ
technique is used to derive the ground state-EMF vacu
transition amplitude of the evolving system. Inclusion of c
herent backaction allows the system to self-dress@15,16# and
preserves maximal entanglement in the non-Markovian e
lution of an atom-EMF quantum system. The expectat
value of the momentum operator is then computed. In
path integral, Grassmannian and bosonic coherent state
used to label the atomic and EMF degrees of freedom,
spectively. The position and momentum basis are used
the atom’s center-of-mass degree of freedom. The major
proximation applied here is a second-order vertex appr
mation. With the second-order vertex, the propagator is p
tially resummed to all orders of the coupling constant. T
result is a nonperturbative propagator which yields cohe
long-time dynamics@20,21#. The mass of the atom and th
size of its external wave packet are kept finite throughout
calculation. Only at the end of the calculation do we allo
the mass of the atom to go to infinity and its extens
shrunk to a point, while retaining finite terms due to th
effect on the dynamics.

Highlights of the calculation are given in this section a
details are given in the Appendixes. In Sec. II A the Ham
tonian and spatial mode functions that describe the sys
are introduced. In Sec. II B the transition amplitude of t
EMF vacuum with the atom in its ground state is calcula
in a coherent state path integral, with an effective act
expanded to second-order in the coupling~equivalent to a
second-order vertex resummation!, and semiclassically in the
COM motion. The momentum expectation value and the
tardation correction force are then calculated from the tr
sition amplitude in Sec. II C.

A. The Hamiltonian

The spinless nonrelativistic QED Hamiltonian is given
@25#

H5
P2

2M
1

1

2m
~p2eA!21eV~X!1Hb . ~1!

The first term is the COM kinetic energy of an atom wi
massM. The second term is the kinetic energy of the elect
sitting in the transverse EMF. The third term is the poten
energy of the electron around the atomic nucleus. The
term is the energy of the free EMF. After taking the dipo
approximation, and restricting to two internal levels of t
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atom, the Hamiltonian in minimal coupling form becom
@see Appendix A of Ref.@22# without the rotating wave ap
proximation~RWA!#

H5
P2

2M
1\v0S1S21\(

k
vkbk

†bk1HI11HI25H01HI .

~2!

The operatorsS6 are the up and down operators of th
atomic qubit, andv0 is the atomic transition frequency. Th
operatorsbk andbk

† are the EMF mode annihilation and cre
ation operators, andvk are the frequencies of the EM
modes. The two parts of the interaction Hamiltonian are

HI15\(
ke

g

Avk

@pegS11pgeS2#•@ukbk1uk
†bk

†#, ~3!

HI25\(
kl

l2

Avkv l

@uk•ulbkbl1uk
†
•ul~dkl12bk

†bl!

1uk
†
•ul

†bk
†bl

†#. ~4!

The vectorpeg is the dipole transition matrix element, whic
is defined aspeg5^eupug&52 imv0^eur ug&. The vectorsuk

contain the photon polarization vectorsêk and the spatial
mode functionsf k(X), i.e., uk(X)5 êk f k(X). The coupling
constants areg52A8p2ac/m2 andl5A4p2\ac/m, with
a being the fine-structure constant.

In the presence of a conducting plane the spatial m
functions of the EMF which satisfy the imposed bounda
conditions are the TE and TM polarization modes@8#,

uk1~X!5A 2

L3
k̂i3Ẑ sin~kZZ!eiki•X, ~5!

uk2~X!5A 2

L3

1

k
@kiẐ cos~kZZ!2 ikZk̂i sin~kZZ!#eiki•X,

~6!

and their complex conjugates.

B. The transition amplitude

The transition amplitude between the initial and final c
herent states with initial and final positions is given by

^X f ,$z̄k f%,c̄ f ;t1tuexpF2
i

\Et

t1t

H~s!dsG uX i ,$zki%,c i ;t&.

~7!

The transition amplitude relevant to the atom-wall force
the amplitude that the atom moves fromX i to X f without the
emission of any physical photons. This is a very good
sumption, since the probability forphysicalphoton emission
is extremely small@16#. The initial and final states are thu
characterized by the atom being in its ground state and
EMF in vacuum, with arbitrary COM position states. Th
initial and final coherent-state labels can be set to zero
1-2
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reflect those states, although during the evolution the sys
evolves freely, and the motion of the COM is affected
recoil from emission and reabsorption of virtual photons,

K@X f ;t1t,X i ;t#5^X f ;t1tuexpF2
i

\Et

t1t

H~s!dsG uX i ;t&.

~8!

