
PHYSICAL REVIEW A 68, 053808 ~2003!
Preparation and control of a cavity-field state through an atom–driven-field interaction:
Towards long-lived mesoscopic states

C. J. Villas-Bôas, F. R. de Paula, R. M. Serra, and M. H. Y. Moussa
Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, P.O. Box 676, Sa˜o Carlos, 13565-905, Sa˜o Paulo, Brazil

~Received 3 July 2003; published 20 November 2003!

The preparation of mesoscopic states of radiation and matter fields through atom-field interactions has been
achieved in recent years and employed for a range of striking applications in quantum optics. Here we present
a technique for the preparation and control of a cavity mode which, in addition to interacting with a two-level
atom, is simultaneously submitted to linear and parametric amplification processes. The role of the
amplification-controlling fields in the achievement of real mesoscopic states is to produce highly squeezed field
states and, consequently, to increase both~i! the distance in phase space between the components of the
prepared superpositions and~ii ! the mean photon number of such superpositions. When the squeezed super-
position states are submitted to the action of similarly squeezed reservoirs, we demonstrate that under specific
conditions the decoherence time of the states becomes independent of both the distance in phase space between
their components and their mean photon number. An explanation is presented to support this remarkable result,
together with a discussion of the experimental implementation of our proposal. We also show how to produce
number states with fidelities higher than those derived as circular states.

DOI: 10.1103/PhysRevA.68.053808 PACS number~s!: 42.50.Ct, 42.50.Dv
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I. INTRODUCTION

The successful manipulation of atom-field interactions
cavity quantum electrodynamics~QED! and trapped ions is a
great achievement of present-day physics which has enc
aged outstanding theoretical proposals and experime
implementations. As high-Q cavities@1# and ionic traps@2#
have permitted the preparation of coherent-state superp
tions of the formuC&5(uaeif&1uae2 if&)/A2, with mean
numbers of photon and phonon quantauau2'10, mesoscopic
quantum coherence has been investigated. In the cavity Q
domain, the progressive decoherence of mesoscopic sup
sitions involving radiation fields with classically distinc
phases was observed through atom-field interaction@1# and
the reversible decoherence of such a mesoscopic-field
has been conjectured@3#. Moreover, the generation and d
tection of Fock states of the radiation field was demonstra
experimentally@4#, and the Rabi oscillation of circular Ryd
berg atoms in the vacuum and in small coherent fields i
high-Q cavity was measured@5#, revealing the quantum na
ture of the radiation field@6#.

Parallel to the achievements in cavity QED, the mast
of techniques to manipulate electronic and motional state
trapped ions with classical fields has enabled the contro
fundamental quantum phenomena at a level that seem
herald a new phase in technology. The operation of a two
controlled-NOT quantum logic gate was demonstrated
storing the two quantum bits in the internal and exter
degrees of freedom of a single trapped ion@7#. A ‘‘Schrö-
dinger cat’’ superposition of spatially separated coherent h
monic states was generated@2#, as well as other nonclassica
states at the single-atom level@8#. The reconstruction of the
density matrices and Wigner functions of various quant
states of motion of a harmonically bound ion was also
ported@9#.

In addition to the atom-field interaction in cavity QE
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and trapped ions, the preparation ofreferencetraveling-field
states needed to measure the properties ofsignal traveling
fields @10# has been suggested based on optical linear@11#
and nonlinear devices@12#. The techniques developed ove
recent decades for the processes of parametric up- and d
conversion have enabled great advances in the domai
traveling waves. The production of true entanglement
type-II noncollinear phase matching in parametric dow
conversion was employed to demonstrate a violation
Bell’s inequality with two-photon fringe visibilities in exces
of 97% @13#. Three-photon Greenberger-Horne-Zeilinger e
tanglement has also been observed@14#, and it is worth
stressing that experimental implementations of teleporta
have been achieved with traveling-wave techniques@15#, as
these provide the facilities for preparation of the state to
teleported, for the quantum channel, and for the accompl
ment of the required Bell-type measurements. High-fide
teleportation of superpositions@16# and entanglements o
running-wave field states@17# have also been presented.

As the techniques for generating nonclassical superp
tion states have been improved, attention has turned
major problem that must be overcome in the contexts
quantum communication@18# and computation@19#: the de-
coherence of quantum states due to the inevitable couplin
the quantum systems to their environment@20–22# and even
due to fluctuation in the interaction parameters required
prepare a coherent superposition@23,24#. Schemes for inhib-
iting decoherence by engineering the reservoir have been
veloped for trapped ions@25,26# and atomic two-level sys-
tems @27,28#. Measurements of the decoherence
superposed motional states of a trapped ion coupled to
engineered reservoir, where the coupling and the state o
environment are controllable@29#, have also been reported
The possibility of controlling the decoherence mechanism
crucial to the preparation of the long-lived macroscopic
perposition states and entanglements of macroscopic ob
required for the implementation of the potential applicatio
©2003 The American Physical Society08-1
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FIG. 1. Sketch of the experimental setup for atom–driven-field interaction.
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of quantum mechanics in communication and computa
@30#. Beyond the efforts being made to engineer mesosco
superpositions and entanglements with photon and pho
quanta, referred to above, the possibility of engineering s
mesoscopic states with massive objects has been and is
pursued. Recently, correlations~on average! of collective
spin states of two macroscopic objects, each consisting
cesium gas sample with about 1012 atoms, was demonstrate
experimentally. In Ref.@31# an experimental scenario de
signed to reduce dramatically the decoherence rate of a q
tum superposition of Bose-Einstein condensates is outlin
This is also our concern in the present work, focusing on
preparation of long-lived states of the radiation field in cav
QED.

Methods for manipulating cavity-field states through
oms driven by external fields@32# constitute an importan
means of attaining arbitrary control of a quantum field. A
though the time evolution of a field state under linear a
parametric amplifications has been a major concern in qu
tum optics for generating squeezed states and investiga
their properties@33,34#, classical driving fields have barel
been considered for quantum states engineering purpo
Here we present a proposal for achieving long-lived mes
copic superposition states of the radiation field in cav
QED that relies on two basic requirements: parametric a
plification and an engineered squeezed-vacuum reservoi
cavity-field states~we note that the required engineer
reservoir—resulting from the standard vacuum for cav
modes plus additional interactions—must be an optim
squeezed-vacuum reservoir!. In addition, our technique ca
be employed to prepare number states with fidelities hig
than those generated as circular states@35#.

Our proposal considers the dispersive interaction o
two-level atom with a cavity field which is simultaneous
under amplification processes. Parametric amplification
employed to achieve a high degree of squeezing and ex
tion of what we actually want to be a mesoscopic super
sition state. We show that the prepared squeezed-mesos
state, under the action of a similarly squeezed reservoir,
hibits a decoherence time orders of magnitude longer t
those of nonsqueezed cavity-field states subjected to th
fluence of ~i! a squeezed reservoir and~ii ! a nonsqueezed
reservoir. In fact, the computed decoherence time turns ou
be independent of both the average photon number and
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distance in phase space between the centers of the q
probability distribution of the individual states composin
the prepared superposition. The decoherence time dep
only on the excitation of the initial coherent state inject
into the cavity previous to the preparation of the squee
superposition. This remarkable result follows when the dir
tion of squeezing of the superposition state is perpendic
to that of the reservoir modes. Under this condition, the
tanglement between the prepared state and the modes o
reservoir is minimized and so the noise injected from
reservoir into the prepared cavity mode is minimal, making
a long-lived superposition state.

