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Pairing of fermions in atomic traps and nuclei

H. Heiselberg
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

~Received 2 April 2003; published 24 November 2003!

Pairing gaps for fermionic atoms in harmonic-oscillator traps are calculated for a wide range of interaction
strengths and particle numbers, and compared to pairing in nuclei. Especially systems where the pairing gap
exceeds the single-level spacing but is smaller than the shell splitting\v are studied, which applies to most
trapped Fermi atomic systems as well as to finite nuclei. When solving the gap equation for a large trap with
such multilevel pairing, one finds that the matrix elements between nearby harmonic-oscillator levels and the
quasi particle energies lead to a double logarithm of the gap, and a pronounced shell structure at magic
numbers. It is argued that neutron and proton pairing in nuclei belongs to the class of multilevel pairing, that
their shell structure follows naturally, and that the gaps scale as;A21/3—all in qualitative agreement with
odd-even staggering of nuclear binding energies. Pairing in large systems is related to that in the bulk limit. For
large nuclei the neutron and proton superfluid gaps approach the asymptotic value in infinite nuclear matter:
D.1.1 MeV.

DOI: 10.1103/PhysRevA.68.053616 PACS number~s!: 03.75.Hh, 21.65.1f, 74.20.Fg, 67.60.2g
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I. INTRODUCTION

Pairing in Fermi systems is central for understanding
perconductivity in condensed-matter physics@1#, superfluid-
ity and glitches in neutron stars, excitation spectra and o
even staggering of binding energies in nuclei@2#, metallic
clusters@3#, and superconducting grains@4#. New insight into
the general properties of such Fermi systems can now
obtained from experiments with atomic gases@5# which re-
cently have been cooled down to degenerate tempera
around 10% of the Fermi temperature@6–9#. The interac-
tions between trapped6Li and 40K atoms have simulta-
neously been tuned above a Feshbach resonance, where
become strongly attractive, in order to produce optimal c
ditions for superfluidity@10#. Atomic gases have widely tun
able number of particles, densities, interaction streng
temperatures, spin states, and other parameters, which h
great promise for a more general understanding of pai
phenomena in solids, metallic clusters, grains, nuclei,
neutron stars.

In the experiments with6Li atoms the anisotropic expan
sion after sudden release from the trap is as predicted f
hydrodynamics@11#. This is compatible both with a strongl
interacting superfluid and collisional hydrodynamics. T
scattering length is attractivea,0 and large such that den
sities abover@1/uau3 are achieved and found mechanica
stable against collapse. The interaction energy per part
like Fermi energy, scales asr2/3 @6–8# as predicted theoreti
cally @12,13#. The superfluid gaps in bulk are also expect
to be of the order of the Fermi energy.

In nuclear physics pairing is observed directly in the od
even staggering of binding energies, i.e., nuclei with an e
number of protons or neutrons are more strongly bound t
nuclei with corresponding odd numbers by a pairing gap
the order of;1 MeV. The same pairing gap also determin
the excitation energies of ground-state nuclei. On average
pairing energies in nuclei decrease with the number of p
tons and neutrons modulated with a distinct shell structu
i.e., they are smaller near closed shells. It would be m
1050-2947/2003/68~5!/053616~10!/$20.00 68 0536
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interesting if the pairing gaps of fermionic atoms
harmonic-oscillator traps would display similar shell stru
ture and scaling with the number of particles as nuclei.

The aim of this paper is to calculate pairing gaps in ult
cold atomic Fermi gases in harmonic-oscillator traps and
nuclei, which are then compared to data on odd-even s
gering of nuclear binding energies. For the atomic traps
isting pairing gap calculations@14,15# are extended to sys
tems, where level spectra and shell effects play an impor
role. It is shown that such pairing mechanisms are simila
nuclei, which to first approximation can be considered a
finite system of fermions in a harmonic-oscillator field wi
attractive d-function interactions. Another important com
mon feature is the anharmonic fields that lead to splitting
the single-particle states which reduce the pairing to the
els closest to the Fermi surface and leads to a distinct s
structure. For a wide range of interaction strengths and n
ber of particles the trapped atomic clouds are predicted
display similar scaling and shell structure as nuclei as a
seen in the experimental data on neutron and proton pair
The scaling with particle number and the continuum or B
limits are calculated for both large traps and nuclei a
thereby the pairing gaps are estimated for nuclear ma
which also gives an idea about the superfluid gaps in neu
star matter.

The paper is organized as follows. In Sec. II the ba
properties of interacting fermions in harmonic-oscillat
traps are given, in particular the single-particle level spec
Pairing is treated in Sec. III with individual sections devot
to each pairing regime where the last three sections out
the bulk, strongly interacting, and multilevel pairing regim
In Sec. IV we turn to nuclei and show that they belong to t
class of multilevel pairing.

