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Quasispin model for macroscopic quantum tunneling between two coupled
Bose-Einstein condensates
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The system of two coupled Bose-Einstein condensates is mapped onto a uniaxial spin with an applied
magnetic field. The mean-field interaction, the coupling, and the asymmetry or the detuning correspond to the
anisotropy, the transverse field, and the longitudinal field, respectively. A generalized Bloch equation is de-
rived. In the low barrier limit for the quasispin model, the tunneling rate is analyzed with an imaginary-time
path-integral method. The dependence of the tunneling rate on the system parameters is obtained. The cross-
over temperatureTc from the thermal regime to the quantum regime is estimated. BelowTc quantum tunneling
prevails, otherwise thermal activation dominates.
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I. INTRODUCTION

The experimental realization of measuring the relat
phase and the population oscillation between coupled B
Einstein condensates~BECs! stimulates great interest in in
vestigating their macroscopic quantum tunneling dynam
@1–3#. There are two different types of atomic tunneling b
tween coupled BECs, external tunneling and internal tunn
ing @2,3#. The former has different spatially separated sing
particle states in a double-well or multiwell potential and t
latter has different hyperfine internal states in a single-w
potential. For external tunneling, the phase interference
tween BECs confined in a multiwell potential has been
served@4,5#; the experimental observation of the tunneli
among BECs confined in multiwell potential has also be
reported@6–8#. For internal tunneling, JILA realized a two
component BEC coupled with Raman pulses@9#, MIT ob-
served the tunneling across spin domains in BECs@10,11#,
and LENS reported the current-phase dynamics in
weakly coupled BECs trapped in different Zeeman sta
@12#.

With the proceeding of the experimental exploration, a
of theoretical investigation was performed simultaneou
Williams et al. demonstrated the existence of Josephson
neling in a driven two-state single-particle BEC in a sing
well trap potential@13#. Kasamatsuet al. investigated theo-
retically the existence of a metastable state and
possibility of decay to the ground state through macrosco
quantum tunneling in two-component BECs with repuls
interactions@14#. Smerziet al. studied the coherent atomi
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tunneling and population oscillations between two ze
temperature BECs confined in a double-well poten
@15–18#. Macroscopic quantum self-trapping~MQST!,
namely, a self-maintained population imbalance with no
zero average value of the fractional population imbalan
andp-phase oscillations in which the time-averaged value
the phase difference is equal top were detailed in Refs.
@15,16#. The authors of Ref.@17# claim that interaction with
a thermal cloud will damp all different oscillations to th
zero-phase mode. In addition, macroscopic quantum fluc
tions have also been discussed by using second-quantiz
approaches@18,19#. Within the time-dependent potentia
chaotic population tunneling emerges. Abdullaev and Kra
kel analyzed the nonlinear resonances and chaotic osc
tions of the fractional population imbalance between t
coupled BECs in a double-well trap with a time-depend
tunneling amplitude for different dampings@20#. They also
considered the chaotic atomic population resonances and
possibility of stabilization of the unstable-mode regime
coupled BECs with oscillating atomic scattering length@21#.
In a previous paper, we investigated the chaotic a
frequency-locked population oscillation between tw
coupled BECs@22#.

Although many papers appear in the field of the tunnel
between coupled BECs, because of the nonlinearity in
Gross-Pitaevskii equation~GPE!, few of them address the
question of calculating the tunneling rate and the crosso
temperature between different tunneling regimes. Howe
the tunneling rate and the crossover temperature of the
systems have been studied systematically with
imaginary-time path-integral method, including models w
applied magnetic field@24–30# and without it@31–33#. For a
two-state system described with linear Schro¨dinger equation,
it is easy to visualize the effects of coupling between t
states by introducing Bloch’s spin vector formalism@23#.

s-
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Can we introduce a generalized Bloch vector for two coup
BECs described with the nonlinear Schro¨dinger equation to
map it onto a spin system, and then calculate the tunne
rate and the crossover temperature with the imaginary-t
path-integral method? If the coupled BECs system is equ
lent to a spin system, the tunneling process is related to
decay of the metastable MQST state to the ground st
More interestingly, the crossover temperature correspond
the transition from the classical or mean-field regime to
second quantization regime. In the following section, by
troducing a generalized Bloch spin vector, the coupled BE
are mapped onto a uniaxial spin with an applied magn
field. In Sec. III, the tunneling rate is calculated with th
imaginary-time path-integral method, and the crossover t
perature is estimated. In the last section, a brief discus
and summary is given.

II. QUASISPIN MODEL FOR TWO COUPLED
BOSE-EINSTEIN CONDENSATES

Consider the experiments of JILA@9#, two Bose-Einstein
condensates in theuF51,mF521&5u1& and uF52,mF
51&5u2& spin states of87Rb are coupled by a two-photo
pulse with the two-photon Rabi frequencyV and a finite
detuningd5vd2vh f . Here,vd5v11v2 is the driven fre-
quency of the two-photon pulses andvh f is the transition
frequency between two hyperfine states. In the rotat
frame, ignoring the damping and the finite-temperature
fects, the coupled two-component BEC system can be
scribed by a pair of coupled GPEs,

i\
]C2~r ,t !

