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Preparation and control of a cavity-field state through an atom-driven-field interaction:
Towards long-lived mesoscopic states
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The preparation of mesoscopic states of radiation and matter fields through atom-field interactions has been
achieved in recent years and employed for a range of striking applications in quantum optics. Here we present
a technique for the preparation and control of a cavity mode which, in addition to interacting with a two-level
atom, is simultaneously submitted to linear and parametric amplification processes. The role of the
amplification-controlling fields in the achievement of real mesoscopic states is to produce highly squeezed field
states and, consequently, to increase Kothtthe distance in phase space between the components of the
prepared superpositions afig) the mean photon number of such superpositions. When the squeezed super-
position states are submitted to the action of similarly squeezed reservoirs, we demonstrate that under specific
conditions the decoherence time of the states becomes independent of both the distance in phase space between
their components and their mean photon number. An explanation is presented to support this remarkable result,
together with a discussion of the experimental implementation of our proposal. We also show how to produce
number states with fidelities higher than those derived as circular states.
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[. INTRODUCTION and trapped ions, the preparationreferencetraveling-field
states needed to measure the propertiesigrial traveling
The successful manipulation of atom-field interactions infields [10] has been suggested based on optical lin&af
cavity quantum electrodynami¢®ED) and trapped ions is a and nonlinear devicekl2]. The techniques developed over
great achievement of present-day physics which has encouiecent decades for the processes of parametric up- and down-
aged outstanding theoretical proposals and experiment&Pnversion have enabled great advances in the domain of
implementations. As higl cavities[1] and ionic trapg2] traveling waves. The production _of true entanglgment by
have permitted the preparation of coherent-state superpodiP€-Il noncollinear phase matching in parametric down-
tions of the form|W)=(|ae'®)+|ae '?))/\2, with mean conversion was employed to demonstrate a violation of
. Bell's inequality with two-photon fringe visibilities in excess
numbers of photon and phonon quahté?~ 10, mesoscopic

. . X f 97%[13]. Three-photon Greenberger-Horne-Zeilinger en-
guantum coherence has been investigated. In the cavity QE nglement has also been obsenjad], and it is worth

domain, the progressive decoherence of mesoscopic SUPeRGtessing that experimental implementations of teleportation
sitions involving radiation fields with classically distinct pave been achieved with traveling-wave techniquids, as
phases was observed through atom-field interadtidrand  these provide the facilities for preparation of the state to be
the reversible decoherence of such a mesoscopic-field stafgleported, for the quantum channel, and for the accomplish-
has been conjecturd@]. Moreover, the generation and de- ment of the required Bell-type measurements. High-fidelity
tection of Fock states of the radiation field was demonstrategeleportation of superpositionl6] and entanglements of
experimentally{4], and the Rabi oscillation of circular Ryd- running-wave field statgsl7] have also been presented.
berg atoms in the vacuum and in small coherent fields in a As the technigues for generating nonclassical superposi-
high-Q cavity was measurefb], revealing the quantum na- tion states have been improved, attention has turned to a
ture of the radiation field6]. major problem that must be overcome in the contexts of
Parallel to the achievements in cavity QED, the masteryquantum communicatiofiL8] and computationl19]: the de-
of techniques to manipulate electronic and motional states afoherence of quantum states due to the inevitable coupling of
trapped ions with classical fields has enabled the control othe quantum systems to their environmg2fd—22 and even
fundamental quantum phenomena at a level that seems thie to fluctuation in the interaction parameters required to
herald a new phase in technology. The operation of a two-biprepare a coherent superposit{@3,24]. Schemes for inhib-
controlledNOT quantum logic gate was demonstrated byiting decoherence by engineering the reservoir have been de-
storing the two quantum bits in the internal and externalveloped for trapped iong25,26 and atomic two-level sys-
degrees of freedom of a single trapped [@1. A “Schro-  tems [27,28. Measurements of the decoherence of
dinger cat” superposition of spatially separated coherent harsuperposed motional states of a trapped ion coupled to an
monic states was generatg], as well as other nonclassical engineered reservoir, where the coupling and the state of the
states at the single-atom lej@]. The reconstruction of the environment are controllablg29], have also been reported.
density matrices and Wigner functions of various quantunirhe possibility of controlling the decoherence mechanism is
states of motion of a harmonically bound ion was also recrucial to the preparation of the long-lived macroscopic su-
ported[9]. perposition states and entanglements of macroscopic objects
In addition to the atom-field interaction in cavity QED required for the implementation of the potential applications
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FIG. 1. Sketch of the experimental setup for atom—driven-field interaction.

of quantum mechanics in communication and computatiordistance in phase space between the centers of the quasi-
[30]. Beyond the efforts being made to engineer mesoscopiprobability distribution of the individual states composing
superpositions and entanglements with photon and phonaihe prepared superposition. The decoherence time depends
guanta, referred to above, the possibility of engineering sucbnly on the excitation of the initial coherent state injected
mesoscopic states with massive objects has been and is beiimgo the cavity previous to the preparation of the squeezed
pursued. Recently, correlation®n averagg of collective  superposition. This remarkable result follows when the direc-
spin states of two macroscopic objects, each consisting of ton of squeezing of the superposition state is perpendicular
cesium gas sample with about’#@toms, was demonstrated to that of the reservoir modes. Under this condition, the en-
experimentally. In Ref[31] an experimental scenario de- tanglement between the prepared state and the modes of the
signed to reduce dramatically the decoherence rate of a quareservoir is minimized and so the noise injected from the
tum superposition of Bose-Einstein condensates is outlinedeservoir into the prepared cavity mode is minimal, making it
This is also our concern in the present work, focusing on thex long-lived superposition state.

preparation of long-lived states of the radiation field in cavity ~We finally stress that a scheme has been presented in Ref.
QED. [36] for the implementation of parametric amplification of an

Methods for manipulating cavity-field states through at-arbitrary radiation-field state previously prepared in a Hgh-
oms driven by external fieldg32] constitute an important cavity. As squeezed light is mainly supplied by nonlinear
means of attaining arbitrary control of a quantum field. Al- optical media as running waveéthrough backward37] or
though the time evolution of a field state under linear andorward [38] four-wave mixing and parametric down-
parametric amplifications has been a major concern in quarconversion 39]), standing squeezed fields in higheavities
tum optics for generating squeezed states and investigatiny ion traps can be generated through atom-field interaction
their propertied33,34], classical driving fields have barely [40]. Although considerable space has been devoted in the
been considered for quantum states engineering purposdgerature to the squeezing process in the Jaynes-Cumming
Here we present a proposal for achieving long-lived mesosmodel, the issue of squeezing any desired prepared cavity-
copic superposition states of the radiation field in cavityfield state|¥), i.e., the accomplishment of the operation
QED that relies on two basic requirements: parametric amS({)| W) in cavity QED (¢ standing for a set of group pa-
plification and an engineered squeezed-vacuum reservoir feametery has not been addressed. Engineering such an op-
cavity-field states(we note that the required engineered eration was the subject of R4f36]; it is achieved through
reservoir—resulting from the standard vacuum for cavitythe dispersive interactions of a three-level atom simulta-
modes plus additional interactions—must be an optimurmeously with a classical driving field and a cavity mode
squeezed-vacuum reseryoiln addition, our technique can whose prepared state we wish to squeeze. In short, the dis-
be employed to prepare number states with fidelities highepersive interaction of the cavity mode with a driven atom
than those generated as circular stdg&5. produces the desired operatiS()|¥). Since linear ampli-