We finally stress that a scheme has been presented in
@36# for the implementation of parametric amplification of a
arbitrary radiation-field state previously prepared in a highQ
cavity. As squeezed light is mainly supplied by nonline
optical media as running waves~through backward@37# or
forward @38# four-wave mixing and parametric down
conversion@39#!, standing squeezed fields in high-Q cavities
or ion traps can be generated through atom-field interac
@40#. Although considerable space has been devoted in
literature to the squeezing process in the Jaynes-Cumm
model, the issue of squeezing any desired prepared ca
field state uC&, i.e., the accomplishment of the operatio
S(z)uC& in cavity QED (z standing for a set of group pa
rameters!, has not been addressed. Engineering such an
eration was the subject of Ref.@36#; it is achieved through
the dispersive interactions of a three-level atom simu
neously with a classical driving field and a cavity mo
whose prepared state we wish to squeeze. In short, the
persive interaction of the cavity mode with a driven ato
produces the desired operationS(z)uC&. Since linear ampli-
fication is easily accomplished in cavity QED@41,42#, the
scheme in Ref.@36# contributes crucially for the experimen
tal feasibility of the present proposal for preparation and c
trol of a long-lived cavity-field state through atom–driving
field interaction.

II. ATOM –DRIVEN-FIELD INTERACTION

The proposed configuration for engineering driven-cavi
field states, depicted in Fig. 1, consists of a two-level Ry
berg atomA which crosses a Ramsey-type arrangement,
a high-Q micromaser cavityC located between two Ramse
8-2
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zonesR1 andR2. After interacting with this arrangement, th
atom is counted by detection chambersD2 andD1 ~for ion-
izing the excitedu1& and groundu0& states, respectively!,
projecting the cavity field in the desired state. The transit
of the two-level atomA from excited to ground state is fa
from resonant with the cavity mode frequency, allowing
dispersive atom-field interaction to occur. In addition to t
dispersive interaction with the two-level atom, the cav
mode is simultaneously submitted to linear and parame
amplifications~both represented in Fig. 1 by the sourceS) so
that the Hamiltonian of our model~for \51) is given by

H5va†a1
v0

2
sz1xa†asz1Hampli f ication, ~1!

where sz5u1&^1u2u0&^0u, a† and a are, respectively, the
creation and annihilation operators for the cavity mode
frequencyv which lies between the two atomic energy le
els, which are separated byv0, such that the detuningd
5uv2v0u is large enough to enable only virtual transitio
to occur between the statesu0& andu1&. The atom-field cou-
pling parameter inside the cavity isx5V2/d, whereV is the
Rabi frequency. The expression for the atom-field dispers
interaction on the right-hand side~RHS! of Eq. ~1! is valid
under the assumption thatV2n!d21g2, wheren is a char-
acteristic photon number andg is the spontaneous-emissio
rate@43#. We suppose, for simplicity, that the atom-field co
pling is turned on~off! suddenly at the instant the atom e
ters~leaves! the cavity region, such thatx50 when the atom
is outside the cavity.

We consider the atom, prepared at timet0 by the Ramsey
zoneR1 in a u0&,u1& superposition, to reachC at timet1 and
leave it at t2. The linear and parametric pumpings are a
sumed to be turned on also att0 and turned off at a conve
nient timet>t2. Finally, the action of the classical amplifi
cation mechanism on the cavity mode is described by
Hamiltonian

Hampli f ication5z~ t !a†2
1z* ~ t !a

2
1j~ t !a†1j* ~ t !a, ~2!

where the time-dependent~TD! functionsz(t) and j(t) al-
low the parametric and linear amplifications, respectively
is well understood that for specific values of these TD fu
tions the eigenstates of the Schro¨dinger equation may
squeeze the variance in one of the cavity mode’s two qua
ture phases@33,34,44–46#.

The Schro¨dinger state vector associated with Hamiltoni
~1! can be written using

uC~ t !&5eiv0t/2u0&uF0~ t !&1e2 iv0t/2u1&uF1~ t !&, ~3!

where uF,(t)&5 * (d2a/p)A,(a,t)ua&, ,50,1, the com-
plex quantity a standing for the eigenvalues ofa, and
A,(a,t)5^a,,uC(t)& are the expansion coefficients fo
uF,(t)& in the coherent-state basis$ua&%. Using the orthogo-
nality of the atomic states and Eqs.~1! and~3! we obtain the
uncoupled TD Schro¨dinger equations:
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uF,~ t !&5H,uF,~ t !&, ~4!

H,5v,~ t !a†a1z~ t !a†2
1z* ~ t !a

2
1j~ t !a†1j* ~ t !a,

~5!

with v,(t)5@v2(21),xQ(t2t1)Q(t22t)#. Note that the
problem has been reduced to that of a cavity field, un
parametric and linear pumping, whose frequencyv is shifted
by 2x (1x) when interacting with the atomic state 0(1),
during the time intervalt5t22t1.

Solving Eq. ~4! we obtain, from an initial state of the
cavity mode at timet i , uF,(t i)&, the evolved state

uF,~ t !&5U,~ t,t i !uF,~ t i !&, ~6!

which defines the evolution operator we are looking for. E
dently, the evolution operatorsU,(t1 ,t0) andU,(t,t2), giv-
ing the evolution of the state vector of the radiation fie
while the atom is outside the cavity, do not depend on
state of the two-level atom, the label, being unnecessary
However, the operatorU,(t2 ,t1), which gives the evolution
of the cavity-field state during its interaction with the atom
does depend on the atomic state and differs from the op
tors U(t1 ,t0) and U(t,t2) only by the shifted frequency
v,(t).

III. SOLVING THE SCHRO¨ DINGER EQUATION VIA
TIME-DEPENDENT INVARIANTS

The Hamiltonian in Eq.~5! has been investigated in th
search for squeezed states of the radiation field. Gro
theory methods@44,47# and TD invariants@45# have been
used in attempts to solve this TD quadratic Hamiltonia
which may represent a charged particle subjected to a
monic motion, immersed in a TD uniform magnetic field,
single-mode photon field traveling through a squeezing m
dium or, as in the present situation, a cavity mode w
shifted frequency under linear and parametric amplificati
In the present work, we make use of the TD invariants
Lewis and Riesenfeld@48# to solve the Schro¨dinger equation
~4!, following the reasoning in Ref.@45#: instead of propos-
ing an invariant associated with the Hamiltonian~5!, we first
perform a unitary transformation on Eq.~4! in order to re-
duce it to a form which already has a known associated
variant. Thus, under a unitary transformation represented
the operatorS(«,) («, standing for a set of TD group pa
rameters which may also depend on the atomic state,), we
obtain from Eq.~4!

i
d

dt
uF,

S~ t !&5H,
SuF,

S~ t !&, ~7!

where the transformed Hamiltonian and wave vector
given by

H,
S5S†~«,!H,S~«,!1 i

dS†~«,!

dt
S~«,!, ~8a!
8-3
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uF,
S~ t !&5S†~«,!uF,~ t !&. ~8b!

In what follows we employ two theorems to obtain th
solution of the TD Schro¨dinger equation~4!: ~a! a theorem
expounded in@45# asserts that ifI ,(t) is an invariant associ
ated with H, ~i.e., dI,(t)/dt5]I , /]t1 i @H, ,I ,(t)#50),
then the transformed operatorI ,

S(t)5S†(«,)I ,(t)S(«,) will
be an invariant associated withH,

S ; ~b! on the other hand
from Lewis and Riesenfeld’s well-known theorem@48#, it
follows that a solution of the Schro¨dinger equation is an
eigenstate of the Hermitian invariantI ,(t) multiplied by a
TD phase factor. It follows from~a! and~b! that the solutions
of Eq. ~4! are given by

uF,,m~ t !&5S~«,!uF,,m
S ~ t !&

5S~«,!eif,,m
S (t)um,t&S , m50,1,2, . . . , ~9!

where um,t&S is the eigenstate of the invariant@49# and the
Lewis and Riesenfeld phase@48# obeys

f,,m
S ~ t !5 E

t i

t

dt8 S^m,t8uS i
]

]t8
2H,

SD um,t8&S . ~10!

