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Entangled photons from small quantum dots

P. M. Visser,* K. Allaart,† and D. Lenstra‡

Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
~Received 23 October 2002; published 5 November 2003!

We discuss level schemes of small quantum-dot turnstiles and their applicability in the production of
entanglement in two-photon emission. Due to the large energy splitting of the single-electron levels, only one
single-electron level and one single-hole level can be made resonant with the levels in the conduction band and
valence band. This results in a model with nine distinct levels, which are split by the Coulomb interactions. We
show that the optical selection rules are different for flat and tall cylindrically symmetric dots, and how this
affects the quality of the entanglement generated in the decay of the biexciton state. The effect of charge-carrier
tunneling and of a resonant cavity is included in the model.
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I. INTRODUCTION

The constant progress in the fabrication of nanostructu
has led to novel semiconductor devices, such as quan
wires and quantum dots, that allow the confinement and c
trol of single electrons. In quantum dots it is possible
experimentally control the tunneling of single electrons a
holes. These systems exhibit quantum correlations in
emission statistics@1,2#, and are very promising for future
applications in quantum communication.

A quantum dot that emits single photons controlled by
switching of a voltage is called a single-photon turnstile@3#.
In such a system, the quantum dot is allowed to contain
most one single electron-hole pair, so that one photon is
ated at a time. In order to realize this, one makes use of
Coulomb blockade effect to suppress tunneling of a sec
electron or hole onto the dot. This implies that the syst
must be cooled to temperatures withkBT smaller than the
Coulomb splittings. In a two-photon turnstile, two electro
hole pairs are created, before two successive photons
emitted. Recently, a two-photon turnstile has been propo
@4# as a device to generate entangled photon pairs, w
makes these systems very interesting. Because the Pauli
ciple allows occupation of an electronic level by at most t
electrons, a two-photon turnstile can be realized with
Coulomb blockade effects, provided that the thermal ene
is smaller than the splitting of the single-particle levels
that tunneling of more than two electron-hole pairs
avoided. In a small quantum dot, this splitting can be mu
larger than the Coulomb splittings, so that a two-photon tu
stile does not require cooling in the milliKelvin regime fo
proper operation.

In order to explore various possibilities for generation
entangled photons by two-photon turnstiles, we conside
this paper simple level schemes that can occur when a q
tum dot is smaller than the bulk exciton size, and stu
which situations are favorable for the generation of e
tangled photon pairs. In this regime, the electron and h
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wave functions are strongly localized so that the ene
separation of individual levels is larger than the characteri
Coulomb interaction energies. The central idea is that, du
resonant tunneling, only one twofold degenerate elect
level and one twofold degenerate hole level of the quant
dot play an active role. Other electron and hole levels are
remote in energy and may therefore be discarded in a
approximation. Within the resulting finite scheme of d
states, we study the entanglement of cascade photons
the biexciton decay, notably its dependence on the comp
tion between charge-carrier tunneling and radiative electr
hole recombination. The effect of a resonant cavity will al
be calculated.

II. MODELS FOR SMALL QUANTUM DOTS

A diagram of the semiconductor structure that we have
mind is shown in Fig. 1. The quantum dot is located betwe
P-doped and N-doped material. By means of a bias voltagV

FIG. 1. Energy-band structure of the PIN junction, for a cro
section through the quantum dot along thez axis. The quantum dot
is a small cylindrical structure located in the I layer between N a
P semiconductors. With the gate potentialF, the electron and hole
energies can be shifted. A bias voltageV over the junction allows
electrons~black! and holes~white! to tunnel across the barriers wit
rateg andG is the photon emission rate, as indicated.
©2003 The American Physical Society05-1



r
it
n
o

tro
Th
an
nd
a

do

a
th
th
ta
he
to
e
ito
te

e

nd
tes

of
n
2.
a-
re
one

e
or
n-
mit-
ates

iple
ter
ing
with
ided
the
ed

ons
his
ts
in
ts
ed

he
the

he
ag-
rate

de-

e
tr

e
n

ev
s

pa
ro
o

VISSER, ALLAART, AND LENSTRA PHYSICAL REVIEW A68, 053805 ~2003!
over the junction and a gate voltageF of an electrode nea
the dot, the electron level of the dot is made resonant w
the bottom of the conduction band of the N-type material a
the hole level of the dot with the top of the valence band
the P-type material. The quasiparticle energiesẼe andẼh are
well defined as the energy of the dot with one excess elec
and hole, respectively with respect to the neutral state.
bias voltageV separates the energy levels between the N
P sides byeV and the gate voltage shifts the electron a
hole levels by2eF andeF. The resonance condition for
cental dot is then

Ẽe2eF5eV/2, Ẽh1eF5eV/2. ~1!

