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Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions

Carlos Barceld* S. Liberati®" and Matt Visset*
Ynstitute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 2EG, Britain
2physics Department, University of Maryland, College Park, Maryland 204421, USA
3School of Mathematical and Computing Sciences, Victoria University of Wellington, New Zealand
(Received 21 July 2003; published 21 November 2003

Bose-Einstein condensatBEC’s) have recently been the subject of considerable study as possible analog
models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC
can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved space-times. In
two previous paperfint. J. Mod. Phys. A18, 3735(2003; Int. J. Mod. Phys. D(to be publishey e-print
gr-qc/0305061 we noted that a varying scattering length in the BEC corresponds to a varying speed of light in
the “effective metric.” Recent experiments have indeed achieved a controlled tuning of the scattering length in
85Rb. In this paper we shall discuss the prospects for the use of this particular experimental effect to test some
of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe.
We stress that these effects are generally much larger than the Hawking radiation expected from causal
horizons, and so there are much better chances for their detection in the near future.
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I. INTRODUCTION—MOTIVATION tional, laboratory to test aspects of these scenarios.
No experimental setup has yet been realized in which the
Semiclassical gravity has played a central role in theoretpredictions of analog models can be observationally tested.
ical physics. Phenomena such as the Hawking effect or codNevertheless theoretical analyses of analog moie)g]
mological particle production are commonly considered tohave been so far remarkably successful in teaching us how
be crucial first steps on the way to building up a consistensemiclassical gravity phenomena are sensitive to possible
fully quantum theory of gravitysee, for example, Refl]).  quantum gravity effects, such as modifigabrentz violating
However a fundamental limit to these investigations is im-dispersion relations[5]. (See, for example, the trans-
posed by the fact that their most basic description is based dPlanckian problem in the Hawking effef@] and in cosmol-
linear quantum field theor§QFT) on a fixed(classical con-  ogy [8].)
tinuum space-time. Several theoretical approaches have beenWhat we intend to discuss in this paper is a particular
developed to overcome this limitation: In a fashion that weclass of experiment—that we hope could be realized in the
can call “top-down,” string modelgbrane modelshave in  very near future—wherein certain analog gravity model pre-
some special situations developed a high-energy descriptiadictions could be tested. The interest in doing so would not
of the Hawking effec{2], while “bottom-up” approaches, just be that of confirming a now well-established theoretical
based on stochastic gravity and the Einstein-Langevin analyprediction, but mainly trying to evince deviations from the
sis of particle creation by a gravitational field, have in recentaive theoretical predictions due to the intrinsic discrete na-
years provided further insigt8,4]. ture of the experimental system and/or to the possible role of
On the other hand, the physics community has so fanonlinearities.
lacked any possibility for direct experimental tests of these We shall focus our attention on the analog gravity system
ideas. Indeed this lack of experimental guidance is a severestablished by the propagation of linearized phase perturba-
hindrance with respect to further developments in semiclastions in a Bose-Einstein condensf®e-14]. In particular we
sical gravity (or full-fledged quantum gravity for that mat- shall consider an experiment where a time-varying scattering
ter). In particular we have nexperimentabuidance regard- length is used to simulate the cosmological expansion of the
ing the manner in which the predictions of curved space-timeainiverse, and its associated quantum creation of particles.
quantum field theory are changed once the hypotheses of It is interesting to note that in Ref15] the authors pro-
nondiscreteness and/or a nonfluctuating background are rgosed an explanation of the so-called “bosenova” phenom-
laxed. In this regard the analog models of gravity develope@non[16] (a controlled instability of the bulk condensate
in recent years can be considered a first attempt to create &mduced by a sign variation of the scattering lengtirough
arena which can serve as a theoretical, and possibly observa-particular implementation of a version of analog cosmo-
logical particle production. In that approach the entire bulk
of the condensate is rendered unstable and suffers cata-
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"Email address: liberati@physics.umd.edu; nomenon via analog cosmological particle production, we
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The scheme of the paper will be as follows: In the follow- As usual, the quantum field can be separated into a macro-

ing section we will review the phySiCS of BECs regarding its Scopic (da_ssica] condensate and a ﬂuctuatioﬁl:: (/,4- (,AD,

analog gravity features. Section Il will be devoted to thewith V=4 Th : ;
. ; ; . = en, by adopting the self-consistent mean-
discussion of how to simulate a Frledman—Robertson-WaIke]r W)=y y piing

(FRW) universe within a BEC. There exist two main routes leld approximatior{ 18]

to do this. One considers an explosive expansion of the con- St oo tINT s Nt

densate; the other makes use of the possibility of tuning the o ee=2e et (ool ®
strength of the interaction between the different bosons in thene can arrive at the set of coupled equations:
condensate. This latter route will be the main concern of this
paper.

