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The system of two coupled Bose-Einstein condensates is mapped onto a uniaxial spin with an applied
magnetic field. The mean-field interaction, the coupling, and the asymmetry or the detuning correspond to the
anisotropy, the transverse field, and the longitudinal field, respectively. A generalized Bloch equation is de-
rived. In the low barrier limit for the quasispin model, the tunneling rate is analyzed with an imaginary-time
path-integral method. The dependence of the tunneling rate on the system parameters is obtained. The cross-
over temperatur@ from the thermal regime to the quantum regime is estimated. B&loguantum tunneling
prevails, otherwise thermal activation dominates.
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[. INTRODUCTION tunneling and population oscillations between two zero-
temperature BECs confined in a double-well potential
The experimental realization of measuring the relative[15-18. Macroscopic quantum self-trappingMQST),
phase and the population oscillation between coupled Bosatamely, a self-maintained population imbalance with non-
Einstein condensatd8EC9 stimulates great interest in in- zero average value of the fractional population imbalance,
vestigating their macroscopic quantum tunneling dynamicsndm-phase oscillations in which the time-averaged value of
[1-3]. There are two different types of atomic tunneling be-the phase difference is equal to were detailed in Refs.
tween coupled BECs, external tunneling and internal tunnelf15,16. The authors of Ref.17] claim that interaction with
ing [2,3]. The former has different spatially separated single-a thermal cloud will damp all different oscillations to the
particle states in a double-well or multiwell potential and thezero-phase mode. In addition, macroscopic quantum fluctua-
latter has different hyperfine internal states in a single-weltions have also been discussed by using second-quantization
potential. For external tunneling, the phase interference beapproacheq18,19. Within the time-dependent potential,
tween BECs confined in a multiwell potential has been ob-chaotic population tunneling emerges. Abdullaev and Kraen-
served[4,5]; the experimental observation of the tunneling kel analyzed the nonlinear resonances and chaotic oscilla-
among BECs confined in multiwell potential has also beertions of the fractional population imbalance between two
reported[6—8]. For internal tunneling, JILA realized a two- coupled BECs in a double-well trap with a time-dependent
component BEC coupled with Raman puld€$, MIT ob-  tunneling amplitude for different damping0]. They also
served the tunneling across spin domains in BEG}11,  considered the chaotic atomic population resonances and the
and LENS reported the current-phase dynamics in twgossibility of stabilization of the unstable-mode regime in
weakly coupled BECs trapped in different Zeeman stategoupled BECs with oscillating atomic scattering lenf2i].
[12]. In a previous paper, we investigated the chaotic and
With the proceeding of the experimental exploration, a lotfrequency-locked population oscillation between two
of theoretical investigation was performed simultaneouslycoupled BEC422].
Williams et al. demonstrated the existence of Josephson tun- Although many papers appear in the field of the tunneling
neling in a driven two-state single-particle BEC in a single-between coupled BECs, because of the nonlinearity in the
well trap potential13]. Kasamatstet al. investigated theo- Gross-Pitaevskii equatiofGPE), few of them address the
retically the existence of a metastable state and theuestion of calculating the tunneling rate and the crossover
possibility of decay to the ground state through macroscopitemperature between different tunneling regimes. However,
quantum tunneling in two-component BECs with repulsivethe tunneling rate and the crossover temperature of the spin
interactions[14]. Smerziet al. studied the coherent atomic systems have been studied systematically with the
imaginary-time path-integral method, including models with
applied magnetic fielf24—3Q and without itf31-33. For a
*Corresponding author. Electronic addresses: chlee@mpipkgwo-state system described with linear Salinger equation,
dresden.mpg.de; chleecn@hotmail.com it is easy to visualize the effects of coupling between two
"Electronic address: kigao@wipm.ac.cn states by introducing Bloch's spin vector formaligi@3].
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Can we introduce a generalized Bloch vector for two coupledor GP equationg1), being slaved by the populatioh&3].
BECs described with the nonlinear Sctimger equation to  Thus, the complex coefficient functiong(t) obey the non-
map it onto a spin system, and then calculate the tunnelininear two-mode dynamical equations

rate and the crossover temperature with the imaginary-time q is
path-integral method? If the coupled BECs system is equwa 2 2

lent to a spin system, the tunneling process is related to the' hgi V(0= { 7+U22| $2(O]7F Uzl (V)] }I/IZ(I)
decay of the metastable MQST state to the ground state.

