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Efficient measurements, purification, and bounds on the mutual information
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When a measurement is made on a quantum system in which classical information is encoded, the mea-
surement reduces the observers’ average Shannon entropy for the encoding ensemble. This reduction, being the
mutual information is always non-negative. For efficient measurements the state is also purified; that is, on
average, the observers’ von Neumann entropy for the state of the system is also reduced by a non-negative
amount. Here we point out that by rewriting a bound derived by HRillys. Rev. A65, 100(1997], which is
dual to the Holevo bound, one finds that for efficient measurements, the mutual information is bounded by the
reduction in the von Neumann entropy. We also show that this result, which provides a physical interpretation
for Hall’s bound, may be derived directly from the Schumacher-Westmoreland-Wootters thigtimgsn Rev.

Lett. 76, 3452(1996]. We discuss these bounds, and their relationship to another bound, valid for efficient
measurements on pure state ensembles, which involves the subentropy.
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In what follows we will be concerned with the situation in probability density for the prepared state, after having re-
which one observer, the sender, transmits information to aneeived outcomej. (That is, the receiver’s final state-of-
other observer, the receiver, by encoding that information irknowledge about which state has initially been prepared.
a quantum system and having the receiver make a subs&he mutual information is thus the average difference be-
guent measurement on the system. It is useful at this point taween the receiver’s initial information about the preparation,
define all our terminology and notation regarding this infor-and her final information after the measurement. We denote
mation transmission process. this by Al; to reflect this fact, with the subscript indicating

To encode the information in the quantum system thehat it constitutes information about the initial preparation.
sender uses an alphabet consisting of a set of possible statdie maximum ofAl; over all measurements, for a fixed
and prepares the system in one of these sfatewith prob-  encoding, is referred to as the accessible information of the
ability P;. The set of states along with their respective prob-encoding[5], and we will denote this byl .
abilities is referred to as the encoding or the ensemble and The celebrated Holevo bound provides a limit to the ac-
we will denote it bye={P;,p;}. When the system has been cessible information of an encodin@—8]. The Holevo
prepared by the sender, the state-of-knowledge of the résound is
ceiver regarding the system js=3;P;p;. We will always
denote the dimension of the system used for encodiniy,by
and we will refer top as the ensemble state. Ali$5[p]—§i: PiSlpil=x(e), @)

The measurement made by the receiver is described by a
set of operatorg\; such thathAJTA]:I [1-3]. We will de-
note the measurement b,?”lE{AJ‘}- Where convenient we  5ne can also consider another problem, which may be
will denote the operatord A ask; . For efficient measure- jewed as being complementary to that of finding the acces-
ments, with whlch we will be concerned in the following gjple information; that of obtaining the maximum @fl,
unless otherwise stated, each of the operapr=orresponds  given that it is the receiver’'s measurement and the ensemble
to a measurement outcome, and the outcomes are therefaigyie, which are fixed, and it is instead the sender which has
labeled byj. The final state of the system from the point of the apjlity to use any encoding consistent wjth Hall has
view of the observer, having obtained the outcomi p;  shown that it is possible to use Holevo’s bound, along with a
=AjpA/IQ;, whereQ;=Ti[E,p] is the probability that out- duality relation between encodings and measurements, which
come j will result. For clarity we will denote probability he refers to as source duality, to derive a boundAdnfor

densities over asP, and those ovey asQ. this case. Hall's dual Holevo bound [i8]
The amount of information transmitted to the receiver in
p j\/l—)

the process of preparation and measurement, which we will E
refer to asAl;, is given by the mutual informatioki (1:J) AlisS[p]—E QS| — —
between the preparation, indexed hyand the outcomes, ! Q;
indexed byj [4]. Thus