It is straightforward to verify that under the unitary transfo
mation carried out by the operatorS(«,) the TD phase is
invariant:f,,m

S (t)5f,,m(t).

A. The transformed Hamiltonian

Next, we associate the unitary transformation with t

squeeze operatorS(«,)5exp@ 1
2(«,a

†2
2«,*a2)#, where the

complex TD function«,5r ,(t)eiw,(t) includes the squeez
parametersr ,(t) and w,(t). r ,(t) is associated with a
squeeze factor, whilew,(t) defines the squeezing direction
phase space. Moreover, the TD parameters for the param
and linear amplification processes are written asz(t)
5k(t)eih(t) andj(t)5¸(t)eiÃ(t), respectively. The squeez
parameters „r ,(t),w,(t)…, the amplification amplitudes
„k(t),¸(t)…, and frequencies„h(t),Ã(t)… are all real TD
functions. With the above assumptions and after a leng
calculation, the transformed Hamiltonian becomes

H,
S5V,~ t !a†a1L,~ t !a†1L,* ~ t !a1F,~ t !, ~11!

provided that its TD coefficients satisfy

V,~ t !5v,~ t !12k~ t ! tanhr ,~ t ! cos@h~ t !2w,~ t !#,
~12a!

L,~ t !5j~ t ! coshr ,~ t !1j* ~ t !eiw,(t) sinhr ,~ t !,
~12b!

F,~ t !5k~ t ! tanhr ,~ t ! cos@h~ t !2w,~ t !#, ~12c!

while the squeeze parametersr ,(t) andw,(t) are determined
by solving the coupled differential equations

ṙ ,~ t !52k~ t ! sin@h~ t !2w,~ t !#, ~13a!
05380
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ẇ,~ t !522v,~ t !24k~ t !coth@2r ,~ t !# cos@h~ t !2w,~ t !#.
~13b!

It is evident from these relations that the TD group para
eters«,(t), defining the unitary operatorS(«,), depend on
the atomic state,, as assumed from the beginning. We
nally mention that we have associated the unitary trans
mation with the squeeze operator since the parametric am
fication described by Hamiltonian~2! actually squeezes th
cavity-field state. In fact, the TD parameterz(t) allowing the
parametric amplification in Eq.~2! is connected to the
squeeze parameters„r ,(t),w,(t)… as expressed by Eqs.~13a!
and ~13b!.

B. The evolution operators

With the Hamiltonian~11! at hand we return to the solu
tion of the Schro¨dinger equation~7!. The application of the
invariant method leads to the wave vector@49#

uF,,m
S ~ t !&5eif,,m(t)D@u,~ t !#um&, m50,1,2, . . . ,

~14!

where um& is the number state andD@u,(t)#5exp@u,(t)a
†

2u,* (t)a# is the displacement operator,u,(t) being a solution

to the equationi u̇,(t)5V,(t)u,(t)1L,(t), given by

u,~ t !5e2 ib,(t)S u,~ t i !2 i E
t i

t

L,~ t8!eib,(t8)dt8D , ~15!

with b,(t)5 * t i
t V,(t8)dt8. We note thatu,(t0) describes

the initial cavity-field state which will be assumed to be
coherent stateua&, the subscript, being purely formal. From
the substitution of Hamiltonian~11! into the Lewis and Rie-
senfeld phase, defined in Eq.~10!, we obtain

f,,m~ t !52 E
t i

t H mV,~ t8!1
1

2
@L,* ~ t8!u,~ t8!

1L,~ t8!u,* ~ t8!#1g,~ t8!J dt8. ~16!

Therefore, the solutions of the Schro¨dinger equation~4!,
which form a complete set, can be written

uF,,m~ t !&5S@«,~ t !#uF,,m
S ~ t !&5U,~ t !um&, ~17!

where

U,~ t !5Y,~ t !S@«,~ t !#D@u,~ t !#R@V,~ t !# ~18!

is a unitary operator containing, in addition to the squee
and the displacement operators, a global phase factor

Y,~ t !5expH 2 i E
t i

t

†Re@L,* ~ t8!u,~ t8!#1F ,~ t8!‡dt8J .

~19!

The rotation operator in phase space, derived from the
Lewis and Riesenfeld phase factor, is given by
8-4
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R@V,~ t !#5exp@2 ia†ab,~ t !# ~20!

Hence, for the solution of Schro¨dinger equation~4!, we find

uF,~ t !&5 (
m50

`

CmuF,,m~ t !&

5U,~ t ! (
m50

`

Cmum&

5U,~ t !U,
†~ t i !uF,~ t i !&, ~21!

which finally defines the evolution operators

U,~ t,t i !5U,~ t !U,
†~ t i !. ~22!

We note that for the initial timeR@V,(0)#5R@0#
51, D@u,(0)#5D@a#, S@«,(0)#5S@0#51, and Y,(0)
51.

IV. EVOLUTION OF THE ATOM-FIELD STATE

Let us assume that the micromaser cavity is prepare
time t0 in a single-mode coherent stateua& by a monochro-
matic source, such that withm50 in Eq. ~17! we have
u,(t0)5a. Classical microwave fields are injected into t
cavity and the amplitudes of these fields can be adjusted
varying the injection time. As mentioned above, the line
and parametric pumping are supposed to be turned on, al
t0, the same time the atom is prepared by the Ramsey z
R1 in the superposition statec0u0&1c1u1&. The combined
atom-field state at the initial timet0 is, from Eq.~3!,

uC~ t0!&5@eiv0t0/2c0u0&1e2 iv0t0/2c1u1&] ua&. ~23!

In fact, with A,(b,t0)5^b,,u(c0u0&1c1u1&)ua& it follows
immediately that uF,(t0)&5 * (d2b/p)A,(b,t0)ub&
5c,ua&.

The evolution of the initial stateuC(t0)& to the time the
atom reaches the cavity reads

uC~ t1!&5U~ t1 ,t0!uC~ t0!&. ~24!

Evidently, the evolution operatorsU(t1 ,t0) and U(t,t2),
which govern the dynamics of the cavity-field state while t
atom is outside the cavity, do not depend on the state of
two-level atom. On the other hand, during the time inter
t5t22t1 the atom spends inside the cavity the evolution
the entire system is dictated by the operatorU,(t2 ,t1)
5U,(t2)U,

†(t1). This depends on the atomic state, and
differs from the operatorsU(t1 ,t0) andU(t,t2) by the shifted
frequencyv,(t). Therefore, at the time the atom leaves t
cavity, the state of the atom-field system is given by

uC~ t2!&5@eiv0t2/2c0u0&U0~ t2 ,t1!

1e2 iv0t2/2c1u1&U1~ t2 ,t1!]U~ t1 ,t0!ua&. ~25!

After crossing the cavity, the atom evolves freely fromt2
until the time it reaches the second Ramsey zoneR2. During
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this time interval, the cavity mode continues to be pump
and the complete state of the system, evolving under
operatorU(t,t2), reads

uC~ t !&5U~ t,t2!@eiv0t/2c0u0&U0~ t2 ,t1!

1e2 iv0t/2c1u1&U1~ t2 ,t1!]U~ t1 ,t0!ua&. ~26!

Next, the atom crosses the Ramsey zoneR2, where ap/2
pulse is applied, leading the atom-field system to the
tangled state

uC~ t !&5
1

A2
$@2eiv0t/2c0U0~ t,t0!1e2 iv0t/2c1U1~ t,t0!#u0&

1@eiv0t/2c0U0~ t,t0!1e2 iv0t/2c1U1~ t,t0!#u1&%ua&,

~27!

where we have defined the operators

U,~ t,t0!5U~ t,t2!U,~ t2 ,t1!U~ t1 ,t0!. ~28!