II. DILUTE FERMI GASES IN HARMONIC TRAPS

We treat a gas ofN fermionic atoms of massm in a
harmonic-oscillator~HO! potential at zero temperature inte
acting via a two-body interaction with attractives-wave scat-
©2003 The American Physical Society16-1
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tering lengtha,0. We shall mainly discuss a spherical
symmetric trap and a dilute gas~i.e., where the densityr
obeys the conditionruau3!1) of particles with two spin
states with equal population. The Hamiltonian is then giv
by

H5(
i 51

N S pi
2

2m
1

1

2
mv2r i

2D 1g(
i , j

d3~r i2r j !, ~1!

with the effective couplingg54p\2a/m. For a large num-
ber of particlesN at zero temperature the Fermi energy is
a noninteracting system

EF5~nF13/2!\v.~3N!1/3\v, ~2!

wherenF.(3N)1/3 is the HO quantum number at the Ferm
surface. The HO shells are highly degenerate with states
ing angular momental 5nF ,nF22, . . . ,1 or 0 due to the
U(3) symmetry of the three-dimensional spherically sy
metric HO potential. However, interactions split this dege
eracy. In the Thomas-Fermi~TF! approximation~see, e.g.,
Ref. @16#! the mean-field potential is

U~r !5
1

2
gr~r !52p

\2a

m
r~r !, ~3!

the Fermi energy

EF5
\2kF

2~r !

2m
1

1

2
mv2r 21U~r !. ~4!

The density can be determined from the Kohn-Sham ene
density functionals. In a dilute gas the mean field is smal
compared to the Fermi energy and its effect on the den
can be ignored in the following. Thus

r~r !5kF
3~r !/3p2.r0~12r 2/RTF

2 !3/2, ~5!

inside the cloud r<RTF5aoscA2nF13, where aosc

5A\/mv is the oscillator length, and r05(2nF

13)3/2/3p2aosc
3 is the central density@17#.

The splitting of the HO shell degenerate levelsl
5nF ,nF22, . . . ,1 or 0 in theshell nF by the mean-field
potential can be calculated perturbatively in the dilute lim
An excellent approximation for the radial HO wave functio
with angular momentuml and (nF2 l )/2 radial nodes in the
HO shell whennF@1 is the WKB one@18#,

RnFl~r !.
2

Ap

sin~klr 1u!

klr
, ~6!

between turning points@18#. The phaseu will not be impor-
tant in the following. The WKB wave numberkl(r ) is given
by

kl
2~r !5

2nF13

aosc
2

2
r 2

aosc
4

2
l ~ l 11!

r 2
. ~7!

The single-particle energies are
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enF ,l2S nF1
3

2D\v

5E U~r !RnFl~r !u2r 2dr

5
2

3p

a

aosc
~2nF13!3/2\vF 4

3p
2

1

4p

l ~ l 11!

nF
2 G .

~8!

The latter result is calculated from the overlap between
mean field as given by Eqs.~3! and ~5! and the WKB wave
functions as given by Eqs.~6! and~7! @14#. It is exact within
WKB for l !nF and it compares well to numerical results f
all l. For attractive interactions (a,0) the lowest-lying
states have small angular momentum, which isoppositeto
nuclei.

An important quantity for pairing is thesupergapwhich
was introduced in Ref.@14# and will be discussed below,

G5
32A2nF13

15p2

uau
aosc

\v. ~9!

In comparison the total shell splitting in a shellnF is, from
Eq. ~8!,

D[uenFl 5nF
2enFl 50u.

5~nF13/2!

32
G. ~10!

The pairing depends crucially on the shell splittingD and
the supergapG as will be shown in the following section.

III. PAIRING

Pairing in small systems as nuclei@15#, metal clusters@3#
and superconducting grains@4# appears in odd-even stagge
ing of binding energies, i.e., systems with even number
particles are more strongly bound than odd ones. In nu
the pairing is also responsible for superfluid effects in c
lective motion@19#.

Pairing in finite systems is described by th
Bogoliubov–de Gennes equations@20# and takes place be
tween time-reversed states. As shown in Ref.@15# these
states can be approximated by HO wave functions in dil
HO traps as long as the gap does not exceed the oscil
energy,D&\v. The gap equation at zero temperature th
reduces to

Dnl5
g

2 (
n8,l 8

n8&2nF 2l 811

4p

Dn8 l 8

En8 l 8
E

0

`

dr r 2R nl
2 ~r !Rn8 l 8

2
~r !,

~11!

with quasiparticle energies

En8 l 85A~en8 l 82m!21Dn8 l 8
2 . ~12!
6-2
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The cutoffn&2nF in the sum of the gap equation models
a first approximation the more rigorous regularization pro
dure described in Ref.@21# that is required for ad-function
pseudopotential.

The chemical potentialm is related to the number of par
ticles by

N52(
n8 l 8

~2l 811!F12
en8 l 82m

En8 l 8
G . ~13!

For weak interactions the chemical potential lies withinDnl
from the level energy at the Fermi surfaceenl , except for
closed levels where the chemical potential lies between
closed and the next open level. For closed shellsN5(nF
11)(nF12)(nF13)/3, the gap vanishes for interactions b
low a critical value,G<Gc5\v/2 ln(4gnF) @15#.

The gap at the Fermi surface is most important and i
generally proportional to the critical temperature as d
cussed in the Appendix. For half-filled level~or shell!, where
m5enFl , the gap is equal to the quasiparticle energyEnFl

5DnFl . We will in the following refer to this gap asD

[EnFl5DnFl .
The HO traps provide a physical system in which t

connection between these methods of pairing calculat
can be demonstrated and analytical results can be give
various limits of interaction strength and particle numb
The associated pairing regimes are displayed in Fig. 1
will be discussed in the following sections. The first thr
have been discussed in earlier publications@14,15# but con-
tain additional details of derivations and set the notation
the remaining three sections, which describe pairing regim
pairing gaps are calculated and the transitions to the o
regimes are discussed. The last section treats the impo

FIG. 1. Diagram displaying the regimes for the various pair
mechanisms~see text! at zero temperature in HO traps vs the nu
ber of particlesN5nF

3/3 and the interaction strengtha. The dotted
lines indicate the transitions between single-shell pairingD5G,
multilevel, Eq. ~30!, single-level, Eqs.~15!–~17!, and multishell
pairing, Eq. ~24!. At the dashed line determined by 2G ln(gnF)
5\v the pairing gap isD.\v, and it marks the transition from
multishell pairing to bulk superfluidity, Eq.~25!. The pairing gap is
D50.54EF above the full lineruau3>1, which separates the dilut
from the dense gas.
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regime of multilevel pairing which will be shown to be e
pecially relevant for nuclei in the following section.