In Sec. IV we will first qualitatively describe how the
modification of the interaction strengtbncoded in the value _ -
of the scattering lengihyields cosmological particle cre- + k[ 2ng(t,x) + myp* (t,x) ], (4)
ation. Next, in Sec. IV A we will discuséin the context of 5
current BEC technologywhether there exists a regime in i J ~ ( h

2

f
— ﬁV2+Vext(x)+ KkNg | P(t,X)

. d B
|ﬁazj/(t,x)—

fi—p=| — 2=V2+ Ve (X)+ k2n7 | @+ kmro’. (5)

which this particle creation process can actually be repro- at 2m
duced. We will see that there is a limit on the rapidity of

change of the background configuration, associated with thE€"e

need to enforce a “Markov approximation,” in order for the _ 2. _ 2

whole construction to make sense. However, this bound still Ne=[Pt1% me=y(tx), ®
leaves a lot of parameter space available to look for the par-

S gl as
ticle creation effect. Section IV B reviews the cosmological n=(¢'e), m=(ee), (@)
particle creation process, emphasizing the particular features 4T -~ 8
of BEC systems. Then, Sec. IV C discusses the actual ob- Nr=Nc+N, Mr=Mc+m. ®

servability of the effect. Finally, we conclude with & sum- the equation for the classical wave function of the conden-
mary and discussion. sate is closed only when the back-reaction effect due to the
fluctuations is neglectedThis back reaction is hiding in the

parametersm and n.) This is the approximation contem-
plated by the Gross-Pitaevskii equation. In general one will
have to solve both equations simultaneously.

Bose-Einstein condensates have recently become subject Adopting the Madelung representation for the wave func-
of extensive study as possible analog models of general rel&ion of the condensate
tivity [9—14). In particular it was shown that the propagation )
of phase perturbations in a BEC can under certain conditions Pt x) = Vne(t,x)ex —16(t,x)/4], ©
closely mimic the dynamics of quantum fields in curved
space-times. In previous papers we noted that a varying sc
tering length in the BEC system corresponds to a varyin
speed of light in the “effective metric{13,14]. Recent ex-

II. ANALOG GRAVITY IN BOSE-EINSTEIN
CONDENSATES

and defining an irrotational “velocity field” bw=V 6/m,
3he Gross-Pitaevskii equation can be rewritten as a continuity
gbquation plus an Euler equation:

periments have indeed achieved a controlled tuning of the 9
scattering length if°Rb [17]. The effect is powerful enough et V- (nev) =0, (10
to lead to large nonperturbative changes in the effective met-
ric. Let us start by very briefly reviewing the derivation of P o2 52 sz/n_c
the acoustic metric for a BEC system. M—=V+ V| ——+ Ve (t,X) + kNg— 5— —— | =
In the dilute gas approximation, one can describe a Bose ot 2 2m \/n_c

gas through a quantum fieM satisfying 1D

These equations are completely equivalent to those of an
irrotational and inviscid fluid apart from the existence of the

. h? o\ |
ih—r=|— ﬁV2+Vext(x)+K(a)q;qu V. so-called quantum potential
unantum: - ﬁsz\/n—c/(Zm\/n—c),

Here k parametrizes the strength of the interactions betwee\rllvhICh has the dimensions of an energy. Note that

the different bosons in the gas. It can be reexpressed in terms 72 VZ\/n_
of the scattering length as Ne ViV guanun=NeVi| — =— ¢
2m .
4mah? h?
k(a)= et (2) =Vj[—RnCVilen Ne|, (12
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which justifies the introduction of the so-called quantum We also see in those equations, E@) and (18), that
stress tensor time variations ofV,,; and time variations of the scattering
length a appear to act in very different ways. Whereas the
external potential only influences the background equation
(15 (and hence the acoustic metric in the analog descrip-
tion), the scattering length directly influences both the per-
This tensor has the dimensions of pressure, and may h@rbation and background equations.