Finally, measurement of the atomic state projects the ca
field into the ‘‘Schrödinger cat’’–like state

uC~ t !&5N6@6eiv0t/2c0U0~ t,t0!1e2 iv0t/2c1U1~ t,t0!#ua&,
~29!

where the sign1 or 2 occurs if the atom is detected in sta
u1& or u0&, respectively, andN6 refers to the normalization
factors. From Eq.~29! it follows that, after measuring the
atomic level used to generate the superposition state of
radiation field, it is possible to control this superposition
adjusting the TD amplification parametersk(t), ¸(t), h(t),
andÃ(t).

It is worth noting that expression~29! can be manipulated
employing Eqs.~28!, ~22!, and Eq.~18!, to give the simple
form

uC~ t !&5N6@6eiv0t/2c0Y0~ t !S@«0~ t !#uu0~ t !&

1e2 iv0t/2c1Y1~ t !S@«1~ t !#uu1~ t !&]

5N6 (
,50

1

c,~ t !S@«,~ t !#D@u,~ t !#u0&

5N6 (
,50

1

c,~ t !S@«,~ t !#uu,~ t !&, ~30!

where c,(t)56(6),e(2), iv0t/2c,Y,(t) and the amplitude
of the coherent stateuu,(t)& follows from Eq.~15!.

PassingN atoms through the cavity

Let us proceed to the construction of a cavity-field st
by passing two or more atoms through cavityC. It is easy to
conclude from Eq.~29! that, after the passage ofN atoms
through cavityC, each atom prepared in the statec0,ku0&
1c1,ku1& by R1 , k51, . . . ,N, we obtain the cavity-field
state
8-5
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uCN~ t !&5N6)
k51

N

@6eiv0t/2c0,kU0,k~ t f ,k ,t i ,k!

1e2 iv0t/2c1,kU1,k~ t f ,k ,t i ,k!#ua&, ~31!

wheret i ,k stands for the time when thekth atom is prepared
by R1 and t f ,k stands for the time when thekth atom is
detected, assumed to be the same ast i ,k11. Therefore, we
obtain

U,,k~ t f ,k ,t i ,k!5U~ t f ,k5t i ,k11 ,t2,k!

3U,~ t2,k ,t1,k!U~ t1,k ,t i ,k5t f ,k21!.

After some manipulation and using Eq.~30!, the state~31!
can be simplified to the form

uCN~ t !&5N6 (
,1 . . . ,,N51

2

)
k51

N

c,k
~ t !S@«,1 , . . . ,,N

~ t !#

3uu,1 , . . . ,,N
~ t !&

5N6 (
k51

2N

Ck~ t !S@Jk~ t !#uqk~ t !&, ~32!

where we have replaced(,1 , . . . ,,N51
2 by (k51

2N
, i.e.,

Jk(t)[r ,1 , . . . ,,N
(t)exp@iw,1, . . . ,,N

(t)# and qk(t)

[u,1 , . . . ,,N
(t).

V. ANALYTICAL SOLUTIONS OF THE CHARACTERISTIC
EQUATIONS „13A… AND „13B…

In this section we present some specific solutions of
characteristic equations~13a! and ~13b!, following a more
detailed treatment in@45#. We investigate the situation wher
the cavity modeua& is resonant with the driving classica
fields during the time the atom is out of the cavity: fromt0 to
t1 and from t2 to t. The parametric amplifier is assumed
operate in a degenerate mode in which thesignal and the
idler frequencies coincide, producing a single-mode driv
field. In the resonant regime this single-mode field has
same frequencyv as the cavity mode so thath(t)522vt
@33#. For the resonant linear amplifier it follows thatÃ(t)
52vt. However, during the time that the atom is inside t
cavity, from t1 to t2, it pulls the mode frequency out o
resonance with the classical driving fields, establishing a
persive regime of the amplification process. Thus, in w
follows we derive the solutions of the coupled different
equations~13a! and ~13b! for the resonant and dispersiv
regimes.

A. Resonant amplification

We start with the solution of the characteristic equatio
~13a! and ~13b! for the resonant amplification that operat
while the atom is out of the cavity, fromt0 to t1 and t2 to t,
when so thatv,(t)5v, Ã(t)52vt, and h(t)522vt.
05380
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Defining v5 ḟ (t), w(t)522 f (t)1g(t), and h(t)5
22 f (t)1h(t), Eqs.~13a! and ~13b! become

ṙ ~ t !522k~ t ! sin@g~ t !2h~ t !#, ~33a!

ġ~ t !524k~ t !coth@2r ~ t !# cos@g~ t !2h~ t !#. ~33b!

Assuming thath(t)5h is a constant, the time dependence
eliminated from Eqs.~33a! and~33b! and we are left with the
first-order differential equation

dr

dg
5

1

2
tanh~2r ! tan~g2h!. ~34!

After integrating Eq.~34! we obtain the constant of motion

cos@w~ t !2h~ t !# sinh@2r ~ t !#5Ci , ~35!

with Ci depending on the initial valuesr (t i), w(t i), and
h(t i), where i 50,2. Thus, the solutions of Eqs.~33a! and
~33b!, which apply under the condition cosh2 @2r(t)#.1
1C i

2 , are given by

cosh@2r ~ t !#

5A11C i
2 coshF cosh21 S cosh 2r ~ t i !

A11C i
2 D 6u~ t,t i !G ,

~36a!

cos@w~ t !2h~ t !#5
Ci

A cosh2 2r ~ t !21
, ~36b!

where

u~ t,t i !54 E
t i

t

k~ t !dt. ~37!

Note that fort i50 the cosh21 term in Eq.~36a! is null, and
the signals6 become irrelevant. However, fort i5t2 we
choose the sign that givesr (t)>0.

B. Dispersive amplification

Dispersive amplification occurs during the time the ato
is inside the cavity, shifting the mode frequencyv by x
5V2/d, so thatv,5v6x. Evidently, the amplification fre-
quencies are unaffected by the passage of the atom, so
h(t)522vt andÃ(t)52vt. Assuming that the paramete
k is time independent and definingw,(t)2h(t)5 f ,(t) and
ḣ(t)12v,(t)5ġ, , Eqs.~13a! and ~13b! become

ṙ ,~ t !52k~ t ! sin@ f ,~ t !#, ~38a!

ḟ ,~ t !52ġ,24k~ t !coth@2r ,~ t !# cos@ f ,~ t !#. ~38b!

Since ġ,52(21),2x is a constant, Eqs.~38a! and ~38b!
can be solved by quadrature, leading to a constant of mo
8-6
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cosh@2r ,~ t !#1P, cos@w,~ t !2h~ t !# sinh@2r ,~ t !#5C1 ,

~39!

which now depends on the initial valuesr (t1), w(t1), and
h(t1). Despite the assumption that the atom-field coupling
turned on~off! suddenly, these initial values must be com
puted from the solutions for the resonant amplification
gime at timet1. With this procedure we obtain the solution
for the resonant amplification„r (t1), w(t1)… as the limit of
those for the dispersive amplification„r (t1), w(t1)… as x
→0. The parameterP,52(21),2k/x, defined for a con-
stant amplification amplitudek, is an effective macroscopi
coupling. Therefore, for the dispersive regime, we find th
different solutions, depending on whether the coupling
strong (uP,u.1), weak (uP,u,1), or critical (uP,u51).

~a!With strong coupling (uP,u.1), we have the relations

cosh@2r ,~ t !#5
1

P,
221

Feh(t)

4
1P,

2~C 1
21P,

221!e2h(t)2C1G ,
~40a!

cos@w,~ t !2h~ t !#5
C12 cosh@2r ,~ t !#

P, sinh@2r ,~ t !#
, ~40b!

where

h~ t !57
AP,

221

uP,u
u~ t,t1!

