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Pairing of fermions in atomic traps and nuclei
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Pairing gaps for fermionic atoms in harmonic-oscillator traps are calculated for a wide range of interaction
strengths and particle numbers, and compared to pairing in nuclei. Especially systems where the pairing gap
exceeds the single-level spacing but is smaller than the shell splittingre studied, which applies to most
trapped Fermi atomic systems as well as to finite nuclei. When solving the gap equation for a large trap with
such multilevel pairing, one finds that the matrix elements between nearby harmonic-oscillator levels and the
quasi particle energies lead to a double logarithm of the gap, and a pronounced shell structure at magic
numbers. It is argued that neutron and proton pairing in nuclei belongs to the class of multilevel pairing, that
their shell structure follows naturally, and that the gaps scale-&sY*—all in qualitative agreement with
odd-even staggering of nuclear binding energies. Pairing in large systems is related to that in the bulk limit. For
large nuclei the neutron and proton superfluid gaps approach the asymptotic value in infinite nuclear matter:

A=1.1 MeV.
DOI: 10.1103/PhysRevA.68.053616 PACS nunter03.75.Hh, 21.65+f, 74.20.Fg, 67.60-g
I. INTRODUCTION interesting if the pairing gaps of fermionic atoms in

harmonic-oscillator traps would display similar shell struc-

Pairing in Fermi systems is central for understanding suture and scaling with the number of particles as nuclei.
perconductivity in condensed-matter physiit§ superfluid- The aim of this paper is to calculate pairing gaps in ultra-
ity and glitches in neutron stars, excitation spectra and oddeold atomic Fermi gases in harmonic-oscillator traps and in
even staggering of binding energies in nudl2], metallic  nuclei, which are then compared to data on odd-even stag-
clusterd 3], and superconducting graif4]. New insightinto ~ gering of nuclear binding energies. For the atomic traps ex-
the general properties of such Fermi systems can now bisting pairing gap calculationgl4,15 are extended to sys-
obtained from experiments with atomic ga$g$ which re-  tems, where level spectra and shell effects play an important
cently have been cooled down to degenerate temperaturégle. It is shown that such pairing mechanisms are similar in
around 10% of the Fermi temperatui@—9]. The interac- nhuclei, which to first approximation can be considered as a
tions between trappedLi and “°K atoms have simulta- finite system of fermions in a harmonic-oscillator field with
neously been tuned above a Feshbach resonance, where ti@tractive o-function interactions. Another important com-
become strongly attractive, in order to produce optimal coninon feature is the anharmonic fields that lead to splitting of
ditions for superfluidity 10]. Atomic gases have widely tun- the single-particle states which reduce the pairing to the lev-
able number of particles, densities, interaction strengths@|$ closest to the Fermi surface and leads to a distinct shell
temperatures, spin states, and other parameters, which holgucture. For a wide range of interaction strengths and num-
great promise for a more general understanding of pairingper of particles the trapped atomic clouds are predicted to
phenomena in solids, metallic clusters, grains, nuclei, andisplay similar scaling and shell structure as nuclei as also
neutron stars. seen in the experimental data on neutron and proton pairing.

In the experiments wittfLi atoms the anisotropic expan- The scaling with particle number and the continuum or BCS
sion after sudden release from the trap is as predicted frofimits are calculated for both large traps and nuclei and
hydrodynamicg11]. This is compatible both with a strongly thereby the pairing gaps are estimated for nuclear matter,
interacting superfluid and collisional hydrodynamics. Thewhich also gives an idea about the superfluid gaps in neutron
scattering length is attractiv@<O and large such that den- star matter.
sities abovep>1/a|® are achieved and found mechanically ~ The paper is organized as follows. In Sec. I the basic
stable against collapse. The interaction energy per particl®roperties of interacting fermions in harmonic-oscillator
like Fermi energy, scales 8% [6—8] as predicted theoreti- traps are given, in particular the single-particle level spectra.
cally [12,13. The superfluid gaps in bulk are also expectedPairing is treated in Sec. Ill with individual sections devoted
to be of the order of the Fermi energy. to each pairing regime where the last three sections outline

In nuclear physics pairing is observed directly in the odd-the bulk, strongly interacting, and multilevel pairing regime.
even staggering of binding energies, i.e., nuclei with an evef Sec. IV we turn to nuclei and show that they belong to the
number of protons or neutrons are more strongly bound thaglass of multilevel pairing.
nuclei with corresponding odd numbers by a pairing gap of
the order of~1 MeV. The same pairing gap also determines |, 'n, TE FERMI GASES IN HARMONIC TRAPS
the excitation energies of ground-state nuclei. On average the
pairing energies in nuclei decrease with the number of pro- We treat a gas oN fermionic atoms of mass in a
tons and neutrons modulated with a distinct shell structureharmonic-oscillato(HO) potential at zero temperature inter-
i.e., they are smaller near closed shells. It would be mosacting via a two-body interaction with attractigsevave scat-
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tering lengtha<<0. We shall mainly discuss a spherically 3
symmetric trap and a dilute gdse., where the density €n. 1| NeT > hw
obeys the conditiorp|a3<1) of particles with two spin
states with equal population. The Hamiltonian is then given _—
by = U(I’)RnF|(I’)| redr
No(p? o1 a 4 1 1(1+1)
H=> | s=+-mo?r2|+g>, &3(ri—r)), 1 = 32 go| =—— —
21 2m 2T 9% i=r) @ 3 agey 2T L Eibr n2
with the effective couplingg=4=#2%a/m. For a large num- (8)
ber of particledN at zero temperature the Fermi energy is for
a noninteracting system The latter result is calculated from the overlap between the
mean field as given by Eqé3) and(5) and the WKB wave
Er=(ng+3/2%w=(3N)"%w, (2)  functions as given by Eq$6) and(7) [14]. It is exact within

) ~WKB for | <ng and it compares well to numerical results for
whereng=(3N) " is the HO quantum number at the Fermi g)| |, For attractive interactionsa0) the lowest-lying
surface. The HO shells are highly degenerate with states hagiates have small angular momentum, whictofpositeto
ing angular momentd=ng,ng—2,...,1 or 0 due to the pyclei.

