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Efficient measurements, purification, and bounds on the mutual information
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When a measurement is made on a quantum system in which classical information is encoded, the mea-
surement reduces the observers’ average Shannon entropy for the encoding ensemble. This reduction, being the
mutual information, is always non-negative. For efficient measurements the state is also purified; that is, on
average, the observers’ von Neumann entropy for the state of the system is also reduced by a non-negative
amount. Here we point out that by rewriting a bound derived by Hall@Phys. Rev. A55, 100 ~1997!#, which is
dual to the Holevo bound, one finds that for efficient measurements, the mutual information is bounded by the
reduction in the von Neumann entropy. We also show that this result, which provides a physical interpretation
for Hall’s bound, may be derived directly from the Schumacher-Westmoreland-Wootters theorem@Phys. Rev.
Lett. 76, 3452 ~1996!#. We discuss these bounds, and their relationship to another bound, valid for efficient
measurements on pure state ensembles, which involves the subentropy.

DOI: 10.1103/PhysRevA.68.054302 PACS number~s!: 03.67.2a, 03.65.Ta, 89.70.1c, 02.50.Tt
in
a
i

bs
t
r

th
ta

b
an
n
r

y

by

-
g

ef
of

in
w

,

re-
-
d.

be-
n,
ote
g
n.
d
the

c-

be
es-

ble
as

h a
hich

b-

it
In what follows we will be concerned with the situation
which one observer, the sender, transmits information to
other observer, the receiver, by encoding that information
a quantum system and having the receiver make a su
quent measurement on the system. It is useful at this poin
define all our terminology and notation regarding this info
mation transmission process.

To encode the information in the quantum system
sender uses an alphabet consisting of a set of possible s
and prepares the system in one of these statesr i , with prob-
ability Pi . The set of states along with their respective pro
abilities is referred to as the encoding or the ensemble
we will denote it by«[$Pi ,r i%. When the system has bee
prepared by the sender, the state-of-knowledge of the
ceiver regarding the system isr5( i Pir i . We will always
denote the dimension of the system used for encoding bN,
and we will refer tor as the ensemble state.

The measurement made by the receiver is described
set of operatorsAj such that( jAj

†Aj5I @1–3#. We will de-
note the measurement byM[$Aj%. Where convenient we
will denote the operatorsAj

†Aj asEj . For efficient measure
ments, with which we will be concerned in the followin
unless otherwise stated, each of the operatorsAj corresponds
to a measurement outcome, and the outcomes are ther
labeled byj. The final state of the system from the point
view of the observer, having obtained the outcomej, is r j8
5AjrAj

†/Qj , whereQj5Tr@Ejr# is the probability that out-
come j will result. For clarity we will denote probability
densities overi asP, and those overj asQ.

The amount of information transmitted to the receiver
the process of preparation and measurement, which we
refer to asDI i , is given by the mutual informationH(I :J)
between the preparation, indexed byi, and the outcomes
indexed byj @4#. Thus

DI i5H~ I :J!5H@Pi #2(
j

QjH@P~ i u j !#, ~1!

whereH is the Shannon entropy andP( i u j ) is the receiver’s
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probability density for the prepared state, after having
ceived outcomej. ~That is, the receiver’s final state-of
knowledge about which state has initially been prepare!
The mutual information is thus the average difference
tween the receiver’s initial information about the preparatio
and her final information after the measurement. We den
this by DI i to reflect this fact, with the subscript indicatin
that it constitutes information about the initial preparatio
The maximum ofDI i over all measurements, for a fixe
encoding, is referred to as the accessible information of
encoding@5#, and we will denote this byDI acc.

The celebrated Holevo bound provides a limit to the a
cessible information of an encoding@6–8#. The Holevo
bound is

DI i<S@r#2(
i

PiS@r i #[x~«!, ~2!

whereS@r# denotes the von Neumann entropy ofr.
One can also consider another problem, which may

viewed as being complementary to that of finding the acc
sible information; that of obtaining the maximum ofDI i
given that it is the receiver’s measurement and the ensem
stater which are fixed, and it is instead the sender which h
the ability to use any encoding consistent withr. Hall has
shown that it is possible to use Holevo’s bound, along wit
duality relation between encodings and measurements, w
he refers to as source duality, to derive a bound onDI i for
this case. Hall’s dual Holevo bound is@9#

DI i<S@r#2(
j

QjSFArEjAr

Qj
G . ~3!