1 ln @2uP,u~A~P,
221!~C 1

221!1C1uP,u!#,

~41!

the sign being chosen so thatr (t)>0. The functionu(t,t1)
is defined by Eq.~37!.

~b! For the weak coupling regime (uP,u,1), the TD
squeeze parameters whenC1.A12P,

2 are given by Eq.
~40b! and

cosh@2r ,~ t !#5
C1

12P,
2 H 12

uP,uAC 1
21P,

221

C1

3sinF6
A12P,

2

uP,u
u~ t,t1!

1arcsinS C1uP,u

AC 1
21P,

221
D G J . ~42!

~c! Finally, for critical coupling (uP,u51), the TD
squeeze parameters are given by Eq.~40b! and the solution
for r ,(t) follows from the equation

cosh@2r ,~ t !#5
1

2C1
@11C 1

21„AC1@2 cosh~2r ~ t1!#2C1!21

7C1u~ t,t1!…2#, ~43!

the parameter, being redundant. Note that in Eqs.~40a! and
~42! the parameter, is also unnecessary since the RHS
Eq. ~40a! is an even function ofP, . Therefore, the squeez
05380
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ing factor r (t) does not depend on the atomic state, in co
trast to the squeezing direction in phase space defined
w,(t).

From the above solutions for the resonant and disper
amplifications it is straightforward to obtain the behavior
the TD squeeze parameters from timet0, when the classica
driving fields are turned on simultaneously to the preparat
of the atomic state byR1, to any instantt after, the atom-field
interaction. The timet may be chosen to be before, after or
the course of the ionization detection of the atomic state

~i! From t0 to t1, the squeeze parameters follow from Eq
~36a! and ~36b!. As mentioned above, such equations ap
under the condition cosh2 @2r(t)#.11C i

2 , which is always
satisfied forCi50, a value following from the initial condi-
tions r (t0), w(t0), andh(t0). In fact, for an initial coherent
state injected into the cavity:r (t0)50. Assuming the param
eter k to be time independent, together withC050, Eqs.
~36a! and ~36b! lead to the simplified solutions

r ~ t !52kt, ~44a!

w~ t !522vt1p/2. ~44b!

~ii ! From t1 to t2 we have three possible solutions for th
squeeze parameters, depending on the coupling stre
uP,u. These solutions follow from the above-described e
pressions, in Eqs.~40a!, ~40b!, ~42!, and~43!, given that the
constant of motionC15 cosh (4kt1), computed from Eqs.
~39!, ~44a!, and ~44b! with t5t1. It is straightforward to
observe in these equations the well-known threshold in
behavior of the TD squeeze factorr (t), following from the
quadratic TD Hamiltonian~5! @45#: r (t) increases monotoni
cally for uP,u>1, while for uP,u,1 it oscillates periodi-
cally. In the present paper we are interested in the w
coupling regime, where the squeeze parameters follow fr
Eqs. ~40b! and ~42!. We note that for realistic physical pa
rameters we achieve higher squeezing factors even in
regime.

~iii ! From t2 to t the squeeze parameters are again deri
from Eqs.~36a! and ~36b!. The constant of motion is com
puted from the initial conditionsr (t2), w(t2), and h(t2),
which depend on the strong, critical, or weak coupling
gimes. For weak coupling,uP,u,1, in which we are inter-
ested, the constant of motion in Eq.~35!, derived from Eqs.
~40b! and ~42! and depending on the atomic state, reads

C2,,5
C12 cosh@2r ~ t2!#

P,
. ~45!

VI. WIGNER FUNCTIONS AND FLUCTUATIONS
OF THE QUADRATURES

Now we analyze the states~30! and ~32!, projected into
the cavity after the detection of one or several atoms, resp
tively, and especially control of these states through the a
plification parameters. From here on we assume that
atom is detected in excited stateu1&, so that uC(t)&
5N1 (,50

1 c,(t)S@«,(t)#uu,(t)& for Eq. ~30! and uC(t)&

5N6 (k51
2N

Ck(t)S@Jk(t)#uqk(t)& for Eq. ~32!. After
8-7
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VILLAS-BÔAS et al. PHYSICAL REVIEW A 68, 053808 ~2003!
computing the density operator of these cavity-field sta
r(t)5uC(t)&^C(t)u, which reflects all the properties of
quantum system—such as superpositions and decoher
~when fluctuating parameters are in order!—the symmetric
ordered characteristic function, defined as in@33#, follows:

CS~g,g* ,t !5Tr@r~ t !ega†2g* a#5^C~ t !uega†2g* auC~ t !&.
~46!

From the characteristic functionCS(g,g* ,t) we define the
Wigner distribution function@33#

W~h,h* ,t !5
1

p2 E d2gCS~g,g* ,t !eg* h2gh* , ~47!

which will be employed here to represent the quantum pr
erties of the cavity-field state conveniently in a thre
dimensional Re(h),Im(h),W space. The result of the
lengthy and somewhat involved integration over the en
complex plane is presented in the Appendix, only for t
state~30!.

Next we analyze the fluctuations of the quadratures of
cavity mode, defined as the dimensionless position and
mentum operatorsX15(a1a†) and X252 i (a2a†), re-
spectively. The dynamic fluctuations for these quadrature
erators in the cavity-field state, given by

^DXj
2&5^Xj

2&2^Xj&
2, j 51,2, ~48!

are obtained by computing the variances

^Da2&5^a2&2^a&2, ~49a!

^D~a†!2&5^~a†!2&2^~a†!&2, ~49b!

^Da†a&5^a†a&2^a†&^a&. ~49c!

We note that with the above definitions forX1 andX2 we get
for the coherent state the minimum uncertainty va
^DXj

2&51. The expected values of the normal ordered
erators defined in Eqs.~49a!, ~49b!, and ~49c! may be con-
veniently evaluated with the help of the normal ordered ch
acteristic function

CN~g,g* ,t !5Tr@r~ t !ega†
e2g* a#5eugu2/2CS~g,g* ,t !.

~50!

From this equation, if we want the normally ordered m
ments, it is easy to derive the expression

^~a†!nam&5
]n

]gn

]m

]~2g* !m
CN~g,g* ,t !U

g5g* 50

, ~51!

which is suitable for computing the variances in Eqs.~49a!,
~49b!, ~49c!, and~48!.
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VII. PROTOCOLS FOR THE PREPARATION
OF ‘‘SCHRÖ DINGER CAT’’ –LIKE STATES

AND NUMBER STATES

A. ‘‘Schrö dinger cat’’ –like states

To prepare a particular superposition state from Eq.~30!
we follow a three-step protocol.~1! First, we adjust the am-
plitude k of the parametric amplification and the atom-fie
interaction timet5t22t1 in order to obtain a particula
angleQ5uw1(t2)2w2(t2)u defined by the squeezing direc
tions of the states composing the ‘‘Schro¨dinger cat’’–like
superposition.~2! Next, the desired excitation of the pre
pared state can be achieved by manipulating the excitatio
the initial coherent state injected into the cavity, the amp
tude of the linear amplification~that of the parametric ampli
fication has been fixed in the first step!, and the time interval
of the amplification process.~3! Finally, the amplitude of
both states composing the superposition can be adju
through the probability amplitudes of the atomic superpo
tion state prepared in the first Ramsey zone.

In Figs. 2~a!, 2~b!, and 2~c! we present some superpos
tion states of the cavity mode generated with the above p
tocol. In all these figures we have considered an atom p
pared inR1 in the superposition (u0&1u1&)/A2. We have
also disregarded the linear amplification process while
parametric amplification is switched off att5t2 when the
atom leaves the cavity. In the captions of Figs. 2~a!, 2~b!, and
2~c! we present the fluctuations for the quadrature opera
and the parametersr (t2) andQ used for the preparation o
the desired states. Figures 2~a! and 2~b! indicate the possi-
bility to control the squeezing directions of the quasipro
ability distribution of the individual states composing th
prepared ‘‘Schro¨dinger cat’’–like superposition. This contro
will be extremely useful for generating number state as
cular squeezed states as shown below.