It is energetically favorable that electrons tunnel into the
when eV/2.Ẽe2eF and out of the dot wheneV/2,Ẽe
2eF. The resulting level scheme is shown in Fig. 2 and h
only 16 basis states, part of which are charged due to
presence of one or two excess electrons or holes. In
scheme, the state with highest energy is the biexciton s
with two electrons in the upper level and two holes in t
lower level. The optical properties are determined by exci
and biexciton states@5,6#. It is in the cascade decay from th
biexciton to the ground state via a state of the one-exc
multiplet that an entangled photon pair may be genera

FIG. 2. States in a quantum-dot model with one~twofold degen-
erate! electron level and one~twofold degenerate! hole level. The
presence of an electron is indicated by a black dot above the lin
hole by an open circle below the horizontal line. Besides the neu
states in the dot, there are states with charge6e, 62e where one
or two excess electrons or holes are present. States with charg6e
are twofold degenerate due to time-reversal symmetry. The o
electron plus one-hole states are classified according to their
(1) or odd (2t! behavior under time reversal. Downward arrow
indicate photon emission; diagonal arrows indicate a possible
to reach the upper state by subsequent tunneling of two elect
and two holes from the conduction and valence band into the d
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The splitting of the one-exciton multiplet is an effect of th
Coulomb interaction between the particles@7#, which will be
discussed in the following.

When one switches the gate voltageF or the bias voltage
V, during a short time interval, first to a higher value a
immediately thereafter to a lower value, then one promo
the tunneling of electrons from theN-type material into the
upper level of the dot, immediately followed by tunneling
holes from theP-type material@8#. The system state the
follows the path indicated by the diagonal arrows in Fig.
The biexciton state is produced without intermediate form
tion of a one-exciton state. Ideally the system will therefo
emit a cascade of two photons, one on transition 1 and
on transition 2, with frequenciesv1 andv2. It is important
to switch the gate voltageF ~and bias voltage! back to the
resonant values~1! immediately after the preparation of th
biexciton, in order to reduce the probability of electron
hole tunneling before the second photon is emitted. If tu
neling nevertheless occurs before the second photon is e
ted, then the transitions 3 or 4 between the charged st
may occur. Their frequenciesv3 andv4 are in general dif-
ferent fromv1 andv2, as may be checked from Eq.~4! for
the energy levels. Therefore these photons may in princ
be filtered out. In the next section we shall solve a mas
equation which includes the competition between tunnel
and recombination processes. For small dots, states
more electrons or holes have nonresonant energies. Prov
the bias voltage is not too large, the biexciton state is
highest excited state and no multiexciton states are form
@9#.

A. Level splitting and photon energies

We consider the Coulomb interaction between electr
and holes as a perturbation on interaction-free levels. T
approximation is well known in the context of quantum do
without holes in the electronic distribution, which are
~near! equilibrium @10,11#. For semiconductor quantum do
with holes, however, localized exciton states are form
from electron-hole pairs. Only if the dot is smaller than t
exciton size are the single-particle levels well defined and
Coulomb interaction can be treated as a perturbation@11,12#.
This is the condition that we suppose to be fulfilled in t
following. Since we consider systems in the absence of m
netic fields, the single-electron levels are twofold degene
due to time-reversal symmetry@13#. Let the two degenerate
single-particle states for the electron and hole level be
scribed by

ue&5E drWurW&@ u↑&c1~rW !1u↓&c2* ~rW !],

uē&5E drWurW&@ u↑&c2~rW !2u↓&c1* ~rW !],

uh&5E drWurW&@ u↑&x1~rW !1u↓&x2* ~rW !],

uh̄&5E drWurW&@ u↑&x2~rW !2u↓&x1* ~rW !], ~2!
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ENTANGLED PHOTONS FROM SMALL QUANTUM DOTS PHYSICAL REVIEW A68, 053805 ~2003!
in terms of the wave functionsc j (rW) andx j (rW) for the spinor
components. Due to spin-orbit coupling these single-part
states are not spin eigenstates in general. The dot states
form the basis of the configuration space are then descr
by the occupation of the four basis states~2!. The number of
electrons within this space thus ranges from zero up to f
The ground state has the hole level occupied with electr
and therefore is an effective quasiparticle vacuum, deno
with u0̃&. Excited states of the dot are formed by means
creation of electrons in the higher level, and/or by creation
holes, i.e., by removing electrons from the lower level. T
gives, in addition tou0̃& andue&, uē&, uh&, uh̄&, the further dot
states

ueē&, uhh̄&, ueh& uēh̄&, ueh̄&, uēh&,

ueēh&, ueēh̄&, uehh̄&, uēhh̄&, ueēhh̄&.

The exciton~one electron plus one hole! states may be
split up in energy by the effective interaction between el
trons and holes, in the form of second quantization:

V5
1

4 (
abgd

Vabgd aa
† ab

† agad ,

where the labelsa, b, g, andd stand fore, ē, h, or h̄. In
first approximation the antisymmetrized matrix eleme
Vabgd are those of the~screened! Coulomb interaction, but a
more detailed calculation should include many-body effe
However, whatever effects are included, in the absence
external magnetic fields the time-reversal symmetry is
ways conserved. The one-exciton states are therefore e
even (1) or odd (2) under time reversal and therefo
given by

ueh1&5~ ueh&1uēh̄&)/A2, ueh2&5~ ueh&2uēh̄&)/A2,

ueh̄1&5~ ueh̄&2uēh&)/A2, ueh̄2&5~ ueh̄&1uēh&)/A2.
~3!