]t 5 S H2
01H2

MF2
\d
2 DC2~ r

⇀
,t !1

\V
2 C1~ r

⇀
,t !,

i\
]C1~ r

⇀
,t !

]t 5 S H1
01H1

MF1
\d
2 DC1~ r

⇀
,t !1

\V
2 C2~ r

⇀
,t !,

~1!

where the free evolution HamiltoniansHi
052\2¹2/2m

1Vi( r
⇀

) ( i 51,2) and the mean-field interaction Hamilt

nians Hi
MF5(4p\2/m)(aii uC i@ r

⇀
,t)u21ai j uC j ( r

⇀
,t)u2# ( i , j

51,2, iÞ j ). The coefficientai j is the scattering length be
tween statesi andj and it satisfiesai j 5aji . Weak coupling is
defined by the Rabi frequency satisfyingV/(vxvyvz)

1/3

5V/v̄!1, where v̄5(vxvyvz)
1/3 is the geometric-

averaged angular frequency for the trapping potential. In
regime, we can write the macroscopic wave functions us

the variational ansatzC i( r
⇀

,t)5c i(t)F i( r
⇀

) with c i(t)

5ANi(t)e
ia i (t) ( i 51,2). In the ansatz, the functionsF i( r

⇀
)

describe the spatial distribution of thei-th component, and
the complex coefficient functionsc i(t) are spatially uniform
and contain all time dependence in the macroscopic quan

wave functionsC i( r
⇀

,t). The symbolsNi(t) anda i(t) rep-
resent the populations and phases of thei-th condensate, re
spectively. Because the coupling is very weak, the spa
distributions vary slowly in time and are very close to t
adiabatic solutions to the time-independent uncoupled c
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for GP equations~1!, being slaved by the populations@13#.
Thus, the complex coefficient functionsc i(t) obey the non-
linear two-mode dynamical equations

i\
d

dt
c2~ t !5FE2

02
\d

2
1U22uc2~ t !u21U21uc1~ t !u2Gc2

~ t !

1
K

2
c

1
~ t !,

i\
d

dt
c1~ t !5FE1

01
\d

2
1U11uc1~ t !u21U12uc2~ t !u2Gc1~ t !

1
K

2
c2~ t !. ~2!

The parameters satisfyEi
05*F i( r

⇀
)Hi

0F i( r
⇀

)d r
⇀

, Ui j

5(4p\2ai j /m)* uF i( r
⇀

)u2uF j ( r
⇀

)u2d r
⇀

5U ji , and K

5\V*F1( r
⇀

)F2( r
⇀

)d r
⇀

( i , j 51,2). The terms inK describe
population transfer~internal tunneling! between two BEC
states, whereas the terms inUi j , which depend on the num
bers of atoms in each BEC state, describe the mean-
interaction between atoms. WhenU21 andd equal zero, these
coupled equations can also describe the BECs in a dou
well potential@15–18#. Similar to the coupled two-state sys
tem obeying the linear Schro..dinger equation, we introduce
a generalized Bloch spin vector (u,v,w) with the compo-
nents

u5c
2
* c11c

2
c1* , v52 i ~c2c1* 2c2* c1!,

w5c2* c22c
1
* c1 . ~3!

Obviously, u21v21w25(N11N2)25NT
2 is a conserved

quantity when finite-temperature and damping effects can
ignored. Rescaling the timet/\ to t, the Bloch spin vector
satisfies

du

dt
5v~g1hw!,

dv
dt

5Kw2u~g1hw!,
dw

dt
52Kv,

~4!

where g5E2
02E1

01NT(U222U11)/22\d and h5(U22

1U1122U12)/2. Regarding the atom in one condensate
spin-up state and the atom in the other condensate as
down state, the coupled BECs can be described with

quasispinS
⇀

5 u
⇀

ex1 v
⇀

ey1w
⇀

ez. In this language, the longitu
dinal componentw depicts the population difference, and th
transverse componentsu and v characterize the coherenc
Thus the effective Hamiltonian for the quasispin is

E52 1
2 hSz

22KSx2gSz . ~5!

The above Hamiltonian is similar to that of a uniaxial sp
with an applied magnetic field@26–30#; it indicates that the
mean-field interaction brings the anisotropyh, the coupling
causes an effective transverse magnetic fieldK along axisx,
and the asymmetry or the detuning induces an effective
4-2
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gitudinal magnetic fieldg. In the symmetric case (E2
05E1

0 ,
U225U11, andd50), it is consistent with the one derive
from the second quantized Hamiltonian in Ref.@4#.