U(3) symmetry of the three-dimensional spherically sym-  an important quantity for pairing is theupergapwhich
metric HO potential. However, interactions split this degen-yas introduced in Ref.14] and will be discussed below,
eracy. In the Thomas-FernfilrF) approximation(see, e.g.,

)1/3

Ref.[16]) the mean-field potential is 32 \/m B
9 G=—— ho. 9)
1 fica 1572 Qosc
U(r)=39p(r)=2m——=p(r), ()
) In comparison the total shell splitting in a shalt is, from
the Fermi energy Eq. (8),
h2k2(r) 1
= + =me?r?+U(r). 4 5(ng+3/2)
Tam 2 o @ D= €y~ eng ol =G (10)

The density can be determined from the Kohn-Sham energy

density functionals. In a dilute gas the mean field is small as The pairing depends crucially on the shell splittibgand
compared to the Fermi energy and its effect on the densit{he supergaiis as will be shown in the following section.
can be ignored in the following. Thus

p(r)=k,%(l’)/31722p0(1—r2/R12—,:)3/2, (5) lll. PAIRING

o Pairing in small systems as nuc[di5], metal cluster$3]
inside  the cloud r<Rrg=a,s:V2Ng+3, where a,sc  and superconducting graifd] appears in odd-even stagger-
=VJhlmew is the oscillator length, andpy,=(2ng ing of binding energies, i.e., systems with even number of

+3)%%372a3, . is the central density17]. particles are more strongly bound than odd ones. In nuclei
The splitting of the HO shell degenerate levels the pairing is also responsible for superfluid effects in col-
=ng,ng—2,...,1 or O in theshell ng by the mean-field lective motion[19].

potential can be calculated perturbatively in the dilute limit.  Pairing in finite systems is described by the
An excellent approximation for the radial HO wave function Bogoliubov—de Gennes equatiof20] and takes place be-
with angular momenturh and (z—1)/2 radial nodes in the tween time-reversed states. As shown in Rédf] these

HO shell whenng>1 is the WKB ong[18], states can be approximated by HO wave functions in dilute
HO traps as long as the gap does not exceed the oscillator
2 sin(krr+0) energy,A<#fw. The gap equation at zero temperature then
Ri(r)= In ke ®  reduces to
between turning pointgl8]. The phase will not be impor- g =26 5104 Agiyr [ , )
tant in the following. The WKB wave numbég(r) is given An|=§ i g fo drr?R (1R (1),
b n' 1’ n’1’
d (1D
) 2ng+3  r2 I(1+1) . o _
kKi(n)=——-——F"- TR (7)  with quasiparticle energies
aOSC aOSC r
2
The single-particle energies are Enir= \/(En'l'_#)erAn'l'- (12)
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L LI L s S o L B B B R AL p regime of multilevel pairing which will be shown to be es-
u 3 pecially relevant for nuclei in the following section.
01 A. Single-level pairing
3 E* . . o

m%’ c ) For very weak interactions pairing takes place only be-
= C e, T, DHuEe tween time-reversed stat@fy,(ry)¢_m(r,) within the |
= gor b SRhoter el level at the Fermi surface, i.d.;=1. Maximal pairing be-

= oshell t mulei-fe. RN tween two particles in the level is achieved with the Cooper

C level f Singlétn., ] pair wave function

B : Plevel e, T

0.001 U R ETT] SN WL ATl I RETT K28
10 100 1000 bo(Ne,1)=2 (IMl=m|00) Yry(r 1) th—m(r2).  (14)
1/3 m
(BN)™ =ng

FIG. 1. Diagram displaying the regimes for the various pairingTh,e pairing engrgy_between only two particles in the level is
mechanismssee text at zero temperature in HO traps vs the num- tWice the quasiparticle energy, and so
ber of particlesN=n§/3 and the interaction strength The dotted g
lines indicate the transitions between single-shell paitng G, E == ne DIS3(r—r ne |
multilevel, Eq. (30), single-level, Eqs(15-(17), and multishell N 2<¢0( F D8 (r=r2)ldo(ne 1))
pairing, Eq.(24). At the dashed line determined byGan(yng)

=ho the pairing gap isA=#Aw, and it marks the transition from _ 9 2l +lfmdr r2R4 (r) (15)
multishell pairing to bulk superfluidity, Eq25). The pairing gap is 2 47 Jo neltt e

A=0.5% above the full linep|a|®=1, which separates the dilute

from the dense gas. It follows from the seniority schem@ee, e.g., Ref22]) that

this is generally the quasiparticle energy and excitation en-
The cutoffn=2ng in the sum of the gap equation models asergy for any even number of particles in the level. Solving
a first approximation the more rigorous regularization procethe gap, Eq.(11), also givesEnF|=A for any number of
dure described in Ref21] that is required for a-function  particles in the level.

pseudopotential. o The pairing energies were given in Rgf4]. For the top
~ The chemical potentiglk is related to the number of par- |evels|=n. the HO wave functions are sufficiently simple
ticles by that the pairing energy can be calculated exactly. For ex-
ample,RﬁF|=nF:[2/1"(l+3/2)]r2'exp(—r2) (in units where
Enryr— — 1 i 1 1
N=22 (21" +1)] 1 nir T M . (13 a,sc= 1) which when inserted in Eq15) gives the gap
n'l’ il
!