where S p] denotes the von Neumann entropy of

. 3

The Holevo bound an¢hs we will show Hall's bound, may
. both be derived directly from the more general bound ob-
Ali=H(1:J)=H[P;]- 2 QHIPID], (D) tained by Schumacher, Westmoreland, and Woot@YsW)
in 1996[10]. We state this theorem now, and will return to it
whereH is the Shannon entropy am{i|j) is the receiver’s later.
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Theorem(Schumacher-Westmoreland-Wootber§he in- ijjf =UijB]-TUJ-T. (7)
formation transmitted from sender to receiver; when the
sender uses the encodiag and the receiver uses measure-But B]TBJ- and B, BJT have the same eigenvalugk4]. Thus

ment M, is bounded such that since the von Neumann entropy is only a function of the
eigenvalues, we can replag@E;p with Q;p/ in the origi-
AIiSS[p]—Ei P.Sp;] nal expression for Hall's bound, and the result is
Ali=Al;. (8)
_; Q S[PJ',]_Ei P(i“)s[f’jli] ’ (4) One can interpret this as saying that an observer cannot learn

more about the classical information encoded in a quantum
system than she learns about the state of the quantum system.
This provides a physical interpretation for Hall's bound. Fur-
ther, as was pointed out by H&B], this bound can only be
saturated when all the operatdés commute.

where all quantities are as defined above, and the quaijitity
is introduced, which is the final state that the receiveuld
have hadjf she knew that the initial state was. ThUSp]-'i

_ T . . . oy
=AjpiAj/Q(j[1), whereQ(jli) is naturally the probability The above result may also be obtained from the SWwW

density for the measurement outcomes, given that the initiai]heorem. To do this one first rewrites the second and fourth
state isp; . Because qf the fina_l term on the right-hand S_ideterms of the RHS of Eq(4), using the fact thaQ, P(i|j)
(RHS) of this inequality, to which we will return later, this _ P,Q(j|i): J

i :

bound is, in general, stronger than the Holevo bound.
While Al; quantifies the information which the observer
obtains about the initial preparation, there exists another - PiSlpil+ > Q,-Z P(ilj)Spji]
quantity which can be said to characterize the average : J :
amount of information which the receiver obtains about the

final state which she is left with after the measurement =-> Pi[S[pil—Q(j[1) S pi;1]
[11,17. We will denote this byAl;, the expression for which !
is
=—2> PiAlg, 9)
I
A|f=S[p]—; QiSlp/1 (5)

whereAly; is the information that would have been obtained

about the final staté the initial state had beep) . This gives
This is the average difference between the receiver’s initial

von Neumann entropy of the quantum system, and her final

von Neumann entropy. This quantity is useful when consid- A|i$5[p]—2i PiAlfi_; Q;Sp;]- (10
ering quantum state preparation and, more generally, quan-
tum feedback contrdl11]. Now, since Nielsen has shown thatl; is always non-

While we have intrOducedli andAlf in terms of initial negative[lS] (See also Ref[lz])’ the RHS is maximized
states and final states, the former is not really any more cofyhen theAly; are zero for ali. Since this is true for all pure
nected with initial states than it is with final states, since thestate ensembles, the result is the bound given in(&q.
Shannon entropy of the ensemble after measurement is inde- one consequence of E(B) is that, if we choose an en-
pendent of whether it is written in terms of the initial StateSSemb|e which has the maximal accessible information for a
or the final ones. A more fundamental difference betw&n  fixed p, we can only obtain all this information if all the final
andAly is that the former is the average change in the obstates are pure. As SWW point out in their paper, measure-
servers Shannon entropy regarding the ensemble, where gfents which leave the final state impure, leave some infor-
the latter is the average change in the observers von Neynation in the system. That is, if the final state is mixed, in
mann entropy regarding the overall state of the quantum sygeneral it depends on the initial ensemble, and as a result

tem. That isAl;=(AH(e)) andAli=(AS[p(e)]). subsequent measurements can obtain further information
We now show that when the measurement and ensemblghout the initial preparation, whereas this is not possible if

state are fixedAl; is bounded byAl; (or, alternatively, the final state is pure.