III. TUNNELING RATE AND CROSSOVER
TEMPERATURE

In conventional spherical coordinates, the spin com
nents can be written as Sx5NT sinu cosf, Sy
5NT sinu sinf, andSz5NTcosu ~see Fig. 1!. Thus, the cor-
responding effective Hamiltonian is formulated as

E52hNT
2S 1

2
cos2u1

K

hNT
sinu cosf1

g

hNT
cosu D .

~6!

Based upon the analysis of a spin in a uniaxial magnetic fi
@26–30#, we know that there are stationary states if so
angles (u0 ,f0) satisfy ]E/]fuf5f0

u5u0 50 and ]E/]uuf5f0

u5u0

50. The condition]E/]fuf5f0

u5u0 50 locates the stationar

states in theXOZ plane (sinf050). The existence of mul-
tiple stationary states in this quasispin system is equivalen
the existence of multiple metastable MQST states in
coupled BECs. Near the metastable states the potentia
scribes a ‘‘canyon’’ satisfying

Eu5E~u,f0!/~hNT
2!52 1

2 cos2u2P cos~u2uP!. ~7!

The parameters obey P5AK21g2/uhNTu, sinuP

5K cosf0 /AK21g2, and cosuP5g/AK21g2. As stated in
the preceding section, the parameterK}V.0, therefore
sinuP.0 and sinuP,0 correspond to the equal-phase mo
(f050) and the antiphase mode (f05p) in the coupled
two-component BECs, respectively. In the case ofE2

02E1
0

1NT(U222U11)/250, the parameterg is just the negative
detuning2d, thus cosuP.0 and cosuP,0 correspond to the
red detuning and the blue detuning of the coupling las
respectively. The ]E/]uuf5f0

u5u0 50 is equivalent to

]Eu /]uuf5f0

u5u0 50, that is, sin2u012Psin(u02uP)50. For

some critical points where both the first and the second
rivatives ofEu equal zero, an appreciable tunneling rate a
pears. This gives

sin 2uC12PC sin~uC2uP!50,

cos 2uC1PC cos~uC2uP!50, ~8!

whereuC andPC are critical values foru andP, respectively.
Solving the above equations, one can obtain tan3uC5
2tanuP and PC5(sin2/3uP1cos2/3uP)23/2. The system has
an instanton solution at the critical pointP5PC , i.e.,
@K/(hNT)#2/31@g/(hNT)#2/351. This critical point stands
on the separatrix between the single-stable regime and
multiple-stable regime. It separates the metastable m
MQST behavior between the single-stable population os
lation in the coupled two-component BEC.

According to the dependence ofEu on u, we obtain that
the condition for the existence of multiple stationary state
05361
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P,PC , i.e., @K/(hNT)#2/31@g/(hNT)#2/3,1. One can eas-
ily find the small oscillations around these stationary sta
with nonzero time-averaged values forSz and ASx

21Sy
2.

These oscillations correspond to the phase-locked MQ
states with time-averaged relative phase 0 orp and multiple
stationary states correspond to multiple metastable MQ
states with fixed nonzero population difference and relat
phase 0 orp. The appearance of multiple stationary sta
indicates, only for some proper parameters, that multi
metastable MQST states exist. For simplicity we only co
sider the case where the parameterP is slightly lower than
the fixed critical valuePC , P5PC(12«), «!1. This re-
quires that the Rabi frequency, the detuning, the scatte
lengths, and the total atomic number in the coupled B
system must cooperate with each other to approach the c
cal values for the emergence of multiple metastable MQ
states. One way to maintain the critical valuePC unchanged
is fixing the values of the ratiog/K and other correlated
parameters (h and NT), that is, keeping the angleuP un-
changed. By introducing a new positive variablej5u2u0,
potential~6! can be expanded into

Eu~u!5Eu~u0!1 1
4 @A6«j22j31O~j4!#sin~2uC!. ~9!

With the definition in Refs.@26,27,29,30#, the tunneling
rateG obeysNp(t)5NP(0)exp(2Gt) and it can be written as
G5A exp(2B) for the quantum tunneling regime. Her
NP(t) is the population occupying the metastable state
time t and the tunneling exponentB (>0) is determined by
the imaginary time action of the instanton solution. Simi
to Ref. @26#, the tunneling exponent follows from the pa
integral*D$f(t)%*D$cosu(t)%exp(I/\) over the continuum
of trajectories which start and end at (u0 ,f0) and are close
to the instanton solution, wheret is the imaginary timei t
and I is the imaginary time action I 5*dt@ iNT(1
2cosu)df/dt1E(u,f)#. Integrating the imaginary time ac
tion by parts, one can gain the tunneling exponent

B5NTE
2`

1`

dtH ~dj/dt!2sinuC

2PCsinuP

1
1

4
sin~2uC!@A6«j22j31O~j4!#J ,

516361/4NT«5/4ucotuPu1/6/5

516361/4NT«5/4ug/Ku1/6/5. ~10!