. . . s e nl=n.= ——ho. (16)

For weak interactions the chemical potential lies withig) POV magse

from the level energy at the Fermi surfaeg, except for

closed levels where the chemical potential lies between th&he HO wave function fot=0 can be approximated by the
closed and the next open level. For closed shilis(ng ~ WKB one of Eq.(6) whenng>1. Inserting in Eq(15) gives
+1)(ng+2)(ng+ 3)/3, the gap vanishes for interactions be-the pair gad 18]

low a critical value,G=G.=# /2 In(4yng) [15].

The gap at the Fermi surface is most important and it is V2 |al
generally proportional to the critical temperature as dis- EnF'=0:maosc
cussed in the Appendix. For half-filled lev@r shel), where F
w=en., the gap is equal to the quasiparticle enekgy,  Around midshell, i.e., away from closed €l) and open
=Ap . We will in the following refer to this gap ad  (1<ng—I) shells, the WKB wave functions must be re-
=E, =A,,. placed near their turning points by Airy functions, which

" g removes a logarithmic singularity and in turn leads to a loga-

ho. (17

The HO traps provide a physical system in which the' :
connection between these methods of pairing calculationdthm In(l). We find[23]

can be demonstrated and analytical results can be given in N
various limits of interaction strength and particle number. E, = In(1) al ho, 1<l<ng (18)
The associated pairing regimes are displayed in Fig. 1 and F N aosc '

will be discussed in the following sections. The first three

have been discussed in earlier publicatipb,15 but con-  to leading logarithmic accuracy.

tain additional details of derivations and set the notation. In  As shown in Fig. 1 the single-level pairing regime appears
the remaining three sections, which describe pairing regimedor sufficiently weak interactions and large number of par-
pairing gaps are calculated and the transitions to the othdicles (\=50) such thaD>G. The corresponding pairing
regimes are discussed. The last section treats the importagaps can be seen in Fig. 2 at lange.
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1:""|""|""|""|""|"" g
0.9 ;_+++++:+;;*+ EnF|:§<q)o(n|:)|53(r1_r2)|‘bo(nF)>
08 F TiliiRly,
[ gttt
o 07F +¢++;?:{§§§ g fOlfIrz[c9pa(r)/t9n|nF]2
< ok 1;1:::ff§§§§§¥$$+; "2 =G D
o F +$+I++¢¢ + $*+ f 2
; Frryery it drr?dp,(r)/an|
gt "
04 F EEEE S
3 i
08 Bl et : where the supergaP was given in Eq(9). The condition for
0 10 20 30 40 50 60 single-shell pairing in atomic HO traps B<2A=2G, and
@N)"® = ne is thusng=<64/5 according to Eqg9) and (10) or, equiva-
N S lently, to N=<10® trapped particles.
FIG. 2. The pairing gap\ in units of G vs the number of For more than two particles in the shell we may again

particles(qr ng) in atrap with_ half-filled _Ievels calculated from_ the invoke the seniority scheme. It applies approximately to
gap equatiori1]). The scattering length B=—0.018,sc. The pair- 31y superpairs when the singlelevel gap is replaced by the
ing gapsA, are plotted with+ for each half-filled level (only supergagG, and the level degeneracy for a full HO shell
evenl and ng are shown The gap undergoes a transition from _ 1 1)(n_+2). Numerical calculations for half-filled
single-shell to multilevel and finally single-level pairing. shells confirm that the pairing energy per particle is given by
the supergap for single-shell pairifgs].
The single-shell pair energy spectrum does, however, dif-
Whenng is sufficiently small the mean-field splittifg is  fer from that for single-level pairing. In the latter case, one
smaller than the pairing gaps and the pairing acts between athn generally write the pairing wave function in Et4) as
states in an oscillator shell and not just in a sirigteultiplet,  any linear combination of the time-reversed two-particle
l.e., the full SU(3) symmetry is effectively restored as com-statesiy(r1) #,—m(r,). Due to rotational SO(3) symmetry
pared to the SU(2) symmetry of the singlenultiplet. This  the overlap integrals in a single level are independernmnof
enhanced pairing is referred to as “SU(3) pairing” or “su- and the spectrum of pairing energies is particularly simple:
perpairing.”[14] We shall calculate the gap by writing down one state with &, as given by Eqs(16)—(18) and rest of
the superpairyvave function. As in singlg-level pairing, ho‘_""the (2+1) states has zero energy per pair. In the shell,
ever, we obtain the same result by solving the gap equatiomoyever, the overlap between the radial wave functions de-
Assuming SU(3) symmetry the pairing can be calculatedpendS onl and |I’; the corresponding matrix foi,l’
variationally with a pair wave function that is a generaliza—:nF Ne—2,...,1 or 0 has aontrivial eigenvalue spec-
tion of Eq.(14) to a sum ovet=ng,ng—2,...,1 or O, trum: Eq=2G/(2S+1), S=0,1, ... ,Inf(ng+1)/2], when
ng>1 (Int denotes “integer value'[23]. The corresponding
Z a;do(Ng 1) eigenvegtorm are very well approzxi_mated by Cheb_ys_hev’s
By(ng)= ' (19) polynomia as functlon.okl=(I/nF) in the Iar_ggnF limit.
OVF ) 7z Consequently, the excitation energy of a pair is only 2/3 of
Z q the energy % that it takes to break the pair completely. The
richer spectrum is important for expressing an effective
The weightsa, can be found by a variational method with Hamiltonian for BCS pairing.
the overlap integraljRﬁRﬁ,l,rzdr calculated numerically
[23]. For largeng we find a;~ 2l + 1 very accurately. The C. Multishell pairing
sums then reduce to the HO level density