Normally, a variational approach would be a sensible way
compute the functional integrals that make up the transi
amplitude. However, since in this case both the antireson
as well as resonant rotating wave terms are included in
Hamiltonian~i.e., no RWA!, the variational equations for th
Grassmann variables will have bosonic sources even w
the EMF is taken to be in the vacuum. We know from earl
work that when a Grassmann field variable has a boso
source, the variational technique cannot unambiguously
fine the evolution of the Grassmann variable. A better wa
to leave the transition amplitude as a discrete produc
infinitesimal propagators. The necessary functional integ
can then be computed recursively. Details are in Appendix
After the EMF and Grassmann path integrals are evalua
the transition amplitude from the initial motional stateX i to
the final motional stateX f ~while keeping the same initia
and final atomic ground states and EMF vacuum! is given to
O(e2) vertex by

K@X f ;t1t,X i ;t#5E DX expH i E
t

t1tFM Ẋ2

2\
1 ipz

2E
t

s

dr

3(
k

g2

vk
e2 i (vk1v0)(s2r )uk

3„X~s!…•uk* „X~r !…2(
k

l2

vk
uk*

3„X~s!…•uk„X~s!…1O~e4!GdsJ , ~9!

where pz
25^gupz

2ug& is the ground-state expectation valu
of pz

2 .
A semiclassical approximation to the transition amplitud

Eq. ~9!, is obtained by evaluating the action along its clas
cal path. This will neglect the fluctuation terms of ord
O(1/M ). The classical path is the straight line path pl
terms of orderO(e2/M ),

Xc~s!5X i1
X f2X i

t
~s2t !1OS e2

M D5Xc
0~s!1OS e2

M D .

~10!

Evaluating the transition amplitude along that path gives
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K@X f ;t1t,X i ;t#5S M

2p i\t D 3/2

expH i E
t

t1tFMXc
0̇2

2\
1 ipz

2

3E
t

s

dr(
k

g2

vk
e2 i (vk1v0)(s2r )uk

3~Xc
0~s!!•uk* „Xc

0~r !…2(
k

l2

vk
uk*

3„Xc
0~s!…•uk„Xc

0~s!…1O~e4/M !GdsJ .

~11!

Using the spatial mode functions of Eqs.~5! and ~6! in the
above gives the semiclassical transition amplitude in
presence of a conducting wall@see Eq.~B1!#.

C. Momentum expectation and force

Given the above expression for the transition amplitu
and an initial center-of-mass wave function for the ato
C(P), the momentum expectation and the force on the at
~the time derivative of the expectation momentum! can be
computed. The momentum expectation is

^P̂&~ t1t!5
\

NE dPf

~2p!3
PfE dX idX i8 K@Pf ;t

1tuX i ;t# C~X i !C* ~X i8! K* @Pf ;t1tuX i8 ;t#,

~12!

with the normalization factor

N5E dPf

~2p!3E dX idX i8 K@Pf ;t

1tuX i ;t# C~X i !C* ~X i8! K* @Pf ;t1tuX i8 ;t#.

~13!

The initial wave function can be taken to be a Gauss
centered at (R,P0) with the standard deviations (s,1/s).
Such a choice will allow for the possibility that the atom a
the wall are moving toward or away from one another. F
lowing the line of calculation detailed in Appendix B, a mo
mentum moment generating function is computed in the l
its M→` ands→0 such thatP0 /M→V ands2M→` @see
Eq. ~B12!#. From the generating function the momentum e
pectation value can be computed,

P~ t1t!5
\

iZ~0!

]Z~J!

]J U
J50

. ~14!

In the above limits
1-3
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P~ t1t!5P02
2il2\

L3 (
k

kz cos2u

vk

3E
t

t1t

ds e22ikz•[R1V(s2t)]1
g2pz

2\

L3 (
k

kzcos2u

vk

3E
t

t1t

dsE
t

s

dr e2 ikz•[2R1V(s1r 22t)]

3@e2 i (vk1v0)(s2r )2ei (vk1v0)(s2r )#. ~15!

The momentum depends on the position and velocity o
through the distance from the wall and the velocity toward
away from the wall, so motions parallel to the wall have
effects. DefineR5êz•R and v5êz•V, with êz defined as
positive away from the wall. Taking the time derivative
the momentum expectation value will give the force that
exerted on the atom by the transverse EMF in the presenc
the wall. Doing so, as well as applying the Thomas-Reic
Kuhn sum rule,

l25
g2pz

2

v0
, ~16!

and rewriting in terms of the static ground-state polariza
ity a0 the force is

Fc~R,v,t1t!52
2p ia0\v0

2

L3 (
k

kz cos2u

vk
e22ikz•(R1Vt)

1
pa0\v0

3

L3 (
k

kz cos2u

vk

3E
t

t1t

ds e2 ikz•[2R1V(t1s2t)]

3@e2 i (vk1v0)(t1t2s)2ei (vk1v0)(t1t2s)#.

~17!

The subscript ‘‘c’’ is a reminder that the force calculate
from the transverse field is the retardation correction to
electrostatic force. Inspection of the force reveals that it
sum over recoil momenta weighted by amplitudes which
pend on the distance of the atom from the wall and the
locity of the atom. As will be discussed in Sec. IV, the rec
momenta come from virtual photon emission and reabso
tion. In that sense the net force reflects an interference p
nomenon, since it is the net sum of many different poss
virtual processes.

III. RESULTS

A. Stationary atom

If the atom is stationary, then settingv50 gives the re-
tardation force to be
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(0)~R,v50,t1t!52

2p ia0\v0
2

L3 (
k

kz cos2u

vk
e22ikz•R

1
pa0\v0

3

L3 (
k

kz cos2u

vk
E

t

t1t

ds e22ikz•R

3@e2 i (vk1v0)(t1t2s)2ei (vk1v0)(t1t2s)#. ~18!

Combining the correction force with the electrostatic for
gives the total force on a stationary atom,

Fsa~R,t1t!52êz

3a0\v0

8R4
1Fc

(0)~R,v50,t1t!. ~19!