viewed as an intrinsically quantum anisotropic pressure con- From the previous equations for the linearized perturba-
tributing to the Euler equation. If we write the mass density;ions it is possible to derive a wave equation ﬁlr (or al-

of the Madelung fluid ap=mn,, and use the fact that the ternatively, forn,). All we need is to substitute in Eq17)

flow is irrotational, then the Euler equation takes the form - ) ) S
the n, obtained from Eq(18). This leads to a partial differ-
ential equation that is second order in time derivatives but

2

h
opuantins — ZmneViviinn. (13

2

9 Vex(t,X) Kkp quantum . . o . . .
pl oVt (V- V)V +pV|— — 4V 5 5+ V 0 infinite order in space derivatives. To simplify things we can
construct the symmetric 44 matrix
=0. (14 )
fOO 2 £0
Note that the termVq,/m has the dimensions of specific =] o o | (20)

enthalpy, whilexp?/(2m) represents a bulk pressure. When _— |
the gradients in the density of the condensate are small one f N

can neglect _the quantum stress term leading to th? S-tanda{((i,-reek indices run from 0—3, while Roman indices run from
hydrodynamic approximation. Because the flow is irrota- X

tional, the Euler equation is often more conveniently Writtenl_g.') Then, mtrodiucmg (& 1)—d|men5|onal space-t!me co-
in Hamilton-Jacobi form: ordinates x*=(t;x'), the wave equation fo#, is easily re-

written as
J [(VO)? 72 V2\n, .
— —_— - = d,(f*a,0,)=0, 21
Mo 0+ | o=+ Veu( LX) + kne—5 I 0. W (F470,07) (21)
(15  where thef#” are differential operators acting on space only:
Apart from the wave function of the condensate itself, we o0 2 -1
also have to account for th@gypically smal) quantum per- 7=~ k(a)— >mP2| (22)
turbations of systerntb). These quantum perturbations can be
described in several different ways; here we are interested in _ 52 ~1yig,
the “quantum acoustic representation” fO=—|k(a)— ﬁDz} ol (23
R . 1 . n. i 2 -1
<p(t,x)=e—'9/ﬁ( nl—i—al), (16) o V' h
2\/n—c h flP=— —— k(@) EDZ ) (24)
Wh_ereﬁl,@l are real quantum fields. By using this represen- o ngdl vig, 52 ~lyig,
tation Eq.(5) can be rewritten as fl=—— k(a)— =D, . (25
m m 2m m
~ 1 - R N
oyt —V-(n,V6+n:Vo,)=0, (170 Now, if we make a spectral decomposition of the fiéldwe
can see that for wavelengths larger thalmcg (this corre-
1 72 sponds to the “healing length,” as we will explain belpw
atbl+ EV 6-Vo,+k(a)n,— ﬁDzﬁlzo, (18)  the terms coming from the linearization of the quantum po-

tential (theD,) can be neglected in the previous expressions,

I 1 mv I in-
ere D represens  secondorde iferental oprator b % 5% 1T an b pprociated b pebers
tained from linearizing the quantum potential. Explicitly P

tic approximation. Then, by identifying

Dzﬁlz—%ng3’2w2<nél’2>]ﬁl+%n;”zvzmg”zﬁn.( ) N 26
19 '

The equations we have just written can be obtained easily bje €quation for the field); becomes that of amassless
linearizing the Gross-PitaevskiGP) equation around a clas- Minimally coupled quantum scalar field over a curved back-

sical solution:n.—n.+n;, ¢— d+ . It is important to ground,

realize that in those equations the back reaction of the quan- 1

tum fluctuat_lo_ns on the background solution has been as- AG,= d,,( [Z99”¥9,) 9, =0, (27)
sumed negligible. V=g

053613-3



BARCELQ LIBERATI, AND VISSER PHYSICAL REVIEW A68, 053613 (2003

with an effective metric of the form

: n
Net3HY(ON=0, =  Ne(t)= 3 ("t), (34)
—[cs(ang)?=v?] i —v;
n
9un(t,X)= C e | with ng=const. Then, the solution foé can be obtained
mes(a,ne) o . from Eq. (15)
Ui : Sij
(29 .
_ 2, ['4 KMo
Here the magnitudeg(n.,a) represents the speed of the G—Emr + Odtb3(t)* (39
phonons in the medium:
and it requires an external potential of the form
) k(ayng
cs(a,ny)= e (29 .
Y T 2
Vexdt,r)= 2b+ 0 mr-. (36