The Holevo bound and~as we will show! Hall’s bound, may
both be derived directly from the more general bound o
tained by Schumacher, Westmoreland, and Wootters~SWW!
in 1996@10#. We state this theorem now, and will return to
later.
©2003 The American Physical Society02-1
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Theorem~Schumacher-Westmoreland-Wootters!. The in-
formation transmitted from sender to receiverDI i when the
sender uses the encoding«, and the receiver uses measur
mentM, is bounded such that

DI i<S@r#2(
i

PiS@r i #

2(
j

QjFS@r j8#2(
i

P~ i u j !S@r j i8 #G , ~4!

where all quantities are as defined above, and the quantitr j i8
is introduced, which is the final state that the receiverwould
have had,if she knew that the initial state wasr i . Thusr j i8
5Ajr iAj

†/Q( j u i ), whereQ( j u i ) is naturally the probability
density for the measurement outcomes, given that the in
state isr i . Because of the final term on the right-hand si
~RHS! of this inequality, to which we will return later, thi
bound is, in general, stronger than the Holevo bound.

While DI i quantifies the information which the observ
obtains about the initial preparation, there exists anot
quantity which can be said to characterize the aver
amount of information which the receiver obtains about
final state which she is left with after the measurem
@11,12#. We will denote this byDI f , the expression for which
is

DI f5S@r#2(
j

QjS@r j8#. ~5!

This is the average difference between the receiver’s in
von Neumann entropy of the quantum system, and her fi
von Neumann entropy. This quantity is useful when cons
ering quantum state preparation and, more generally, q
tum feedback control@11#.

While we have introducedDI i andDI f in terms of initial
states and final states, the former is not really any more c
nected with initial states than it is with final states, since
Shannon entropy of the ensemble after measurement is i
pendent of whether it is written in terms of the initial stat
or the final ones. A more fundamental difference betweenDI i
and DI f is that the former is the average change in the
servers Shannon entropy regarding the ensemble, whe
the latter is the average change in the observers von N
mann entropy regarding the overall state of the quantum
tem. That is,DI i5^DH(«)& andDI f5^DS@r(«)#&.

We now show that when the measurement and ensem
state are fixed,DI i is bounded byDI f ~or, alternatively,
^DH&<^DS&). This is readily done by showing that th
relationship is merely an alternative form for Hall’s boun
To do this one notes that if we use the polar decomposi
theorem@13# to write Aj5U jAEj , whereU j is unitary, and
defineBj5AEjAr, then the Hermitian operators which a
pear in Hall’s bound are

ArEjAr5Bj
†Bj , ~6!

while the final states are
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Qjr j85U jBjBj
†U j

† . ~7!

But Bj
†Bj and BjBj

† have the same eigenvalues@14#. Thus
since the von Neumann entropy is only a function of t
eigenvalues, we can replaceArEjAr with Qjr j8 in the origi-
nal expression for Hall’s bound, and the result is

DI i<DI f . ~8!

One can interpret this as saying that an observer cannot l
more about the classical information encoded in a quan
system than she learns about the state of the quantum sys
This provides a physical interpretation for Hall’s bound. Fu
ther, as was pointed out by Hall@9#, this bound can only be
saturated when all the operatorsEj commute.

The above result may also be obtained from the SW
theorem. To do this one first rewrites the second and fou
terms of the RHS of Eq.~4!, using the fact thatQj P( i u j )
5PiQ( j u i ):

2(
i

PiS@r i #1(
j

Qj(
i

P~ i u j !S@r j i8 #

52(
i

Pi†S@r i #2Q~ j u i !S@r i j8 #‡

52(
i

PiDI fi , ~9!

whereDI fi is the information that would have been obtain
about the final stateif the initial state had beenr i . This gives

DI i<S@r#2(
i

PiDI fi2(
j

QjS@r j8#. ~10!