More interestingly, the crossover temperature corresponds to I El// (t)

the transition from the classical or mean-field regime to the

second quantization regime. In the following section, by in-

troducing a generalized Bloch spin vector, the coupled BECs,

are mapped onto a uniaxial spin with an applied magnetic hdt'l’l(t)
field. In Sec. lll, the tunneling rate is calculated with the
imaginary-time path-integral method, and the crossover tem- + 2 ()
perature is estimated. In the last section, a brief discussion 2 Pa(t).
and summary is given.

0 ho 5 )
E1+7+Ull|‘/’l(t)| + U 19 (1) || (1)
(2

The parameters satisfyE)=[®;(r )H)®;(r)dr, U;
1. QUASISPIN MODEL FOR TWO COUPLED 2 —l9 T
BOSE-EINSTEIN CONDENSATES =(4mhiai Im) [[®i(r)|*|®j(r)[*dr=U;, and K
=hQ[D(r)D,(r)dr (i,j=1,2). The terms irK describe
population transfer(internal tunneling between two BEC
states, whereas the termsUl; , which depend on the num-
bers of atoms in each BEC state, describe the mean-field
detunings= wg— wp; . Here, wy= w4 w, is the driven fre- interaction bet\_/veen atoms. Whml_andé equal zero, these
coupled equations can also describe the BECs in a double-
quency of the two-photon pulses amgy is the transition well potential[15—18. Similar to the coupled two-state sys-

frequency between two hyperfine states. In the rOtatmEfem obeying the linear Sobirdinger equation, we introduce
frame, ignoring the damping and the finite-temperature efa generalized Bloch spin vecto ¢.w) with the compo-

fects, the coupled two-component BEC system can be de- > ents
scribed by a pair of coupled GPEs,

Consider the experiments of JIL®], two Bose-Einstein
condensates in théF=1mg=—-1)=|1) and |[F=2m¢
=1)=|2) spin states of’R, are coupled by a two-photon
pulse with the two-photon Rabi frequen€y and a finite

aW,(r,t) o e RO - RO - U=ySdnt+ iy, v=—i(g — ¥ ¢),
ﬁT:(H2+H2 ——2—)‘If2(r,t)+—2—‘1’1(r,t), . .
W= 5 o &)
iﬁ%trt) (H1+H1 +ﬁ25) 1(?,t)+@\y2(?,t), Obviously, u*+v?+w?=(N;+Nz)?=N7 is a conserved
quantity when finite-temperature and damping effects can be

@) ignored. Rescaling the timg# to t, the Bloch spin vector
where the free evolution Hamiltoniansl®= —#2v%/2m  Satisfies

+Vi(?) (i=1,2) and the mean-field interaction Hamilto- du dv dw
v(y+tgw), Gr=Kw-u(y+ngw), -—==-Kuv,

nians HMF = (47 2/m) (ag [ Wil r ,t)[2+ay; [ W;(r,0)]2] ()] dt - dt
=1,2,i#]). The coefficienty;; is the scattering length be- )
tween statesandj and it satlsﬁesaLIJ a;i . Weak coupImg IS \where y= Eg_ E8+ Np(Up—U,)/2—%6 and 7=(Uy,