B. Single-shell pairing

For increasing interaction strength pairing also takes place
, 1 5 Ipg(r) between different shells, i.en#ng contributes in the sum
% [ im(1)] - Z I+DR,= on - over n in the gap equatior{1l). The pairing strength\
depends only weakly om for the shells arounch=ng,
Here,p,= p/2 is the density of one spin stdteee Eq(5) for ~ Which mainly contribute to the pairing and we therefore ap-
n=ng] when shells up to energyn(+3/2)%w are occupied ProximateA,=A,_. For half-filled shellu=¢,, and A,

anddp(r)/dn is then the density of thath shell. = ENF,=A. The gap equation then beconi{d$]

The sum ovel states in the gap equation simplifies enor-
mously by using the Thomas-Fermi identity valid for 1, n=2ng A

A=G+G 2, —. (22)
(21+1) dp,(r)  \2n+3 r2 e [(n=np)he]’+A
S T RA(n =" 1o
T 4w an 2m2a3 RZ.
o8¢ (200  The sum can be converted into an integral when correcting

the lower limitn=1 by y=e® whereC=0.577 ... isEul-
The pairing energy is thus er’s constant. It then gives to leading orders
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A 2'}/n|:
A=G+2G—1In , (23
o \ 1+ 1+ (yAlhw)
which for A<fw gives
G
A= (29

G
1-2 In( yn,:)%

This is themultishell pairinggap valid for interactions such
that G In(ng)/hw=<1/2. The region of multishell pairing 0.1
=G In(np)/hw=1/2 extends the single-shell pairing gapip
to stronger interactions whertk~#% w (see Fig. 1. Cooper
pairs are still essentially only formed between states withi
the same shell. However, there is pairing in many shells b

PHYSICAL REVIEW A68, 053616 (2003

fké(r)d%
(ke(r))=———=

(27)
f ke(r)d3r

EKF(O)y

where ke(0)=\2ng/a,s.. That the spatial average should
be performed ovekg(r)? follows from Eq.(9) where the
factor dp(r)/onockg(r) of Eq. (20) enters twice. By defini-
tion of the supergap we find thatw/G = m/2|a|(kg(r)), and

the two exponents match. The prefactors differ due to the
approximate cutofh=<2ng in the gap equation, the approxi-
mate treatment of the overlap integrals and theidepen-

gHence in the gap equation leading to E2p0).

sides that at the Fermi level resulting in a gap that is larger

thanA=G.

D. Bulk superfluidity

E. Dense liquid

The denseor strongly interacting limitkz|a|=1 can be
encountered near a Feshbach resonance wdere- ce.

For a large system the local superfluid field is related Qs regime the dilute gas approximation implicit in the in-

that in a uniform system. In the TF approximation the local
pairing field then depends on radius,

d

wherekg(r) =[372p(r) 3= \2n:—r%a2 Ja,s. is the TF
wave number. The prefactor is=8/e’> without and «
=(2/e)"” with corrections from induced interactiofi24].

2

£(r)
A(r)=« o ex

a
2ake(r)

(29

When the attractions are sufficiently strong and/or the

teractions in the Hamiltoniafl) is no longer valid and a new
scaling region appeaf$—8,12,13. Both the energy per par-
ticle and the pairing gap approach a finite fraction of the
Fermi energy. Recent Green’s-function Monte Carlo calcula-
tions[13] find that the interaction energy is0.56 times the
kinetic energy and that the odd-even staggering energy or
pairing gap in bulk isA=0.54E .

F. Multilevel pairing

number of particles in the trap large enough such that We finally address the intermediate regizD=A (see

G In(ynp)=hw, the pairing field exceeds the HO frequency

Fig. 1) which lies between the single-level, single-shell, and

in the bulk of the trap except in a narrow surface region. Fomultishell pairing regions studied above. Here, pairing takes

that reason the low-lying single-particle excitatid$,15

place between multiplel (| ') levels lying close to the Fermi

and the collective modes are surface modes with typical e><surfac:e,u~—~e3nF 1, and will therefore be referred to asulti-

citation energies of the order ef# w [26]. For example, the
lowest swave excitation(the monopolgis wy=2w in the
collisionless limit. This is in contrast to the weakly interact-
ing system, i.e., below the bulk superfluidity region of Fig. 1,
wherewy= A for open shells. We refer to Refdl5,26] for a
discussion of such modes.

level pairing This region overlaps the regions studied in the
above sections and therefore applies to most systems of
trapped fermions except traps with very fésingle-shell,

very many (single-leve), or strongly interacting fermions
(multishel). As we shall see below nuclei can also be con-
sidered to belong to the multilevel regime.