It is worth noting that a number of exoticreference sta
have being requested for measuring properties of cho
field states. In Ref.@11# the reciprocal-binomial state is re
quested as a reference field for measuring the phase dist
tion of a chosen field without having to obtain sufficie
information to reconstruct its complete state. An extension
the proposal in Ref.@11# was present for theQ-function mea-
surement where a convenient choice of a reference stat
lows us to measure dispersions of quadrature operators@50#.
Therefore, we hope that the control of the squeezing dir
tions of the components of superposition states achie
through our scheme could also be employed to gene
these useful reference states. We also mention that the
in Fig. 2~c!, considered in the analysis in Sec. VIII, is cruci
for achieving long-lived mesoscopic superposition states
the radiation field in cavity QED.

Finally, we recall that the amplification processes could
considered, after the atom-field interaction, for controlli
the prepared cavity-field state. Both amplification proces
can furnish excitation to the cavity mode, while the param
ric one is able to increase the degree of squeezing.

B. Number states as circular squeezed states

From the present scheme of atom-driven field interact
it is possible to generate number states with higher fide
8-8



ead

r

PREPARATION AND CONTROL OF A CAVITY-FIELD . . . PHYSICAL REVIEW A68, 053808 ~2003!
- 4
- 2

0
2

4X1

- 4
- 2

0
2

4

- 0.5

0

0.5

- 4
- 2

0
2

4X1

- 4
- 2

0
2

4

4 2 0 2 4

4

–2

0

2

4

- 10

- 5

0p

- 10

- 5
0

q

- 0.2

0

0.2

0.4

- 10

- 5

0p

- 10

- 5
0

q

 
- 10 - 8 - 6 - 4 - 2 0 2

- 10

- 8

- 6

- 4

- 2

0

2

- 4 - 2
0

2
4

- 20
0

20
X2

- 0.4

- 0.2

0

0.2

0.4

- 4 - 2
0

2
4

- 20
0

20
X2

- 10 - 5 0 5 10
- 30

- 20

- 10

0

10

20

30

Im(η)

(c)

(b)

(a)

Re(η)
Re(η)

Im(η)

Im(η)

Re(η)

Re(η)

Im(η)

Im(η)

Re(η)

Re(η)

Im(η)

–

FIG. 2. ~a! Wigner function obtained whenQ5p, a50, k5x/20, andxt52.06. The variances for the quadrature operators r
^DX1&5^DX2&52.63 and the squeezing factor attained isr (t2)51.45. The mean photon number is 2.96.~b! Wigner function obtained when
Q5p, a5A2, k5x/20, andxt53.99. The variances for the quadrature operators read^DX1&55.58 and̂ DX2&55.93 and the squeezing
factor is r (t2)51.55. The mean photon number is 26.38.~c! Wigner function obtained whenQ50, a55, k5x/20, andxt51.68. The
variances for the quadrature operators read^DX1&50.31 and̂ DX2

2&532.0 and the squeezing factor isr (t2)51.5. The mean photon numbe
is 256.17.
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than those generated as circular states, i.e., a superpositi
M coherent states having the same modulus and unifor
distributed around a circle in the phase space@35#. To do this,
we have to passN atoms through the cavity, obtaining th
05380
of
ly
state defined in Eq.~32!, whereM52N. Remembering that
Jk(t)5r ,1 , . . . ,,N

(t)exp@iw,1 , . . . ,,N
(t)# and that the squeez

ing factor r (t) does not depend on the atomic state, diff
ently from the squeezing direction in phase spacew,(t), we
8-9
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get Jk(t)5r (t)exp@iwk(t)#, where we have definedwk(t)[w,1 , . . . ,,N
(t), with k running from 1 to 2N. With these consider-

ations, we obtain from Eq.~32! the photon distribution function

Pn~ t !5 z^nuCN~ t !& z2

5uN1 (
k51

2N

Ck~ t !^nuS@Jk~ t !#uqk~ t !&u2

5uN1u2 (
k,m51

2N

@ tanhr ~ t !#n

2nn! coshr ~ t !
ei [wm(t)2wk(t)]n/2expS 2

1

2
~ uqk~ t !u21uqm~ t !u2!1

1

2
tanhr ~ t !$@qk* ~ t !#2eiwk(t)

1@qm~ t !#2e2 iwm(t)% DHn* S qk~ t !e2 iwk(t)/2

A2 coshr ~ t ! sinhr ~ t !
D HnS qm~ t !e2 iwm(t)/2

A2 coshr ~ t ! sinhr ~ t !
D , ~52!
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whereHn(x) is the nth Hermite polynomial evaluated atx.
We have assumed that allN atoms were prepared in the sam
state (u0&1u1&)/A2 and detected in their excited states.

In order to get the superposition of squeezed cohe
states centered around the origin of the phase space~as re-
quired to generate the number state!, we have to switch off
the linear amplification process to obtain, from Eq.~12b!,
L,(t)50, leading to coherent states having equal am
tudesqk(t)[e2 ib

,1 , . . . ,,N
(t)u

,1 , . . . ,,N
(t i)5e2 ibk(t)a. In addi-

tion, assuminga is real, we have to adjustbk(t) to (1
2k)p/N andwk(t)5(k21)2p/N, to get a symmetric dis-
tribution of these states around the center of the phase sp
With these adjustments@which are achieved through the in
teraction times between theN atoms and the cavity mode an
also through the parametric amplification parametersk(t),
h(t)] the photon distribution function simplifies to

Pn~ t !5uN1u2 (
k,m51

2N

@ tanhr ~ t !#n

n! coshr ~ t !
e2uau2(12 tanhr (t))

3FHnS uau

A2 coshr ~ t ! sinhr ~ t !
D G 2

3 (
k,m51

2N

ei [wm(t)2wk(t)]n/2. ~53!

In Fig. 3~a! we present the Wigner distribution function o
the state generated from the passage ofN52 atoms through
a cavity initially prepared in the coherent stateuau57.4 with
r 50.99. These choices of the parametersuau andr are con-
sidered in order to maximize the photon distribution functi
for n58, attainingPn58(t)50.95, which is exactly the fi-
delity z^8uCN52(t)& z2 of the prepared state with respect
the number stateu8&. The value 0.95 is considerably larg
than that computed without the parametric amplification p
cess, when a circular state is generated with maximum fi
ity 0.56 with respect to the number stateu8&. The fidelity
0.56 is computed from an initial coherent stateuau52.83. In
Fig. 3~b! we plot the Wigner function of the state prepar
05380
nt

i-

ce.

-
l-

from the passage ofN53 atoms through a cavity initially
prepared in the coherent stateuau58 with r 50.67. Here we
obtain the optimal valuePn516(t)50.99, to be compared
with the fidelity 0.79 computed when the amplification pr
cess is switched off and a circular state is prepared, from
initial coherent stateuau53.95.

Note that with the passage ofN atoms though the cavity a
family of number states is obtained:un5q2N& with q
51,2, . . . . However, we stress that the fidelity of the pr
pared state decreases as the integerq increases. In Table I we
present the statesun5q23& for some values ofq, in order to
compare the maximized fidelities computed from our mo
@Fq5 z^n5q23uCN53(t)& z2# with those derived from the cir-
cular states technique (F). We do not present the values o
uau and r used to calculated the fidelities.

We thus conclude that the atom–driven-field process
suitable for preparing number states with higher fidelity th
those generated as circular states. Next we present an
application of the states generated by the atom–driven-fi
interaction.