Now, since Nielsen has shown thatDI f is always non-
negative@15# ~see also Ref.@12#!, the RHS is maximized
when theDI fi are zero for alli. Since this is true for all pure
state ensembles, the result is the bound given in Eq.~8!.

One consequence of Eq.~8! is that, if we choose an en
semble which has the maximal accessible information fo
fixed r, we can only obtain all this information if all the fina
states are pure. As SWW point out in their paper, meas
ments which leave the final state impure, leave some in
mation in the system. That is, if the final state is mixed,
general it depends on the initial ensemble, and as a re
subsequent measurements can obtain further informa
about the initial preparation, whereas this is not possible
the final state is pure.

For a givenr not all ensembles have an accessible inf
mation equal toS@r#. We may ask then, if it is possible fo
measurements which leave the final state impure to ext
all the accessible information fromtheseencodings. In fact,
this is only possible if the encoding satisfies special con
tions; in general, incomplete measurements will not even
tract the accessible information from an ensemble. To
this, consider the final states,r j8 , which result from the mea-
surement. Each of these consists of an ensemble,« j over the
statesr i u j , introduced above. In particular,
2-2
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r j85(
i

P~ i u j !r i u j . ~11!

Since these ensembles consist of states indexed byi, they
can, in general, be measured to obtain further informa
about the initial preparation. Since the accessible informa
is the maximal amount of information that can be obtain
abouti by making measurements, we have the inequality

DI i~«,M!<DI acc~«!2(
j

QjDI acc~« j !. ~12!

Thus, DI i(«,M) can only be equal toDI acc(«) if the
DI acc(« j ) are zero for allj. If r j8 is pure, thenDI acc(« j ) is
zero. If r j8 is not pure, then the accessible information of« j

is only zero if, for any givenj, ther i u j are thesamefor all i.
A little algebra shows that this is only true if

PAj
r i PAj

2a ik j PAj
rkPAj

50, ; i ,k ~13!

for some non-negative real numbersa ik j , where PAj
is a

projector onto the support of the operatorAj . This means
that for a measurement to extract all the accessible infor
tion, all the coding statesr j must be identical, up to a mul
tiplier, on the supports of the operatorsAj , separately for
every j.

For pure-state ensembles it is easy to see the effect o
conditions given by Eq.~13!. Consider merely thej for
which the correspondingAj has the support with the large
dimension, and call this dimensionMmax. Then the effect of
Eq. ~13! for this j alone is simply to limit the dimension o
the space from which the pure states in the ensemble ca
drawn toN2Mmax11. The accessible information of pure
state ensembles which satisfy Eq.~13! is therefore bounded
by ln(N2Mmax11).

As was noted by SWW, the expression in the squ
brackets in Eq.~4! is the Holevox quantity for the ensemble
« j which results from measurement outcomej. Thus their
bound may be written as

DI i<x@«#2(
j

Qjx@« j #. ~14!

Now, x@« j # is the Holevo bound on the information that th
receiver could extract when making a subsequent meas
ment after obtaining resultj. The SWW bound is therefore
very interesting because it shows that, if the initial ensem
« is chosen so that its accessible information is maximal@i.e.,
equal tox(«)], then the information obtained by an incom
plete measurement will be reduced by themaximalamount
of information which could be accessible from the final e
sembles« j , and not merely theactual information available
in these ensembles, which would imply the bound given
Eq. ~12!. In general, therefore, there is a gap between
information lacking in an incomplete measurement, and t
which can be recovered by subsequent measurements.
natural to ask therefore if this is true for all ensembles. T
is, whether the inequality in Eq.~12! can be strengthened b
replacing the final term on the RHS by the final term in t
RHS of Eq.~14!. However, this is not the case. As the fo
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per bound is obtained by replacing the final term in Eq.~12!
by the average of the subentropies of the final states@16#,
rather than the corresponding Holevo quantities.

Theorem. For an initial pure-state ensemble«, and a gen-
eral efficient measurementM, one has

DI i<DI acc@«#2(
j

QjQ@r j8#, ~15!

whereQ@•••# is the subentropy as defined by Jozsa, Ro
and Wootters~JRW! @16#, and this bound is tight in the sens
that there exists a pure-state ensemble which saturates
inequality.