Here, we concentrate on the bulk superfluid field inside For large level splittind>> A the detailed structure of the

the trap and will relate it to that in a uniform system. Con-

overlap integrals in Eq(11) becomes important. We shall

trary to the surface states, the excitations at higher energigslculate these analytically using WKB as well as numeri-
are less affected by the pairing field and the Bogoliubovcally from the exact HO radial wave functions. Inserting the
wave functions are approximately given by the unperturbedatter in the gap equation we calculate the pairing gaps as
HO wave functions. Consequently, the intrashell pairing conshown in Figs. 2 and 3 for half-filled levels, i.e., far
dition discussed in Ref15], which leads to the gap equa- =g, whereE, =A, =A.

tions (11) and (22), is approximately valid for these states. qualitativeFunderFstanding of these results can be ob-

However, the gap is to be understood as an average SUP&Lined from analvti -
. ; . ) . ytical WKB calculations. At large- the
fluid gap(A) in bulk. The gap equatio(e3) is readily solved v g \vave functionsR,, , of Eq. (6) are excellent approxi-
F

when{A)=7w, . .

mations except for the multilevel overldp |’ where a loga-
rithmic singularity appears, which was responsible for the
In(l) in Eq. (18). Otherwise, when & |12—1'2|<n2 the over-
lap integral of the WKB wave functions of E¢) is domi-
nated by the overlap near the turning points. Definhg
=2ng(r/aysd?— (r/aysd?, the overlap is

(A)=2nchw exp - w/2G). (26)

We now observe that the exponent in E26) coincides with

that in the TF-BCS Eq.25) when the Fermi wave number is
replaced by its spatial average in a finite system:
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when the gap equation is solved numerically with the exact
HO wave functions as is shown in Figs. 2 and 3.

Two illustrative examples are shown in Figs. 2 and 3. In
the first the coupling is sufficiently weala=—0.01a,,
that the pairing undergoes transitions from single shell at
small ng to multilevel for 16sng=<40 and finally single-
level pairing for largeng . In Fig. 3 the coupling is stronger,
a=—0.04a,.., and the pairing undergoes transitions from
single shell to multilevel and approaches multishell pairing
for largeng . These transitions between pairing regimes are
illustrated in Fig. 1.

FIG. 3. Same as Fig. 2 but with= —0.04a,.. Full line is the The multilevel gap of Eq(30) is quite robust and applies
multishell gapG/[1—2 In(yng)Glfiw]. The gap undergoes a transi- t0 many systems as long @&=D=A. lIts validity for nuclei
tion from single shell to a mixture of multilevel and multishell will be discussed below. The formula for the multilevel gap

pairing. can be generalized by relating the shell splitting to the den-
sity of states at the Fermi surface as/de=Q/D, where
fx 2 dr Q=n2 is the number of states in the shell. Likewise, the
drr?Rr2 I(r)R2 ,,(r)oc(—) —_ supergap is related to the coupling constanGagy(). If the
0 " " ™ VE-I2VE—1"2 level spectrum of Eq(8) is changed, the multilevel gap re-
< —In(|x=x']), (28) mains valid, if the shell splitting is correspondingly scaled

with the level density. In other words the double log does not
depend on the details of the level spectrum but is generic for
systems such as HO traps, because the one log is associated
with the overlap matrix elements between nearby states and
the other is associated with the quasiparticle energy in the
gap equation.

The appearance of a double log is not unique for multi-
level pairing but also occurs in the case of color supercon-
ductivity in quark mattef27]. The physical mechanism be-
hind this is, however, different. Within perturbative QCD the

to leading logarithmic order, whera=(I/ng)? and x’
=(l"/ng)?. This logarithmic dependence of the matrix ele-
ment has the interesting consequence that it leadsltmble
log in the gap equation. When the energy factoE,l/
=[D?(x—x")?+A?%]"Y?is summed ovel’ or, equivalently
whenng>1, integrated ovex’, it leads to thgusua) factor
In(D/A). The other logarithm appears from the matrix ele-
ment of Eq.(28) which, when summed ovdr in the gap
equation with thg energy factor, attains the lower cutoff a ingular quark-quark interactiogocp/q2, whereq is the
[x=x'|=A/D. Itis assumed that thedependence of the 9ap omentum transfer carried byQa gluon, is dynamically

is sufficiently weak within the levels over which pairing ¢.reened by Landau damping. When the interaction is inte-

takes place, i..A<D, which is supported by numerical a6 over momentum and energy transfer, the dynamical
results(see Figs. 2 and)3The gap equation then reduces to screening leads to a logarithm of the gap. Thus it is the

interactions that are responsible for the second logarithm and

T - In|x—x'| not the wave function overlap of nearby states as in the HO
1=a(x)G | dX'—= T2 A2 trap
0 DAx—x'|*+A :
GI )
=a(X) 5 In[B(x)D/A] (29 IV. PAIRING IN NUCLEI

The nuclear mean field is often approximated by a simple
HO form and the residual effective pairing interaction b§ a
force in order to obtain some qualitative insight into single-
particle levels, pairing, collective motion, etésee, e.g.,
Refs.[19,22). We can therefore compare pairing in nuclei to
that in traps as investigated above, once the HO potential is

A=pB(x)D exd — yD/Ga(x)]. (30 adjusted to describe nuclei. We emphasize that we do not

intend to calculate the quantitative pairing gaps for each in-

At midshell x=1/2, the exponent can be calculated asdividual nucleus which would require detailed knowledge of
a(1/2)=15/32/2 and the prefactopB(1/2)=2e to leading the individual level spectra, deformation, many-body effects,
logarithmic order for large: . Near openl(=0) and closed etc. Instead we aim at qualitative results for the pairing gap
(I=ng) shells there are generally only half as many states talependence on mass number, shell effects, and to extrapolate
pair with which reducesx(x=0) anda(x=1) by a factor to very large nuclei, nuclear, and neutron star matter.
~1/2 on average. However, as the matrix elements are larger Large nuclei have approximately constant central density
for |=ng but smaller forl=0 [see Eq.(28)], the gaps be- py=0.14 fm 3 and Fermi energfr in bulk. Therefore the
come asymmetric with a maximum above midshell. Such &1O frequency, which is fitted to the nuclear mean field, de-
shell structure is also found in the multilevel pairing regimecreases with the number of nucleoAs=N+Z, whereN

to leading logarithmic orders. The factox) and a(x)
both depend orx=(l/ng)?, but not onl or ng separately.
Only G andD depend omg explicitly.