From the definition of«, one can obtain

«512P/PC512~11ug/Ku2!

3~11ug/Ku2/3!23/2uK/~hNT!u. ~11!

Thus the tunneling exponent can be expressed as

B516361/4NT@12~11ug/Ku2!

3~11ug/Ku2/3!23/2uK/~hNT!u#5/4ug/Ku1/6/5. ~12!
4-3
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To control the tunneling, one has to select proper values
parametersg, K, andh. In the experiments performed in
double-well potential@4,5#, it can be realized by modifying
the barrier position, the barrier height, and the magnetic fi
~using Feshbach resonances to adjust the scattering len
@35#!, respectively. In the experiments with two-compone
BECs in a single-well potential@9# , it can be realized by
adjusting the laser detuning, the laser intensity, and the m
netic field, respectively. For fixed values ofh andg/K, the
tunneling exponentB decreases with the increasing of th
intensity of the coupling laser. In Fig. 2, we show how t
tunneling exponentB depends on the angleuP . In the region
between 0 andp, the ratioB(uP)/B(p/4) decreases from
positive infinity to zero when the angleuP equalsp/2, which
corresponds to the symmetric case (g50), and then in-
creases to positive infinity when the angleuP is close top. It
is almost flat when the angleuP is not close to 0,p/2, and
p. This angular dependence indicates, in the case of fi
value of «, that the tunneling exponent increases with
creasingug/Ku.

The result for the angleuP close top/2, which corre-
sponds to the symmetric caseg50, should be taken with
great caution because the coefficient sin(2uC) in the Taylor
expansion series~9! is equal to zero. In this case, the pro
lem corresponds to the tunneling between two equiva
minima which correspond to the angleuP equal to 0 andp.
Thus the potential can be expanded into the form ofj22j4

and the tunneling exponentB is expressed asB54S«3/2

54NT«3/2. Therefore, the tunneling exponents~10! and~12!
only hold for the asymmetric case wheregÞ0.

To confirm our prediction from the quasispin model, w
perform a numerical simulation of Eq.~2!. A qualitative
change in the stationary-state behavior occurs atuK/(hNT)u
51. WhenuK/(hNT)u.1, there are no metastable states
any effective detuningg. However, whenuK/(hNT)u,1,
metastable states exist in the region@2gc ,1gc# for proper
relative phase, where gc satisfies @K/(hNT)#2/3

1@gc /(hNT)#2/351. See the left column of Fig. 3. Two sta
tionary states, indicated asS1 andS2 in the figure, are stable

FIG. 1. The quasispinS
⇀

and its components (u,v,w) in conven-
tional spherical coordinates.
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and the other one~U! is unstable. Adiabatically changing th
effective detuningg from gc2« to gc1« (« is a very small
positive number!, in the space of the fractional populatio
difference z5(N22N1)/NT and the relative phasef5a2
2a1, a trajectory in the vicinity ofS2 becomes a large orbi
C encircling S1. From the views of instanton method, th
tunneling exponent is determined by the canonical action
the orbit, i.e., B follows from the path integral
*D$z(t)%*D$f(t)%exp(Ic /\) over the continuum of trajec
tories which are close to the instanton solution. At differe
bifurcation points gc , the numerical results show
B(ug/Ku)/B(ug/Ku51)}ug/Ku0.16360.002'ug/Ku1/6, this
confirms our previous prediction from the quasispin mo
~see the right column of Fig. 3!.

There are two important aspects which must be not
The one is that these results for tunneling are only valid
the low barrier limit for the quasispin model, i.e.,«!1. This
means that the above results only hold in the region wh
approaches the critical point of emergence of multiple me
stable MQST states. The parametric dependence of the
eral case is still an open problem. The other is the validity
the Wentzel-Kramers-Brillouin~WKB! semiclassical ap-
proximation. The semiclassical approach can only be use
the case of small tunneling probability, that is,B@1. In this
low barrier limit, from the Taylor expansion series~9! one
can obtain the following tunneling amplitude by using t
theory developed by Caldeira and Leggett@34#:

A5~15B/8p!1/2v,

5hNTS 15B

2p D 1/2S 3«

8 D 1/4

ucotuPu1/6/~11cot2/3uP!, ~13!

5hNTS 15B

2p D 1/2S 3«

8 D 1/4

ug/Ku1/6/~11ug/Ku2/3!.

Here,v is the angular frequency of small oscillations ne
the bottom of the inverse potential. Apparently, when t
angleuP is close to thekp (k50,1), which corresponds to
small Rabi frequency or large detuning of the coupling la
between two BECs, the tunneling amplitudeA approaches to
zero, see Fig. 4. As presented above, in the case ofuP close
to p/2 which corresponds to the symmetric caseg50, the
potential is not in form ofj22j3 but in form of j22j4

because the coefficient sin(2uC) in the Taylor expansion se
ries ~9! equals zero. Therefore, the above formula for t
tunneling amplitude only holds for the asymmetric caseg
Þ0. Generally, contrary to the tunneling exponentB, the
tunneling amplitudeA is sensitive to the structure of quan
tum levels in the potential. Therefore, for the case of the
potential ~6! and ~7!, the estimation ofA is still an open
problem.