The stationary atom force exhibits a transient behavior w
the atom first ‘‘sees’’ itself in the wall. Then, on a time sca
of several atom-wall round trip light travel times it asym
totes to a constant steady state value. The transient beh
is plotted in Figs. 1 and 2 for an optical transition frequen

FIG. 1. This plot shows the value of the atom-wall force atR
53000 vs time in atomic units. The spike att56000 is the time at
which a photon emitted att50 will have just returned. Beforet
56000 the force is experiencing transient behavior, and afterwa
rings down to the stationary atom value.

FIG. 2. This plot shows a snapshot of the coefficient of the 1R4

behavior of the atom-wall force at a timet56000 in atomic units.
The location of the spike atR53000 corresponds to the location
which a photon emitted att50 will have just returned toR
53000. At locationsR,3000 the force has begun to asymptote
its steady state behavior, and those atR.3000 are still experiencing
transient behavior. The inset image is a magnification near the w
The dotted line is the coefficient of the 1/R4 dependence of a sta
tionary atom.
1-4
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in an alkali-metal atom. The steady-state value of the stat
ary atom-wall force can also be determined analytically to

Fsa~R,t@2R/c!52êz

3ao\v0

8R4
2êz

ao\v0
2

4p S d

dRD 3

3E
0

` dk

kc1v0

sin~2kR!

2kR
, ~20!

which can be simplified to

Fsa~R,t@2R/c!5êz

ao\v0
2

8p S d

dRD 3 1

RE0

` dx

x21v0
2

e22Rx/c.

~21!

From Eq.~21! the potential which a stationary atom expe
ences is easily found to be

Usa~R!52
ao\v0

2

8p S d

dRD 21

RE0

` dx

x21v0
2

e22Rx/c,

~22!

with asymptotic limits

Usa~R!→2
ao\v0

8

1

R3
for R!

c

v0
,

Usa~R!→2
3ao\c

8p

1

R4
for R@

c

v0
, ~23!

which exactly reproduces the results of energy gradient
proaches. Although the results are the same as those p
ously derived, the interpretation behind how the results
obtained is different. The energy gradient approach can
described as a kinematic approach since the atom-EMF
tem is assumed to be held static in its entangled dres
ground state. The self-dressing approach used here, on
other hand, allows the atom-EMF entanglement to evo
dynamically, that is, the atom and EMF system, beginning
a factorized state, evolves into a stationary dressed state~i.e.,
it self-dresses!. When the atom is stationary the two forc
match because after some time to ‘‘get acquainted,’’ the s
dressing atom does indeed evolve into the stationary dre
state. It should be stressed that the agreement betwee
results of the two methods demonstrates the coherence o
self-dressing method as applied here.

B. Adiabatic motion

We now show that the prediction given by the se
dressing method of the retardation correction force fo
slowly moving atom differs from the energy gradient pred
tion @26#. The key difference is that as a moving atom a
the EMF get acquainted, they evolve into an entang
dressed state which is different from the stationary at
dressed state. The reason for the difference is the Dop
shift of the EMF modes in combination with the presence
the wall. We will discuss this point in more detail in Sec. I
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1. Adiabatic evaluation

The retardation force for a moving atom can be det
mined from Eq.~17! by applying a separation of short tim
scale dynamics from long time scale dynamics, and how t
affect each other. The adiabaticity condition is applied h
in the same way that it is applied in standard methods
determining the dipole force on an atom in a laser beam@23#.
There, assuming that the atom’s position is constant on s
time scales, the optical Bloch equations are solved for
steady-state values of the internal state density-matrix
ments. On long time scales the matrix elements are repla
by their steady-state values and put into the Heisenb
equation of motion for the atomic COM momentum. Such
procedure is justified when the internal and external dyna
ics evolve on vastly different time scales. The analogo
separation here will be of the short time scale describing
self-dressing of the atom-EMF system and the long ti
scale describing the motion of the atom.

In order to be explicit about the time scale separation
us first rewrite Eq.~17! with the definitionx5s2t, and re-
member thatt is the time at which the atom-EMF syste
begins to evolve from a factorized state,

Fc~Rt ,v t ,t!52
2p ia0\v0

2

L3 (
k

kz cos2u

vk
e22ikz•(Rt1Vtt)

1
pa0\v0

3

L3 (
k

kz cos2u

vk
E

0

t

dx

3e2 ikz•(2Rt1Vt(t1x))

3@e2 i (vk1v0)(t2x)2ei (vk1v0)(t2x)#, ~24!

so that the short time scale dynamics~parametrized byt and
x) is explicitly separated from the long time scale dynam
~parametrized byt) on whichRt andVt evolve. An adiabatic
evaluation of the retardation correction for a moving ato
can be extracted from a Taylor series expansion of Eq.~24!,

Fc~Rt ,v t ,t!5 (
n50

` v t
n

n!
F(n)~Rt ,v t50,t!, ~25!

wheren denotes thenth derivative with respect to velocity
The Taylor series expansion is an equivalent representa
of the left-hand side as long as the right-hand side conver
Each functionF(n)(Rt ,v t50,t) exhibits a transient behavio
while the atom first ‘‘sees’’ itself in the wall~during times
t;2R/c) and asymptotes to steady-state behavior on a t
scale of several round trip light travel times. The adiaba
approximation is applied at this point by replacing each fu
tion F(n)(Rt ,v t50,t) by its asymptotic behavior,
1-5
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F(n)~Rt ,v t50,t!→Fss
(n)~Rt ,t!