For the same reason, the states with charge61 are all two-
fold degenerate. The time-reversal symmetry implies re
tions likeVeheh5Vēh̄ēh̄ andVehēh̄5Vēh̄eh . The energies rela
tive to that of the ground state for the scheme in Fig. 2 m
then be written in a closed expression as

E5Ẽene1Ẽhnh1
1

2
~ne21!neVeēeē1

1

2
~nh21!nhVhh̄hh̄

2
1

2
nenh~Veheh1Veh̄eh̄!1

1

2
s~Veheh2Veh̄eh̄!

1
1

2
~11s!tVehēh̄2

1

2
~12s!tVeh̄ēh . ~4!

In this expression the symbolsne ,nh represent the number o
electrons in the upper level and the number of holes in
lower level (ne ,nh50,1,2). Forne ,nh51,1 we introduced
in Eq. ~4! the notationt561 for time-even or- odd state
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and the symbols has the values51 for ueht& ands521 for
ueh̄t& states. Forne ,nhÞ1,1, we substitutet5s50 in Eq.
~4!. This splitting of the one-exciton multiplet, shown in Fig
2, is consistent with the phenomenological Hamiltonian us
in Refs.@5,14,15#.

If the basis functions~2! have no other quantum number
corresponding to symmetries of the system, then in princ
all the optical transitions indicated in Fig. 2 will be prese
This means that there is then no dark exciton state. Howe
not all transition amplitudes in the decay of the biexcit
states will be equally large. If symmetries that we conside
the following are fulfilled, some states will be dark. It shou
be mentioned that experimental information can be obtai
by means of polarization measurements in combination w
an external magnetic field@5#. According to Eq.~4! the sum
of the photon energies of the transitions between the cha
states is equal to the sum of the energies of the casc
photons in the decay of the~neutral! biexciton state:

v11v25v31v4 . ~5!

Because holes are heavier than electrons, their wave f
tions are more confined, leading to a stronger repulsion
tween two holes than that between two electrons,Vhh̄hh̄
.Veēeē.0. From this follows with Eq.~4! the inequalities

v12v2.v32v4.0. ~6!

The relations~5! and~6! are expected to hold under the ge
eral condition that the dot is small compared to the b
exciton size, irrespective of the shape of the dot or crys
structure and may therefore be helpful to analyze the em
sion spectrum, when other information is lacking. Typic
patterns of the emission spectra should then look simila
those plotted in Fig. 3.

FIG. 3. Typical patterns of the photon emission spectrum fo
~lens-shaped! quantum dot, corresponding to level scheme in F
4~a! in the regime of strong tunneling. The plots are based
populations given in Sec. III A and the relations~5! and~6! for the
photon energies. The relative distances between the latter are
trarily chosen. The left plots shows the effect of increasing the b

potential above the resonance conditioneV5Ẽe1Ẽh by six, four,

and two times kBT. The right plots show, foreV5Ẽe1Ẽh

12kBT, the effect of changing the gate potentialeF by an amount
2kBT ~curve peaked atv3) to 1kBT ~curve peaked atv4) and
zero ~peaked atv1, as in the left figure!.
5-3
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FIG. 4. Four different schemes for cylindrical dots.~a! In the caseume2mhu51, the exciton multiplet consists of a bright and a da
doublet.~b! For the caseme5mh5

1
2 , the exciton level is split into a doublet and two singlets. One singlet is a dark state. This results

optical emission frequencies.~c! In caseme5mh.
1
2 , the exciton level is split into a doublet and two singlets. Only one of the exciton s

~a singlet! is bright. ~d! Level scheme for systems where spin-orbit coupling can be neglected and total spinS is a good quantum number
If no other symmetries are present, there is only one cascade decay path from the biexciton state. Hence, schemes~c! and~d! do not produce
entangled photons.
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In the following subsection we discuss the qualitative
different schemes that can occur for cylindrically symmet
dots, and consider the implications for generation of
tangled photon pairs. Total absence of spatial symmetry
negligible spin-orbit interaction give rise to an unfavorab
situation. For then the twofold degenerate electron and h
sates~2! may be written in a simpler form, withoutc2 and
x2 and with real spatial functionsc1 and x1. In that case
antisymmetrization implies that two electrons or holes in
same level form a spin singlet stateS50. The one-electron
plus one-hole states are then a spin singletS50, correspond-
ing to ueh̄1& of Eq. ~3! and a spin tripletS51, correspond-
ing to ueh&, uēh̄&, andueh̄2&. Such a situation is depicted i
Fig. 4~d!. Since the electric dipole operator does not act
05380
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the spin degrees of freedom, theS51 triplet will be dark and
the deexitation of the biexciton state proceeds only via
S50 exciton state. If no other~spatial! symmetries are
present, this is only one single state and consequently
tanglement of the cascade photons can never occur as
requires two different, energetically indistinguishable pa
of the biexciton decay. We therefore conclude that for a p
sible entanglement of the cascade photons at least spin-
interaction, i.e., nonzeroc2 and x2 in Eqs. ~2!, or some
spatial symmetry of the dot potential is required.