The resulting multilevel gap is
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now is the number of neutrons a@dthe number of protons 2.2 AL VLIS

in the nucleus, as 1: 3 E

, R

ho=Eg/ng=41 MeVXA~ 13 (31 2 4F 3

T2k 3

In the valley of B stability the number of protons i& Z 0;%: £

=A/(2+0.015%3). 06 E 3

Second, the nuclear mean field deviates from a HO poten- 04 E E

tial by being almost constant inside the nucleus and vanishes 6 20 40 60 80 100 120 140 160
outside. The resulting net anharmonic nuclear fieldtien- N

ger and oppositein sign to the correspondin@nharmonig N _
mean field in atomic traps. Therefore, the level splitting is  FIG. 4. Neutron pairing energies vs the number of neutrons. The
larger and the ordering of tHdevels is reversed. In addition, €xperimental odd-even staggering energé®(N) are averaged

a strong spin-orbit force splits the single-particle states ofVer isotoped28,29. The calculated gaps and quasiparticle en-
total angular momentunj=1=1/2, such that thej=ng ergiesE are obtained from the gap equati@ee text with effective

+1/2 is lowered down to the shelhf—1) below. coupling strengtha=—0.41 fm. The supergaf is shown with

Proton and neutron pairing gaps are typical of the order off@shed line.
~1 MeV in nuclei, i.e., smaller than bothw andD but of
the order of the average splitting between two adjagent
levels. Consequently, nuclei can be considered as HO trap . . .
with a level splittingD such that they fall into the multilevel frlli’t‘;it#rein‘é":"ecss'gts'o\,’;isth "S"E'Ejrnﬁfn”beerﬁ"gné":g ;P?;etzer d'eer"g'f
pairing regime. However, the number of particles in nuclei is p~ﬁ gf h lei fe—6). Th . bi litti
relatively small so that nuclei are close to the single—sheIIDnTj rgsu?trin e?ﬁlgnniciﬁ' n(':; ic)r}umt?erssplgr_grinlct:osrp(I)t:antgd o
pairing regime. Furthermore, the interactions are so stronﬁ t 9 fi gb : ? ina the | t? |
that multishell pairing also becomes important. From the re- rst approximation by simply moving the lowest level in
sults of Sec. Ill we can predict several features of neutrorf:ach shell down to the shell below, i.@=%w for j=nk

- +1/2.
and proton pairing gaps. - N .
(1[)) Masspscali%;: gincéiw scale as~A~13 and a,., The pairing gaps and quasiparticle energies can now be

ocn}:/z [see Eq(9)] the single-shell pairing gap also scales ascalculated by solving the gap equation inserting the HO ma-

G~A 18 The level splitting tends to reduce the pairing trix elements and withhw and level splitting as given by

towards the multilevel gap but is compensated by muItisheIFqs'(gl) and(32). The effective strength is then the only

S . L .~ adjustable parameter.
2122296uzlr(la?rsegglrs,az)hperogﬁr;:::tglngP:Glz A‘?Dﬁ and medium The data on neutron and proton pairing are obtained from

" i ... _the odd-even staggering of nuclear binding enerBi@s, ).
oDy S SHucLre: T Pa 5o showld SXBL S has e shown tat mean.fed contrputons can b re
(Figs. 2 and 3 however with reversetisinceD is negative moved[29] by using the three-point filter
for nuclei. Due to the strong spin-orbit force the | +1/2 (=N
states are split and the=ng+1/2 is lowered down to the AG(N)=

The level splitting is approximated byD=0.13(ng
+3/2)hw in analogy with Eq.(10) and based on nuclear

[BIN-12)+B(N+12)—2B(N,Z)],

shell below. The magic numbers becoméN,Z 2 (33)
=8,14,28,50,82,126,184. ., etc. rather than the HO filled

shell particle numberdl,Z=2,8,20,40,70,112,168,240..,  whenN is an odd number of neutrons. The analogous rela-
etc. tion is valid for protons.

(3) Bulk limit for large nuclei/nuclear matter: For very  The total binding energies are elaborate sums over quasi-
large nuclei multishell pairing becomes important and pairparticle energies weighted with occupation numbers. Mean-

ing approaches that in bulk matter. By fitting the effectivefield energies and single-particle energies should also be in-
nucleon coupling constant to pairing gaps in finite nuclei we

will below estimate the pairing in nuclear matter from Eq. 22 prgre , T T
(25). 2F Allgy o 3
E A E
These predictions agree qualitatively with experimental — 18E 1 & X3
data(see Figs. 4 and)5 > SF T E
For a more quantitative calculation the level spectrum = :Z E ] 3
must be specified. Instead of fitting the level spectrum for o T E 3
each nucleus with a correspondingly large number of adjust- F o8 E F
able parameters, we make the following simplifying approxi- 06 £
mation analogous to the single-particle spectrum of (By. WP T T AR