Our proposal considers the dispersive interaction of dication is easily accomplished in cavity QER21,42, the
two-level atom with a cavity field which is simultaneously scheme in Refl36] contributes crucially for the experimen-
under amplification processes. Parametric amplification isal feasibility of the present proposal for preparation and con-
employed to achieve a high degree of squeezing and excitarol of a long-lived cavity-field state through atom—driving—
tion of what we actually want to be a mesoscopic superpofield interaction.
sition state. We show that the prepared squeezed-mesoscopic
state, under the action _of a similarly squee_zed reservoir, ex- Il. ATOM —DRIVEN-FIELD INTERACTION
hibits a decoherence time orders of magnitude longer than
those of nonsqueezed cavity-field states subjected to the in- The proposed configuration for engineering driven-cavity-
fluence of(i) a squeezed reservoir arfil) a nonsqueezed field states, depicted in Fig. 1, consists of a two-level Ryd-
reservoir. In fact, the computed decoherence time turns out tberg atomA which crosses a Ramsey-type arrangement, i.e.,
be independent of both the average photon number and treehighQ micromaser cavityC located between two Ramsey
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zonesR; andR,. After interacting with this arrangement, the
atom is counted by detection chamb&g andD, (for ion-
izing the excited|1) and ground|0) states, respectively

projecting the cavity field in the desired state. The transition

of the two-level atomA from excited to ground state is far

from resonant with the cavity mode frequency, allowing a
dispersive atom-field interaction to occur. In addition to the

dispersive interaction with the two-level atom, the cavity

mode is simultaneously submitted to linear and parametri@

amplifications(both represented in Fig. 1 by the souf)eso
that the Hamiltonian of our modéfor 2=1) is given by

@

H=wa'at o+ ya'as,+ Hams s
5 9z X z amplification:

where o,=|1)(1|—]0)(0|, a' and a are, respectively, the
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d
ia|q)e(t)>:Hf|q)e(t)>’ (4)

He=obata+{(ha'"+ % (ha +£(ha+ & (ta,
©)

with w,(1)=[w—(—1)xO(t—t;)O(t,—t)]. Note that the
roblem has been reduced to that of a cavity field, under
parametric and linear pumping, whose frequeacig shifted
by — x (+x) when interacting with the atomic state(Q),
during the time intervak=t,—t;.

Solving Eg.(4) we obtain, from an initial state of the
cavity mode at time;, |®,(t;)), the evolved state

| D (1)) =Up(t,1)[D(t))), (6)

creation and annihilation operators for the cavity mode ofwhich defines the evolution operator we are looking for. Evi-

frequencyw which lies between the two atomic energy lev-
els, which are separated hy,, such that the detuning
=|w—wy| is large enough to enable only virtual transitions
to occur between the staté®) and|1). The atom-field cou-
pling parameter inside the cavity js= 0%/ 8, where(Q is the

dently, the evolution operatofs,(t,,ty) and U,(t,t,), giv-

ing the evolution of the state vector of the radiation field
while the atom is outside the cavity, do not depend on the
state of the two-level atom, the labélbeing unnecessary.
However, the operato,(t,,t;), which gives the evolution

Rabi frequency. The expression for the atom-field dispersiv®f the cavity-field state during its interaction with the atom,

interaction on the right-hand sid®HS) of Eq. (1) is valid
under the assumption th&?n< §°+ y?, wheren is a char-
acteristic photon number angis the spontaneous-emission
rate[43]. We suppose, for simplicity, that the atom-field cou-
pling is turned on(off) suddenly at the instant the atom en-
ters(leaves the cavity regionsuch thaty=0 when the atom
is outside the cavity.

We consider the atom, prepared at titgeby the Ramsey
zoneR; in a|0),|1) superposition, to reac at timet, and

leave it att,. The linear and parametric pumpings are as-

sumed to be turned on also fgtand turned off at a conve-
nient timet=t,. Finally, the action of the classical amplifi-

does depend on the atomic state and differs from the opera-
tors U(ty,tg) and U(t,t,) only by the shifted frequency

Ill. SOLVING THE SCHRO DINGER EQUATION VIA
TIME-DEPENDENT INVARIANTS

The Hamiltonian in Eq(5) has been investigated in the
search for squeezed states of the radiation field. Group-
theory methodg§44,47 and TD invariantg45] have been
used in attempts to solve this TD quadratic Hamiltonian,
which may represent a charged particle subjected to a har-

cation mechanism on the cavity mode is described by th&0nic motion, immersed in a TD uniform magnetic field, a

Hamiltonian

Hampiification={(Dal +{* (Ha + &t)aT+ & (Ha, (2)

where the time-dependefitD) functions {(t) and &(t) al-

single-mode photon field traveling through a squeezing me-
dium or, as in the present situation, a cavity mode with
shifted frequency under linear and parametric amplification.
In the present work, we make use of the TD invariants of
Lewis and Riesenfel{#48] to solve the Schidinger equation
(4), following the reasoning in Ref45]: instead of propos-

low the parametric and linear amplifications, respectively. Iting an invariant associated with the Hamiltoni&, we first
is well understood that for specific values of these TD func{erform a unitary transformation on E@}) in order to re-

tions the eigenstates of the Sctimger equation may

duce it to a form which already has a known associated in-

squeeze the variance in one of the cavity mode’s two quadrasriant. Thus, under a unitary transformation represented by

ture phase$33,34,44—-46

the operatorS(e,) (e, standing for a set of TD group pa-

The Schrdinger state vector associated with Hamiltonianrameters which may also depend on the atomic dtpteve

(1) can be written using

W (1)) =€ 0?|0)|Do(1)) +e o 1) |y (1)),  (3)
where |® (1)) = [ (d?a/m) A(a,t)|a), €=0,1, the com-
plex quantity o« standing for the eigenvalues & and
A¢(a,t)=(a,€|¥(t)) are the expansion coefficients for
| ,(t)) in the coherent-state badisy)}. Using the orthogo-
nality of the atomic states and Ed4) and(3) we obtain the
uncoupled TD Schidinger equations:

obtain from Eq.(4)

d
i1 PE(D) =HEPAD)), 7

where the transformed Hamiltonian and wave vector are
given by

dST(se)

H=S'(e ) H¢S(e0) +i—;

S(e¢), (8a)
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|D3(1))=ST(e0)| P (1)) (8b) @o(1)=—2w,(t)— 4x(t)cot 2r ,(t)] cos 7(t) — @,(1)].
13