52êz

tn

2n

a0\v0
2

4p S d

dRt
D n13

3E
0

` dk

kc1v0

sin~2kRt!

2kRt
, ~26!

which means replacing the Taylor expansion, Eq.~25!, by its
steady-state form,

Fc~Rt ,v t ,t!→Fc
ss~Rt ,v t ,t!5 (

n50

` v t
n

n!
Fss

(n)~Rt ,t!.

~27!

This step is analogous to replacing the internal state den
matrix by its steady-state value in adiabatic computations
the dipole force on an atom in a laser beam. Replacing
Taylor expansion by its steady-state behavior is adiabatic
cause it assumes that the expansion terms asymptote to
dressed state form on a time scale much shorter than the
scale on which either the position or velocity of the ato
changes. More specifically, for the change in position,
adiabatic condition means that during a round trip light tra
time the atom-wall distance has very little relative chan
v2R/c!R, which is equivalent to the condition that th
atomic velocity be nonrelativistic,

v
c

!
1

2
. ~28!

Similarly, the adiabatic condition for the change in veloc
is that it has very little relative change during a round t
light travel time, (Fnet /M )(2R/c)!V, which can be re-
stated as the net force not changing the kinetic energy of
atom much during a light travel time,

~Fnet v !
R

c
!

1

2
Mv2, ~29!

since Fnet v is the power that the net force puts into th
atoms’ mechanical motion. Both conditions are satisfied
typical experimental setups.

Note that rather than tending to a constant steady-s
value, the terms in the Taylor expansion, Eq.~26!, asymptote
to steady-state polynomial time dependence, the sourc
the polynomial time dependence being thekz•V Doppler
shift term in the exponents of Eq.~24!. In distinction to the
stationary atom case those polynomial time dependen
will lead to nonzeropartial time derivatives as well as th
convective changes due simply to motion the of the atom

d

ds
Fc5S dR

ds

]

]R
1

dv
ds

]

]v
1

]

]sDFc . ~30!

The differential change inFc can then be split into two parts
one coming from the convective change and the other fr
the partial time derivative,

dFc5dFcuconvective1ds
]Fc

]s
. ~31!
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The convective differential change is the differential chan
in the force not including any short time scale time depe
dence, in other words, the steady-state expression att50,

dFc5dFc
ssut501ds

]Fc

]s
, ~32!

with, from Eq. ~27!, dFc
ssut505dFc

(0) . The behavior of the
force on long time scales is computed by integrating
differential change from an initial time at whichv50 up to
the final time,

Fc~ t !5Fc
(0)~ t !1E

to

t

ds1

]Fc

]s
~s1!, ~33!

where it has been substituted thatFc(t0)5Fc
(0)(t0) ~sincev

50 at t0). A similar analysis for the differential of the firs
partial time derivative gives

dS ]Fc

]s D5dS ]Fc
ss

]s D
t50

1ds
]

]s S ]Fc

]s D ~34!

from which

]Fc

]s
~s1!5

vs1

2

d

dR
Fc

(0)~s1!1E
to

s1
ds2

]2Fc

]s2
~s2!. ~35!

Carrying on similar analysis~and rewriting in terms of the
zeroth-order expansion term! leads to the general expressio

]nFc

]sn
~sn!5

vs1
vs2

..vsn

2n

dn

dRn
Fc

(0)~sn!

1E
to

sn
dsn11

]n11Fc

]sn11
~sn11!. ~36!

Concatenating Eq.~33! with Eqs.~36! leads to an expressio
for the retardation correction force, which is the sum o
series of imbedded integrals,

Fc~ t !5Fc
(0)~ t !1E

to

t

ds1

vs1

2

d

dR
Fc

(0)~s1!

1E
to

t

ds1E
to

s1
ds2

vs1
vs2

22

d2

dR2
Fc

(0)~s2!1•••.

~37!

This result could have been written down directly since it h
a straightforward interpretation of being the sum of the in
grated effects of each of the partial time derivatives. Ea
term in Eq. ~37! can be evaluated by making a change
variables from time to position with the identityv5dR/dt.
For example, the first term gives
1-6
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E
to

t

ds1

v
2

d

dR
Fc

(0)~s1!5E
R(to)

R(t)

dR1

1

2

d

dR
Fc

(0)~R1!

5
1

2
@Fc

(0)~Rt!2Fc
(0)~R0!#, ~38!

and further terms give

E
to

t

ds1E
to

s1
ds2•••E

to

sn21
dsn

vs1
vs2

•••vsn

2n

dn

dRn
Fc

(0)~sn!

5
1

2n
@Fc

(0)~Rt!2Fc
(0)~R0!#. ~39!