B. Cylindrically symmetric dots

In order to create entanglement in photon pairs in
cascade of Fig. 2, a number of conditions must be satisfi
5-4
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ENTANGLED PHOTONS FROM SMALL QUANTUM DOTS PHYSICAL REVIEW A68, 053805 ~2003!
First the two photons must be identified as coming fro
transition 1 and 2 and must belong to the same casc
Incoherent tunneling effects between the exciton states m
occur at a slow rateg with respect to the lifetime of the
exciton level. Secondly, twopaths in the cascade must b
indistinguishable, which implies that the splittingsD be-
tween the intermediate exciton substates should not
greater than the linewidths. If no temporal or spatial sepa
tion of the photons is possible, one relies on spectral sep
tion, which leads to the conditionsv12v2@G, G@D, and
G@g. In the general case with only time-reversal dege
eracy of the levels, shown in Fig. 2, the level splittingsD and
v12v2 will generally be of comparable size, since they a
caused by the same effective interaction between the ch
carriers. Identification of entangled pairs will also be co
plicated by the fact that there are four different routes fr
the biexciton to the ground state. For this reason we cons
the case of axially symmetric quantum dots, which are of
realized in experiments@5,7#. As we shall see, this leads t
dipole forbidden transitions, i.e., dark states, and degene
of two exciton states, so that the above conditions for
tanglement can be satisfied.

In an axially symmetric quantum dot, the electron a
hole states are characterized by well-defined magnetic q
tum numbers6me and6mh , respectively. In the most com
monly used semiconductor materials, the conduction b

corresponds tos1
2 , while the valence band is ap 3

2 hole band.
Hence the first unoccupied level in the dot is ans1

2 state,
while the highest occupied level will be ap 3

2 state. Fors1
2

electrons andp 3
2 holes, the single-particle states~7! are of

the form

ue&5(
bW

(
m521/2

1/2 E drWurW&K rW2bWUs1

2
,mL cm~bW !,

uh&5(
bW

(
m523/2

3/2 E drWurW&K rW2bWUp3

2
,mL xm~bW !. ~7!

The summation is over the lattice sitesbW . The state at each
lattice site is determined by the slowly varying amplitud

cm(bW ) or xm(bW ), and by the localized orbitalsus1
2 ,m&,

up 3
2 ,m&. The latter are the Wannier functions@16# which, in

the tight-binding approximation, may be replaced by the
bitals for an isolated atom. The spin componentscm(rW),
xm(rW) are called the envelope wave functions@17#. Because
these are slowly varying with respect to the lattice, one m
replace the argumentbW with rW in the above expressions. On
finds that each component of the envelope wave functio
multiplied with a lattice periodic function, which are th
Bloch states at the symmetry pointpW 50W . Projection of the
states in Eqs.~7! onto the spinor basis gives the compone
c1 ,c2 andx1 ,x2 of the general expression~2!. The electron
envelope wave functionscm(rW) and the hole envelope wav
functions xm(rW) are determined by solving an effectiv
Schrödinger equation with an added potentialU(r¢) that de-
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scribes the position-dependent band edge. This leads to
confined dot states. The kinetic energy operator in the eq
tion for the holes is given by the Luttinger Hamiltonia
@11,18,19#

H5
p¢2

2m*
2

1

9g1m*
(

i j 51

3

@g32~g32g2!d i j #T i j Ji j ,

T i j 53pipj2d i j p¢
2, Ji j 5

3
2 ~ j i j j1 j j j i !2 9

4 d i j . ~8!

The Luttinger constantsg1 , g2, and g3 are dimensionless
model parameters. The momentum operatorp¢ may be inter-
preted as a quantization of the Bloch momentum, becau
plane-wave envelope function corresponds to a Bloch wa
It is important to realize, however, that the physical electr
position and momentum operators act on both the enve
wave functions and the orbitals in the states~7!.

In the envelope description of localized states in the qu
tum dot, one may define a total~envelope plus orbital! angu-
lar momentum operator as

f¢5 l¢1 j¢5r¢3p¢1 j¢ .

Only in the caseg25g3 do the three components off¢ com-
mute withH @11,17#. Because for InAs the two constants a
nearly equal, this so-called spherical approximation is of
made. In the spherical approximation, a cylindrical confin
ment potentialU gives rise to the constant of motionmf ; a
spherical confinement potentialU results in constantf and
mf . In realistic calculations for the case of a spherical d
@11#, one finds that the lowest state of the exciton as wel
the lowest exciton and biexciton states are predomina
composed of anl 50 envelope wave function. In that cas
the angular momentum of ground states roughly equals
of the orbital functionsf 5 j .