In what follows we employ two theorems to obtain the
solution of the TD Schidinger equatior(4): (a) a theorem It is evident from these relations that the TD group param-
expounded if45] asserts that if ,(t) is an invariant associ- eterse(t), defining the unitary operatd(e,), depend on
ated with H, (i.e., dl (t)/dt=dl,/at+i[H,,1,(t)]=0), the atomic state, as assumed from the beginning. We fi-
then the transformed operatti(t) =S'(g,)1 (1) S(&,) will nally mention that we have associated the unitary transfor-
be an invariant associated witt>; (b) on the other hand, mation with the squeeze operator since the parametric ampli-
from Lewis and Riesenfeld’s well-known theoreimg], it ficayion.described by Hamiltoniaf®2) actually squeezes the
follows that a solution of the Schdinger equation is an cavity-field state. In fact, the TD parametft) allowing the
eigenstate of the Hermitian invariaht(t) multiplied by a  Parametric amplification in Eq(2) is connected to the
TD phase factor. It follows frona) and(b) that the solutions ~ Squeeze parametefis;(t), ¢.(t)) as expressed by Eqd.38

of Eq. (4) are given by and(13b).
D¢ m(1)=S(e0)| DT (1)) B. The evolution operators
=S(e )eiqb? ®m,t) m=0,1,2 ) With the Hamiltonian(11) at hand we return to the solu-
- € m 1L/SH =V, 1, ey

tion of the Schrdinger equatior(7). The application of the

where|m,t)s is the eigenstate of the invariapt9] and the invariant method leads to the wave vectde]

Lewis and Riesenfeld pha$48] obeys |(I)?’m(t)>:ei¢€‘m(t)D[0€(t)]|m>, m=012...,
(14

J
i;—Hf)lm,t’)s. (10 where |m) is the number state anB[ 6,(t)]=exd 6,(t)a’
—d; (t)a] is the displacement operatak(t) being a solution
It is straightforward to verify that under the unitary transfor- to the equation 6,(t) =Q,(t) 6,(t) + A(t), given by
mation carried out by the operat®(e,) the TD phase is
invariant: ¢ (t) = é¢ m(t). ag(t)zeiﬁf(t)( ot J‘t

S t
D m(t)= ft dt’ (m,t’|

Ag(t’)eiﬁf“')dt’), (15)

A. The transformed Hamiltonian ) . .
, ) . . with Be(t)= Ji Q.(t")dt’. We note thatd,(ty) describes
Next, we associate the unitary transformation with the, .~ . . . .

- I h th the initial cavity-field state which will be assumed to be a
squeeze operatolS(sg)—exp{z(isf?t) —eca)l, where the  conerent stathr), the subscript being purely formal. From
complex TD functione ,=r(t)e'**” includes the squeeze the supstitution of Hamiltoniafll) into the Lewis and Rie-
parametersr (t) and ¢@.(t). r,(t) is associated with a ggnfeld phase, defined in E@.0), we obtain
squeeze factor, while(t) defines the squeezing direction in
phase space. Moreover, the TD parameters for the parametric t R S )
and linear amplification processes are written &) bem(t)=— J MmO (1) + S [AZ () Oe(1")
= k(t)e' 7V and &(t) = x(t)e'"®, respectively. The squeeze !

parameters (r,(t),¢.(t)), the amplification amplitudes

(k(t),%(t)), and frequencieg#(t),w(t)) are all real TD +A ()07 (1)]+ Ve(t')]dt'- (16)
functions. With the above assumptions and after a lengthy

calculation, the transformed Hamiltonian becomes Therefore, the solutions of the Schiinger equatior(4),

which form a complete set, can be written

D¢ m(D)=Fe (D]|PF (D)=Ue(t)|m), (17

Hi=Q (t)ata+ A (H)a + A% (Ha+F(t), (11

provided that its TD coefficients satisfy
where

3 U()=Y ()& () ID[O(IR[Q()] (18

Ag(t)=&(t) coshr (1) + £* (t)e'c® sinhr (1), is a unitary operator containing, in addition to the squeezed
(12b  and the displacement operators, a global phase factor

Q(t)=w(t)+2x(t) tanhr ,(t) cos] 7(t) — z,og(t)],(12

F(’(t)zK(t) tanhr((t) COS[ n(t)_¢((t)]v (12(:) Yg(t)=EXp[ —i ftt [Rq[\?(t/)eg(t/)]‘f'F((t/)]dt,] .

while the squeeze parametegt) ande,(t) are determined (19)
by solving the coupled differential equations

. The rotation operator in phase space, derived from the TD
re(t)=2k(t) sin[ 7(t) — @, (1)], (13a Lewis and Riesenfeld phase factor, is given by
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R[Qg(t)]=exq—iaTa,8e(t)] (20 this time interval, the cavity mode continues to be pumped
and the complete state of the system, evolving under the
Hence, for the solution of Schdinger equation{4), we find  operatorU(t,t,), reads

- |W(t))=1U(t,t,)[ “0"2co|0) Ug(t,ty)
D)= 2 Cpl® (D) B i
m=0 +e 10’20 | 1)Uy (to,t1)] Uty to)|@).  (26)

—U,(t) E Copm) Next, the atom crosses the Ramsey z&3e where aw/2
Oy Tm pulse is applied, leading the atom-field system to the en-
N tangled state
=U (DU (1) D (1)), (21)
1 : _
which finally defines the evolution operators |W(t))= 7{[—6""0“200U0(t,t0)+e*"”ot’zclul(t,to)]|0>
2
I(t.t:)= T(t: _ .
L((trtl) U{’(t)U(’(tl) (22) +[elw0t/200U0(t,tO)+e*lwot/ZClUl(t,tO)“1>}|a,>,
We note that for the initial timeR[,(0)]=R[0] (27

=1 D[6,(0)]=D[a], S&,(0)]=50]=1, and Y(0) _
=1. where we have defined the operators

IV. EVOLUTION OF THE ATOM-FIELD STATE Ue(tto) = Tt t2) Ue(tz, 1) Ut o). (28)

Let us assume that the micromaser cavity is prepared dtinally, measurement of the atomic state projects the cavity
time to in a single-mode coherent stdie) by a monochro- field into the “Schralinger cat”-like state
matic source, such that witm=0 in Eq. (17) we have gt Ciont)2
0,(to)=a. Classical microwave fields are injected into the |¥(D)=N=[*e" 0 coUg(t,tg) +e™'0% e, Uy (t,tg) ]| ),
cavity and the amplitudes of these fields can be adjusted by (29
varying the Injection time. As mentioned above, the IlnearW ere the signt or — occurs if the atom is detected in state
and parametric pumping are supposed to be turned on, also

3 or |0), respectively, andV.. refers to the normalization
to, the same time the atom is prepared by the Ramsey zo ! y = .
R, in the superposition statey|0)+ c,|1). The combined &ctors. From Eq(29) it follows that, after measuring the