Substituting these into Eq.~37! gives a geometric series wit
the result:

Fc~R!5F(0)~R!1 (
n51

` S 1

2D n

@F(0)~R!2F(0)~R0!#

52F(0)~R!2F(0)~R0!, ~40!

whereRo5R(t0) is the distance from the conducting wall
which the atom was originally at rest. The forceF(0)(R) is
the stationary atom retardation correction to the vdW for

2. Force and potential

Inspection of Eq.~40! shows that if the atom is release
but remains stationary, then the retardation force will be
stationary atom value. On the other hand if the atom is
leased infinitely far from the conducting wall and it moves
toward the wall, then the retardation force near the wall w
be twice the stationary value. At a finite initial distance t
retardation force will vary between these values. The forc
all cases will depend only on the position. Thus the atom s
moves as if it were in a conservative potential and the
tential it feels depends on where it started.

Combining the retardation correction force with the ele
trostatic force and simplifying as in Eq.~21! give the atom-
wall force to be

Fam~R!5êz

ao\v0
2

8p S d

dRD 3 1

RE0

` dx

x21v0
2

e22Rx/c

2êz

ao\v0
2

4p S d

dr D
3E

0

` dk

kc1v0

sin~2kr !

2kr U
R0

R

.

~41!

The first term is the stationary atom-wall force and the s
ond term is a residual force which pulls the atom back to
original point of release. The force can easily be turned i
the potential which the atom feels:
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Uam~R!52
ao\v0

2

8p S d

dRD 2 1

RE0

` dx

x21v0
2

3e22Rx/c1
ao\v0

2

4p S d

dr D
2

3E
0

` dk

kc1v0

sin~2kr !

2kr U
R0

R

. ~42!

Since the first term in the potential is the stationary ato
wall potential, in the regions near and far from the wall
will have the expected inverse powers of distance dep
dence, as shown in Eq.~23!. The second term is the residu
potential due to the motion.

IV. DISCUSSION

A. Physical interpretation

In the energy gradient approach, one interprets the fo
between a polarizable atom and a wall as arising from
Lamb shift in the atomic ground-state energy. Spatial va
tion of the ground-state energy is expected to genera
force which pushes the atom to lower energy positions,
the mechanism for such a force is not given explicitly. In t
final analysis, since the only players in the full system are
atom and the EMF field, such a force must come from
emission and reabsorption of photons. Our approach p
vides an interpretation of how a net force arises from
emission-reabsorption processes in the presence of a bo
ary.

The connection between the Lamb shift calculation a
our calculation is the dressed ground state of the atom, wh
is the true ground state of the full Hamiltonian. Expanded
the free~or bare! Hamiltonian basis, the dressed ground st
is a quantum superposition of bare atom-EMF states, an
often described as an atom surrounded by a cloud of vir
photons which it continually emits and reabsorbs. In the
ergy gradient approach, the atom EMF is assumed to alw
be in the stationary dressed ground state. By contrast, in
approach a bare state is allowed to evolve quantum mech
cally into the dressed ground state. The difference betw
these two is crucial to understanding how the coherent Q
correction comes about. By allowing the atom EMF
evolve into a dressed ground state we leave open the p
bility that the motion of the atom can affect how closely
the stationary dressed ground state the system evolves,
the language of the virtual photon cloud, the distribution
virtually occupied modes is allowed to differ from the st
tionary atom case.

1. Stationary atom

Even without motion, the atom’s virtual photon cloud
altered by the presence of the wall. For a perfectly condu
ing wall, the TE and TM spatial mode functions of the EM
are given by Eqs.~5! and ~6!. Those mode functions ar
determined by solving the wave equations with the giv
boundary conditions on the wall, and are constructed by
ear combinations of plane wave modes. The creation
annihilation operators of the TE and TM EMF modes (b†,b)
1-7
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are thus combinations of the creation and annihilation op
tors of plane wave modes (a†,a) moving toward and away
from the wall. Inspection of the Hamiltonian and the prop
gator shows that it is emission followed by absorption, wh
is the source of the force. In the interest of finding a physi
interpretation, one can think of virtual processes in the pr
ence of the wall in terms of plane waves. Then the emiss
reabsorption of a wall-constrained mode is

bkbk
†uk~X!;~ake

ik•X2a2ke
2 ik•X!~ak

†e2 ik•X2a2k
† eik•X!

;akak
†1a2ka2k

† 2a2kak
†e22ik•X2aka2k

† e2ik•X.

~43!

The first two terms are emission reabsorption of the sa
photon and contribute no net momenta to the atom. The
ond two terms are emission of one photon and reabsorp
of the reflected photon. Each of those contributes a 2kz mo-
mentum to the atom. The effect of those processes on
force can be seen explicitly in Eq.~24!. The first term in Eq.
~24! originates from theHI2 interaction and the second term
from theHI1 interaction. In both terms, the sum over wa
vectors is a sum over emission followed by reflected abso
tion processes, with each contributing a 2kz momentum.
Thus, the presence of the wall alters the atoms virtual pho
cloud by reflecting some of the modes. The process of em
sion and reabsorption puts the photon cloud into a stea
state distribution with the net effect on the atom of a ret
dation force.

2. Moving atom

Once the stationary retardation force is understood
terms of the wall effect on the virtual photon cloud, th
modification of it for an adiabatically moving atom can b
interpreted as part of the Doppler effect. The effect is eas
to explain in the reference frame of the atom, in which it
the wall which will be moving toward or away from th
atom. Then, as in the stationary case, the virtual pho
cloud will be altered by reflection off the wall. However,
the case of the moving wall, the reflected photons will
Doppler shifted due to the walls motion. In the language
the virtual photon cloud, the distribution of photons aroun
moving atom will be Doppler shifted. This shift builds up
the photon cloud much like charge in a capacitor connec
to a loop of wire in a changing magnetic field, and it c
only be discharged through absorption into the atom. The
effect, over the retardation force, will be to push the at
against such built up Doppler shift, back to its original po
of release.