If we restrict ourselves to cylindrical dots, the confin
ment potentialU is axially symmetric and the single-particl
states have good quantum numbersmf5me andmf5mh for
the electron and the hole. These single-particle states wil
denoted as

ue&5ume&, uē&5u2me&, uh&5umh&, uh̄&5u2mh&,

with positiveme , mh . From the 16 basis states of the lev
scheme Fig. 2, the states with an even number of elect
and holes have total magnetic quantum numberM50. One
also has thatVehēh̄ vanishes. As a consequence, the pairs
oppositeM in the one-exciton multiplet, such as, for e
ample,ueh& anduēh̄&, are degenerate. There are qualitative
different schemes, shown in Fig. 4. Since electric dipole tr
sitions occur only ifume2mhu<1, we distinguish two cases
ume2mhu51, Fig. 4~a!, and me5mh , Figs. 4~b! and 4~c!.
The case ume2mhu51 is realized in the~lens-shaped!
In~Ga!As/~Ar!GaAs quantum dots that have been extensiv
studied in Ref.@5#. There it was found that for zero extern
magnetic field the exciton states withuM u5me1mh52,
which are formed by anm5 3

2 heavy-hole state and anm
5 1

2 electron state, are to a good approximation dark and
5-5
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VISSER, ALLAART, AND LENSTRA PHYSICAL REVIEW A68, 053805 ~2003!
below theuM u51 bright exciton states. So Fig. 4~a! repre-
sents a realistic situation and the dark excitons withM5
6(me1mh) may even act as intermediate stages in the
mation of the biexciton state by tunneling of electrons a
holes into the dot. This is also a favorable situation for
creation of entangled photons, since the two exciton st
with uM u51 are degenerate, due to time-reversal symme
and the decay paths of the biexciton via theM511 and via
the M521 exciton state are therefore indistinguishable,
required for entanglement. This only holds true, of course
there is perfect axial symmetry@15,20#.

We now consider the situations sketched in Figs. 4~b! and
4~c!, which represent the casesme5mh5 1

2 and me5mh
. 1

2 , respectively. In Fig. 4~b!, there is a doublet of brigh
states, which may allow for entanglement of photons that
polarized in the horizontal plane. Note that themh5 1

2 state is

a superposition ofml521,0,1,2 states in thep 3
2 hole level,

while the mh5 3
2 state is a superposition ofml50,1,2,3

states. In dots elongated in thez direction, hereafter called
‘‘tall’’ dots, the mf5

1
2 is expected to lie below themf5

3
2

state. In lens-shaped dots, the ground state hasmf5
3
2 in-

stead. The relevant level in ap 3
2 hole band may therefore

consist of themh56 1
2 states for tall cylindrical dots. The

scheme of Fig. 4~b! would also occur if, due to strain o

other effects, the split-offp 1
2 band provides the hole state

In Fig. 4~b! there are two degenerate exciton states, w
M511 andM521, which are appropriate for the produ
tion of entangled photon pairs. Then one of theM50 exci-
ton states is dark and the other is bright. The energy of
M50 states differs in general from that of theM51 states
and therefore in total six frequencies appear in the opt
spectrum. In Fig. 4~c!, the exciton states withM56(me
1mh) are obviously dark states, but also theM50 time-odd
exciton stateueh̄2& is dark. This follows from the time-
reversal property of the dipole operatorez of the M50 to
M50 transition. So in this case there is only one brig
exciton state,ueh̄1&, and therefore this situation does n
allow production of entangled photon pairs in the casc
decay of the biexciton. We conclude therefore that Fig. 4~b!
represents a possibly favorable case for the production
entangled photons, while a situation as depicted in Fig. 4~c!
is not suitable.

In the case of a spherical quantum dot, an exceptio
situation may occur if both the electron level and the h
level are states with angular momentumf e5 f h5 1

2 . The
spherical symmetry then leads to a~threefold degenerate! F
51 triplet and one darkF50 exciton,

ueh&5uFM511&, uēh̄&5uFM5121&,

ueh̄2&52uFM510&, ueh̄1&52uFM500&.

In the deexcitation cascade of the biexciton state now th
polarizations are possible for the same photon energy, w
yield extra options for entanglement. A spherical quant
dot with f e or f h larger than1

2 results in a system that can b
seen as a combination of several systems withme and mh
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taking all the possible values. The total number of state
4 f e1 f h11 and the levels have a large degree of degenera

For very small dots of size comparable with the latti
constant, the crystal symmetry will be incompatible wi
spherical symmetry or cylindrical symmetry. One does n
expect that the Luttinger Hamiltonian~8! can describe this
situation. Such small dots will fall in the class of Fig.
Another extreme situation may arise for bound states o
single impurity atom in an additional homogeneous crys
Such a system resembles an ionic atom and has sphe
symmetry. Our model then applies only to the simplest s
ation: two levels with j e5 j h5 1

2 in scheme Fig. 4~b!, for

example, with ans1
2 electron level and ap 1

2 hole level.

III. PHOTON STATISTICS AND ENTANGLEMENT

A. Emission in the strong tunneling limit

An important factor that determines to what extent e
tangled photons will be emitted is the ratio of th
spontaneous-emission ratesG in Fig. 4 and the tunneling
ratesg of the charge carriers. We now show howG may be
experimentally determined in a situation of fast tunnelin
For preparation of the biexciton, the bias voltage is increa
to a value where the tunneling rateg is much greater than the
photon emission rateG, so that the electron and hole tunne
ing is fast compared to spontaneous emission. We neglec
nonradiative recombination@21#. In this regime, only therma
fluctuations can deexcite the system@10#. When thermal en-
ergy exceeds the Coulomb shifts,kBT@Vabgd , the popula-
tions of the single-particle states are independent and e
the Fermi-Dirac distribution in the continuum bands:

pe5
1

11exp
Ẽe2eF2eV/2

kBT

,

ph5
1

11exp
Ẽh1eF2eV/2

kBT

. ~9!