. A . atomic level used to generate the superposition state of the
atom-field state at the initial timg is, from Eq.(3), radiation field, it is possible to control this superposition by
_ [ai®oto/2 —iwgto/2 adjusting the TD amplification parametetét), »(t), 7(t),
[ (t0)) = (e300 + e 0 ey )] o). (23 ZHSHO
In fact, with A,(8,to) =(5,€](co|0)+cy|1))|a) it follows Itis worth noting that expressidi29) can be manipulated,
immediately  that  |®(to))= J (d2B/7) A,(B.to)| B) employing Egs(28), (22), and Eq.(18), to give the simple

—c/a). form
The evolution of the initial statg¥ (to)) to the time the _ {ont/2
atom reaches the cavity reads W (1) = N[ “0eoY o(t) S eo(t)]] 6o(1)
+e 710, Y () Feq(1)]]61(1))]
W (t))=U(ty,to)| ¥ (to)). (24) ) e ! !
Evidently, the evolution operator$/(t,,ty) and U(t,t,), =N. 2, ci(t)S[e,(t)ID[6,()]]0)
which govern the dynamics of the cavity-field state while the =0
atom is outside the cavity, do not depend on the state of the 1
two-level atom. On the othgr hand, durin.g the time in.terval =N, Co(t)S e (1)]]6,(1)), (30)
T=t,—t; the atom spends inside the cavity the evolution of =0

the entire system is dictated by the operator(t,,t,) .

=U,(t,)Ul(t,). This depends on the atomic stateand  Where c(t)==(+)‘(") “o"’c,Y (t) and the amplitude
differs from the operators(t, ,to) andU(t,t,) by the shifted  Of the coherent statg(t)) follows from Eq.(15).
frequencyw,(t). Therefore, at the time the atom leaves the

cavity, the state of the atom-field system is given by PassingN atoms through the cavity

— [ @i ogta/2 , Let us proceed to the construction of a cavity-field state
[ (1)) =[€0"2co] 0) Uo(tz,ta) by passingptwo or more atoms through cavitylt isyeasy to
+ e 1@0t22c | 1)Uy (t,,t1)] Uty to)|@). (25)  conclude from Eq(29) that, after the passage &f atoms
through cavityC, each atom prepared in the staig|0)
After crossing the cavity, the atom evolves freely fragn  +c;,|1) by Ry, k=1,... N, we obtain the cavity-field
until the time it reaches the second Ramsey ZepeDuring  state
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N , Defining  w="(t), o(t)=—2f(t)+g(t), and #(t)=

I‘I'N(t)>=f\/¢kf=[l [=€'“0%co,Uk(t k. ti k) —2f(t)+h(t), Egs.(13a and(13b become
retoog U (ttollad, (3D ()=—2x(t) sin[g(t) ~h(1)], (333
wheret; , stands for the time when theh atom is prepared g(t)= —4x(t)cott{2r(t)] cos[g(t) ~h(1)].  (33b)

by R; andts, stands for the time when thkth atom is ) . . .
detected, assumed to be the same; gs,. Therefore, we Assuming thah(t) =h is a constant, the time dependence is
obtain b eliminated from Eqs(333@ and(33b) and we are left with the

first-order differential equation
Ue (ki) = Ut k=t k1, t2k) dr 1
X Ug(tap trp) Ulta gt k=t k-1)- dg Etanh(Zr) tan(g—h). (34

After some manipulation and using E@O), the state(31)  After integrating Eq(34) we obtain the constant of motion
can be simplified to the form

) N cos¢(t) = n(t)]sinh[2r(H)]=C, (39
|WN(t)>:Nt€ Ee L, kl;[l Ce(DS[er,, ¢ (D] with C; depending on the initial values(t;), ¢(t;), and
oo 7(t;), wherei=0,2. Thus, the solutions of Eq&33a and
X[0¢,, . e (D) (33b), which apply under the condition codr(t)]>1
+C?, are given by
2N
= N2 S, CUOSIED]9(D), (32 costi2r(t)]
- ha(t)
cos :
=1+C?cosh coshl(—I +u(t,t) |,
where we have replaced:?r =1 DY Ek:lZN, ie., ' Vi+C? '
Ex®)=re, . e Oexdie ¢ (0] and () (363
=0, .01
)= 7(t)]= G 36b
V. ANALYTICAL SOLUTIONS OF THE CHARACTERISTIC cose(t)—n(V)]= JeosR2r(t)—1'’ (36

EQUATIONS (13A) AND (13B)

In this section we present some specific solutions of thé{\'here
characteristic equationd 33 and (13b), following a more .
detailed treatment ip45]. We investigate the situation where u(t,t;) =4 f k(t)dt. (37)
the cavity mode «) is resonant with the driving classical i
fields during the time the atom is out of the cavity: frogrto
t, and fromt, to t. The parametric amplifier is assumed to Note that fort;=0 the cosh® term in Eq.(363 is null, and
operate in a degenerate mode in which #gnal and the the signals= become irrelevant. However, fdr=t, we
idler frequencies coincide, producing a single-mode drivingchoose the sign that givegt)=0.
field. In the resonant regime this single-mode field has the
same frequencw as the cavity mode so thaf(t) = — 2wt B. Dispersive amplification

[33]. For the resonant linear amplifier it follows thai(t) . . lificati ing the ti h
= — wt. However, during the time that the atom is inside the, DiSPersive amplification occurs during the time the atom

cavity, fromt; to t,, it pulls the mode frequency out of 'S |n23|de the cavity, shifting the mode frequenay by x
resonance with the classical driving fields, establishing a dis— £}/ 9, S0 thatw,=w* y. Evidently, the amplification fre-
persive regime of the amplification process. Thus, in whafluencies are unaffected by the passage of the atom, so that
follows we derive the solutions of the coupled differential 7(t) =~ 2wt andw (1) = — wt. Assuming that the parameter

equations(133 and (13b) for the resonant and dispersive X IS time independent and defining(t) — 7(t) =f,(t) and
regimes. 7(t) +2w,(t)=g,, Eqgs.(139 and(13b) become

re(t)y=2x(t) sin[f,(t)], (383
A. Resonant amplification
We start with the solution of the characteristic equations fo(t)=—0g,—4x(t)cotH 2r (t)] cos[f,(t)]. (38b
(133 and (13b) for the resonant amplification that operates
while the atom is out of the cavity, fro to t; andt, tot,  Sinceg,=—(—1)‘2x is a constant, Eqg38a and (38b)
when so thatw,(t)=w, w(t)=—wt, and »(t)=—2wt. can be solved by quadrature, leading to a constant of motion
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cosh 2r (1) ]+ P, cos[ (1) — (1) ] sinh[ 2r (1) ]=Cy,
(39

which now depends on the initial values¢t;), ¢(t1), and

PHYSICAL REVIEW A68, 053808 (2003

ing factorr(t) does not depend on the atomic state, in con-
trast to the squeezing direction in phase space defined by
@e(t).