B. Prospects for experimental observation

1. Reflection from an evanescent laser

A situation in which the motional modification of the re
tardation correction will be important is for the reflection
cold atoms off the evanescent field of an otherwise tota
internally reflected laser beam. For example, in a recent
periment by Landraginet al. @10#, cold alkali-metal atoms
are dropped onto a crystal with an evanescent wave run
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along the surface. The atom-wall interaction pulls the ato
towards the wall. The dipole potential of the evanesc
wave, on the other hand, causes a repulsion of the at
from the crystal. The combination of those two creates
barrier through which some fraction of the atoms tunnel a
the rest reflect back out. The authors measure the fractio
reflected atoms versus the barrier height. As the bar
height is lowered it will at some point drop below the ener
of the incoming atoms. At that point, all the atoms will b
able to classically roll over the barrier, and no atoms will
reflected. The evanescent laser power required to reach
barrier height depends sensitively on the atom-wall attr
tion. By comparison of measurement with theory, the auth
show that the electrostatic attraction alone does not ac
rately predict the threshold laser power. They show that
prediction of a retardation corrected force is closer to
measured value. When we combine the motional modifi
tion to the retardation correction we are able to make a
ther modified prediction for the threshold. The calculatio
done in this paper are for a perfect conductor, not a dielec
boundary, so the modifications predicted here should no
applied directly to the case of a dielectric boundary. Ho
ever, a general statement can be made that a coherent
correction will cause a lowered prediction for the thresho
laser power, since it will tend to decrease the atom-wall
traction. If one naively applies a dielectric factor to our res
for the conducting plate to compensate for the difference,
present prediction for the threshold energy~14.8G) is close
to the measured value~14.9 G). Extension of the presen
work to a dielectric wall is ongoing.

2. Transmission between parallel plates

Another experiment which has been able to observe
retardation of the van der Waals force involves a stream
ground-state atoms passing between two plates@9#. Due to
the attraction of the atoms toward the plates, some of
atoms fall onto and stick to the plates. The fraction of ato
that pass through the gap depends on the atom-wall poten
By measuring the opacity~fraction of atoms that do not pas
through! for different gap widths, the authors probe the a
tractive atom-wall potential. This experiment holds le
promise of observing a coherent QED correction to the
tardation than the previous example. The reason being th
this experiment the atoms first come into interaction with
walls at a distance of only a few resonant atomic wa
lengths. The atom and EMF thus do not have as much
tion over which to develop a coherent effect. Within th
caveat, a general prediction can be made that the cohe
correction will tend to decrease the opacity.

C. Conclusion

Our result exactly reproduces the Lamb shift result fo
stationary atom. For an adiabatically slowly moving atom
correction due to the Doppler shift is found. Our result f
the retardation correction for adiabatic motion is up to tw
as much as that computed for stationary atoms. Agreem
with the energy gradient result in the stationary atom c
shows that our nonperturbative approach captures the ef
1-8
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of entanglement which we sought. The physical interpre
tion is that the atom-EMF system evolves from an initia
factorizable bare state into the interacting Hamilton
ground state, which is an entangled state in the free Ha
tonian basis. This process is known as self-dressing.
correction for a slowly moving atom shows how our a
proach can go beyond Lamb shift calculations. The corr
tion is due to the Doppler shift in that the virtual photo
cloud which dresses the atom is shifted.

APPENDIX A: RECURSIVE CALCULATION OF
EFFECTIVE ACTION

The Hamiltonian is given in Eq.~2!. The evaluation of the
transition amplitude as a path integral begins with slicing
into infinitesimal steps. A single-infinitesimal-step transiti
amplitude for initial EMF vacuum and atomic ground sta
~i.e., the initial EMF and Grassmannian labels set to zero! is

^X1 ,$z̄1k%,c̄1 ;t1euexpF2
i

\
HeG uX0 ,$0k%,0;t&

5expF iM ~X12X0!2e

2e2\
2 i(

ke
c̄1z̄1k

g1e

Avk

peg•uk
†

2 i(
kl

z̄1kz̄1l

l2e

Avkv l

uk
†
•ul

†G ~A1!

5expF iM ~X12X0!2e

2e2\
1A11(

ke
c̄1z̄1kB1ke

1(
kl

z̄1kz̄1lC1klG , ~A2!

with the obvious definitions ofA1 , B1ke , andC1,kl . The first
infinitesimal step transition amplitude, Eq.~A1!, can be used
to derive the two-infinitesimal-step amplitude:

^X2 ,$z̄k2%,c̄2 ;t12euexpF22
i

\
HeG uX0 ,$0k%,0;t&

5E dm~X1!dm~z1!dm~c1!^X2 ,$z̄2k%,c̄2 ;t12eu

3expF2
i

\
HeG uX1 ,$z1k%,c1 ;t1e&

3^X1 ,$z̄1k%,c̄1 ;t1euexpF2
i

\
He G uX0 ,$0k%,0;t&.