VIII. PREPARING LONG-LIVED MESOSCOPIC
SUPERPOSITION STATES

Evidently, the squeezed superposition in Eq.~30! was ide-
ally prepared. In a real engineering process the dissipa
mechanisms of the cavity and the two-level atom, despite
fluctuations intrinsic to their interaction, must be taken in
account. The complex calculations involved in the engine
ing of quantum states under realistic quantum dissipation
fluctuation conditions can be computed through t
phenomenological-operator approach presented in R
@22,24#. However, in this paper we will not take into accou
the action of the reservoir during the preparation of t
squeezed superposition~30!. As usual, to estimate the deco
herence time, we next consider that an ideally prepared s
is submitted to the action of a quantum reservoir descri
by a collection of harmonic oscillators whose Hamiltonian
HR5 (k \vkbk

†b. In addition, we will be interested in the
action of a vacuum-squeezed reservoir at absolute zero
initial density operator readsrR5)kSku0k&^0kuSk

† , Sk being
8-10



y
n

PREPARATION AND CONTROL OF A CAVITY-FIELD . . . PHYSICAL REVIEW A68, 053808 ~2003!
 (a)

- 4 4

0

4

-4

0

0.4

-0.2

0

-4

4

0

4

-4

0

Im(η)

Re(η)

Re(η)

Im(η)

 (b)

0

-5

5

-5 0 5
Re(η)

Im(η)

-5

0

5

-5

5

0

0.4

0

-0.2

0.2

Re(η)

Im(η)

FIG. 3. ~a! Wigner function of the state generated by passingN52 atoms through a cavity initially prepared in the coherent stateuau
57.4 with r 50.99, leading to the maximized photon distribution functionPn58(t)50.95. ~b! Wigner function of the state generated b
passingN53 atoms through a cavity initially prepared in the coherent stateuau58 with r 50.67, leading to the maximized photo
distribution functionPn516(t)50.99.
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the squeezed operator for thekth bath oscillator mode. We
are assuming here that, somehow, it is possible to describ
the mechanisms of dissipation of the cavity in terms of
action of a vacuum-squeezed reservoir. Describing the in
action between the reservoir and the system~the cavity mode
modeled asHS5\va†a) as V5 (k \(lka

†bk1lk* abk
†),

characterized by the strengthslk , the decoherence time de
duced from the idempotency defect of the reduced den
operator of the cavity field, as suggested in@51#, is given by
d
t
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\2

2t2
52^H&S,R

2 1Š^H&S
2
‹R1Š^H&R

2
‹S2^H2&S,R ~54!

where the Hamiltonian comprehends a sum of three te
H5HS1HR1V. The averagêH&S(^H&R) is taken with re-
spect to the density matrix of the system~reservoir!, given by
rS5uC(t)&^C(t)u (rR), whereuC(t)& is given by Eq.~30!.
From Eq.~54!, the decoherence time of the cavity-field sta
is given by
t5
tR

2u~2N11!~^a†&^a&2^a†a&!12 Re$M @^a†&22^~a†!2&#%2Nu
, ~55!
-

where tR is the relaxation time defined by the cavity,N

5 sinh2 (r̃), and M52ei w̃ sinh (2r̃)/2, r̃ and w̃ being the
squeeze parameters of the vacuum reservoir@33#. Here the
mean values are computed from the prepared squeeze
perposition~30!. Since the excitation of the initial coheren
statea and the squeeze parameters„r (t2),w,(t2)… have been
su-

fixed by the engineering protocol, we note that Eq.~55!

depends only on the reservoir squeeze parameters (r̃ ,w̃).
Considering the situation wherea is real and ^au2a&
5exp(22a2)'0 ~implying a'A2), in addition to the as-
sumption thatw1(t2)5w and w2(t2)5w12np (n integer!
@implying Q5uw1(t2)2w2(t2)u52np, i.e., the states com
8-11
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posing the superposition~30! are squeezed in the same d
rection#, we obtain

t5tRu11 cosh~2r̃ !@2a2 cosw sinh~2r !2~112a2!

3cosh~2r !#2 sinh~2r̃ !~112a2! cos~ w̃2w! sinh~2r !

2a2@ cos~ w̃22w!1 cosw̃# cosh~2r !

1a2@ cos~ w̃22w!2 cosw̃#u21, ~56!

wherer 5r (t2). The maximization of the decoherence tim
t in Eq. ~56! with respect to the parameters (r̃ ,w̃), leads to
the results

r̃ A5r 1 ln ~114a2!/4, w̃A50, ~57a!

r̃ B5r 2 ln ~114a2!/4, w̃B5p, ~57b!

which follow when we takew(t2)5(2m11)p and w(t2)
52mp (m integer!, respectively. WhenQÞ2np, the maxi-
mum of t turns out to be smaller than that forQ52np,
given by either the pair (r̃ A ,w̃A) or (r̃ B ,w̃B). Observe that
the directions of squeezing of both states composing the
perposition~30!, defined by the anglesw1(t2) and w2(t2),
has to be perpendicular to the direction of squeezing of
vacuum reservoir.

Next, we compute the ‘‘distance’’ in phase space betwe
the centers of the quasiprobability distributions of the in
vidual states composing the prepared superposition~30!.
This distance is defined by the quadratures of the cavity fi
X5(a†1a)/2 andY5(a2a†)/2i , as

D5@~^X&22^X&1!21~^Y&22^Y&1!2#1/2, ~58!

the subscripts 1, 2 referring to the two states composing
superposition. Takingw1(t2)5w2(t2)5(2m11)p or 2mp,
the distance becomesD5^X&22^X&152a exp(r) or
2a exp(2r), respectively. We will focus on the casew1(t2)
5w2(t2)5(2m111)p, since it results in a large distanceD
between the two states composing what we actually wan
be a mesoscopic superposition. The decoherence time
the mean photon number of the prepared state, obtained
the values (r̃ A ,w̃A), with exp(22a2)'0, read

t'tR /a, ~59!

^n&5^a†a&'a2exp~2r !1 sinh2r . ~60!

TABLE I. The fidelity of the statesuCN53(t)& generated from
our model (Fq) and those derived from the standard circular sta
technique (F), for different values of the desired number stat
uq23&.

q F F

1 0.99 0.98
3 0.98 0.65
5 0.96 0.50

10 0.90 0.35
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Remarkably, with the approximation exp(22a2)'0, the de-
coherence time for the prepared cavity-field state wh
w1(t2)5w2(t2)5(2m211)p—under the action of a

vacuum reservoir squeezed in the directionw̃A50—turns
out to be practically independent of the parameterr and thus
of its intensity^n& and distanceD. Therefore, the decoher
ence time~59! becomes practically independent of the qua
tities that define the macroscopic character of the cavity-fi
state. From the result in Eqs.~59! and~60! we conclude that
it is convenient to start from a coherent statea as small as
possible@within the limit exp(22a2)'0] and to adjust the
macroscopic coupling parameteruP,u in order to obtain a
large squeeze factor and, consequently, a large intensit
the prepared state and a large distanceD, since we are actu-
ally interested in mesoscopic superpositions. We stress
even considering the weak coupling regime (uP,u,1), we
obtain, from Eqs.~36a! and ~42!, large squeeze parameter
consideringuP,u50.1, a5A2, and the experimental runnin
time about 231024 s, we get a superposition state whe
r'2 and^n&'102 photons.

The mechanism behind this result is the degree of
tanglement between the prepared state and the modes o
reservoir, which depends on the relative direction of th
squeezing, defined by the anglesw1(t2)5w2(t2) and w̃A . A
result supporting this argument is presented in@52#, where it
is shown that the injection of two modes, squeezed in p
pendicular directions, in a 50/50 beam splitter does not g
erate an entangled state. A careful analysis of the depend
of the relative direction of squeezing on the degree of
tanglement between a prepared state and its multimode
ervoir will be presented in@53#. Despite the fact that the
mechanism behind the long-lived mesoscopic superposit
is mainly the perpendicular squeezing directions between
prepared state and the reservoir modes, the magnitude o
parameterr plays a crucial role in the present scheme
producing the mesoscopic superposition by increasing b
its intensity^n& and distanceD in phase space.