From the above solutions for the resonant and dispersive

n(t,). Despite the assumption that the atom-field coupling isgmplifications it is straightforward to obtain the behavior of
turned on(off) suddenly, these initial values must be com-the TD squeeze parameters from titge when the classical
puted from the solutions for the resonant amplification re-driving fields are turned on simultaneously to the preparation
gime at timet,. With this procedure we obtain the solutions Of the atomic state bRR;, to any instant after, the atom-field

for the resonant amplificatiofr (t1), ¢(t1)) as the limit of
those for the dispersive amplificatiofn(t;), ¢(t;)) as x

—0. The parametel3, = — (—1)‘2«/y, defined for a con-

interaction. The timé may be chosen to be before, after or in
the course of the ionization detection of the atomic state.
(i) Fromt, to t1, the squeeze parameters follow from Egs.

stant amplification amplitude, is an effective macroscopic (36a and(36b). As mentioned above, such equations apply

coupling. Therefore, for the dispersive regime, we find thredinder the condition cosh2r(t)]>1+C7,

2 which is always

different solutions, depending on whether the coupling issatisfied forC;=0, a value following from the initial condi-

strong (3,|>1), weak (3,|<1), or critical (3,|=1).

tionsr(ty), o(ty), andn(ty). In fact, for an initial coherent

(a)With strong coupling [8,|>1), we have the relations State injected into the cavity(ty) =0. Assuming the param-

h(t)
cosh2r (V1= 75— 5 PRHCHH R -De V-,
(40a
Cy— cosh 2r¢(1)]
cos[ @ (t) = n(t)]= T, Snh[2r (0] (40b)
where
Jpe—1
h(t)zi%u(t,tl)
+ In[2[B| (V(PF—1)(CT—1)+Ci B,
(41

the sign being chosen so thgtt)=0. The functionu(t,t,)
is defined by Eq(37).

(b) For the weak coupling regime|,|<1), the TD
squeeze parameters whe}@>\/1—q3§ are given by Eq.
(40b) and

G [Pl VCI+PE-1
cosh 2r (t)]= 1—‘335[ 1- o
1_ 2
X sin _liju(t,tl)

+ arcsir( ﬂ) ] : (42
Vei+pi—1

(c) Finally, for critical coupling (,/]=1), the TD
squeeze parameters are given by @b and the solution
for r(t) follows from the equation

cosh 2r ,(t)]= zicl[l+c§+(¢c1[2 cosh(2r(ty)]—Cy)—1

FCu(t,ty)?], 43
the parametef being redundant. Note that in Eq40g and

(42) the parameter is also unnecessary since the RHS o

eter k to be time independent, together with=0, Egs.
(363 and(36b) lead to the simplified solutions

r(t)=2«t, (448

o(t)=—2wt+ 7/2. (44b)

(i) Fromt, tot, we have three possible solutions for the
squeeze parameters, depending on the coupling strength
|'B¢|. These solutions follow from the above-described ex-
pressions, in Eqg40a), (40b), (42), and(43), given that the
constant of motionC;= cosh (4t;), computed from Egs.
(39), (449, and (44b with t=t;. It is straightforward to
observe in these equations the well-known threshold in the
behavior of the TD squeeze factoft), following from the
guadratic TD Hamiltoniari5) [45]: r(t) increases monotoni-
cally for |B,=1, while for |B,/<1 it oscillates periodi-
cally. In the present paper we are interested in the weak
coupling regime, where the squeeze parameters follow from
Egs. (40b) and (42). We note that for realistic physical pa-
rameters we achieve higher squeezing factors even in this
regime.

(iii) Fromt, to t the squeeze parameters are again derived
from EQs.(363@ and (36b). The constant of motion is com-
puted from the initial conditions (t,), ¢(t,), and »(t,),
which depend on the strong, critical, or weak coupling re-
gimes. For weak coupling$3,|<1, in which we are inter-
ested, the constant of motion in E®5), derived from Egs.
(40b) and(42) and depending on the atomic state, reads

Cy— cosh 2r(ty)]
Be '

Cop= (45)

VI. WIGNER FUNCTIONS AND FLUCTUATIONS
OF THE QUADRATURES

Now we analyze the stat€80) and (32), projected into
the cavity after the detection of one or several atoms, respec-
tively, and especially control of these states through the am-
plification parameters. From here on we assume that the
atom is detected in excited stagd), so that|W(t))
(=Ny Si_oC()See(t)]0,(t)) for Eq. (30) and [W(t))

Eq. (409 is an even function of3, . Therefore, the squeez- =N, X, _ 12N Ck() S E(t)]|9(t)) for Eq. (32). After
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computing the density operator of these cavity-field states, VII. PROTOCOLS FOR THE PREPARATION
p(t)=|¥(t)){W(t)|, which reflects all the properties of a OF “SCHRODINGER CAT” —LIKE STATES
quantum system—such as superpositions and decoherence AND NUMBER STATES

(when fluctuating parameters are in orgethe symmetric

e ! . A. “Schrodinger cat” —like states
ordered characteristic function, defined ag38], follows:

To prepare a particular superposition state from €6)
we follow a three-step protocoll) First, we adjust the am-
plitude « of the parametric amplification and the atom-field
interaction timer=t,—t; in order to obtain a particular
o _ . angle ® =|¢4(t,) — @,(t,)| defined by the squeezing direc-
From the characteristic functio@is(y, y*,t) we define the tjons of the states composing the “Sctinger cat’—like
Wigner distribution functiori33] superposition(2) Next, the desired excitation of the pre-
pared state can be achieved by manipulating the excitation of
1 . . the initial coherent state injected into the cavity, the ampli-
W(7n,7* t)= —Zf d2yCq(y,y*,1)e” 7T (47) tude of the linear amplificatiotthat of the parametric ampli-
™ fication has been fixed in the first sjepnd the time interval
of the amplification procesg3) Finally, the amplitude of
which will be employed here to represent the quantum propboth states composing the superposition can be adjusted
erties of the cavity-field state conveniently in a three-through the probability amplitudes of the atomic superposi-
dimensional Reg),Im(7),W space. The result of the tion state prepared in the first Ramsey zone. _
lengthy and somewhat involved integration over the entire In Figs. 2a), 2(b), and 2c) we present some superposi-
complex plane is presented in the Appendix, only for thetion states of the cavity mode generated with the above pro-
state(30). tocol. I_n all t_hese figures we _have considered an atom pre-
Next we analyze the fluctuations of the quadratures of th@ared inRy in the superposition|0)+|1))/y2. We have

cavity mode, defined as the dimensionless position and mdiS0 disregarded the linear amplification process while the
mentum operator; =(a+a') and X,=—i(a—a'), re- parametric amplification is switched off att, when the

spectively. The dynamic fluctuations for these quadrature op2loM l€aves the cavity. In the captions of Fig@) 22(b), and

erators in the cavity-field state, given b 2(c) we present the fluctuations for the quadrature operators
Y ' Y and the parametergt,) and ® used for the preparation of

the desired states. Figure&aRand 2b) indicate the possi-

Cs(7, 7 =T p(t)e’® ~ V&)= (W (t)|e? =" 3w (1)).
(46)