A. Single-level pairing

For very weak interactions pairing takes place only b
tween time-reversed statesc lm(r1)c l 2m(r2) within the l
level at the Fermi surface, i.e.,l 85 l . Maximal pairing be-
tween two particles in the level is achieved with the Coop
pair wave function

f0~nF ,l !5(
m

^ lml2mu00&c lm~r1!c l 2m~r2!. ~14!

The pairing energy between only two particles in the leve
twice the quasiparticle energy, and so

EnFl5
g

2
^f0~nF ,l !ud3~r12r2!uf0~nF ,l !&

5
g

2

2l 11

4p E
0

`

dr r 2RnFl
4 ~r !. ~15!

It follows from the seniority scheme~see, e.g., Ref.@22#! that
this is generally the quasiparticle energy and excitation
ergy for any even number of particles in the level. Solvi
the gap, Eq.~11!, also givesEnFl5D for any number of
particles in the level.

The pairing energies were given in Ref.@14#. For the top
levels l .nF the HO wave functions are sufficiently simp
that the pairing energy can be calculated exactly. For
ample,RnFl 5nF

2 5@2/G( l 13/2)#r 2lexp(2r2) ~in units where

aosc51) which when inserted in Eq.~15! gives the gap

EnFl 5nF
5

uau

Apaosc

\v. ~16!

The HO wave function forl 50 can be approximated by th
WKB one of Eq.~6! whennF@1. Inserting in Eq.~15! gives
the pair gap@18#

EnFl 505
A2

pAnF

uau
aosc

\v. ~17!

Around midshell, i.e., away from closed (1! l ) and open
(1!nF2 l ) shells, the WKB wave functions must be re
placed near their turning points by Airy functions, whic
removes a logarithmic singularity and in turn leads to a lo
rithm ln(l). We find @23#

EnFl5
A2

p2AnF

ln~ l !
uau
aosc

\v, 1! l !nF , ~18!

to leading logarithmic accuracy.
As shown in Fig. 1 the single-level pairing regime appe

for sufficiently weak interactions and large number of p
ticles (nF*50) such thatD@G. The corresponding pairing
gaps can be seen in Fig. 2 at largenF .
6-3
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B. Single-shell pairing

WhennF is sufficiently small the mean-field splittingD is
smaller than the pairing gaps and the pairing acts betwee
states in an oscillator shell and not just in a singlel multiplet,
i.e., the full SU(3) symmetry is effectively restored as co
pared to the SU(2) symmetry of the singlel multiplet. This
enhanced pairing is referred to as ‘‘SU(3) pairing’’ or ‘‘su
perpairing.’’@14# We shall calculate the gap by writing dow
the superpair wave function. As in single-level pairing, ho
ever, we obtain the same result by solving the gap equa

Assuming SU(3) symmetry the pairing can be calcula
variationally with a pair wave function that is a generaliz
tion of Eq. ~14! to a sum overl 5nF ,nF22, . . . ,1 or 0,

F0~nF!5

(
l

a lf0~nF ,l !

F(
l

a l
2G1/2 . ~19!

The weightsa l can be found by a variational method wi
the overlap integrals*R nl

2 Rn8 l 8
2 r 2dr calculated numerically

@23#. For largenF we find a l;A2l 11 very accurately. The
sums then reduce to the HO level density

(
lm

uc lm~r !u25
1

4p (
l

~2l 11!R nl
2 5

]rs~r !

]n
.

Here,rs5r/2 is the density of one spin state@see Eq.~5! for
n5nF] when shells up to energy (n13/2)\v are occupied
and]r(r )/]n is then the density of thenth shell.

The sum overl states in the gap equation simplifies eno
mously by using the Thomas-Fermi identity valid forn@1,

(
l

~2l 11!

4p
Rnl

2 ~r !5
]rs~r !

]n
5

A2n13

2p2aosc
3 A12

r 2

RTF
2

.

~20!

The pairing energy is thus

FIG. 2. The pairing gapD in units of G vs the number of
particles~or nF) in a trap with half-filled levels calculated from th
gap equation~11!. The scattering length isa520.01aosc. The pair-
ing gapsDnFl are plotted with1 for each half-filled levell ~only
even l and nF are shown!. The gap undergoes a transition fro
single-shell to multilevel and finally single-level pairing.
05361
all

-

-
n.
d
-

-

EnFl5
g

2
^F0~nF!ud3~r12r2!uF0~nF!&

5
g

2

E dr r 2@]rs~r !/]nunF
#2

E dr r 2]rs~r !/]nunF

5G, ~21!

where the supergapG was given in Eq.~9!. The condition for
single-shell pairing in atomic HO traps isD&2D52G, and
is thusnF&64/5 according to Eqs.~9! and ~10! or, equiva-
lently, to N&103 trapped particles.