The decaying levels—the biexciton, the bright exciton, a
the two charged excitons—then have respective populat
pe

2ph
2 , 2pe(12pe)ph(12ph), and 2pe(12pe)ph

2 ,
2pe

2ph(12ph) for a flat dot ~the system withume2mhu
51). For a tall dot, or another realization of theme5mh
5 1

2 scheme, the population of the bright exciton is 3pe(1
2pe)ph(12ph) instead. Multiplication of these population
with the decay rate for each of the levels as indicated in F
4~a! and 4~b! gives the strength of the emission peaks. E
amples of emission spectra in thermal equilibrium for t
case of strong tunneling are shown in Fig. 3. The aver
emission time of a photon as a function of temperat
equals t̄ 51/2Gpeph for a flat dot and is t̄ 51/2(G1
1G2)peph for a tall dot. By measuring this average, one c
experimentally determineG andG11G2, respectively. Note
that pe'ph'1 if V is chosen sufficiently large:eV@kBT.
5-6



ling
e, thin

ENTANGLED PHOTONS FROM SMALL QUANTUM DOTS PHYSICAL REVIEW A68, 053805 ~2003!
FIG. 5. Tunneling rates for resonant tuning.~a! The casemeÞmh : the bright and dark exciton doublets are reached by equal tunne
probabilities.~b! The caseme5mh5

1
2 : the bright triplet and dark singlet are reached with unequal rates. Unless indicated otherwis

arrows have rateg, thick arrows have rate 2g.
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B. Correlated photon pairs

We now suppose that the quantum dot has been prep
in the biexciton state, so that the two-photon cascade ca
detected. Any residual tunneling of electrons and holes
result in a tunneling out of the intermediate one-exciton s
and lead to emission of a photon from another transition
the resonance~1!, the states in the continuum levels are ha
filled, i.e., Eq.~9! givespe5ph5 1

2 . Then, the unconditiona
tunneling probability of an electron into or out of the dot
the same and the perturbations are minimal. To obtain
analytical estimate for the relative photon emission pr
abilities and their correlations, we assume that the elec
and hole tunneling have roughly the same rateg. For the
evaluation of the jump statistics, the system can be descr
by a classical master equation, since only incoherent tra
tions occur@22,23#. Since the tunneling rates do not depe
on whether an exciton is bright or dark, the populations
the members in the multiplets can simply be added so
the number of rate equations is reduced. The net tunne
between the levels is indicated in Fig. 5, corresponding to
two schemes that can give entanglement in Fig. 4. We ca
late the photon emission probabilities after preparation of
biexciton for each of the four transitions: transition 1 fro
the biexciton state to the one-exciton state, transition 2 fr
the exciton state to the ground state, and transition 3 an
between the charged states, cf. Fig. 2. The probability o
transition between a pair of levels is a matrix element of
inverse of the transition matrix, neglecting the gain terms
photon emission. For flat dots, the scheme of Figs. 4~a! and
5~a!, we find for the probabilities of each of the transition

P25
6g2

2G2115Gg124g2
, P35

2Gg16g2

2G2115Gg124g2
,

P1512P222P3 , P45P3 . ~10!
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The probabilities that a photon emission on transition 1
followed by each of the other transitions are

P115
6g2

2G2115Gg124g2
, P135

3Gg16g2

2G2115Gg124g2
,

P12512P1122P13, P145P13. ~11!

For tall dots, the scheme of Figs. 4~b! and 5~b!, the emission
probabilities on the four transitions are different, because
the different exciton structure. The probabilities of emissi
starting from the biexciton or starting from the exciton aft
transition 1 are in this case given by

P25P115
4g2

G t
219G tg116g2

, ~12!

P35
G tg14g2

G t
219G tg116g2

, P135
2G tg14g2

G t
219G tg116g2

,

whereG t5G11G2. The dependence of the probabilities
Eqs.~10!, ~11! and~12! on the ratio of the residual tunnelin
rateg and the photon emission rateG ~see Figs. 4 and 5! is
plotted in Fig. 6. It appears that the photon correlationP12 is
greater than 90% whenG.10g but falls to 25% when the
tunneling rate is much faster than the photon decay. Eve
the first two photons are on the cascade transition 1 follow
by 2, this does not yet guarantee entanglement. We calcu
the degree of entanglement in the next subsection.

OnceG andG11G2 are known~Sec. III A!, respectively
the resonant tunneling rateg, for electrons and holes, may b
experimentally determined from the average time betw
two subsequent photon emissions in the steady-state reg
This average time difference is for flat and for tall do
respectively, given by the following two expressions:
5-7
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t̄ 5
1

g
1

2

G
, t̄ 5

8

9g
1

2

G t
1

2

9

5G t124g

3G t
2128G tg148g2

.