Population transfer between two states in a bistable s
tem can occur either due to classical thermal activat
which depends on the system temperature or due to quan
tunneling which does not depend on the system tempera
There exists a phase transition from the thermal regime
the quantum regime which occurs at the crossover temp
4-4
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ture TC . AboveTC , quantum effects are very small and th
population transfer rate follows the Arrhenius law,

G thermal5G0 expS 2
UB

kBTD . ~14!

Here, UB is the height of the energy barrier between tw
states andkB is the Boltzmann constant. BelowTC , the
population transfer is purely quantum,

Gquantum5A exp~2B!, ~15!

with B independent of the system temperature. Thus the t
sition occurs whenG thermal5Gquantum. Neglecting the pref-
actors and equating the exponents, the crossover temper
can be estimated as

TC5UB /~kBB!. ~16!

The transition region is approximately the temperature in
val @TC(12B21),TC(11B21)#. This crossover resembles
first-order phase transition of the tunneling rateG because it
is accompanied with the discontinuity ofdG/dT at TC @29#.

There is another regime for tunneling, the thermally
sisted tunneling~TAT!, in which the particle strides over th
barrier to the bottom of the potential with lowering tempe
ture @29,30#. The transition from the classical regime to th
TAT regime resembles a second-order classical-quan
phase transition of the tunneling rateG because it is accom
panied with a discontinuity ofd2G/dT2 and no discontinuity
of dG/dT at the crossover temperature. The correspond
transition temperature can be estimated as

TC
/ 5\/~t0kB!5\v/~2pkB!, ~17!

wheret0 andv are the period and the angular frequency
small oscillations near the bottom of the inverse potent
respectively@25–27,29,30#. In the low barrier limit («@1),
from the Taylor expansion series~9! one can obtain the bar
rier height

UB5hNT
2~2«/3!3/2usin~2uC!u5

5p

18
~\/t0!B, ~18!

FIG. 2. The tunneling exponent ratioB(uP)/B(uP5p/4) vs dif-
ferentuP . Here, the angleuP characterizes the angle between t

effective magnetic fieldB
⇀

e f f5K e
⇀

x1g e
⇀

z and the axisz.
05361
n-

ure

r-

-

-

m

g

f
l,

where

usin~2uC!u52ug/KuC /~11ug/KuC
2 !. ~19!

Comparing both crossover temperatures, one can easily
that they differ by a factorTC /TC

/ 55p/1851/1.15, which
means that they are of the same order of magnitude and
both be used to estimate the crossover temperature.

Below, from the experimental parameters in the expe
ments of JILA@9#, we will give a quantitative estimation fo
the tunneling rate and the crossover temperature. In th
experiments, the atomic massm15m25mRb51.45
310225 kg, the time-averaged orbiting potential~TOP!
magnetic trap has an axial frequencyvz559 Hz and a radial
frequency vx,y5v r5vz /A8521 Hz, the s-wave scatter
lengths a1155.36 nm, a125a2155.53 nm, and a22
55.70 nm, and the total atomic numberNT'53105. To
obtain the numerical values conveniently, we choose
natural units of the problem, in which, time is in uni
of 1/(vxvyvz)

1/351/v̄, length is in units of the size
of the geometric-averaged harmonic-oscillator lengthd̄

5A\/@(vxvyvz)
1/3mRb#5A\/(v̄mRb), energy is in units of

the geometric-averaged trap level spacing\(vxvyvz)
1/3

5\v, and mass is in units of Rb atomic massmRb .
Due to gravity acting besides the TOP, the centers of t

condensates will displace along the vertical direction and
two equilibrium displacements are generally not the sam
Thus, if the interparticle interaction is absent, the low
single-particle state has the familiar wave function

F0i~ r
⇀

!5
1

p3/4~dxdydz!
1/2

3expS 2
x2

2dx
2

2
y2

2dy
2

2
~z2Fiz0!2

2dz
2 D . ~20!

Here,F1511, F2521, 2z0 is the offset between two po
tential centers along the vertical axis, anddk5A\/(vkmRb)
(k5x,y,z) are the oscillator lengths. The offset 2z0 between
two condensates can be varied by adjusting the magnitud
the rotating magnetic field. In the presence of interatom

FIG. 3. In the left column, the stationary states foruKu,uhNTu
are shown. There are two metastable statesS1 , S2 and one unstable
stateU. In the right column, the tunneling exponent ratioB/B0 vs
different ug/Ku is presented, whereB05B(ug/Ku51). The black
dots show the numerical data and the straight line represents
linear fit for the logarithmic data.
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interaction, the dimensions of the condensates are chan
The spatial parts of the macroscopic quantum wave funct
are in the shape of

F i~ r
⇀

!5
1

p3/4~bixbiybiz!
1/2

3expS 2
x2

2bix
2

2
y2

2biy
2

2
~z2Fiz0!2

2biz
2 D . ~21!