Ill. ANALOG MODELS FOR COSMOLOGICAL SPACE

TIMES One could certainly construct such a potential in a “suffi-
ciently large” region around = 0; this would correspond to
To find analog models for cosmological space times wea sufficiently large part of a homogeneous and flat FRW
will consider a generalized GP equation where the externalniverse. Outside this region, the potential will have in prac-
potential and the coupling constant can both change withice some confining walls. The final effective metric can be
time, written as

2

# ds?= —T2(t)dt2+a2(t)(dr2+r2dQ?), 3
TRV (t) s(H)(drg+rpdQ3) (37
2m

. d B
|ﬁ5¢/(t,x)—

with
+K(t>|w(t.x>lz)¢(t,x). (30

3
No

n 1/4
as(t)5<m—f{b) and T(t)EWag—(t). (39)

The technical steps in the calculation change in a straightfor-

ward manner and lead to a simple time-dependent acoustg0 finally we end up with a FRW universe whose proper

metric Friedmann timer is related to the laboratory timeby =
0 = [T(t)dt.
dsz=m;[—(c§—v2)dt2—2v-dx+dx~dx]. (3D Although this explosion route seems promising, one

should note that this analog model has substantial draw-

o . . . backs. In particular it is easy to see from Eg5) that one
It is this time-dependent effective metric that we now wish toWould get for the condensate a linearly rising velocity field

use for simulating a cosmological space-time and SUbS&;_ gy~ Hence this particular realization of a FRW ef-
guently probing cosmological particle production.

fective geometry is guaranteed to possess an apparent hori-
_ _ zon, a spherical surface in which the speed of the fluid sur-
A. Cosmological analog by explosion passes the speed of sound. From a dynamical point of view,
Starting from geometry31) there are different ways in this might introduce many practical problems not intrinsi-
which one can reproduce a cosmologically expanding georreally inherent to the type of geometries we are trying to
etry. Following Refs[14,19—2] one can take a radial profile reproduce. Because of this, we view the use of an exploding
for the velocityv=(b/b)r, with b a scale factor depending medium as not be_lng the prefgrred route for building an ana-
only ont, and define a new radial coordinatergs=r/b. In log for an expanding FRW universgror an altemate view,

these new coordinates, the metric will be expressed as where tt}e %plosion route is the primary focus of attention,
’ see Ref[19].

dsz=i[—c2dt2+ b2(dr3+r2dQ2)] (32
mc, s b b2/ B. Cosmological analog by varying speed of sound

) i Another way to reproduce cosmologically expanding con-

Now, one solution for the BfEC wave function that repro- o rations in, we think, a cleaner fashion is by taking advan-

duces a FRW universe is this: Introducing a Hubble-like Patage of the possibility to change the value of the scattering

rameter length offered by some BEJ47]. Let us note that in Ref.
. [21], the authors already used the existence of time depen-
Hy(t) = @ 33) dence on the scattering length, in combination with a time-
b b(t)’ dependent external potential, to create explosive configura-
tion of the type described in the preceding section. Here, we
the equation of continuity can be written as are going to use this variability with a different strategy.
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Let us again start from Eq31) but now withv=0 at all in a sufficiently slow manne(this issue will be discussed
times: below), all the individual bosong&his is only an approximate
concept in an interacting thegrwill be affected in the same
nccsd 5, Ne way. This means that the value of the background
te+ dx-dx. (39 . . .
m mc magnitudes—these are the coherent magnitudes—will be
slowly modified. The GP equation tells you that the density
Then, it is not difficult to envisage a situation in whiohis  function n. will be kept fixed while the phase function will
constant in a sufficiently large regidthink of a sufficiently  develop a nontrivial dependence with time. At the same time
large close-to-hard-walled bpxThen, the continuity equa- the value of the speed of sound will decrease.
tion is directly satisfied and the Hamilton-Jacobi equation Now, apart from the background configuration, what hap-
tells us that with a fixed external potential the phase functiorpens with the additional quantum fluctuations? The equation
6 will depend only ont adapting itself to the changes of satisfied by the quantum fluctuations is, in the acoustic ap-
k(t). Changing the scattering length with time directly proximation(that is, for long wavelengthsthat of a mass-
causes changes in the value of the propagation spged less minimally coupled scalar field over an expanding back-
(That temporal changes in the velocity of sound can be inground and therefore, it will yield cosmological pair
terpreted as a cosmological expansion without invoking anyroduction of particles.
sort of velocity in the medium has already been suggested in An interesting point to notice is that varying the constant
Ref.[22] in the context of superfluid heliumWe now define  value of the external potenti®l,,(t) in the central homoge-