The values presented above fort, ^n&, andD are to be
compared with those when considering a nonsqueezed~NS!
cavity-field state (̂n&NS5a2, DNS52a) under the influence
of ~i! a squeezed reservoir, resulting in the decoherence
t i'tR /a, and ~ii ! a nonsqueezed reservoir, such thatt i i
'tR/2a2. Note that in both cases~i! and ~ii ! we obtain the
ratios ^n&/^n&NS'exp(2r) and D/DNS'exp(r). Therefore,
despite the exponential increase in the ratios of both exc
tion and distance, we still gett't i when comparing our
results with previous schemes in the literature, where
squeezed reservoir is assumed for the enhancement o
decoherence time@54#; for nonsqueezed cavity-field state
and reservoir, we obtain a still better result,t'at i i .

IX. DISCUSSION AND CONCLUSION

We have presented a scheme for the preparation and
trol of a cavity-field state through atom–driven-field intera
tion. The Lewis and Riesenfield time-dependent invaria
@48# were employed to obtain the eigenstates of the ca
mode dispersively interacting with a two-level atom and

s
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multaneously under linear and parametric amplification p
cesses. Protocols for preparing particular superposition s
and the number state were presented. While relying on
manipulation of the initial states of the cavity mode and
two-level atom, considered in previous schemes@55#, our
protocol also employs the time-dependent parameters
volved in the amplification sources to achieve particular
perposition states and number states. We plotted some i
esting ‘‘Schrödinger cat’’–like states and number stat
generated as circular squeezed states. We demonstrate
the number states generated as circular squeezed state
hibit higher fidelities than those generated as circular sta

We have shown how to prepare truly mesoscopic ‘‘Sch¨-
dinger cat’’–like states of the cavity field, actually squeez
superposition states, through their coupling to likew
squeezed reservoirs. When assuming that the squeezin
rection of the cavity field is perpendicular to that of the re
ervoir modes, we found that the decoherence time of
prepared superposition state depends only on the initial
herent state of the cavity field from which the squeezed
perposition is generated. Therefore, the decoherence tim
independent of the average photon number and the dist
in phase space between the centers of the quasiproba
distributions of the individual states composing the squee
superposition. This result follows from the degree of e
tanglement between the prepared state and the modes o
reservoir, which depends on the relative direction of th
squeezing. When the squeezing direction of the prepared
perposition and that of the reservoir modes is perpendicu
the noise injected from the reservoir into the prepared ca
mode is minimized. A detailed analysis of the dependenc
the relative direction of squeezing on the degree of entan
ment between a prepared state and its multimode rese
will be presented in@53#.

The experimental implementation of the proposed sche
relies on the possibility of engineering a squeezed reser
as well as of parametrically driving cavity-field radiation. W
stress that a scheme to realize a squeezed bath physical
cavity modes, via quantum-nondemolition-mediated fe
back, has already been presented in Ref.@56#. However, the
feedback process in@56# does not eliminate the standard no
squeezed bath and, as we have pointed out, our schem
quires an optimal squeezed-vacuum reservoir. The subje
quantum-reservoir engineering has attracted some atten
specially in the domain of trapped ions@25#; more specifi-
cally, a scheme has been presented for the engineerin
squeezed-bath-type interactions to protect a two-level sys
against decoherence@27#.

We emphasize that a proposal to implement the param
ric amplification of an arbitrary radiation-field state prev
ously prepared in a high-Q cavity is presented in Ref.@36#.
As mentioned above, in this proposal the nonlinear proces
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accomplished through the dispersive interactions of a sin
three-level atom simultaneously with a classical driving fie
and a previously prepared cavity mode whose state we w
to squeeze. Moreover, regarding parametric amplification
cavity fields, a technique was recently suggested, base
pulsed excitation of semiconductor layers~on the cavity
walls! by laser radiation@57#. It is worth mention that all the
treatment developed above in the context of cavity quan
electrodynamics, for delaying the decoherence process
squeezed superposition by coupling it to a vacuum-squee
reservoir, can also be implemented in ion traps. We fina
mention that the proposal presented here should moti
future theoretical and experimental investigations.

ACKNOWLEDGMENTS
We wish to express our thanks for the support of FAPE

~under Contract Nos. 99/11617-0, 00/15084-5, and
02633-6! and CNPq~Instituto do Milênio de Informac¸ão
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APPENDIX

In this appendix we present the Wigner function co
puted from Eq.~47! and the relation

CS~g,g* ,t !5eugu2/2CA~g,g* ,t !

5eugu2/2^C~ t !ue2g* aega†
uC~ t !&, ~A1!

derived from the antinormal ordered characteristic functio

CA~g,g* ,t !5Tr@r~ t !e2g* aega†
#

5 E d2b

p
z^buC~ t !& z2e2g* b1gb†

, ~A2!

First we have to compute, from Eq.~30!, the final cavity-
field state uC(t)&, which, after a lengthy calculation, be
comes

uC~ t !&5uC~ t !&5N1@c1G1~ t !S„«1~ t !…uu1~ t !&

1c2G2~ t !S„«2~ t !…uu2~ t !&], ~A3!

where the TD functionG,(t) is defined in terms of that given
by Eq. ~19!, as

G,~ t !5Y,~ t !Y,~ t2!Y,~ t1!, ~A4!

andu,(t) is defined by Eq.~15!. From Eqs.~A2! and ~A3!
we obtain, withi , j 51,2, the result
CA~g,g* ,t !5 (
i , j 51

2
Ki j

A124bibj*
expS ~ai1g!~aj* 1g* !1bi~aj* 2g* !21bj* ~ai1g!2

124bibj*
D , ~A5!

where the TD functionKi j reads
8-13
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Ki j 5uN1u2cicj* G i~ t !G j* ~ t !sech@r ~ t !#expF2
1

2
@ uu i~ t !u21uu j~ t !u2#1

1

2
tanhr ~ t !eiw i (t)@u i* ~ t !#21e2 iw j (t)@u j~ t !#2G , ~A6!
n

and

ai5u i~ t !sechr ~ t !, ~A7!

bi52
1

2
tanhr ~ t !eiw i (t). ~A8!

Note that for the weak coupling regime,r 1(t)5r 2(t)
5r (t). Finally, from Eq.~47! and the characteristic functio
in Eq. ~A5! we obtain the Wigner function

W~h,h* ,t !5 (
i , j 51

2
Ai j

ABi j
2 24Ci j Di j

3expS Ci j Ei j
2 1Di j Fi j

2 1Bi j Ei j Fi j

Bi j
2 24Ci j Di j

D ,

~A9!

where the TD functionsAi j , Bi j , Ci j , Di j , Ei j , and Fi j
satisfy
.
et

d,

tt
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ys

tt

05380
Ai j 5
Ki j

A124bibj*

3expFai~ t !aj* ~ t !1ai
2~ t !bj* ~ t !1@aj* ~ t !#2bi~ t !

124bi~ t !bj* ~ t !
G ,

~A10!

Bi j 52
1

2
1

1

124bi~ t !bj* ~ t !
, ~A11!

Ci j 5
bi~ t !

124bi~ t !bj* ~ t !
, ~A12!

Di j 5
bj* ~ t !

124bi~ t !bj* ~ t !
, ~A13!

Ei j 52h* 1
2ai~ t !bj* ~ t !1aj* ~ t !

124bi~ t !bj* ~ t !
, ~A14!

Fi j 5h2
2aj* ~ t !bi~ t !1ai~ t !

124bi~ t !bj* ~ t !
. ~A15!
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