The variational parametersbik (k5x,y,z; i 51,2) depend on
the scattering length, the total atom number, and the trap
potential and they have almost the same numerical value
dk . For proper values of the offset 2z0, the numerical results
of Ref. @13# show that the spatial distributionsF i(r⇀) and
their overlap only weakly depend on the total atom numb
in each condensate. For simplicity, in the following calcu
tions, the variational parametersbik are replaced by the os
cillator lengthsdk . Therefore, the parametersEi

0 , Ui j , and
K are determined by

E1
05E2

05\~vx1vy1vz!/2,

Uii 54p\2aii /@~A2p!3dxdydzmRb# ~ i 51,2!,

U1254p\2a12exp~22z0
2/dz

2!/@~A2p!3dxdydzmRb#,
~22!

K5\V exp~2z0
2/dz

2!.

So the corresponding parameters in the quasispin mode~5!
can be written asg5\2NT(a222a11)/(A2pdxdydzmRb)
2\d and h5\2@a221a1122a12exp(22z0

2/dz
2)#/

(A2pdxdydzmRb). In the case of complete overlap (2z0
50), the anisotropy parameterh equals zero, thus the meta
stable multi-MQST behavior will never appear, but som
running-phase MQST states may still exist. This indica
that, to ensure the existence of multiple metastable MQ
states, a finite offset must be kept between two condens
Furthermore, the appearance of this kind of MQST requ
K2/31g2/3,(hNT)2/3. BecauseK}V andg}d, this inequal-
ity indicates that the Rabi frequency and the detuning of

FIG. 4. The tunneling amplitude ratioA(uP)/A(uP5p/4) vs
different uP , where the angleuP characterizes the angle betwee

the effective magnetic fieldB
⇀

e f f5K e
⇀

x1g e
⇀

z and the axisz.
05361
ed.
s

g
as

s
-

s
T
es.
s

e

coupling pulses must be relatively small. Choosing the to
atom numberNT52.03104, the half offsetz050.20dz , the
Rabi frequency V52p310 Hz, and the detuningd5
2179 Hz, one can gethNT56.70310232, g54.57
310232, K56.90310233, and «59.7831023. Thus, the
corresponding tunneling exponentB and crossover tempera
ture TC are around 4.223102 and 3.5431022 nK, respec-
tively. Obviously, the crossover temperatureTC , which cor-
responds to a phase transition from classical tunneling
quantum tunneling, is far below the critical temperatureT0
'150 nK for Bose-Einstein condensation in a dilute gas
87Rb.

IV. DISCUSSION AND SUMMARY

The generalized Bloch equation~4! and its stability analy-
sis will help to control the population transfer and realize t
single-qubit operation with BECs qubit. Theoretically, a
two-state quantum system can serve as a qubit, many of t
have been realized experimentally. To make use of two qu
tum states, the coherence and superposition between the
the most essential qualification. The experimental obse
tion of coherence and superposition between two BECs
dicates the possibility of encoding two coupled BECs a
qubit. However, because of the mean-field interaction am
Bosonic condensed atoms, the qubit operations become
difficult to perform. To accomplish a single-qubit operatio
it must be possible rotated arbitrarily in the Hilbert spac
This requires that the atomic populations can be transfe
arbitrarily. From the Bloch equations~4!, we find that MQST
prevents the arbitrary rotation of the state vector, and eve
there is no MQST, whenhÞ0, the complete population in
version cannot be accomplished with linear operations. Th
to accomplish a linear qubit operation, one has to adjust
parameterh to zero by varying the atomic scattering leng
with a Feshbach resonance@35#. In this case, the mean-fiel
interaction gives a density shift to the original energy lev
and, according to Rabi’s theory, the arbitrary rotation of t
state vector can be performed easily. Thus, if one encodes
qubit statesu0& andu1& as the condensate wave functions f
two condensates in a double-well potential or two hyperfi
state condensates coupled with Raman pulses@36#, an arbi-
trary one-bit linear operation can be realized when the
isotropy is absent (h50) and an arbitrary one-bit nonlinea
operation can be realized when the metastable multi-MQ
behavior is absent (uKu.uhNTu). This means that, to per
form an arbitrary one-bit transformation, it at least nee
choosing proper parameters to avoid the emergence of
metastable multi-MQST behavior.