~13!

C. Entangled photon pairs

During the switching interval that allows tunneling of tw
electrons and two holes, the system is prepared in the b
citon state. This is followed by spontaneous emission of
photon and the system makes the transition

ueēhh̄&→~ ueh̄1&ux&1ueh̄2&uy&)/A2 ~flat dot!,

→~ ueh1&ux&1ueh2&uy&)/A2, ~ tall dot!.

Hereux& anduy& are orthogonal linear polarization vectors
the radiation field. We consider here only the case of
observation of photons emitted along thez direction. As a
result, an entangled state between the dot and the ele
magnetic field is formed. In order to have a degenerate d
blet of bright one-exciton states in the the one-exciton m
tiplet, one needs an axially symmetric dot. Any asymme
gives rise to a splitting of the bright doublet of magnitu
D52Vehēh̄ ~flat dot! or D52Veh̄ēh ~tall dot!. We consider
first the case in which tunneling rateg is small compared to
the energy splittingD, so that we can neglect tunneling e
fects. When the system resides in the one-exciton state
time t, the state will evolve into the state

~ ueh̄1&ux&e2 iDt1ueh̄2&uy&/A2

or

~ ueh1&ux&e2 iDt1ueh2&uy&/A2,

for the respective cases of flat and tall dots. The probab
for a waiting timet between the two photon emissions in t

FIG. 6. Photon emission probabilities for transitions 1, 2, a
3, as a function of the ratio of the carrier tunneling rateg and the
photon emission rateG of the lower transition as given by Eqs
~10!–~12!. Thick and thin lines correspond to flat and tall dots. F
tall dots we adoptedG15G25G. Left plots: emission of the first
photon after preparation of the biexciton; right plots: emission
the second photon, when the first was emitted on transition 1.
dotted line is the probability that no tunneling event occurs betw
transition 1 and transition 2.
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cascade equalsGe2Gt, whereG5G1 for tall dots. Therefore,
the two photon density operator is given by the average

r5
1

2E0

`

dtGe2Gt~ uxx&e2 iDt1uyy&)(^xxueiDt1^yyu!

5
1

212iD/G
uxx&K yyU1c.c.1

1

2 UxxL K xxU1 1

2 UyyL ^yyu.

~14!

This expression shows that dephasing destroys the
diagonal matrix element, and thereby the entanglement.
correlation between the polarizationsux& and uy& remains
perfect. We now include the residual tunneling from the on
exciton doublet to the four charged dot states, which occ
at a total rate of 4g. When the system~eventually! returns to
the bright exciton doublet, the entanglement between the
and the field is destroyed and also the correlation has di
peared. The probability that the second photon follows
first without an intermediate tunneling event isP12* 5G/(G
14g), while the second photon is independent of the fi
with probability 12P12* . If we include this effect, the field
density operator has a fraction 12P12* that is a fully mixed
state, and a fractionP12* that is the average with waiting
times t with probabilitiesGe2(G14g)t. This gives the two-
photon density operator

r5
1

2
PS 1

11 iD/~G14g!
UxxL

3^yyu1c.c.1uxx&^xxu1uyy&^yyu!

1
1

4
~12P!~ ux&^xu1uy&^yu!~ ux&^xu1uy&^yu!

andP5P12* . It is clear from this expression thatP is a mea-
sure of the polarization correlation. The evaluation of t
entanglement entropyE of such a mixed state was describe
in Ref. @24#. After a short calculation we obtainE in terms of
the concurrenceC:

E52x log2 x2~12x!log2~12x!, x5
1

2
1

1

2
A12C2,

C5
P

u11 iD/~G14g!u
2

12P

2
. ~15!

When expression~15! becomes negative,C and E are de-
fined to be zero. For pure states the concurrenceC gives the
visibility in two-photon interferometry@25#. One finds that
for any value ofD, entanglement is totally destroyed whe
2g>G. This can be seen in the left graph of Fig. 7. A
expected, the entanglement increases considerably as
tunneling rateg becomes less than the photon emission r
G.

One may improve on the efficiency of entangled pairs
detecting also the photons on transitions 3 and 4. Ther
one can also eliminate events where the tunneling from
one-exciton level leads to a photon on transition 3 or 4 a

d

r

f
e
n
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ENTANGLED PHOTONS FROM SMALL QUANTUM DOTS PHYSICAL REVIEW A68, 053805 ~2003!
only count pairs of photons on the cascade 1 to 2. The
tanglement entropy is still given by Eq.~15!, but with P the
conditional probability of an immediate pair 1,2 under t
assumption that the second photon is of transition 2. He
this is P5P12* /P12 for flat dots and, provided one detects t
horizontally polarized photons, one must putP
53P12* /(2P121P12* ) for tall dots. HereP12 is given in Eq.
~11! and Eq. ~12! for the respective two types of leve
schemes. The result is plotted in the right graph of Fig. 7.
expected, the improvement is considerable when the tun
ing rateg is a few times smaller than the photon emissi
rateG.