(AXZ)=(X5)—(X)? j=12, (48 pility to control the squeezing directions of the quasiprob-
ability distribution of the individual states composing the
are obtained by computing the variances prepared “Schrdinger cat”—like superposition. This control
will be extremely useful for generating number state as cir-
(Aaz):<a2>—(a>2, (493 cular squeezed states as shown below.
It is worth noting that a number of exoticreference states
(A(ah?y=((ahd—((ah)?, (49b) have being requested for measuring properties of chosen

field states. In Ref{11] the reciprocal-binomial state is re-
f ot N quested as a reference field for measuring the phase distribu-
(Aa'a)=(a'a)—(a')a). (499 tion of a chosen field without having to obtain sufficient
information to reconstruct its complete state. An extension of
We note that with the above definitions 06§ andX, we get  the proposal in Ref.11] was present for th@-function mea-
for the coherent state the minimum uncertainty valuesurement where a convenient choice of a reference state al-
<AX]-2):1. The expected values of the normal ordered oplows us to measure dispersions of quadrature operg&ois
erators defined in Eq$49a, (49b), and(49¢ may be con- Therefore, we hope that the control of the squeezing direc-
veniently evaluated with the help of the normal ordered chartions of the components of superposition states achieved

acteristic function through our scheme could also be employed to generate
these useful reference states. We also mention that the state
NOR ,t)=Tr[p(t)e7aTe‘ y*a]:e|y\2/2¢S( Y, 7% ). in Fig. 2(c), considered in the analysis in Sec. VIII, is crucial

(50) for achieving long-lived mesoscopic superposition states of
the radiation field in cavity QED.

Finally, we recall that the amplification processes could be
considered, after the atom-field interaction, for controlling
the prepared cavity-field state. Both amplification processes
can furnish excitation to the cavity mode, while the paramet-

From this equation, if we want the normally ordered mo-
ments, it is easy to derive the expression

" am

<(aT)nam>: 7 Ny, 7 b) (51) ric one is able to increase the degree of squeezing.
Iy I(—y*)" o
T B. Number states as circular squeezed states
which is suitable for computing the variances in E¢93), From the present scheme of atom-driven field interaction
(49b), (490, and(48). it is possible to generate number states with higher fidelity
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FIG. 2. (a) Wigner function obtained whef® =, a=0, k= x/20, andyr=2.06. The variances for the quadrature operators read
(AX;)=(AX,)=2.63 and the squeezing factor attained(is) = 1.45. The mean photon number is 2.96). Wigner function obtained when
O=m, a=2, k=x/20, andyr=3.99. The variances for the quadrature operators fAad)=5.58 and(AX,)=5.93 and the squeezing
factor isr(t,)=1.55. The mean photon number is 26.38. Wigner function obtained whe® =0, a=5, k= x/20, andyr=1.68. The
variances for the quadrature operators reai,)=0.31 and(AX§>=32.0 and the squeezing factorri@,) = 1.5. The mean photon number
is 256.17.

than those generated as circular states, i.e., a superpositionsiaite defined in Eq:32), whereM =2N. Remembering that
M coherent states having the same modulus and uniformlﬁk(t)=r{l ,,,,, gN(t)qui(,Dgl ,,,,, gN(t)] and that the squeez-
distributed around a circle in the phase spl@#. To do this,  ing factorr(t) does not depend on the atomic state, differ-
we have to pas®l atoms through the cavity, obtaining the ently from the squeezing direction in phase spagg), we
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get E(t) =r(t)exfig(t)], where we have defined(t)=¢¢, ...,
ations, we obtain from Eq32) the photon distribution function
Pa(t) =Kn[Wn (D)
2N

=N gl ClO(N[FE ()] S (1))

(N(t), with k running from 1 to 2. With these consider-

2N
tanhr(t)]"
“wfz 3 L

. 1 1 .
e'[‘Pm(t)“Pk(t)]”’zexp(—— ()24 [ 9,(1)|?) + = tanhr (){[ 7 (1)]2€' <O
«F1 27l coshr (1) 2(| k(O[5 [Im(D]?) (O 9% (V)]

2

(52

,ak(t)efhpk(t)/Z ) ( 19m(t)eficpm(t)/2
n

ﬂm 20— iem(t) )H* !
+[dy(t)]%e FIHR ( \/2 coshr (1) sinhr (1) \/2 coshr (t) sinhr(t)

whereH,(x) is the nth Hermite polynomial evaluated at  from the passage dii=3 atoms through a cavity initially
We have assumed that &llatoms were prepared in the same prepared in the coherent stdtg =8 with r =0.67. Here we
state (0>+|1>)/\/§ and detected in their excited states. obtain the optimal valueP,_,4(t)=0.99, to be compared
In order to get the superposition of squeezed coherenwith the fidelity 0.79 computed when the amplification pro-
states centered around the origin of the phase sf@cee- cess is switched off and a circular state is prepared, from an
quired to generate the number sjatee have to switch off initial coherent statéa|=3.95.
the linear amplification process to obtain, from Egz2b), Note that with the passage Nfatoms though the cavity a
A(t)=0, leading to coherent states having equal amplifamily of number states is obtainedn=qg2") with g
tudes % (t)=e"Pr,. 0, (t)=e"Va. In addi- =1,2,... .However, we stress that the fidelity of the pre-
tion, assuminga is real, vxlle hgve to adjusB(t) to (1 pared state decreases gs the integacreases. In Table | we
—k)m/N and ¢, (t)=(k—1)2%/N, to get a symmetric dis- present the state}q =32 ) for some values ofj in order to
tribution of these states around the center of the phase spa mpare the amaX|m|zed2f|de_I|t|es compu?ed from our m_odel
With these adjustmenf{svhich are achieved through the in- Fe=Kn=0q2 |\PN.:3(t)>| ] with those derived from the cir-
teraction times between tiéatoms and the cavity mode and Cular states techniquerj. We do not present the values of

also through the parametric amplification paramete(s, | andtr] used tolcglculk(]atedhthe f'del't';s' field .
7(t)] the photon distribution function simplifies to We thus conclude that the atom-—driven-field process is

suitable for preparing number states with higher fidelity than
those generated as circular states. Next we present another

oN

n o2 . ;
P(t) =N, |2 Z [ tanhr(t)] o lal2(1- tanhr () fipphcat_mn of the states generated by the atom—driven-field
n + Km=1 n! Coshr(t) Interaction.
o i
X|H, VIIl. PREPARING LONG-LIVED MESOSCOPIC
2 coshr (t) sinhr(t) SUPERPOSITION STATES
N . Evidently, the squeezed superposition in B3f) was ide-

x > ellem®=ad®In2 (53)  ally prepared. In a real engineering process the dissipative
km=1 mechanisms of the cavity and the two-level atom, despite the