For more than two particles in the shell we may aga
invoke the seniority scheme. It applies approximately
many superpairs when the singlelevel gap is replaced by
supergapG, and the level degeneracy for a full HO shellV
5(nF11)(nF12). Numerical calculations for half-filled
shells confirm that the pairing energy per particle is given
the supergap for single-shell pairing@15#.

The single-shell pair energy spectrum does, however,
fer from that for single-level pairing. In the latter case, o
can generally write the pairing wave function in Eq.~14! as
any linear combination of the time-reversed two-partic
statesc lm(r1)c l 2m(r2). Due to rotational SO(3) symmetr
the overlap integrals in a single level are independent om
and the spectrum of pairing energies is particularly simp
one state with 2EnFl as given by Eqs.~16!–~18! and rest of

the (2l 11) states has zero energy per pair. In the sh
however, the overlap between the radial wave functions
pends on l and l 8; the corresponding matrix forl ,l 8
5nF ,nF22, . . . ,1 or 0 has anontrivial eigenvalue spec
trum: ES.2G/(2S11), S50,1, . . . ,Int@(nF11)/2#, when
nF@1 ~Int denotes ‘‘integer value’’! @23#. The corresponding
eigenvectorsa l are very well approximated by Chebyshev
polynomia as function ofx5( l /nF)2 in the largenF limit.
Consequently, the excitation energy of a pair is only 2/3
the energy 2G that it takes to break the pair completely. Th
richer spectrum is important for expressing an effect
Hamiltonian for BCS pairing.

C. Multishell pairing

For increasing interaction strength pairing also takes pl
between different shells, i.e.,nÞnF contributes in the sum
over n in the gap equation~11!. The pairing strengthDn
depends only weakly onn for the shells aroundn5nF ,
which mainly contribute to the pairing and we therefore a
proximateDn.DnF

. For half-filled shellm5enFl and DnFl

5ENFl5D. The gap equation then becomes@15#

D5G1G (
nÞnF

n&2nF D

A@~n2nF!\v#21D2
. ~22!

The sum can be converted into an integral when correc
the lower limit n51 by g5eC whereC50.577 . . . is Eul-
er’s constant. It then gives to leading orders
6-4
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D.G12G
D

\v
lnS 2gnF

11A11~gD/\v!2D , ~23!

which for D!\v gives

D5
G

122 ln~gnF!
G

\v

. ~24!

This is themultishell pairinggap valid for interactions such
that G ln(nF)/\v&1/2. The region of multishell pairing 0.1
&G ln(nF)/\v&1/2 extends the single-shell pairing gapG up
to stronger interactions whereD;\v ~see Fig. 1!. Cooper
pairs are still essentially only formed between states wit
the same shell. However, there is pairing in many shells
sides that at the Fermi level resulting in a gap that is lar
thanD5G.

D. Bulk superfluidity

For a large system the local superfluid field is related
that in a uniform system. In the TF approximation the loc
pairing field then depends on radius,

D~r !5k
kF

2~r !

2m
expS p

2akF~r ! D , ~25!

wherekF(r )5@3p2r(r )#1/35A2nF2r 2/aosc
2 /aosc is the TF

wave number. The prefactor isk58/e2 without and k
5(2/e)7/3 with corrections from induced interactions@24#.

When the attractions are sufficiently strong and/or
number of particles in the trap large enough such t
G ln(gnF)*\v, the pairing field exceeds the HO frequen
in the bulk of the trap except in a narrow surface region. F
that reason the low-lying single-particle excitations@25,15#
and the collective modes are surface modes with typical
citation energies of the order of;\v @26#. For example, the
lowest s-wave excitation~the monopole! is v052v in the
collisionless limit. This is in contrast to the weakly interac
ing system, i.e., below the bulk superfluidity region of Fig.
wherev05D for open shells. We refer to Refs.@15,26# for a
discussion of such modes.

Here, we concentrate on the bulk superfluid field ins
the trap and will relate it to that in a uniform system. Co
trary to the surface states, the excitations at higher ener
are less affected by the pairing field and the Bogoliub
wave functions are approximately given by the unperturb
HO wave functions. Consequently, the intrashell pairing c
dition discussed in Ref.@15#, which leads to the gap equa
tions ~11! and ~22!, is approximately valid for these state
However, the gap is to be understood as an average su
fluid gap^D& in bulk. The gap equation~23! is readily solved
when ^D&*\v,

^D&.2nF\v exp~2\v/2G!. ~26!

We now observe that the exponent in Eq.~26! coincides with
that in the TF-BCS Eq.~25! when the Fermi wave number i
replaced by its spatial average in a finite system:
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^kF~r !&[
E kF

2~r !d3r

E kF~r !d3r

5
32

15p
kF~0!, ~27!

where kF(0)5A2nF/aosc. That the spatial average shou
be performed overkF(r )2 follows from Eq. ~9! where the
factor ]r(r )/]n}kF(r ) of Eq. ~20! enters twice. By defini-
tion of the supergap we find that\v/G5p/2uau^kF(r )&, and
the two exponents match. The prefactors differ due to
approximate cutoffn&2nF in the gap equation, the approx
mate treatment of the overlap integrals and theirn depen-
dence in the gap equation leading to Eq.~26!.