(AH)=(AS)). This is readily done by showing that this  For a givenp not all ensembles have an accessible infor-
relationship is merely an alternative form for Hall's bound. mation equal to§[ p]. We may ask then, if it is possible for
To do this one notes that if we use the polar decompositiomeasurements which leave the final state impure to extract
theorem[13] to write A;=U;E;, whereU; is unitary, and  all the accessible information frotheseencodings. In fact,
defineB; = \E;\/p, then the Hermitian operators which ap- this is only possible if the encoding satisfies special condi-

pear in Hall's bound are tions; in general, incomplete measurements will not even ex-
tract the accessible information from an ensemble. To see
\/EEJ- \/Ez BJTBJ- , (6) this, consider the final statqu’, , which result from the mea-
surement. Each of these consists of an ensenablever the
while the final states are statespj;, introduced above. In particular,

054302-2



BRIEF REPORTS PHYSICAL REVIEW A8, 054302 (2003

lowing theorem shows, for pure-state ensembles a tight up-
p{ =2 P(ilj)pi; - (1D per bound is obtained by replacing the final term in B)
' by the average of the subentropies of the final sthi€s
Since these ensembles consist of states indexeq they rather than the corresponding Holevo quantities.
can, in general, be measured to obtain further information TheoremFor an initial pure-state ensembig and a gen-
about the initial preparation. Since the accessible informatiogral efficient measuremenitt, one has
is the maximal amount of information that can be obtained
abouti by making measurements, we have the inequality AIiSAIaCC[s]—Z QJ-Q[pJ-’], (15
]

Ali(s'M)gAlacc(s)_; QjAlacd#))- (12) whereQJ - - -] is the subentropy as defined by Jozsa, Robb,
and WoottergJRW) [16], and this bound is tight in the sense
Thus, Al,(e, M) can only be equal taAl,.{¢) if the that there exists a pure-state ensemble which saturates the
Al,.{)) are zero for allj. If p| is pure, thenAl,{&;) is  inequality.

zero. If p/ is not pure, then the accessible informatioregf Proof. If the initial ensemblee is pure, then the final
is only zero if, for any giver), the p;|; are thesamefor all i. ensgmble$j are also pure. As a result,_ the accessible infor-
A little algebra shows that this is only true if mation of each of these ensembles is bounded below by

Qlp;] [16]. We can therefore replace the final sum in Eq.

(12) by =;Q;Q[ p; ], which gives Eq(15).

for some non-negative real numbets;, where P, is a _That the bound can be achieved can be shown by ca_lcu-
_ e lating Al; for the uniform ensemble over pure states, being

projector onto the support of the operawy. This means o nique distribution over pure states which is invariant

that for a measurement to extract all the accessible informaynger ynitary transformations. In this case the ensemble state

PAjpiPAj_aiijAijPAJ-:Oa Vi,k (13

tion, all the coding stateg; must be identical, up to a mul- ;o given by
tiplier, on the supports of the operatofs, separately for
i |
everyj. . _!
For pure-state ensembles it is easy to see the effect of the p_f )l dlv)= N’ (16)

conditions given by Eq(13). Consider merely thg for

which the corresponding; has the support with the largest whered| ) represents integration over the unitarily invari-

dimension, and call this dimensio .. Then the effect of ant, or Haar, measufd 7,18. The accessible information is

Eq. (13) for this j alone is simply to limit the dimension of given by Q[I/N] [16]. The information obtained by a gen-

the space from which the pure states in the ensemble can legal measurement may be calculated directly:

drawn toN— M+ 1. The accessible information of pure-

state ensembles which satisfy EG3) is therefore bounded Aly= H[Qj]—j HLQ(j || #)]1d| )

by IN(N—Mpat 1).