fluctuations intrinsic to their interaction, must be taken into

In Fig. 3(@) we present the Wigner distribution function of account. The complex calculations involved in the engineer-
the state generated from the passagBlef2 atoms through ing of quantum states under realistic quantum dissipation and
a cavity initially prepared in the coherent statg=7.4 with  fluctuation conditions can be computed through the
r=0.99. These choices of the paramefersandr are con- phenomenological-operator approach presented in Refs.
sidered in order to maximize the photon distribution function[22,24]. However, in this paper we will not take into account
for n=8, attainingP,_g(t)=0.95, which is exactly the fi- the action of the reservoir during the preparation of the
delity |(8]Wy—,(t))]* of the prepared state with respect to squeezed superpositig80). As usual, to estimate the deco-
the number staté8). The value 0.95 is considerably larger herence time, we next consider that an ideally prepared state
than that computed without the parametric amplification prois submitted to the action of a quantum reservoir described
cess, when a circular state is generated with maximum fideby a collection of harmonic oscillators whose Hamiltonian is
ity 0.56 with respect to the number std®). The fidelity Hg= Zkhwkblb. In addition, we will be interested in the
0.56 is computed from an initial coherent sthi¢=2.83. In  action of a vacuum-squeezed reservoir at absolute zero; its
Fig. 3(b) we plot the Wigner function of the state preparedinitial density operator readsg=1I1,S,|0,)(04|S., S, being
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FIG. 3. (@ Wigner function of the state generated by passirg2 atoms through a cavity initially prepared in the coherent siate
=7.4 withr=0.99, leading to the maximized photon distribution functiBng(t) =0.95. (b) Wigner function of the state generated by
passingN=3 atoms through a cavity initially prepared in the coherent state=8 with r=0.67, leading to the maximized photon
distribution functionP, _ 1¢(t) =0.99.

the squeezed operator for théh bath oscillator mode. We 2
are assuming here that, somehow, it is possible to describe all ~ —— =—(H)§r+{((H)r+ (H)R)s—(H)sr (59
the mechanisms of dissipation of the cavity in terms of the T

action of a vacuum-squeezed reservoir. Describing the inte{yhere the Hamiltonian comprehends a sum of three terms
action between the reservoir and the systéme cavity mode H—H .+ H,+V. The averagéH)s((H)r) is taken with re-
modeled asHs=%wa'a) as V=3, fi(\a'be+Afabl),  spect to the density matrix of the systéraservoiy, given by
characterized by the strengthg, the decoherence time de- ps=|W(t)){V(t)| (pr), Where|¥(t)) is given by Eq.(30).
duced from the idempotency defect of the reduced densitffrom Eq.(54), the decoherence time of the cavity-field state
operator of the cavity field, as suggestedi], is given by is given by

TR

" 2/(2N+1)((a')(a)—(a'a)) +2 Re{M[(a')?—((@")2) [}-N|’

(59

where 75 is the relaxation time defined by the cavity, fixed by the engineering protocol, we note that E§5)
= sint?(r), and M=—¢€'*sinh (X)/2,T and ¢ being the depends only on the reservoir squeeze parameteis).(
squeeze parameters of the vacuum resef\&8t. Here the  Considering the situation where is real and(«a|—«)
mean values are computed from the prepared squeezed saexp(—2a9)~0 (implying a~+/2), in addition to the as-
perposition(30). Since the excitation of the initial coherent sumption thate,(t,) =@ and ¢,(t,) =¢+2n7 (n intege)
statea and the squeeze parametérét,), ¢.(t,)) have been [implying © =|¢;(t,) — ¢(t,)|=2n, i.e., the states com-
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TABLE I. The fidelity of the state$¥_5(t)) generated from Remarkably, with the approximation exp2a?)~0, the de-
our model (7;) and those derived from the standard circular statescoherence time for the prepared cavity-field state when
technique £), for different values of the desired number states o, (t,)= ¢,(t,)=(2m,+1)m—under the action of a

3 ~
192°). vacuum reservoir squeezed in the directipg=0—turns
out to be practically independent of the parametend thus

d > F of its intensity(n) and distanceD. Therefore, the decoher-

1 0.99 0.98 ence time(59) becomes practically independent of the quan-
3 0.98 0.65 tities that define the macroscopic character of the cavity-field
5 0.96 0.50 state. From the result in Eq&9) and(60) we conclude that

10 0.90 0.35 it is convenient to start from a coherent stateas small as

possible[within the limit exp2a?)~0] and to adjust the
macroscopic coupling parametEj,| in order to obtain a
posing the superpositiof80) are squeezed in the same di- large squeeze factor and, consequently, a large intensity of

rection], we obtain the prepared state and a large distaD¢esince we are actu-
_ _ ally interested in mesoscopic superpositions. We stress that,
7=1g|1+ cosh(2r)[2a® cose sinh(2r) — (1+2a°) even considering the weak coupling regim@|<1), we

obtain, from Eqs(36a and(42), large squeeze parameters:
consideringP;|=0.1, =2, and the experimental running
time about 2210 * s, we get a superposition state where
r~2 and({n)=~10? photons.
2 ~_ IPUSLETES The mechanism behind this result is the degree of en-
* e cos(¢=2¢) = cose]| ™, (56) tanglement between the prepared state and the modes of the
wherer =r(t,). The maximization of the decoherence time reservoir, which depends on the relative direction of their

7 in Eq. (56) with respect to the parameters, §), leads to  squeezing, defined by the angles(t,) = ¢,(t,) andp,. A

X cosh(2r)]— sinh(2r)(1+2a?) cos(¢— ¢) sinh(2r)

— a?[ cos(p—2¢)+ cose] cosh(2r)

the results result supporting this argument is presente@Gig], where it
is shown that the injection of two modes, squeezed in per-
Ta=r+In(1+4a?)/4, op=0, (57a  pendicular directions, in a 50/50 beam splitter does not gen-
erate an entangled state. A careful analysis of the dependence
Te=r—In(1+4a/4, ¢g=m, (57b) of the relative direction of squeezing on the degree of en-

tanglement between a prepared state and its multimode res-
which follow when we takep(t,)=(2m+1)7 and ¢(t,) ervoir will be presented i53]. Despite the fact that the
=2mm (m integey, respectively. Whe® # 2ns, the maxi- mechanism behind the long-lived mesoscopic superpositions
mum of 7 turns out to be smaller than that f&=2n, is mainly the perpendicular squeezing directions between the
given by either the pairr(y,¢a) or (Tg,¢g). Observe that Prepared state and the reservoir modes, the magnitude of the

the directions of squeezing of both states composing the siparameter plays a crucial role in the present scheme for

perposition(30), defined by the angleg,(t,) and ¢,(t,), ~ Producing the mesoscopic superposition by increasing both
has to be perpendicular to the direction of squeezing of thés intensity(n) and distancé in phase space.
vacuum reservoir. The values presented above fgr(n), andD are to be