Proof. If the initial ensemble« is pure, then the final
ensembles« j are also pure. As a result, the accessible inf
mation of each of these ensembles is bounded below
Q@r j8# @16#. We can therefore replace the final sum in E
~12! by ( jQjQ@r j8#, which gives Eq.~15!.

That the bound can be achieved can be shown by ca
lating DI i for the uniform ensemble over pure states, be
the unique distribution over pure states which is invaria
under unitary transformations. In this case the ensemble s
is given by

r5E uc&^cu duc&5
I

N
, ~16!

whereduc& represents integration over the unitarily inva
ant, or Haar, measure@17,18#. The accessible information i
given by Q@ I /N# @16#. The information obtained by a gen
eral measurement may be calculated directly:

DI i5H@Qj #2E H@Q~ j uuc&!]duc&

5 ln N1(
j

Tr@Ej #E ^cur j8uc& ln~^cur j8uc&!duc&

5Q@ I /N#2(
j

QjQ@r j8#, ~17!

where the integral in the second line is performed using
techniques in Ref.@16#. j

The above result reveals a special property of the unifo
ensemble: no matter what incomplete measurement is
formed on it, the information which is not retrieved by th
measurement can always be extracted by subsequent
surements. To see this we first use the polar decompos
theorem as before to writeAj5U jAEj . The final state is then
given by r j85U jEjU j

†/Tr@Ej #. It is convenient to write the
final ensemble as a distribution over unnormalized sta
uf̃ j&. Writing these states in terms of the final stater j8 , we
have

uf̃ j&5Ar j8uc j8&, ~18!

where uc j8&5U j uc&. The probability density of these state
in the final ensemble~with respect to the Haar measure! is
P(uf̃ j&)5^f̃ j uf̃ j&. Since the ensemble of statesuc& is uni-
2-3
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form, so is the ensemble of statesuc j8&. The final ensemble

« j5$P(uf̃ j&),uf̃ j&%, is referred to as a ‘‘distortion’’ of the
uniform ensemble by the stater j8 . Since JRW have shown
that such a distortion has an accessible information equa
Q@r j8#, all the information missing in the incomplete me
surement is accessible in the final ensembles« j .

While Hall’s bound is saturated for pure-state ensemb
which maximize the accessible information~and measure-
ments whose operators commute with the ensemble st!,
the bound given by Eq.~15! is saturated by pure-state e
sembles which minimize the accessible information. Sin
we have considered only efficient quantum measuremen
far, we complete our discussion by examining classical m
surements and inefficient quantum measurements. For
purpose it is best that we first introduce the latter. Ineffici
measurements are simply efficient measurements in w
the observer knows only that one of a subset of the poss
results was obtained. As a result, the observers final sta
knowledge is given by averaging over a subset of the st
r j8 . Thus, if we now label the measurement results by t
indicesk andl, then, in general, we can write the actual fin
states for an observer who makes an inefficient measurem
as r̃k5( lAklrAkl

† /Qk , whereQk is the probability that the

final state isr̃k .
o
0

-

f

-
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Now, classical measurements are described by the su
of quantum measurements in which all the encoding stater i

and all the measurement operatorsAj are mutually commut-
ing ~for a discussion, see, e.g., Ref.@18#!. As a result it is
easily shown that inefficient classical measurements
merely efficient classical measurements, and thus Eq.~8! re-
mains true for all classical measurements. In fact, if the
coding states are pure classical states~i.e., individual classi-
cal states rather than distributions!, then the bound is always
saturated with equality.

For inefficient quantum measurements, however, Eq.~8!
doesnot hold. The reason for this is that for inefficient me
surementsDI f can be negative~whereasDI i is always non-
negative!. An example of such a situation is one in which th
initial stater is not maximally mixed, and the observer pe
forms a von Neumann measurement in a basis unbiased
respect to the eigenbasis ofr. If the observer has no knowl
edge of the outcome, then her final state is maximally mix
Further, if one mixes~in the sense of Ref.@19#! this measure-
ment with one whose measurement operators commute
r, it is not hard to obtain a measurement in which bothDI i
andDI f are positive, but which violates Eq.~8!.

The author is grateful to Michael J. W. Hall for helpfu
discussions.
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