The tunneling of the quasispin model described by Ham
tonian ~5! has also been investigated by mapping it onto
particle moving in an asymmetric double-well potent
@27–29#. Using this approach, Garaninet al. have explored
some new fascinating features of this uniaxial spin mode
the strongly biased limit@29#. They find that there exist two
different regimes for the classical-quantum transition of
tunneling rate and the kind of transition depends on both
strength and the direction of the magnetic field. In this pap
we directly analyze the tunneling in the low barrier limit fo
4-6
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the quasispin model, which corresponds to the effective m
netic fields near their critical values for appearance of me
stable states. This requires that all physical parameters o
coupled BECs collaborate with each other to approach
critical point of appearance of multiple metastable MQ
states. The symmetric case (g50) of the coupled BECs cor
responds to the unbiased case (Hz50) of the anisotropic
spin model, which has been investigated in details by m
ping it onto a particle moving in a symmetric double-we
potential@25#.

The macroscopic quantum tunneling of two-compon
BECs has also been investigated by Kasamatsu and
workers. Using a numerical approach, they have analyzed
tunneling between two kinds of metastable stationary sta
a symmetry-breaking state and a symmetry-preserving s
in uncoupled two-component BECs@14#. To improve the
usual Gaussian variational method, they have introduce
collective coordinate approach and then calculated the
neling rate within the WKB approximation. In that system
the populations of the two components cannot be conve
into each other because of the absence of coupling. T
means, the tunneling does not occur between two com
nents but between stationary states with different spatial c
figurations. Thus, this kind of tunneling originates from t
quantized spatial structure of the Hamiltonian. In our mod
due to the coupling, the population can be transferred fr
one component to the other. Furthermore, we assume
coupling is very weak, thus both components stay in th
ground stationary states through the full process. The m
stability ~metastable MQST! is the result of the cooperatio
between the coupling and the mean-field interaction~includ-
ing both the intracomponent and the intercomponent inte
tions!. Correspondingly, the tunneling from the metasta
self-trapped state to its ground state of the coupled t
component BECs is caused by the quantized structure
their field operators.
l
.
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In conclusion a system of coupled BECs~two BECs in a
double-well potential or two internal state BECs coupl
with laser pulses! has been mapped to a spin in a magne
field by introducing a generalized Bloch vector. The mea
field interaction, the coupling, and the asymmetry or the
tuning are relevant to the anisotropy, the transverse magn
field, and the longitudinal magnetic field, respectively. T
corresponding generalized Bloch equation is obtained.
analysis of this generalized Bloch equation will be propitio
to control the population transfer and realize the quant
computation with coupled BECs. Based upon experie
from the well-studied tunneling of spin systems, the detai
information about the tunneling between two metasta
MQST states in coupled two-component BECs can be
tained with the imaginary-time path-integral method. T
crossover temperatureTC at the critical point for a transition
from the classical thermal regime to the quantum regime w
obtained. When the system temperature decreases thr
TC , the population conversion goes from classical therm
activation regime to purely quantum tunneling regime. T
means, below the crossover temperatureTC , the quantum
fluctuations in the atomic fields take the dominant positio
We also find that the tunneling rate can be adjusted by va
ing the coupling and the trapping magnetic field.

Note added in proof.Recently some interesting work i
the field of macroscopic quantum tunneling in BECs h
appeared@37#.

ACKNOWLEDGMENTS

C.L. is very grateful for the help of Professor X. Zhu
WIPM and for the comments from Dr. J. Brand in MPI-PK
The work was supported by NSFC~Grants Nos. 10275023
and 10274093!, National Fundamental Research Progra
~Grant No. 2001CB309300!, and foundations of CAS and
MPI-PKS.
e,

.P.

-

hys.

hys.

A.
@1# J.R. Anglin and W. Ketterle, Nature~London! 416, 211~2002!.
@2# A.J. Leggett, Rev. Mod. Phys.73, 307 ~2001!.
@3# P. Anderson, M. A. Kasevich, and F. Sols, inBose-Einstein

Condensation in Atomic Gases, Proceedings of Internationa
School of Physics ‘‘Enrico Fermi’’, edited by M. Inguscio, S
Stringari, and C. E. Wieman~IOS Press, Amsterdam, 1999!,
Vol. 140.

@4# C. Orzel, A.R. Tuchman, M.L. Fenselau, M. Yasuda, and M
Kasevich, Science291, 2386~2001!.

@5# M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfe
D.M. Kurn, and W. Ketterle, Science275, 637 ~1997!.

@6# M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, and
Bloch, Nature~London! 415, 39 ~2002!.

@7# F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
Trombettoni, A. Smerzi, and M. Inguscio, Science293, 843
~2001!.

@8# B.P. Anderson and M.A. Kasevich, Science282, 1686~1998!.
@9# D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, a

E.A. Cornell, Phys. Rev. Lett.81, 1539 ~1998!; D.S. Hall,
.

,

.

M.R. Matthews, C.E. Wieman, and E.A. Cornell,ibid. 81,
1543 ~1998!.