~A3!

The result is
06210
-

il-
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c-

t

K X2 ,$z̄2k%,c̄2 ;t12eUexpF22
i

\
He GUX0 ,$0k%,0;t L

5E dm~X1!expFA21(
ke

c̄2z̄2kB2ke1(
kl

z̄2kz̄2lC2kl

1(
j 51

2
iM ~X j2X j 21!2e

2e2\
G . ~A4!

For definitions of the coefficients see Eq.~A6! with n52.
The two-step transition amplitude can be generalized to
n-step transition amplitude:

^Xn ,$z̄nk%,c̄n ;t1neuexpF2
i

\ (
j 51

n

H jeG uX0 ,$0k%,0;t&

5E )
j 51

n

dm~X j !expFAn1(
ke

c̄nz̄nkBnke1(
kl

z̄nkz̄nlCnkl

1(
j 51

n
iM ~X j2X j 21!2e

2e2\
G , ~A5!

with the finite difference equations:

An5An212 i e(
k

l2

vk
~unk

†
•unk!

2 i e(
ke

ḡn

Avk

~pge•unk!Bn21,ke1O~e2!, ~A6!

Bnke5~12 iv0e2 ivke! Bn21,ke2 i e
gn

Avk

~peg•unk
† !

1 i e(
le8

ḡn

Av l

~pge8•unl!Bn21,le8Bn21,ke

2 i e(
l

2l2

Avkv l

~unk
†
•unl!Bn21,le

2 i e(
l

2gn

Av l

~peg•unl!Cn21,kl1O~e2!, ~A7!

Cnkl5~12 ivke2 iv le!Cn21,kl2 i e
l2

Avkv l

~unk
†
•unl

† !

2 i e(
q

2l2

Avqv l

~unl
†
•unq!Cn21,kq

2 i e(
q

2l2

Avqvk

~unk
†
•unq!Cn21,ql

2 i e(
qe

2ḡn

Avq

~pge•unq!Cn21,lqBn21,ke

2 i e(
e

ḡn

Av l

~pge•unl
† !Bn21,ke1O~e2!. ~A8!
1-9
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In the continuous limit those become first-order different
equations with the following integral solutions:

A~ t1t!52 i E
t

t1t

ds(
k

l2

vk
@uk

†~s!•uk~s!#

2 i E
t

t1t

ds(
ke

ḡ

Avk

@pge•uk~s!#Bke~s!,

~A9!

Bke~ t1t!52 i E
t

t1t

ds
g

Avk

e2 i (v01vk)(t1t2s)@peg•uk
†~s!#

1 i E
t

t1t

ds(
le8

ḡ

Av l

@pge8•ul~s!#Ble8~s!Bke~s!

2 i E
t

t1t

ds(
l

2l2

Avkv l

@uk
†~s!•ul~s!#Ble~s!

2 i E
t

t1t

ds(
l

2g

Av l

@peg•ul~s!#Ckl~s!, ~A10!

Ckl~ t1t!52 i E
t

t1t

ds
l2

Avkv l

@uk
†~s!•ul

†~s!#

2 i E
t

t1t

ds(
q

2l2

Avqv l

@ul
†~s!•uq~s!#Ckq~s!

2 i E
t

t1t

ds(
q

2l2

Avqvk

@uk
†~s!•uq~s!#Cql~s!

2 i E
t

t1t

ds(
qe

2ḡ

Avq

@pge•uq~s!#Clq~s!Bke~s!

2 i(
e
E

t

t1t

ds
ḡ

Av l

@pge•ul
†~s!#Bke~s!. ~A11!

The transition amplitude of Eq.~A5! can be further simpli-
fied by setting the final EMF and atomic states to vacu
and ground, respectively. The transition amplitude is then

^Xn ,$0k%,0;t1tuexpF2
i

\Et

t1t

HdsG uX0 ,$0k%,0;t&

5E Dm@X~s!#expFA~ t1t!1E
t

t1t

ds
iM Ẋ2~s!

2\ G .

~A12!

The equations forB(s) andC(s), Eqs.~A10! and~A11!, are
Volterra-type integral equations. Their solutions are infin
Born series in orders of the coupling. Approximations in t
above coefficients are approximations in the basic vertex
O(g2)
06210
l

o

A~ t1t!52 i E
t

t1t

ds(
k

l2

vk
@uk

†@X~s!#•uk~X~s!!#

2E
t

t1t

dsE
t

s

dr(
ke

g2

vk
e2 i (vk1v0)(s2r )

3@uk„X~s!…•pge#@uk* „X~r !…•peg#. ~A13!

The transition amplitude with anO(g2) vertex is thus

^X f ;t1tuexpF2
i

\Et

t1t

HdsG uX i ;t&

5E DX expH i E
t

t1tFM Ẋ2

2\
2(

k

l2

vk
uk* „X~s!…•uk„X~s!…

1 i E
t

s

dr(
ke

g2

vk
e2 i (vk1v0)(s2r )@uk„X~s!…•pge#

3@uk* „X~r !…•peg#GdsJ . ~A14!