E. Dense liquid

The denseor strongly interacting limitkFuau*1 can be
encountered near a Feshbach resonance wherea→2`. In
this regime the dilute gas approximation implicit in the i
teractions in the Hamiltonian~1! is no longer valid and a new
scaling region appears@6–8,12,13#. Both the energy per par
ticle and the pairing gap approach a finite fraction of t
Fermi energy. Recent Green’s-function Monte Carlo calcu
tions @13# find that the interaction energy is20.56 times the
kinetic energy and that the odd-even staggering energy
pairing gap in bulk isD.0.54EF .

F. Multilevel pairing

We finally address the intermediate regimeG*D*D ~see
Fig. 1! which lies between the single-level, single-shell, a
multishell pairing regions studied above. Here, pairing ta
place between multiple (l ,l 8) levels lying close to the Ferm
surfacem.«nF ,l , and will therefore be referred to asmulti-

level pairing. This region overlaps the regions studied in t
above sections and therefore applies to most system
trapped fermions except traps with very few~single-shell!,
very many ~single-level!, or strongly interacting fermions
~multishell!. As we shall see below nuclei can also be co
sidered to belong to the multilevel regime.

For large level splittingD@D the detailed structure of the
overlap integrals in Eq.~11! becomes important. We sha
calculate these analytically using WKB as well as nume
cally from the exact HO radial wave functions. Inserting t
latter in the gap equation we calculate the pairing gaps
shown in Figs. 2 and 3 for half-filled levels, i.e., form
5«nFl , whereEnFl5DnFl5D.

A qualitative understanding of these results can be
tained from analytical WKB calculations. At largenF the
WKB wave functionsRnFl of Eq. ~6! are excellent approxi-

mations except for the multilevel overlapl 5 l 8 where a loga-
rithmic singularity appears, which was responsible for t
ln(l) in Eq. ~18!. Otherwise, when 0,u l 22 l 82u!nF

2 the over-
lap integral of the WKB wave functions of Eq.~6! is domi-
nated by the overlap near the turning points. Definingj
52nF(r /aosc)

22(r /aosc)
4, the overlap is
6-5
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E
0

`

dr r 2RnFl
2 ~r !RnFl 8

2
~r !}S 4

p D 2E dr

Aj2 l 2Aj2 l 82

}2 ln~ ux2x8u!, ~28!

to leading logarithmic order, wherex5( l /nF)2 and x8
5( l 8/nF)2. This logarithmic dependence of the matrix el
ment has the interesting consequence that it leads to adouble
log in the gap equation. When the energy factor 1/Enl8
.@D2(x2x8)21D2#21/2 is summed overl 8 or, equivalently
whennF@1, integrated overx8, it leads to the~usual! factor
ln(D/D). The other logarithm appears from the matrix e
ment of Eq.~28! which, when summed overl 8 in the gap
equation with the energy factor, attains the lower cutoff
ux2x8u.D/D. It is assumed that thel dependence of the ga
is sufficiently weak within the levels over which pairin
takes place, i.e.,D!D, which is supported by numerica
results~see Figs. 2 and 3!. The gap equation then reduces

1.a~x!GE
0

1

dx8
2 lnux2x8u

AD2ux2x8u21D2

.a~x!
G

D
ln2@b~x!D/D# ~29!

to leading logarithmic orders. The factorsb(x) and a(x)
both depend onx5( l /nF)2, but not onl or nF separately.
Only G andD depend onnF explicitly.

The resulting multilevel gap is

D5b~x!D exp@2AD/Ga~x!#. ~30!

At midshell x51/2, the exponent can be calculated
a(1/2).15/32A2 and the prefactorb(1/2)52e to leading
logarithmic order for largenF . Near open (l 50) and closed
( l 5nF) shells there are generally only half as many state
pair with which reducesa(x50) anda(x51) by a factor
;1/2 on average. However, as the matrix elements are la
for l .nF but smaller forl 50 @see Eq.~28!#, the gaps be-
come asymmetric with a maximum above midshell. Suc
shell structure is also found in the multilevel pairing regim

FIG. 3. Same as Fig. 2 but witha520.04aosc. Full line is the
multishell gapG/@122 ln(gnF)G/\v#. The gap undergoes a trans
tion from single shell to a mixture of multilevel and multishe
pairing.
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when the gap equation is solved numerically with the ex
HO wave functions as is shown in Figs. 2 and 3.

Two illustrative examples are shown in Figs. 2 and 3.
the first the coupling is sufficiently weak,a520.01aosc,
that the pairing undergoes transitions from single shell
small nF to multilevel for 10&nF&40 and finally single-
level pairing for largenF . In Fig. 3 the coupling is stronger
a520.04aosc, and the pairing undergoes transitions fro
single shell to multilevel and approaches multishell pairi
for largenF . These transitions between pairing regimes
illustrated in Fig. 1.

The multilevel gap of Eq.~30! is quite robust and applie
to many systems as long asG*D*D. Its validity for nuclei
will be discussed below. The formula for the multilevel ga
can be generalized by relating the shell splitting to the d
sity of states at the Fermi surface as]n/]e5V/D, where
V5nF

2 is the number of states in the shell. Likewise, t
supergap is related to the coupling constant asG}gV. If the
level spectrum of Eq.~8! is changed, the multilevel gap re
mains valid, if the shell splitting is correspondingly scal
with the level density. In other words the double log does
depend on the details of the level spectrum but is generic
systems such as HO traps, because the one log is assoc
with the overlap matrix elements between nearby states
the other is associated with the quasiparticle energy in
gap equation.