ds=—

= [[necs(t)/m]¥2dt and write neous region changes the background configuration in the
same manner as varying the scattering length does. However,
ds’=—d7*+ad(7)dx-dx, (40 as the speed of sound does not depend on this central value
of the external potential, its variations will not lead to cos-
where mological particle creation.
o va va _ Now, whafc can we say about the observabili_ty of the par-
a (7_)=< Ne ) =( Ne =( Ne izi ticle production process? The standard technique to “see”
s mcg(7) mk(a) Amh?] QU4 Qu4’ phonons is tomographic imaging. One opens the trap and

(41 looks at the expansion of the condensate. Phonons corre-
spond to distributions for the momentum of the atoms in the
In this model an expansion corresponds to a decrease of theap and different momenta correspond to different travel dis-
scattering length and vice versa. The Hubble function for thigances of the atoms after you switch off the trap. Taking

space time is snapshots of this evolution shows the density contrasts and
) then the original momentum distribution.
H= a_é __ E C_éz _ E(E) 1/2& (42 If the wave function¥ is split into the condensate wave
as  2c¢s  2\ng/ ¥ function ¢ plus quantum excitationg (in this situation, we

mean atomysthen, the density you observe is
(The prime represents derivative with respect to the Fried-

mann time, the dot derivative with respect to the laboratory (TT)=| |2+ (oTo), (43
time.) This is the model we will consider in the following R R
discussion. as(¢")=(¢)=0. Therefore, the observability of the effect
will depend on the value of the ratio
IV. ANALOG COSMOLOGICAL PARTICLE CREATION <A T“> 1
¢ o
Let us now present a qualitative explanation of how is that VE :n_c<€0 @) (44)

we can closely simulate cosmological particle creation
within this model. We can start with a condensate in a stag; more simply on the spatially integrated ratio

tionary state described, in a sufficiently large volume, by a

constant background density. and a phase function linear 1 30/~ A

in time, 6=Eyt. This is a solution of the GP equation. For C= N_J d*x(e'¢). (45)
this, one needs to have a potential that reproduces a large

enough close-to-hard-walled box and that satisfies the condif this quantity is of the order of the unitisay 1/2 or 1/1p
tion Eq= —Ve— kN . Apart from this classical background, then phonons can probably be “seen”; if it is 1/100 then
there will be some quantum fluctuations over it. At tempera-seeing phonons is technologically difficult. If the particle
tures much below the critical temperature these quanturproduction process was so strong that the calculatio of
fluctuations are very small and can be described by the Boresulted in values close to unity or higher, this would indicate
goliubov equations(These quantum fluctuations are presentthat the Bogoliubov mean-field approximation would have
even at zero temperature owing to the so-called quanturbeen violated, and the BEC itself disrupted.

depletion phenomenon, see, for example, R23].) Let us Let us now perform some explicit calculations of the par-
consider that these quantum fluctuations are in their vacuuricle production expected in realistic situations with present-
state. If one now decreases the value of the scattering lengttay BECs in which the scattering lengihis changed in time
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from some initial value to a different final value. We first  Finally the Markovian approximation is related to the fact
have to know how quickly we can drive these temporalthat in dynamical situations the two-body time-dependent
changes while still ensuring that the different approximationsscattering matrix can have a complicated form due to the
involved in the analysis remain valid. “memory” of the system(see, e.g., Sec. IV A of the paper by
Kohler and Burnet{25]). Basically in these situations the
system is described by a GP-like equation where the interac-
A. Varying a, validity of the GP equation tion term includes a “delay term” described by an integra-

The previous ana'ysis shows that in order to consider parﬁon over different timeS. The necessary assumption in Order
ticle creation driven by a time-varying scattering length weto have a Markovian description of the dynamigshich
must be sure to work in a regime where the background ié0gether with the two previous approximations leads to the
“instantaneously" reacting to the Changesa'nMoreover the GP equatioh is then that the time scales on which external
very derivation of the effective metric description is based orParameters are changing are longer than the two-body colli-
the GP equation which we then want to make sure holds ational duration; thatis, longer than the time scale over which
each instant of time. a single interaction happen#n simplest form, we are asking