In the above transition amplitude the polarization mo
functions are dotted with the dipole vector of the atom. T
direction that the atom’s dipole vector takes will depend
the quantization direction chosen for the atom’s inter
state, but we are not free to choose a quantization direct
That is because the atom’s dipole is induced by the vacu
fluctuations, and is free to point in any direction. In th
light, choosing a particular direction seems invalid. Due
the form of the dipole-EM polarization function coupling
the induced atomic dipoles in different directions do not
terfere, and a set of excited states~and thus different quanti-
zation directions! can be summed over. Such a set of ind
pendent excited states will form a resolution of unity a
thus give a factor of unity contribution. The above transiti
amplitude can then be generalized to reflect the induced
pole:

^X f ;t1tuexpF2
i

\Et

t1t

HdsG uX i ;t&

5E DX expH i E
t

t1tFM Ẋ2

2\
2(

k

l2

vk
uk* „X~s!…•uk„X~s!…

1 ipz
2E

t

s

dr(
k

g2

vk
e2 i (vk1v0)(s2r )uk„X~s!…•uk* „X~r !…

1O~e4!GdsJ , ~A15!

with pz
25^gupz

2ug& ~the ground state expectation value ofpz
2).

APPENDIX B: MOMENTUM COMPUTATION

Putting in the spatial mode functions of Eq.~5! into the
above gives the semiclassical transition amplitude in
presence of a conducting wall:
1-10
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K@X f ;t1t,X i ;t#5S M

2p i\t D 3/2

expH 1
iM ~X f2X i !

2

2\t
2

2il2

L3 E
t

t1t

ds(
k

1

vk
1O~e4/M !1

il2

L3 Et

t1t

ds

3(
k

cos2u

vk
@e2ikz•Xc

0(s)1e22ikz•Xc
0(s)#2

g2pz
2

L3 E
t

t1t

dsE
t

s

dr(
k

1

vk
e2 i (vk1v0)(s2r )1 ikuu•[Xc

0(s)2Xc
0(r )]

3@eikz•[Xc
0(s)2Xc

0(r )]1e2 ikz•[Xc
0(s)2Xc

0(r )] #1
g2pz

2

L3 E
t

t1t

dsE
t

s

dr(
k

cos2u

vk

3e2 i (vk1v0)(s2r )1 ikuu•[Xc
0(s)2Xc

0(r )]@eikz•[Xc
0(s)1Xc

0(r )]1e2 ikz•[Xc
0(s)1Xc

0(r )] #J . ~B1!
d
t
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e
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e
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With the inclusion of the conducting boundary spatial mo
functions the sums over momentum space are now over
positive half space. Despite its complicated appearance
transition amplitude above is in a useful form for computi
the evolution of the momentum expectation value. The k
point is that the transition amplitude of Eq.~B1! is the prod-
uct of several exponentials of exponentials, and conta
only c numbers. Therefore, each exponential can be
panded out into a series, the summands of all the series
lected together, and the necessary integrations performe
the collected summand before redistributing the summ
and resuming each exponential; that is, the individual ex
nentials in Eq.~B1! can be expanded in terms such as
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The resulting collected summand is
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with definitions
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The momentum expectation value is then
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The momentum expectation value, the normalization fac
and other moments of the momentum operator can be c
puted with the generating function:
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from which
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The factorD($n,n8%) is the summation measure. The initi
wave function is taken to be a Gaussian centered at (R,P0)
with the standard deviations (s,1/s). This choice allows the
possibility that the atom is slowly moving toward the wa
Slowly, in this case, means adiabatically such that the ex
nal motion is much slower than internal time scales:
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In the limits M→` and s→0 such thatP0 /M→V and
s2M→` the generating function is
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Finally, in the limitsM→` ands→0 the momentum expectation value is
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@24# The author of Ref.@8# refers to this method as radiation rea
tion. We would advise against using this terminology beca
it is different from the usual meaning referring radiation rea
tion to the force exerted on a charged object due to its emi
radiation, which manifests as a classical effect.

@25# We would like to point out that we are using the minim
coupling form of the nonrelativistic QED Hamiltonian, not th
multipolar form. The two forms are related by a gauge tra
formation, with the ‘‘p•A’’ and ‘‘ A2’’ interaction terms appear-
ing in the minimal coupling form and the ‘‘d•E’’ and Röntgen
interaction terms appearing in the multipolar form@17#. A
common confusion between the two forms comes about
cause it is thetotal minimal coupling form and thetotal mul-
tipolar form which are equivalent within a gauge transform
tion. If any interaction terms are dropped in either form of t
Hamiltonian~e.g., theAI 2 or Röntgen terms!, then the equiva-
lence is broken. Dropping interaction terms can also ca
erroneous results in the computation of physical quanti
@18,19#. Desiring to avoid this pitfall, we have been careful
use thetotal minimal coupling form, without dropping any
interaction terms. There is, however, one issue with our us
the minimal coupling form. Only in the multipolar form are th
internal and external degrees of freedom exactly separa
That is especially important in bound systems of charged p
ticles in which the masses of the particles are commensur
However, since the bound system in our study is an atom,
which the nuclear mass dominates over the mass of the e
trons, the atomic and electronic degrees of freedom are w
separated and the use of the minimal coupling Hamiltonian
justified.

@26# Strictly speaking, such a comparison can not be made s
energy gradient approaches implicitly assume the atom to
stationary, although they are often assumed to be applicab
moving atoms often with no justification.
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