D. Quantum dot in an optical microcavity

Application of an optical microcavity~resonant with the
lower transition 2 of the cascade!, such as dielectric Bragg
mirrors or a photonic crystal, increases the decay rateG and
therefore is another means to enhance the entanglemen
tropy. The cavity may also enhance the relative emission
specific spatial direction. If, however, the cavity does n
have two degenerate polarization modes in thexy plane, the
level scheme of a flat dot Fig. 4~a! is perturbed and the
entanglement is corrupted. For example, let us assume
the symmetry axis of the cavity is misalinged~with respect
to the z axis of the dot! in the direction ẑ cosu1(x̂cosf

1ŷsinf)sinu. This implies that the dipole transitions corr
sponding to the polarizationsuu&5ux& cosf1uy& sinf and
uv&5uy& cosf2ux& sinf have modified coupling constan
so that the decay rates in this basis areG cos2u andG. With
quantum trajectory techniques@23,26# we obtain for the den-
sity operator

r5E
0

`

dtAGe2 iHt2Gt/2seiHt2Gt/224gtAG1~12P!1,

FIG. 7. Dependence of the entanglement entropy~15! on the
ratio g/G, where for tall dotsG5G1. The upper, middle, and lowe
curves are for an exciton energy splitting ofD50, D50.2G, and
D50.4G, respectively. The left plot applies when photons from t
decay of the charged exciton states (3 and 4 in Fig. 2! are not
detected. The right plot applies when these photons are elimina
Thick lines refer to flat dots, scheme of Fig. 4~a!, thin lines to tall
dots, scheme of Fig. 4~b!, with axial symmetry.
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1

2
~ uxx&1uyy&)(^xxu1^yyu!,

15
1

4
~ ux&^xu1uy&^yu!~ ux&^xu1uy&^yu!,

which is a straightforward generalization of expression~14!.
The HamiltonianH and the decay operatorG act on the state
of photon 2 only:

H5ux&^xuD, G5uu&^uuG cos2u1uv&^vuG,

and P is determined from normalization. Plots of the e
tanglement entropy for various misalignment angles
shown in Fig. 8. Due to the complicated resonance struc
of a cavity, the transitions 1, 3, and 4 will generally ha
different decay rates. These are preferrably smaller than
modified spontaneous-emission rateG of transition 2, so that
P11, P13, andP14 are small andP12 is nearly unity.

IV. CONCLUSIONS

We considered realizations of a two-photon turnst
based on small quantum dots. In the regime of tight confi
ment, the single-particle states are well separated and
Coulomb interaction can be treated perturbatively. W
showed how this results in a closed level scheme with
basis states. The system seems ideal for generation of
tangled photons on the cascade from the biexciton via
excitonic multiplet to the ground state. The biexciton can
prepared without Coulomb blockade so that low tempe
tures are not needed. For a cylindrically~but not spherically!
symmetric dot, different combinations of the magnetic ele
tron and hole quantum numbersme , mh give rise to the four
different level schemes depicted in Fig. 4. Selection rules
optical transitions imply that only in the first two cases, wi

d.
FIG. 8. Dependence of the entanglement entropy on the rela

orientation, given by the anglesu andf, of the cavity with respect
to the dot. The upper, middle, and lower curves are forD50.1G,
D50.2G, andD50.4G, respectively. The plots are for a consta
f5p/4 with a tunneling rate chosen atg5.01G.
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VISSER, ALLAART, AND LENSTRA PHYSICAL REVIEW A68, 053805 ~2003!
me2mh561 or me5mh5 1
2 does, a degenerate intermed

ate level occur in the cascade, which is a requirement
entanglement. Quantum dots in~In!GaAs/~Al !GaAs with a
flat cylindrical shape haveme5 1

2 , mh5 3
2 electron and hole

ground states, while tall dots that are elongated along
symmetry axis haveme5mh5 1

2 due to restricted orbital an
gular momentum. Therefore, both level schemes, Figs.~a!
and 4~b!, can be realized experimentally.

The polarization correlation and entanglement of form
tion in the photon pair may be corrupted by the followin
two effects; first here will be a minimal residual tunnelin
rate 4g into and out of the intermediate one-exciton lev
which can effectively flip the spin of the exciton. Second
the Coulomb interaction gives rise to an exchange splitt
of the exciton multiplet in dots without perfect axial symm
try, which causes different polarization states to dephase.
residual tunneling rateg may be obtained from the emissio
statistics of pairs different from the cascade 1 followed by
as given by Eq.~13!. The polarization correlation is found t
be as much as 75% ifg<0.1G and drops to about 20% i
.
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g'G. The entanglement entropy of the two photons is s
roughly 80% for g<0.1G, provided that photons emitte
from charged states of the dot can be eliminated. Otherw
it is roughly halved. The entanglement is rather insensitive
an energy splittingD of the ~bright! exciton substates, a
long asD<0.4G.

Application of an optical microcavity that is resonant wi
the lower transition of the cascade leads to increasedG and
thereby enhances the entanglement of the emitted cas
photons. Misalignment of the cavity axis with respect to t
symmetry axis of the dot does not substantially decrease
entanglement, as long as the mismatch is less thanp/4 @27#.
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