0 20 40 60 80 100

3 j(i+1) z

€= N 2 ho=D (n+1/2)(n+3/2)° (32) FIG. 5. Same as Fig. 4 but for protons.
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cluded self-consistently. Furthermore, the Bogoliubov Nuclei can also be deformed around midshell, which in-
transformation does not preserve exact particle number angreases pairinf29]. These and other nuclear many-body ef-

does not treat a single unpaired particle that appears in oddiects must be included in a more quantitative study of pairing
number systems. Also nuclear spectra are complicated by individual nuclei. For this purpose it will be useful also to

deformations and the finite range, spin and spin-orbit deperstudy pairing in elongated atomic traps with deformations as
dences of the nucleon-nucleon interactja®,30. For these in nuclei. Near closed shells pairing reduces or inhibits de-
reasons we cannot calculaié® directly. Instead we will for ~ formations. The effect of pairing is also observed in rota-
simplicity compare to the quasiparticle energies and pairin%onal spectra where the moment of inertia is reduced from

gaps, which are calculated directly from the gap equation a&'® rigid to superfluid or irrotational valyd9]. In traps the
function of u(N,Z). It has been arguetsee, e.g., Ref29] external HO potential generally dominates over the mean-

and references hergithat mean-field effects cancel in the field interaction energy and thus does not deform spontane-

quasiparticle energy for odd particle number and that itously[32] as in nuclei—unless of course if the HO trap itself

therefore may be compared to the corresponding three-poir'ﬁ deformed.

o H el ber fluctuat def Nuclei cannot directly be placed in any of the various
energies. However, as particle number fluctuations, 0€10rmas»;iny phases of Fig. 1 because the level splitting is larger
tions, possible mean-field energy corrections, and other e

. 2 “than for trapped atoms. The effective scattering lerayth
fects are not included, the pairing gaps are also shown N5 41 fm anda..~1 fm/Jne would place nuclei with
. 0scC

Figs_. 4 and 5 for compari:'son. They are equal to the quasiz,asses up t\=250 corresponding ta-<6 in the upper
particle energy for half-filled levels only and generally |ef; comer of Fig. 1 in the multishell region. However, be-
smaller especially at the magic numbers where the gaps vagayseD is much larger in nuclei than for trapped atoms, the
ish in several cases. multilevel pairing region extends down to loweg and up to

We compare in Fig. 4 the experimente{®(N) averaged |arger strengthsal. Furthermore, the continuum of states in
over isotopes with the calculated gapg.,, and in Fig. 5the  nuclei reduces the effect of multishell pairing as discussed
analogous for protonA®)(Z) averaged over isotones. In the above. Therefore, nuclei rather belong to the transition re-
calculations the effective coupling is the only parameter fit-gion between single-shell, multishell, and multilevel pairing.
ted to experimental data. For both neutrons and protons we The best fit to odd-even staggering energies of nuclei de-
extracta= —0.41 fm. terminesa=—0.41 fm accurately. Systematic errors may,

We note that although the neutron pairing gaps in Fig. 410wever, be expected from the approximations ir?plicit in
are generally larger than the proton ones in Fig. 5, this is nof1€ 1evel splitting, the cutoff, and in approximatind®) by
reflected in the effective coupling constants. The reason i&- However, because the multilevel and the multishell pair-
the asymmetry of heavy nuclei. For example, o= 82 the Ing partly compensate, a good approximation to the average
mass number i=140 whereas fof =82 it isA=208. The 92PN nuclei is the single-shell supergap
mass numbers enter bothandG and lead to a reduction of

the proton pairing gap relative to the neutron one by just the A=Ge la] 5.5 MeV (34)
right amount so that the experimental data on neutron and 0.41 fm a3

proton odd-even staggering can be fitted with the same pair-

ing strengtha= —0.41 fm. This supergap is also shown in Figs. 4 and 5. It does not

Considering the simplicity of the model it describes adepend on the level splitting or cutoff and is therefore a
large number of experimental gaps fairly well on average. Invobust prediction for the average magnitude and mass scaling
a number of cases, however, the calculated pairing gaps dibf pairing gaps in nuclei.
fer significantly from the measured neutron gaps. Some of Empirically the pairing term in Bethe-Weisaeer liquid-
these deviations can be attributed to the crude single-particlérop formula, A=12 MeVx A~'2 fits the odd-even stag-
level spectra assumed. If the single-particle level energies agering energies of nuclei with=<250 averaged over shell
adjusted according to more detailed mean-field calculationsffects. The scaling with mass number can now be under-
(see, e.g., Refl19]) the agreement with experimental pairing stood in terms of the supergap with shell correctionsD If
gaps improves in several cases. was a constant timesw then the multilevel gap of Eq30)

The pairing gaps are sensitive to the shell splitting and thavould also scale a#&\ ™. However, becaus® increases
coupling. The uncertainty in the coupling is smaller becausavith nexA~*3 the multilevel gap decreases faster wih
the changes D affects both the exponent and the prefactorfor small and medium mass nuclei but slower for heavy nu-
in the gap of Eq(30) in a compensating way. Another un- clei due to multishell pairing. Both are in accordance with
certainty arises from the upper cutoff. Whereas HO traps cathe empirical mass dependence.
pair between shells up te 2ng, nuclei have a continuum of The pairing in nuclear matter can also be estimated once
states at about the binding energy per nuclegr=8 MeV  the effective interaction has been determined. Inserting in
above the Fermi level. Therefore the sum over shells in th&q. (25) a= —0.41 fm andke=1.33 fm ! at nuclear satura-
gap equation has been limited tos (Er+Eg)/fhw, which  tion density,p,=0.15 fm 1, we obtain the proton and neu-
for medium mass nuclei correspondsriesng+1, with a  tron pairing gaps,
smooth cutoff as in Ref31]. The pairing gaps are, however,
only logarithmically sensitive to this cutoff. A=1.1 MeV, (35
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in the bulk of very large nuclei and in symmetric nuclear APPENDIX: CRITICAL TEMPERATURES

matter at nuclear saturation density. This number is compat- - - .
The pairing gaps generally decrease with increasing tem-