3
defined by the Rabi frequency 1fft'5fy'r@/(“’xwy‘”z) +U;—2U,,)/2. Regarding the atom in one condensate as
=0/w<1, where w=(wwyw,)" is the geometric- gpin-up state and the atom in the other condensate as spin-

averaged angular frequency for the trapping potential. In thigjown state, the coupled BECs can be described with the

regime, we can write the macroscoplc wave functions using - =
quasispinS= ue,+ v e,+we,. In this language, the longitu-

the variational ansatZ\If—(r t):‘/’i(t)q)'(r) with #i(t)  dinal componentv depicts the population difference, and the
=JN;(1)e'“® (i=1,2). In the ansatz, the funct,m@(r) transverse componentsandv characterize the coherence.

describe the spatial distribution of thidh component, and Thus the effective Hamiltonian for the quasispin is
the complex coefficient functiong;(t) are spatially uniform _ 5
and contain all time dependence in the macroscopic quantum E=-27S,-KS,—7S,. ®)

wave functions¥;(r ,t). The symbolsN;(t) and «;(t) rep-  The above Hamiltonian is similar to that of a uniaxial spin
resent the populations and phases ofithie condensate, re- with an applied magnetic fieltl26—30; it indicates that the
spectively. Because the coupling is very weak, the spatiainean-field interaction brings the anisotrogy the coupling
distributions vary slowly in time and are very close to the causes an effective transverse magnetic fielong axisx,
adiabatic solutions to the time-independent uncoupled casand the asymmetry or the detuning induces an effective lon-
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gitudinal magnetic fieldy. In the symmetric caseEQ=ES,  P<Pc, i.e.,[K/(7N7)]¥3+[y/(7N1)]??<1. One can eas-
U,,=U;;, and§=0), it is consistent with the one derived ily find the small oscillations around these stationary states

from the second quantized Hamiltonian in Ref]. with nonzero time-averaged values f& and \/Sx2+ Syz.
These oscillations correspond to the phase-locked MQST

lll. TUNNELING RATE AND CROSSOVER states with time-averaged relative phase Graand multiple
TEMPERATURE stationary states correspond to multiple metastable MQST

) ) ) ) states with fixed nonzero population difference and relative

In conventional spherical coordinates, the spin cOMpOphase 0 orr. The appearance of multiple stationary states
nents can be written as S,=N7sinfcos¢, S, ingdicates, only for some proper parameters, that multiple
=Nrsindsin¢, andS,=Nrcose (see Fig. 1 Thus, the cor-  metastable MQST states exist. For simplicity we only con-

responding effective Hamiltonian is formulated as sider the case where the parame®eis slightly lower than
1 K the fixed critical valueP., P=Pc(1—¢), e<1. This re-

E=— 7N2| = cof6+ ——sinf cosep+ Lcosg ) quires that the Rabi frequency, the detuning, the scattering

2 7Nt 7Nt lengths, and the total atomic number in the coupled BEC

system must cooperate with each other to approach the criti-

Based upon the analysis of a spin in a uniaxial magnetic fiel&al values for the emergence of multiple metastable MQST

[26-30, we know that there are stationary states if Somestates. One way to maintain the critical valBg unchanged
| ' tisfy 9E/90!7=% —0 and 9E/ 9670 is fixing the values of the ratias//K and other correlated
angles o, o) satisty ¢|¢=¢o_ an |¢=¢o parameters § and Ny), that is, keeping the anglé, un-

=0. The condition&E/&¢|Zi?§’0=O locates the stationary changed. By introducing a new positive varialgle 6— 6,,