Next, we compute the “distance” in phase space betweegompared with those when considering a nonsque€dx&n
the centers of the quasiprobability distributions of the indi-cavity-field state (n)ys= a®, Dys=2a) under the influence
vidual states composing the prepared superpositR0). of (i) a squeezed reservoir, resulting in the decoherence time
This distance is defined by the quadratures of the cavity fieldi~7r/a, and (i) a nonsqueezed reservoir, such that
X=(a'+a)/2 andY=(a—a")/2i, as ~ 7rl2a. Note that in both case$) and (i) we obtain the
ratios (n)/(n)ys~exp(2) and D/Dyg~exp(). Therefore,
D=[((X)2=(X)1)?+((Y),—(Y)1)*]"? (58  despite the exponential increase in the ratios of both excita-
_ _ ) tion and distance, we still get~ 7, when comparing our
the subscripts 1, 2 referring to the two states composing thgsgits with previous schemes in the literature, where a
superposition. Taking,(tz) = ¢a(tz) =(2m+1)7 or 2mm,  gqueezed reservoir is assumed for the enhancement of the
the distance becomesD=(X),—(X)1=2aexpf) Or  gecoherence tim54]; for nonsqueezed cavity-field states

2a exp(-r), respectively. We will focus on the caga(t2)  and reservoir, we obtain a still better resulty a; .
= @,(ty)=(2m,+ 1), since it results in a large distanBe

between the two states composing what we actually want to

be a mesoscopic superposition. The decoherence time and IX. DISCUSSION AND CONCLUSION
the mean photon number of the prepared state, obtained from
the values ¥, @,), with exp(—2a2)~0, read We have presented a scheme for the preparation and con-
trol of a cavity-field state through atom—driven-field interac-
T~1Rl, (590  tion. The Lewis and Riesenfield time-dependent invariants
[48] were employed to obtain the eigenstates of the cavity
(ny=(a'a)~a2exp(2r)+ sintfr. (60)  mode dispersively interacting with a two-level atom and si-
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multaneously under linear and parametric amplification proaccomplished through the dispersive interactions of a single
cesses. Protocols for preparing particular superposition statélsree-level atom simultaneously with a classical driving field
and the number state were presented. While relying on thand a previously prepared cavity mode whose state we wish
manipulation of the initial states of the cavity mode and theto squeeze. Moreover, regarding parametric amplification of
two-level atom, considered in previous schenmi8S|, our  cavity fields, a technique was recently suggested, based on
protocol also employs the time-dependent parameters irpulsed excitation of semiconductor layefsn the cavity
volved in the amplification sources to achieve particular suwalls) by laser radiatiof57]. It is worth mention that all the
perposition states and number states. We plotted some intdreatment developed above in the context of cavity quantum
esting “Schralinger cat’—like states and number stateselectrodynamics, for delaying the decoherence process of a
generated as circular squeezed states. We demonstrated thgqtieezed superposition by coupling it to a vacuum-squeezed
the number states generated as circular squeezed states eservoir, can also be implemented in ion traps. We finally
hibit higher fidelities than those generated as circular statesnention that the proposal presented here should motivate
We have shown how to prepare truly mesoscopic “Sehro future theoretical and experimental investigations.
dinger cat"—like states of the cavity field, actually squeezed
superposition states, through their coupling to likewise ACKNOWLEDGMENTS
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in phase space between the centers of the quasiprobability

distributions of the individual states composing the squeezed APPENDIX

superposition. This result follows from the degree of en-

tanglement between the prepared state and the modes of theln this appendix we present the Wigner function com-
reservoir, which depends on the relative direction of theirputed from Eq.(47) and the relation

squeezing. When the squeezing direction of the prepared su-

2
perposition and that of the reservoir modes is perpendicular, Cs(y,v* ) =e" ey, " 1)
the noise injected from the reservoir into the prepared cavity 212 a et
mode is minimized. A detailed analysis of the dependence of =" W(t)e” " %M W (1)), (AL

the relative direction of squeezing on the degree of entangle; . : - .
ment between a prepared state and its multimode reservo rerlved from the antinormal ordered characteristic function
will be presented if53].

The experimental implementation of the proposed scheme
relies on the possibility of engineering a squeezed reservoir 2B R N
as well as of parametrically driving cavity-field radiation. We = f T|<:3|‘1’(t)>|ze_y FrvEl (A2)
stress that a scheme to realize a squeezed bath physically for
cavity modes, via quantum-nondemolition-mediated feedfirst we have to compute, from E¢B0), the final cavity-

back, has already been presented in &8]. However, the  field state|W(t)), which, after a lengthy calculation, be-
feedback process i%6] does not eliminate the standard non- comes

squeezed bath and, as we have pointed out, our scheme re-

quires an optimal squeezed-vacuum reservoir. The subject of [P (1))=|W(t))=N,[ciI1(t)S(e1(1))] 6:(1))

guantum-reservoir engineering has attracted some attention,

specially in the domain of trapped iof&5]; more specifi- +cal'a(1)S(ea(1)] 02(1)], (A3)

cally, a scheme has been presented for the engineering gfere the TD functiod™,(t) is defined in terms of that given

squeezed-bath-type interactions to protect a two-level system, Eq.(19), as

against decoherend&7]. '
We emphasize that a proposal to implement the paramet- To()=Y ()Y (ty)Y o (ty), (A4)

ric amplification of an arbitrary radiation-field state previ-

ously prepared in a hig) cavity is presented in Ref36].  and 6,(t) is defined by Eq(15). From Eqgs.(A2) and (A3)

As mentioned above, in this proposal the nonlinear process ise obtain, withi,j=1,2, the result

Caly, Y D) =Tr{p(t)e” V*ae“/aT]

o Ky exp((ai+v>(ar+v*>+bi(ar—y*>2+b,*<ai+y>2’ s

Caly,y* 1) =
A7 771 mzl J1—4b;b? 1-4b;b?

where the TD functiorK;; reads
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|<u=|AA|2qc?fwa>rr(0secmr<n]ex4"%Ilemtnz+|6ﬂtﬂz]+'%tanhra>é¢ﬂ°[a?(0]2+e“%‘°[®<012, (AB)

and N
A :L
' J1-4bb?
a;= 6;(t)sechr(t), (A7)
o (D3 (O +af(Ob] (O +[af (V1°hi(V
1 o 1—4b;(t)b} (1) ’
b;=— ztanhr(t)e'¢V, A8
= ytanhr(t) (A8) A10
) ) 1 1
Note that for the weak coupling regime, (t)=r,(t) Bij=— §+ PE—— (A11)
=r(t). Finally, from Eq.(47) and the characteristic function 1—4bi()by (1)
in Eq. (A5) we obtain the Wigner function by ()
Cij=r— (A12)
2 . 1—4b;(t)bF (1)
i
, ’ ij=1 \/Bi2‘_4CijDij br(t)
| P bt () (A13
X ex Cyj Efj+ Dy F i+ By EijFy 4B
B —4C;;D;; ’ 2a(t)b* (1) +a (1)
Eij = — 7]* + % (A14)
(A9) 1—4bi(t)bj (t)
. 2af (H)b;(t) +a;(t)
where the TD fUnCthﬂSAij s B” s Clj , D” , E” , and F” F” =n— . (A15)
. *
satisfy 1—4b;(t)bj (1)
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