The appearance of a double log is not unique for mu
level pairing but also occurs in the case of color superc
ductivity in quark matter@27#. The physical mechanism be
hind this is, however, different. Within perturbative QCD th
singular quark-quark interactiongQCD /q2, where q is the
momentum transfer carried by a gluon, is dynamica
screened by Landau damping. When the interaction is in
grated over momentum and energy transfer, the dynam
screening leads to a logarithm of the gap. Thus it is
interactions that are responsible for the second logarithm
not the wave function overlap of nearby states as in the
trap.

IV. PAIRING IN NUCLEI

The nuclear mean field is often approximated by a sim
HO form and the residual effective pairing interaction by ad
force in order to obtain some qualitative insight into sing
particle levels, pairing, collective motion, etc.~see, e.g.,
Refs.@19,22#!. We can therefore compare pairing in nuclei
that in traps as investigated above, once the HO potentia
adjusted to describe nuclei. We emphasize that we do
intend to calculate the quantitative pairing gaps for each
dividual nucleus which would require detailed knowledge
the individual level spectra, deformation, many-body effec
etc. Instead we aim at qualitative results for the pairing g
dependence on mass number, shell effects, and to extrap
to very large nuclei, nuclear, and neutron star matter.

Large nuclei have approximately constant central den
r0.0.14 fm23 and Fermi energyEF in bulk. Therefore the
HO frequency, which is fitted to the nuclear mean field, d
creases with the number of nucleonsA5N1Z, where N
6-6
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now is the number of neutrons andZ the number of protons
in the nucleus, as

\v.EF /nF.41 MeV3A21/3. ~31!

In the valley of b stability the number of protons isZ
.A/(210.0155A2/3).

Second, the nuclear mean field deviates from a HO po
tial by being almost constant inside the nucleus and vanis
outside. The resulting net anharmonic nuclear field isstron-
ger andoppositein sign to the corresponding~anharmonic!
mean field in atomic traps. Therefore, the level splitting
larger and the ordering of thel levels is reversed. In addition
a strong spin-orbit force splits the single-particle states
total angular momentumj 5 l 61/2, such that thej 5nF
11/2 is lowered down to the shell (nF21) below.

Proton and neutron pairing gaps are typical of the orde
;1 MeV in nuclei, i.e., smaller than both\v andD but of
the order of the average splitting between two adjacej
levels. Consequently, nuclei can be considered as HO t
with a level splittingD such that they fall into the multileve
pairing regime. However, the number of particles in nucle
relatively small so that nuclei are close to the single-sh
pairing regime. Furthermore, the interactions are so str
that multishell pairing also becomes important. From the
sults of Sec. III we can predict several features of neut
and proton pairing gaps.

~1! Mass scaling: Since\v scale as;A21/3 and aosc

}nF
1/2 @see Eq.~9!# the single-shell pairing gap also scales

G;A21/3. The level splitting tends to reduce the pairin
towards the multilevel gap but is compensated by multish
pairing. Therefore, the pairing gaps in light and mediu
mass nuclei scale approximately asD.G}A21/3.

~2! Shell structure: The pairing gaps should exhibit
strong shell structure similar to those for multilevel pairi
~Figs. 2 and 3!, however with reversedl sinceD is negative
for nuclei. Due to the strong spin-orbit force thej 5 l 61/2
states are split and thej 5nF11/2 is lowered down to the
shell below. The magic numbers becomeN,Z
58,14,28,50,82,126,184, . . . , etc. rather than the HO filled
shell particle numbersN,Z52,8,20,40,70,112,168,240, . . . ,
etc.

~3! Bulk limit for large nuclei/nuclear matter: For ver
large nuclei multishell pairing becomes important and pa
ing approaches that in bulk matter. By fitting the effecti
nucleon coupling constant to pairing gaps in finite nuclei
will below estimate the pairing in nuclear matter from E
~25!.

These predictions agree qualitatively with experimen
data~see Figs. 4 and 5!.

For a more quantitative calculation the level spectr
must be specified. Instead of fitting the level spectrum
each nucleus with a correspondingly large number of adj
able parameters, we make the following simplifying appro
mation analogous to the single-particle spectrum of Eq.~8!:

en j5S n1
3

2D\v2D
j ~ j 11!

~n11/2!~n13/2!
. ~32!
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The level splitting is approximated byD50.13(nF
13/2)\v in analogy with Eq.~10! and based on nuclea
structure calculations, which generally find that the lev
splitting increases with shell number and is of the order
D.\v for heavy nuclei (nF;6). The spin-orbit splitting
and resulting change in magic numbers are incorporate
first approximation by simply moving the lowest level
each shell down to the shell below, i.e.,D5\v for j 5nF
11/2.

The pairing gaps and quasiparticle energies can now
calculated by solving the gap equation inserting the HO m
trix elements and with\v and level splitting as given by
Eqs.~31! and ~32!. The effective strengtha is then the only
adjustable parameter.

The data on neutron and proton pairing are obtained fr
the odd-even staggering of nuclear binding energiesB(N,Z).
It has been shown that mean-field contributions can be
moved@29# by using the three-point filter

D (3)~N![
~21!N

2
@B~N21,Z!1B~N11,Z!22B~N,Z!#,

~33!

when N is an odd number of neutrons. The analogous re
tion is valid for protons.

The total binding energies are elaborate sums over qu
particle energies weighted with occupation numbers. Me
field energies and single-particle energies should also be

FIG. 4. Neutron pairing energies vs the number of neutrons.
experimental odd-even staggering energiesD (3)(N) are averaged
over isotopes@28,29#. The calculated gapsD and quasiparticle en-
ergiesE are obtained from the gap equation~see text! with effective
coupling strengtha520.41 fm. The supergapG is shown with
dashed line.