states in theXOZ plane (sing,=0). The existence of mul- Potential(6) can be expanded into
tiple stationary states in this quasispin system is equivalent to
the existence of multiple metastable MQST states in the  Eg(8)=Eg( 00) + i B £2— £+ 0(£Y Isin(20c). (9)
coupled BECs. Near the metastable states the potential de-
scribes a “canyon” satisfying With the definition in Refs[26,27,29,3( the tunneling
ratel” obeysN(t) =Np(0)exp(=I't) and it can be written as
Ey=E(0,¢0)/(7Nf)=—3 cog0—Pcod0—0p). (7) T'=Aexp(-B) for the quantum tunneling regime. Here,
) Np(t) is the population occupying the metastable state at
The parameters obey P=VK*+y“/|7N¢|, sinfe  timet and the tunneling exponetk (=0) is determined by
=Kcosgy/VK+y%, and cogp=y/{K“+y°. As stated in  the imaginary time action of the instanton solution. Similar
the preceding section, the parameter()>0, therefore to Ref.[26], the tunneling exponent follows from the path
sin#>0 and sin¥p<<0 correspond to the equal-phase modeintegral [ D{¢(7)}/D{cosé(r)}exp(/%) over the continuum
(¢0=0) and the antiphase modes{=) in the coupled of trajectories which start and end & ¢,) and are close
two-component BECs, respectively. In the caseE§F-EJ  to the instanton solution, where is the imaginary timet
+N(Uy—U,)/2=0, the parametey is just the negative and | is the imaginary time actionl=/diN{(1
detuning— §, thus co®p>0 and cogp<<0 correspond to the — cos@)de/dT+E(6,¢)]. Integrating the imaginary time ac-
red detuning and the blue detuning of the coupling lasertion by parts, one can gain the tunneling exponent
respectively. The ﬂE/a6|3f=i§’o=0 is equivalent to

- % 2g;j
5E9/(90|;_:3?0=0, that is, sinZy+2Psin(gy—6p)=0. For B:NTJ+ dTlm
some critical points where both the first and the second de- o 2Pcsinfp

rivatives ofE, equal zero, an appreciable tunneling rate ap- 1
pears. This gives + ZSin(Zﬁc)[\/afz—&er o(&H1,
sin 20(:"' ZPC S|n( 0C_ ap) = O, =16X 61/4NT85/4| cot 0P| 1/6/5
c0s 20¢+ P cog Oc— 60p) =0, (8) = 16X 64N y/K| Y95, (10

wherefc andP¢ are critical values fop andP, respectively.  £rom the definition of. one can obtain
Solving the above equations, one can obtain®dar

_ _ (i3 135 \—3/2
tanep and P¢ (s.ln2 0p+co 0.,3.) : The system has e=1—P/Pe=1—(1+|y/K|?)
an instanton solution at the critical poilR=P., i.e.,
[K/(7N7)123+[ y/(nN7)]?®=1. This critical point stands X (1+]y/K|?3) "3 KI(yN7)]. (11

on the separatrix between the single-stable regime and the

multiple-stable regime. It Sepal’ates the metastable multiThUS the tunne"ng exponent can be expressed as
MQST behavior between the single-stable population oscil-

lation in the coupled two-component BEC. B=16X6YAN{[1— (1+]|y/K|?)
According to the dependence Bf, on ¢, we obtain that T
the condition for the existence of multiple stationary states is X (1+]yIK|2R) 32K/ (gND) |14 yIK|Ye5. (12
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Ae and the other onéJ) is unstable. Adiabatically changing the
wiot effective detuningy from y.— & to y.+& (¢ is a very small
‘ positive numbey, in the space of the fractional population
difference z=(N,—N;)/N; and the relative phasé=a,
— a4, a trajectory in the vicinity ofs, becomes a large orbit
C encircling S;. From the views of instanton method, the
S tunneling exponent is determined by the canonical action of
the orbit, i.e., B follows from the path integral
y ID{z(7)}D{¢(7)}expl./) over the continuum of trajec-
o y tories which are close to the instanton solution. At different
\ S bifurcation points y., the numerical results show
‘~ S B(|y/K|)/B(|y/K|=1)e|y/K|0103:0:00%< |/ |¥6, this
X confirms our previous prediction from the quasispin model
u (see the right column of Fig.)3
e There are two important aspects which must be noted.
€ Sy The one is that these results for tunneling are only valid in
the low barrier limit for the quasispin model, i.e<1. This
FIG. 1. The quasispié and its Component&](viw) in conven- means that the abOVe I’esu|tS Only hOld in the region Wh|Ch
tional spherical coordinates. approaches the critical point of emergence of multiple meta-
stable MQST states. The parametric dependence of the gen-
To control the tunneling, one has to select proper values fogral case is still an open problem. The other is the validity of
parametersy, K, and . In the experiments performed in a the Wentzel-Kramers-Brillouin(WKB) semiclassical ap-
double-well potentia[4,5], it can be realized by modifying proximation. The semiclassical approach can only be used in
the barrier position, the barrier height, and the magnetic fieldhe case of small tunneling probability, thatB>1. In this
(using Feshbach resonances to adjust the scattering lengtfesy barrier limit, from the Taylor expansion seri¢8) one
[35]), respectively. In the experiments with two-componentcan obtain the following tunneling amplitude by using the