So we must first determine the upper bound on the rapidthat the scattering length does not change significantly dur-
ity of the change in the scattering lengthvhich still permits  ing the period when a pair of atoms are interacting.
the GP equation to hold. This will also give an upper bound We can estimate the two-body collisional time by a simple
for the frequencies of the quasiparticles that might be createg@lculation. All we need is the typical size of the region of
(if 7 is the shortest time scale over which we can drive theStrong interaction of two atoms in the condensate and the
system therv~1/r is the largest frequency of the quasipar- typical speed with which they move. The first quantity can
ticle we can create The validity of the GP in describing the Pe assumed to be of the order of the van der Waals scale
Bose-Einstein condensate is related to the validity of severd@ngth: the interatomic potential(r) is characterized by a
crucial assumptions which permit us to perform certain apShort-range region of strong chemical bonding and a long-
proximations on the fundamental multiparticle Hamiltoniantange van der Waals potential,
description. The relevant approximations are generally stated
to be the “mean-field” approximation and the dilute gas ap- V——Cg/r®. (47)
proximation. It is nevertheless important to note that in a
dynamical situation a third approximation, which we can callThis leads to a van der Waals scale len@8—-29
“Markovian” approximation, is implicitly assumed.

Let us review the meaning and implications of these ap- 1
proximations: The mean-field approximation is based on the )\vdw=§
assumption that most of the atoms are in the condensate
phase and that the influence of the noncondensed fractio_Ph. . . . . .
can be neglected. This implies that significant creation of IS Igngth is basically the size of the region C.)f strong inter-
guasiparticles with excessive energies can be dangerous. figtion: forr<Aqw the scattering wave function oscillates

particular from the Bogoliubov dispersion relatifi?v] rapidly due tp the §trong _|nteract|on potential. In a_Ikall
ground-state interaction€g is the same for all hyperfine

2uCq 1/4

7 (48)

% 2 states of a given atomic pair; consequently,y is the same
w=\/c2k?+ %kz) , (46)  for all collision channels. For example in the case ofN&
is about 2.4 nm. We shall assume here genericalyy
~1 nm.

we can deduce that excitation of quasiparticles with wave- Regarding the typical speed of the atoms, this is set by the
lengths comparable to the healing length would lead to fred€ Broglie momentum generated by the trap confinement:
particle state§for k>2m/&, é=h/(mc), w~h2k?/(2m)]. p=h/R andv=p/m. We shall assume a trap of typical size
This argument seems to imply that one should require th€f 10 um. We then get
typical time scale for the change amto be no shorter than
the healing timgwhich is the analog in this situation of the Maw  AvgwmR
Planck time in quantum gravity tig=— =" (49)

The dilute gas approximation is instead related to the way v

the interaction potential is simplified in the GP equation. ¢ hi . ith the ti | h
This approximation is valid ifijal*<1, so we shall have to V& Now confront this quantity with the time scale we have to

keep the amplitude of the changesria® small in order to be faster than in order to create modes with wavelengths
satisfy this bound. We wish to emphasize that the standardOMer than the condensate sReThis ists,e=R/Cs. So

dilute gas approximation acting over two-body interactions

does not appear to be crucial for the analog gravity picture to tint _ AvawMG _ Avaw (50)

hold. As long as the interaction terrjy(t,x)|? can be gen- tsize h £

eralized to be some higher order, but still local, terif}|)

an analog gravity description is not precludese, for ex- For typical BEC systemg§~1 um—0.1um (assuming that
ample, Ref[11]). the scattering length ranges from 1 to 100)rsu
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Imagine now that the scale fact@, undergoes a finite
= ¢ ~10%-1072 (51)  amount of expansion in a monotonic fashion. This means
that the scale factor passes from an initial vadyeat »=
—oo to a final valueag; at =+ (or what is the same, that
the scattering length passes from an initial vaduéo a final
value a;). Space-time can be approximated at early times
and at late times, respectively, by two different Minkowski
space-times. As is standard, we will assume that the quantum
scalar field is initially in the vacuum state associated with the
initial Minkowski space-time. Then, we want to calculate the

E )\vdW

tsize

Note thatt;,; can be computed to be

)\vdW )\vdWm R
tint: - = h
v

(107° m)(85x10° eV)(10°° m)

(9% 10 mA/R)[27(6.5% 10716 eV)] particle content of this state in the final Minkowski space-
_ time.
~2x10°° s, (52 There is a particularly convenient choice of function