FIG. 5. Same as Fig. 4 but for protons.
6-7
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cluded self-consistently. Furthermore, the Bogoliub
transformation does not preserve exact particle number
does not treat a single unpaired particle that appears in
number systems. Also nuclear spectra are complicated
deformations and the finite range, spin and spin-orbit dep
dences of the nucleon-nucleon interaction@19,30#. For these
reasons we cannot calculateD (3) directly. Instead we will for
simplicity compare to the quasiparticle energies and pair
gaps, which are calculated directly from the gap equation
function of m(N,Z). It has been argued~see, e.g., Ref.@29#
and references herein! that mean-field effects cancel in th
quasiparticle energy for odd particle number and tha
therefore may be compared to the corresponding three-p
energies. However, as particle number fluctuations, defor
tions, possible mean-field energy corrections, and other
fects are not included, the pairing gaps are also shown
Figs. 4 and 5 for comparison. They are equal to the qu
particle energy for half-filled levels only and genera
smaller especially at the magic numbers where the gaps
ish in several cases.

We compare in Fig. 4 the experimentalD (3)(N) averaged
over isotopes with the calculated gapsDnFl , and in Fig. 5 the

analogous for protonsD (3)(Z) averaged over isotones. In th
calculations the effective coupling is the only parameter
ted to experimental data. For both neutrons and protons
extracta.20.41 fm.

We note that although the neutron pairing gaps in Fig
are generally larger than the proton ones in Fig. 5, this is
reflected in the effective coupling constants. The reaso
the asymmetry of heavy nuclei. For example, forN582 the
mass number isA.140 whereas forZ582 it is A.208. The
mass numbers enter bothD andG and lead to a reduction o
the proton pairing gap relative to the neutron one by just
right amount so that the experimental data on neutron
proton odd-even staggering can be fitted with the same p
ing strengtha520.41 fm.

Considering the simplicity of the model it describes
large number of experimental gaps fairly well on average
a number of cases, however, the calculated pairing gaps
fer significantly from the measured neutron gaps. Some
these deviations can be attributed to the crude single-par
level spectra assumed. If the single-particle level energies
adjusted according to more detailed mean-field calculati
~see, e.g., Ref.@19#! the agreement with experimental pairin
gaps improves in several cases.

The pairing gaps are sensitive to the shell splitting and
coupling. The uncertainty in the coupling is smaller beca
the changes inD affects both the exponent and the prefac
in the gap of Eq.~30! in a compensating way. Another un
certainty arises from the upper cutoff. Whereas HO traps
pair between shells up to;2nF , nuclei have a continuum o
states at about the binding energy per nucleonEB.8 MeV
above the Fermi level. Therefore the sum over shells in
gap equation has been limited ton&(EF1EB)/\v, which
for medium mass nuclei corresponds ton&nF11, with a
smooth cutoff as in Ref.@31#. The pairing gaps are, howeve
only logarithmically sensitive to this cutoff.
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Nuclei can also be deformed around midshell, which
creases pairing@29#. These and other nuclear many-body e
fects must be included in a more quantitative study of pair
in individual nuclei. For this purpose it will be useful also
study pairing in elongated atomic traps with deformations
in nuclei. Near closed shells pairing reduces or inhibits
formations. The effect of pairing is also observed in ro
tional spectra where the moment of inertia is reduced fr
the rigid to superfluid or irrotational value@19#. In traps the
external HO potential generally dominates over the me
field interaction energy and thus does not deform sponta
ously@32# as in nuclei—unless of course if the HO trap itse
is deformed.

Nuclei cannot directly be placed in any of the vario
pairing phases of Fig. 1 because the level splitting is lar
than for trapped atoms. The effective scattering lengtha5
20.41 fm and aosc.1 fm/AnF would place nuclei with
masses up toA5250 corresponding tonF&6 in the upper
left corner of Fig. 1 in the multishell region. However, b
causeD is much larger in nuclei than for trapped atoms, t
multilevel pairing region extends down to lowernF and up to
larger strengthsuau. Furthermore, the continuum of states
nuclei reduces the effect of multishell pairing as discus
above. Therefore, nuclei rather belong to the transition
gion between single-shell, multishell, and multilevel pairin

The best fit to odd-even staggering energies of nuclei
terminesa520.41 fm accurately. Systematic errors ma
however, be expected from the approximations implicit
the level splitting, the cutoff, and in approximatingD (3) by
D. However, because the multilevel and the multishell pa
ing partly compensate, a good approximation to the aver
gap in nuclei is the single-shell supergap

D.G.
uau

0.41 fm

5.5 MeV

A1/3
. ~34!

This supergap is also shown in Figs. 4 and 5. It does
depend on the level splitting or cutoff and is therefore
robust prediction for the average magnitude and mass sca
of pairing gaps in nuclei.

Empirically the pairing term in Bethe-Weisza¨cker liquid-
drop formula,D.12 MeV3A21/2, fits the odd-even stag
gering energies of nuclei withA&250 averaged over she
effects. The scaling with mass number can now be und
stood in terms of the supergap with shell corrections. IfD
was a constant times\v then the multilevel gap of Eq.~30!
would also scale asA21/3. However, becauseD increases
with nF}A21/3, the multilevel gap decreases faster withA
for small and medium mass nuclei but slower for heavy n
clei due to multishell pairing. Both are in accordance w
the empirical mass dependence.