BECs in a single-well potentidl9] , it can be realized by theory developed by Caldeira and Legd@&]:
adjusting the laser detuning, the laser intensity, and the mag-

netic field, respectively. For fixed values gfand y/K, the A= (15B/87) 2w,

tunneling exponenB decreases with the increasing of the

intensity of the coupling laser. In Fig. 2, we show how the 158\ 2/ 3¢\ ¥4 U 5

tunneling exponerB depends on the angt . In the region /A Z) g) |cot 6| Y (1+cot®0p),  (13)

between 0 andr, the ratioB(6p)/B(7/4) decreases from
positive infinity to zero when the angt® equalsw/2, which
. . 15B
corresponds to the symmetric case=0), and then in- :77NT<_
creases to positive infinity when the angleis close tor. It 2m
is almost flat when the anglés is not close to 0,7/2, and
a. This angular dependence indicates, in the case of fixetlere, w is the angular frequency of small oscillations near
value of &, that the tunneling exponent increases with in-the bottom of the inverse potential. Apparently, when the
creasing y/K|. angle 0 is close to the&ks (k=0,1), which corresponds to
The result for the angl®p close tow/2, which corre- small Rabi frequency or large detuning of the coupling laser
sponds to the symmetric cage=0, should be taken with between two BECs, the tunneling amplitull@pproaches to
great caution because the coefficient séij2in the Taylor  zero, see Fig. 4. As presented above, in the cask @lose
expansion serie®) is equal to zero. In this case, the prob- to /2 which corresponds to the symmetric cage0, the
lem corresponds to the tunneling between two equivalenpotential is not in form ofé?— &3 but in form of £2—¢&*
minima which correspond to the anghg equal to 0 andr.  because the coefficient sirg@ in the Taylor expansion se-
Thus the potential can be expanded into the forng%of &4 ries (9) equals zero. Therefore, the above formula for the
and the tunneling exponem is expressed a8=4Sc%? tunneling amplitude only holds for the asymmetric case
=4N+e¥2 Therefore, the tunneling exponertii®) and(12)  #0. Generally, contrary to the tunneling expond)tthe
only hold for the asymmetric case wheye:0. tunneling amplitudeA is sensitive to the structure of quan-
To confirm our prediction from the quasispin model, wetum levels in the potential. Therefore, for the case of the full
perform a numerical simulation of Ed2). A qualitative  potential (6) and (7), the estimation ofA is still an open
change in the stationary-state behavior occurdat»N+)| problem.
=1. When|K/(7N7)|>1, there are no metastable states for Population transfer between two states in a bistable sys-
any effective detuningy. However, when|K/(7N7)|<1, tem can occur either due to classical thermal activation
metastable states exist in the regjony.,+ v.] for proper  which depends on the system temperature or due to quantum
relative phase, where y, satisfies [K/(7N7)]¥®  tunneling which does not depend on the system temperature.
+[v./(7N7)]1?®=1. See the left column of Fig. 3. Two sta- There exists a phase transition from the thermal regime to
tionary states, indicated & andS, in the figure, are stable the quantum regime which occurs at the crossover tempera-