@10# D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouy
J. Stenger, and W. Ketterle, Phys. Rev. Lett.83, 661 ~1999!.

@11# J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A
Chikkatur, and W. Ketterle, Nature~London! 396, 345 ~1998!.

@12# A. Smerzi, A. Trombettoni, T. Lopez-Arias, C. Fort, P. Mad
daloni, F. Minardi, and M. Inguscio, Eur. Phys. J. B31, 457
~2003!.

@13# J. Williamset al., Phys. Rev. A59, R31 ~1999!.
@14# K. Kasamatsu, Y. Yasui, and M. Tsubota, Phys. Rev. A64,

053605~2001!.
@15# A. Smerzi, S. Fantoni, S. Giovanazzi, and S.R. Shenoy, P

Rev. Lett.79, 4950~1997!.
@16# S. Raghavan, A. Smerzi, S. Fantoni, and S.R. Shenoy, P

Rev. A59, 620 ~1999!.
@17# I. Marino, S. Raghavan, S. Fantoni, S.R. Shenoy, and

Smerzi, Phys. Rev. A60, 487 ~1999!.
@18# A. Smerzi and S. Raghavan, Phys. Rev. A61, 063601~2000!.
4-7



t

s.

te

g

.

s.

r-

d,

tt.

M.

A.

nd

LEE et al. PHYSICAL REVIEW A 68, 053614 ~2003!
@19# L.-M. Kuang and Z.-W. Ouyang, Phys. Rev. A61, 023604
~2000!; Y. Wu and X. Yang,ibid. 68, 013608~2003!; Y. Wu, X.
Yang, and Y. Xiao, Phys. Rev. Lett.86, 2200~2001!.

@20# F.Kh. Abdullaev and R.A. Kraenkel, Phys. Rev. A62, 023613
~2000!.

@21# F. Kh. Abdullaev and R. A. Kraenkel, e-prin
cond-mat/0005445.

@22# C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Phys. Rev. A64,
053604~2001!; W. Hai, C. Lee, G. Chong, and L. Shi, Phy
Rev. E66, 026202~2002!.

@23# L. Allen and J. H. Eberly,Optical Resonance and Two-Sta
Atoms~Wiley, New York, 1975!.

@24# E.M. Chudnovsky and L. Gunther, Phys. Rev. Lett.60, 661
~1988!.

@25# E.M. Chudnovsky and D.A. Garanin, Phys. Rev. Lett.79, 4469
~1997!.

@26# M.-C. Miguel and E.M. Chudnovsky, Phys. Rev. B54, 388
~1996!; E. M. Chudnovsky,Macroscopic Quantum Tunnelin
of the Magnetic Moment~Cambridge University Press, New
York, 1998!.

@27# O.B. Zaslavskii, Phys. Rev. B42, 992 ~1990!.
@28# G. Scharf, W.F. Wreszinski, and J.L. van Hemmen, J. Phys

20, 4309~1987!.
@29# D.A. Garanin, X.M. Hidalgo, and E.M. Chudnovsky, Phy
05361
A

Rev. B57, 13 639~1998!.
@30# D.A. Garanin and E.M. Chudnovsky, Phys. Rev. B56, 11 102

~1997!.
@31# J.-Q. Liang, H.J.W. Muller-Kirsten, D.K. Park, and F. Zimme

schied, Phys. Rev. Lett.81, 216 ~1998!; J.-Q. Liang, Y.-B.
Zhang, H.J.W. Muller-Kirsten, J.G. Zhou, F. Zimmerschie
and F.-C. Pu, Phys. Rev. B57, 529 ~1998!.

@32# J. von Delft and C.L. Henley, Phys. Rev. Lett.69, 3236~1992!.
@33# D. Loss, D.P. DiVincenzo, and G. Grinstein, Phys. Rev. Le

69, 3232~1992!.
@34# A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett.46, 211

~1981!; Ann. Phys.~N.Y.! 149, 374 ~1983!.
@35# S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.

Stamper-Kurn, and W. Ketterle, Nature~London! 392, 151
~1998!; Ph. Courteille, R.S. Freeland, D.J. Heinzen, F.
vanAbeelen, and B.J. Verhaar, Phys. Rev. Lett.81, 69 ~1998!;
S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, a
C.E. Wieman,ibid. 85, 1795~2000!.

@36# Y. Shi, Int. J. Mod. Phys. B15, 3007~2001!.
@37# N. T. Ng, C.K. Law, and P.T. Leung, Phys. Rev. A68, 013604

~2003!; Y. Zhou, H. Zhai, R. Lu, Z. Xu, and L. Chang,ibid. 67,
043606~2003!; R.A. Barankov and S.N. Burmistrov,ibid. 67,
013611~2003!; J. Liu, B. Wu, and Q. Niu, Phys. Rev. Lett.90,
170404~2003!.
4-8