The pairing in nuclear matter can also be estimated o
the effective interaction has been determined. Inserting
Eq. ~25! a520.41 fm andkF51.33 fm21 at nuclear satura-
tion density,r050.15 fm21, we obtain the proton and neu
tron pairing gaps,

D.1.1 MeV, ~35!
6-8
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in the bulk of very large nuclei and in symmetric nucle
matter at nuclear saturation density. This number is com
ible with earlier calculations@33# of the 1S0 pairing gap in
nuclear and neutron star matter around normal nuclear m
densities. A smaller value for bulk pairing might have be
expected from Figs. 4 and 5 by extrapolating the odd-e
staggering energies of heavy nuclei to higher mass numb
However, asA}nF

3 becomes large the multishell pairing co
tributes with the increasing term ln(nF) in the gap equation
Therefore the bulk value is larger than the pairing gap
heavy nuclei which also have a smaller cutoff due to c
tinuum states as discussed above.

Neutron star matter has a wide range of densities an
very asymmetric,Z/A.0.1. One can attempt to estimate t
pairing gaps as function of density from the gap in bulk, E
~11!, with a.20.41 fm and the neutron or proton Ferm
wave numberskF

N,Z5(3p2rN,Z)1/3 as function of densities
However, the effective interactiona is density dependent. A
higher densities we expect the effective interaction to
come repulsive as is the case for the nuclear mean field
few times nuclear saturation density. At lower densities
effective scattering length should approach that in vacu
which for neutron-neutron scattering isa(1S0).218 fm.
This dilute limit kFuau!1 does, however, require extreme
low densities as compared to normal nuclear matter den

V. SUMMARY

Pairing gaps have been calculated for ultracold ato
Fermi gases in harmonic-oscillator traps and compared
nuclei. The pairing mechanism was found to be similar
these systems in the sense that the spacing between s
particle states~and shells! reduces the pairing over several
these levels near the Fermi surface referred to as multil
pairing. At low particle densities the shell structures in tra
are pronounced as they are in nuclei and the level degen
cies are important for the size of the gaps which can di
substantially from those known from homogeneous syste
@24# and systems with continuous level densities.

Neutron and proton pairing gaps in nuclei were calcula
and with an effective coupling strengtha520.41 fm a
qualitative description of their shell structure could be give
and the average pairing gaps were found to scale with m
number approximately asD.5.5 MeV/A1/3 as predicted
from the supergap. Eventually for large mass number the
approaches the1S0 superfluid gap in uniform nuclear matte
which was calculated asD.1.1 MeV for both neutrons and
protons.

Mixing fermionic with bosonic atoms improves coolin
@34,9# to lower temperatures so that weak pairing can also
studied, and the additional induced interactions between
mions and bosons generally enhance pairing@24#. Further-
more, the shell splitting can be changed in a controlled w
by the number of bosons in the trap and the sign and stre
of their interaction with the fermions.

The similarity of multilevel and bulk pairing in atomi
traps and nuclei may provide new insight into pairing a
superfluidity in nuclei and neutron star matter from table
experiments at low temperatures.
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APPENDIX: CRITICAL TEMPERATURES

The pairing gaps generally decrease with increasing t
perature from its zero-temperature valueD(T50), which
was calculated above, to the critical temperatureTc , where it
vanishes. The temperature dependence of the gap anTc
itself are determined from

DnF ,l~T!5(
n8 l 8

@122 f ~En8,l 8 /T!#
Dn8,l 8~T!

En8,l 8

g

4p

3E
0

`

dr r 2R nl
2 ~r !Rn8 l 8

2
~r !, ~A1!

with En8 l 85A(en8 l 82m)21D2(T).
As shown in Ref.@35# Tc is exactly half of the zero-

temperature gap

Tc5G/2@122 ln~gnF!G/\v#5 1
2 D~T50!, ~A2!

in the single-shell and multishell pairing regimes, and t
also applies to the single-level pairing regime.

In uniform Fermi gases the critical temperature is@24#

Tc5
g

p
kEF exp~2/pakF!5

g

p
D~T50!. ~A3!

The ratioTc /D(T50)5g/p.0.567 is the same irrespectiv
of whether induced interactions are included or not.

In the multilevel regimeTc can be determined from Eq
~A1! with overlap integrals as given in Eq.~28!. To leading
logarithmic order we find for largenF

Tc5
g

p
D~T50!. ~A4!

That Tc /D(T50)5g/p as in the uniform Fermi gas is
mainly because the pairing takes place over severall levels
and the level density therefore is effectively continuous. T
overlap integrals do not change this ratio to leading logar
mic order.

AlthoughTc /D(T50)5g/p.0.567 is close numerically
to the value 1/2 found in the single-shell, single-level, a
multishell regimes, the difference reveals the qualitative d
ferences in the underlying level spectrum, namely, conti
ous vs discrete, respectively.

Near a Feshbach resonance the strongly interacting F
gas becomes unstable towards molecule formation.Tc for
BCS superfluidity is expected to crossover towards
slightly smaller critical temperature for forming a Bos
Einstein condensate~BEC! of molecules@36#. Both the BCS
and BEC critical temperatures are, however, above the l
est temperatures achieved recently for trapped Fermi at
@5,6,9# if we assumeTc.0.5D as in Eqs.~A2!–~A4! and
takeD50.54EF according to Ref.@13#.
6-9
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