12( 3.\ 14
(?) | Y/ K|Ye(1+ ] yIK|Z3).
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0.00 0.25 0.50 0.75 1.00
FIG. 3. In the left column, the stationary states |t <| 7N+]
epm are shown. There are two metastable st&gesS, and one unstable
stateU. In the right column, the tunneling exponent raBoB, vs
FIG. 2. The tunneling exponent rat( 6p)/B(6p=m/4) vs dif-  gifferent | y/K| is presented, wherB,=B(]y/K|=1). The black
ferent 0. Here, the angl&)p characterizes the angle between the qots show the numerical data and the straight line represents the

effective magnetic fleIcBeff— Ke + 7e and the axiz. linear fit for the logarithmic data.

ture Tc. Above T¢, quantum effects are very small and the where

population transfer rate follows the Arrhenius law, ) 5
|sin(26¢)|=2|y/K|c/(1+]yIK[Z). (19

B
Ltherma=1o exp{ - kB_T) (14) Comparing both crossover temperatures, one can easily find
that they differ by a factoﬂ'C/T’C=57-r/18= 1/1.15, which
Here, Ug is the height of the energy barrier between twomeans that they are of the same order of magnitude and can
states andkg is the Boltzmann constant. BeloW., the  both be used to estimate the crossover temperature.

population transfer is purely quantum, Below, from the experimental parameters in the experi-
ments of JILA[9], we will give a quantitative estimation for
I quantuni=A exp(— B), (15)  the tunneling rate and the crossover temperature. In those

experiments, the atomic massm;=m,=mg,=1.45
with B independent of the system temperature. Thus the tranx< 10 2° kg, the time-averaged orbiting potenti@lTOP)
sition occurs wher'iherma=I'quantum: Neglecting the pref-  magnetic trap has an axial frequency=59 Hz and a radial
actors and equating the exponents, the crossover temperaturgquency vy ,=v,=v ,1\/8=21Hz, the swave scatter

can be estimated as lengths a;;=5.36 nm, a;,=a,;=5.53 nm, and a,,
=5.70 nm, and the total atomic numbBk~5Xx10°. To
Tc=Ug/(kgB). (16 obtain the numerical values conveniently, we choose the

natural units of the problem in which, time is in units

The transition region is approximately the temperature inter- 13_
val[Te(1-B~1),Te(1+B1)]. This crossover resembles a & L/(@x@y®2) Uw, length is in units of the size
first-order phase transition of the tunneling ritéecause it ©Of the geometric-averaged harmonic-oscillator length
is accompanied with the discontinuity df' /dT at T¢ [29]. = VA/[(0,wy0,) PMgpl= VA/(0Mgy), energy is in un|ts of

There is another regime for tunneling, the thermally asthe geometric-averaged trap level spamhgwxwywz)
sisted tunnelingTAT), in which the particle strides over the =#w, and mass is in units of Rb atomic masg,.
barrier to the bottom of the potential with lowering tempera-  Due to gravity acting besides the TOP, the centers of two
ture [29,30. The transition from the classical regime to the condensates will displace along the vertical direction and the
TAT regime resembles a second-order classical-quantunwo equilibrium displacements are generally not the same.
phase transition of the tunneling rdfebecause it is accom- Thus, if the interparticle interaction is absent, the lowest
panied with a discontinuity of?I'/d T? and no discontinuity  single-particle state has the familiar wave function
of dI'/dT at the crossover temperature. The corresponding
transition temperature can be estimated as

Qoi(r)=—r———15
TL=1l(7okg) = ! (27Kg), (17) 7¥(d,d,d,)"?
2 2 N2
where r, andw are the period and the angular frequency of wexg — — Y __ (2= Fizo) (20
small oscillations near the bottom of the inverse potential, 2d? 2d§ 2d2