As was noted by SWW, the expression in the square

brackets in Eq(4) is the Holevoy quantity for the ensemble =InN+2> TF[Ej]J (Ylpi lvIn((lp]|¥))d|¥)

gj which results from measurement outcomerhus their )

bound may be written as

=Q[I/N]- 2 QQlpj], (17

Ali=xle]- 2 Qixle;l. (14) ‘
: where the integral in the second line is performed using the

Now, x[&;] is the Holevo bound on the information that the techniques in Ref.16]. . n

receiver could extract when making a subsequent measure- The above result reveals a special property of the uniform

ment after obtaining resujt The SWW bound is therefore €nsemble: no matter what incomplete measurement is per-

very interesting because it shows that, if the initial ensembldormed on it, the information which is not retrieved by the

e is chosen so that its accessible information is maxiinel, ~Measurement can always be extracted by subsequent mea-

equal toy(&)], then the information obtained by an incom- Surements. To see this we first use the polar decomposition

plete measurement will be reduced by thaximalamount theorem as before to Writ/é,-:Uj\/E—j. The final state is then

of information which could be accessible from the final en-given by p/ =U;E;UJ/TI[E;]. It is convenient to write the

sembles;, and not merely thactualinformation available final ensemble as a distribution over unnormalized states,

in these ensembles, which would imply the bound given in|;5j>_ Writing these states in terms of the final Stﬂ}'e we

Eqg. (12). In general, therefore, there is a gap between théave

information lacking in an incomplete measurement, and that -

which can be recovered by subsequent measurements. It is |¢j>=\/P_j'| o), (18

natural to ask therefore if this is true for all ensembles. That - _

is, whether the inequality in Eq12) can be strengthened by Where|¢j)=U;|). The probability density of these states

replacing the final term on the RHS by the final term in thein the final ensembléwith respect to the Haar measuiie

RHS of Eq.(14). However, this is not the case. As the fol- P(|$;))=(#;|¢;). Since the ensemble of statigs) is uni-
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form, so is the ensemble of statef ). The final ensemble, Now, classical measurements are described by the subset

&;={P(|$:)).| %)}, is referred to as a “distortion” of the ~Of quantum measurements in which all the encoding sfates
uniform ensemble by the statg . Since JRW have shown and all the measurement operatéysare mutually commut-
that such a distortion has an accessible information equal t#§9 (for a discussion, see, e.g., R¢L8]). As a result it is
Q[pjf], all the information missing in the incomplete mea- easily shc_)vyn that |r_1eff|C|ent classical measurements are
surement is accessible in the final ensemiles merely efficient classmgl measurements, and thus(fﬂ_iqe—
While Hall's bound is saturated for pure-state ensemble&n@ins true for all classical measurements. In fact, if the en-
which maximize the accessible informatisand measure- Ccoding states are pure classical states, individual classi-
ments whose operators commute with the ensemble) ,statecal states rather thar_l distributionthen the bound is always
the bound given by Eq(15) is saturated by pure-state en- Saturated with equality.
sembles which minimize the accessible information. Since For inefficient quantum measurements, however, (8.
we have considered only efficient quantum measurements dpesnot hold. The reason fc_>r this is that fo_r inefficient mea-
far, we complete our discussion by examining classical meaSurementsil; can be negativéwhereasAl; is always non-
surements and inefficient quantum measurements. For thiegative. An example of such a situation is one in which the
purpose it is best that we first introduce the latter. Inefficieninitial statep is not maximally mixed, and the observer per-
measurements are simply efficient measurements in whiclprms @ von Neumann measurement in a basis unbiased with
the observer knows only that one of a subset of the possibleeSpect to the eigenbasis of If the observer has no knowl-
results was obtained. As a result, the observers final state §d9€ of the outcome, then her final state is maximally mixed.
knowledge is given by averaging over a subset of the statgsurther, if one mixesin the sense of Ref19]) this measure-
p/ . Thus, if we now label the measurement results by twgMent with one whose measurement operators commute with
indicesk andl, then, in general, we can write the actual final 2+ it iS not hard to obtain a measurement in which bath
states for an observer who makes an inefficient measuremeffid Al are positive, but which violates E¢g).

as;kzzlAklfAIl/ka whereQy is the probability that the  The author is grateful to Michael J. W. Hall for helpful
final state ispy. discussions.
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