. . . . l .. .
ible with earlier calculation$33] of the S, pairing gap in erature from its zero-temperature vald€T=0), which

nuclear and neutron star matter around normal nuclear mattgr o .
Wwas calculated above, to the critical temperaflyewhere it

densities. A smaller value for bulk pairing might have been™ = h The t i d q £ h Tand
expected from Figs. 4 and 5 by extrapolating the odd-ever. anishes. 1he temperature dependence of the gapian
self are determined from

staggering energies of heavy nuclei to higher mass numbers:
However, asAocnf-j becomes large the multishell pairing con-
tributes with the increasing term in the gap equation. Apr (T
Therefore the bulk value ?s Iarg(;nrwthan th(gJ g)airi?lg gap in A”F"(T):Z, [1—2f(En',|'/T)]L()%
heavy nuclei which also have a smaller cutoff due to con- nl n’l’

tinuum states as discussed above. % )

Neutron star matter has a wide range of densities and is XJ drr®R2(1R:,.(1), (A1)
very asymmetricZ/A=0.1. One can attempt to estimate the 0
pairing gaps as function of density from the gap in bulk, Eq.
(11), with a=—0.41 fm and the neutron or proton Fermi with E,/;.=\(en/ ' —u)+A%(T).
wave numbersy?=(372py 2) ¥ as function of densities. ~ As shown in Ref[35] T, is exactly half of the zero-
However, the effective interacticanis density dependent. At temperature gap
higher densities we expect the effective interaction to be-
come repulsive as is the case for t.he nuclear mean 'field ata T.=GI2[1-2 In(yng)Glliw]=1A(T=0), (A2)
few times nuclear saturation density. At lower densities the
effective scattering length should approach that in vacuum . ) . ) )
which for neutron-neutron scattering &*Sy)=—18 fm. N the smgle—shell and multishell pairing regimes, and this
This dilute limit ke|a|]<1 does, however, require extremely also applles to the 'Slngle-level pairing regime.
low densities as compared to normal nuclear matter density. !N uniform Fermi gases the critical temperature¢2d]

V. SUMMARY TC:%KEF exqzlwakF):%A(TZO). (A3)

Pairing gaps have been calculated for ultracold atomic
Fermi gases in harmonic-oscillator traps and compared to
nuclei. The pairing mechanism was found to be similar forThe ratioT./A(T=0)= y/7=0.567 is the same irrespective
these systems in the sense that the spacing between sing®d-whether induced interactions are included or not.
particle stategand shellsreduces the pairing over several of ~ In the multilevel regimeT; can be determined from Eq.
these levels near the Fermi surface referred to as multilevéA1) with overlap integrals as given in E(R8). To leading
pairing. At low particle densities the shell structures in trapdogarithmic order we find for largar
are pronounced as they are in nuclei and the level degenera-
cies are important for the size of the gaps which can differ y
substantially from those known from homogeneous systems T.=—A(T=0). (A4)
[24] and systems with continuous level densities. &
Neutron and proton pairing gaps in nuclei were calculated
and with an effective coupling strengta=-0.41fm a That T./A(T=0)=1vy/7 as in the uniform Fermi gas is
qualitative description of their shell structure could be given,mainly because the pairing takes place over sevdelels
and the average pairing gaps were found to scale with masmd the level density therefore is effectively continuous. The
number approximately as\=5.5 MeV/AY® as predicted overlap integrals do not change this ratio to leading logarith-
from the supergap. Eventually for large mass number the gamic order.
approaches théS, superfluid gap in uniform nuclear matter,  AlthoughT./A(T=0)=y/7=0.567 is close numerically
which was calculated a§=1.1 MeV for both neutrons and to the value 1/2 found in the single-shell, single-level, and
protons. multishell regimes, the difference reveals the qualitative dif-
Mixing fermionic with bosonic atoms improves cooling ferences in the underlying level spectrum, namely, continu-
[34,9] to lower temperatures so that weak pairing can also beus vs discrete, respectively.
studied, and the additional induced interactions between fer- Near a Feshbach resonance the strongly interacting Fermi
mions and bosons generally enhance paifiad]. Further- gas becomes unstable towards molecule formatignfor
more, the shell splitting can be changed in a controlled wayBCS superfluidity is expected to crossover towards the
by the number of bosons in the trap and the sign and strengtlightly smaller critical temperature for forming a Bose-
of their interaction with the fermions. Einstein condensat@EC) of moleculeq 36]. Both the BCS
The similarity of multilevel and bulk pairing in atomic and BEC critical temperatures are, however, above the low-
traps and nuclei may provide new insight into pairing andest temperatures achieved recently for trapped Fermi atoms
superfluidity in nuclei and neutron star matter from tabletog5,6,9 if we assumeT.=0.5A as in Egs.(A2)—(A4) and
experiments at low temperatures. take A=0.54E according to Ref[13].
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