respectively{25—-27,29,30 In the low barrier limit £>1),
from the Taylor expansion seri¢8) one can obtain the bar- Here, F,=+1, F,=—1, 2z, is the offset between two po-
rier height tential centers along the vertical axis, atg= 7/ (wMgp,)
. (k=x,y,z) are the oscillator lengths. The offsetZbetween
N2 32 i _ 27 two condensates can be varied by adjusting the magnitude of
Ug=7N7(2e/3)™sin(20c)| 15 "/ 70)B, 18 e rotating magnetic field. In the presence of interatomic
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0.3 coupling pulses must be relatively small. Choosing the total
atom numbeN;=2.0x 10%, the half offsetzy=0.2Qd,, the
Rabi frequency()=27X10 Hz, and the detuningd=
0.2 —179 Hz, one can getyN;=6.70x10 %2, y=457
1 X 10 %, K=6.90x10 %, and £=9.78<10 3. Thus, the
0.1 corresponding tunneling exponeBtand crossover tempera-
ture T are around 4.22 10° and 3.54 10 2 nK, respec-
tively. Obviously, the crossover temperatirg, which cor-
0-% o 0% 050  o0v5 100 responds to a phase transition from classical tunneling to
' ‘ ) : ) quantum tunneling, is far below the critical temperatiige
6./n ;150 nK for Bose-Einstein condensation in a dilute gas of
Rb.

A, YA(4)

FIG. 4. The tunneling amplitude rati(0p)/A(0p=m/4) vs

different 6, where the anglé@p characterizes the angle between
) L - - . IV. DISCUSSION AND SUMMARY
the effective magnetic fiel®.;;=Ke,+ ye, and the axiz

The generalized Bloch equatiéf) and its stability analy-
interaction, the dimensions of the condensates are changesls will help to control the population transfer and realize the
The spatial parts of the macroscopic quantum wave functionsingle-qubit operation with BECs qubit. Theoretically, any
are in the shape of two-state quantum system can serve as a qubit, many of them

have been realized experimentally. To make use of two quan-
tum states, the coherence and superposition between them is

Di(r ):W the most essential qualification. The experimental observa-
™ (bixbiybiz) tion of coherence and superposition between two BECs in-

X2 V2 (2= Fzy)? dica_tes the possibility of encoding two COl_JpIed B_ECs as a

Xexp — 5 5~ > . (21)  qubit. However, because of the mean-field interaction among
2bjy  2bj, 2bj, Bosonic condensed atoms, the qubit operations become very

. _ difficult to perform. To accomplish a single-qubit operation,
The variational parametetg, (k=x,y,z; i=1,2) depend on it myst be possible rotated arbitrarily in the Hilbert space.
the scattering length, the total atom number, and the trappinghs requires that the atomic populations can be transferred
potential and they have almost the same nume_rlcal values @8bitrarily. From the Bloch equatiorié), we find that MQST
d . For proper values of the offsezg, the numerical results prevents the arbitrary rotation of the state vector, and even if
of Ref. [13] show that the spatial distributionB;(r—) and  there is no MQST, whem+0, the complete population in-
their overlap only weakly depend on the total atom numberggrsjon cannot be accomplished with linear operations. Thus,
in each condensate. For simplicity, in the following calcula-t5 accomplish a linear qubit operation, one has to adjust the
tions, the variational parametels are replaced by the 0s- harameters; to zero by varying the atomic scattering length
cillator lengthsd,. Therefore, the paramete, U;;, and  ith a Feshbach resonanf@5]. In this case, the mean-field

K are determined by interaction gives a density shift to the original energy levels
0 —o and, according to Rabi’s theory, the arbitrary rotation of the
Ei=E=f(oxt oyt w,)/2, state vector can be performed easily. Thus, if one encodes the
qubit stateg0) and|1) as the condensate wave functions for
Uy = 4mh%ay I[(V2m)%d,dyd,mgp]  (i=1,2), two condensates in a double-well potential or two hyperfine-
state condensates coupled with Raman pul36§ an arbi-
U12=47rh2a12exp(—Zzéldg)/[(\/ﬂﬁdxdydszb], trary one-bit linear operation can be realized when the an-
(22)  isotropy is absent#£=0) and an arbitrary one-bit nonlinear

operation can be realized when the metastable multi-MQST
K=%0 exp —z5/d?). behavior is absent|K|>|7N+|). This means that, to per-
) . o form an arbitrary one-bit transformation, it at least needs
So the corresponding parameters in the quasispin m&del choosing proper parameters to avoid the emergence of the
can be written asy=%2Nr(a,—a17)/(V27d,dyd,Mgy)  metastable multi-MQST behavior.
—ho and n="h? gt ay—2a,exp(-2z/d) )/ The tunneling of the quasispin model described by Hamil-
(\/ﬁdxddemRh). In the case of complete overlap 42 tonian (5) has also been investigated by mapping it onto a
=0), the anisotropy parameterequals zero, thus the meta- particle moving in an asymmetric double-well potential
stable multi-MQST behavior will never appear, but some[27-29. Using this approach, Garangt al. have explored
running-phase MQST states may still exist. This indicatesome new fascinating features of this uniaxial spin model in
that, to ensure the existence of multiple metastable MQSThe strongly biased limit29]. They find that there exist two
states, a finite offset must be kept between two condensatedifferent regimes for the classical-quantum transition of the
Furthermore, the appearance of this kind of MQST requiresunneling rate and the kind of transition depends on both the
K23+ y2B< (yN1)?2. Becaus& =) andy= 8, this inequal-  strength and the direction of the magnetic field. In this paper,
ity indicates that the Rabi frequency and the detuning of theve directly analyze the tunneling in the low barrier limit for
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the quasispin model, which corresponds to the effective mag- In conclusion a system of coupled BEGwo BECs in a
netic fields near their critical values for appearance of metadouble-well potential or two internal state BECs coupled
stable states. This requires that all physical parameters of theith laser pulseshas been mapped to a spin in a magnetic
coupled BECs collaborate with each other to approach théeld by introducing a generalized Bloch vector. The mean-
critical point of appearance of multiple metastable MQSTfield interaction, the coupling, and the asymmetry or the de-
states. The symmetric case=0) of the coupled BECs cor- tuning are relevant to the anisotropy, the transverse magnetic
responds to the unbiased cade,£0) of the anisotropic field, and the longitudinal magnetic field, respectively. The
spin model, which has been investigated in details by mapeorresponding generalized Bloch equation is obtained. The
ping it onto a particle moving in a symmetric double-well analysis of this generalized Bloch equation will be propitious
potential[25]. to control the population transfer and realize the quantum
The macroscopic quantum tunneling of two-componenttomputation with coupled BECs. Based upon experience
BECs has also been investigated by Kasamatsu and Cdérom the well-studied tunneling of spin systems, the detailed
workers. Using a numerical approach, they have analyzed thieformation about the tunneling between two metastable
tunneling between two kinds of metastable stationary statedMIQST states in coupled two-component BECs can be ob-
a symmetry-breaking state and a symmetry-preserving stat&gined with the imaginary-time path-integral method. The
in uncoupled two-component BE(J44]. To improve the crossover temperatuil: at the critical point for a transition
usual Gaussian variational method, they have introduced &ilom the classical thermal regime to the quantum regime was
collective coordinate approach and then calculated the tursbtained. When the system temperature decreases through
neling rate within the WKB approximation. In that system, T, the population conversion goes from classical thermal
the populations of the two components cannot be convertedctivation regime to purely quantum tunneling regime. This
into each other because of the absence of coupling. Thismeans, below the crossover temperatiligg the quantum
means, the tunneling does not occur between two compdiuctuations in the atomic fields take the dominant position.
nents but between stationary states with different spatial conAle also find that the tunneling rate can be adjusted by vary-
figurations. Thus, this kind of tunneling originates from theing the coupling and the trapping magnetic field.
quantized spatial structure of the Hamiltonian. In our model, Note added in proofRecently some interesting work in
due to the coupling, the population can be transferred fronthe field of macroscopic quantum tunneling in BECs has
one component to the other. Furthermore, we assume theppeared37].
coupling is very weak, thus both components stay in their

ground stationary states through the full process. The meta- ACKNOWLEDGMENTS
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