. . . as(7) for which the physics is clear and for which one can
so a microsecond is the shortest time scale allowed for th@xactly solve Eq(55):

change ira. Note that this interaction time is shorter than the

healing timet,,= &/cs~10 3~10 ° s which plays the role al+al at-al 7

of the “Planck time” in this system. Thus the GP equation is a(n)=—7%—"+—5 tan)’{—}. (57)
valid in the entire “subhealing” regime, which is the primary K

regime of interest, and continues to hold well into the “trans-(Thjs is a slight simplification of the model considered by
healing” regime(although the previous comments regardingparker{30]; a variation of this model can be found in Ref.
the breakdown of the mean-field approximation in this re{1] see p. 60 and thereafidf we now impose as boundary
gime remain valigl condition for a solution that af= —

B. Analytical calculations: Changing a over a finite amount Y p— — ) =(2kaZ) ~M%exp( —ikaZn), (58

of time
, ) one finds a particular set of exact solutiqis31]
Now that we have estimated how fast the change in the

scattering length can be driven, we can propose a particular . 1
time dependence and derive an estimate for the relative pro- P n) = —=exd —ik(aZ+a2) /2]
duction of phonons. Particle production in an expanding uni- V2kag;

verse has been extensively studied in the framework of semi-

—ikng(a,—a2)/2
classical gravity(see, e.g., Ref1]). In this regard the scope X[2coshi 7/ 7g)] K 7o(si~ a5

of this section will be to present an example of these calcu-
lations to nonspecialists as well as to evaluate the experimen- X oFq| 1+ik po[aZ—aZ]/2,
tal feasibility of an experimental test.
As a te§t bed we shall choose a slightly simplified version +ikpolaZ—aZ]/2;
of Parker’s mode[30]. The FRW metric with flat spatial
sections can be alternatively written as 1—ikpoaZ;
ds?=—a8(n)d5?+a3(y)dx- dx, (53 1
: s SL1+tant(y/70)] . (59

in which we are using for convenience a special type of

pseudotimen= [ (n./mag)dt with ag=(n./mcy) 2 These solutions correspond to positimgoing modes. Simi-
The scale factor is independent hence the mode de- larly, the precise form of the exact solutions that 7

composition for the quantum scalar field can be written as + admit the asymptotic form

. e . i n—+0) = (2kal) " Vexp—ikaZm)  (60)
0 (%X)Zf [ae™ *yn(m) +age™ " Xy (n)],
' (2m)32 7K “ X : (the positiveoutgoingmodes is
(54)
1
where theys(7) are solutions of the equation ()= mfexmk(aiﬁ aZ) /2]
f
d? .
d;}bzk +al(mke =0, (55) X[2coshi 7l 7o) [ <70t%er= 20"
which satisfy the normalization condition X F 1| 1—-ikpo[aZ—a%]/2,
(i 0= )= 1. (56) —iknoladi—agl/2;
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1—ikpoaZ;
1
5[1—tanh 7l 70)]]. (61

The Bogoliubov coefficients relating the early tirfiegoing)
and late time(outgoing bases are then defined as

) 1
PP (p—oe)= W[akexq— ikaZin) + BeexptikaZn)].
f
(62)

PHYSICAL REVIEW A68, 053613 (2003

We now use the standard scattering theory result that a
momentum-spaceS function evaluated at zero is propor-
tional to the volume of the “universe,” in this case the vol-
ume of the BEC,

R \%

to see that

dN \% )
dskout: W|l3k| : (72)

From this expression, and the exact solutions above, one can

show([1,31-37 that

= 2asfasi
‘ asitas;
y ['(—iknoag)T (—ikpoaly)
I'(—ikpo[aZ+aZ]/2)T(—ikp[aZ+aZ]/2)’
(63

_ 2a-sfasi

Bk=

agf_ agi
y I'(—ikpoaZ)T'(+ik noay)
T (+ikpolaZ—aZ)/2T (+ikno[ad—aZ]/2)’

(64)
and that
al? sint?(mknpo[a2+a2]1/2) ©5
a = 1
“ " sint(wknoaZ)sinh mkoaZ)
sint(wkpo[ a2—a2]/2
|Bk|2: (mknolagi—asil/2) 66)

sinh( mk 7oa2)sinh( kygaZ;)

Equivalently
N _ Y sl 73
m—ﬁWd outs (73

and the total number of emitted phonons is
V 0
_ 21,2
N= 5| Ik (74

As a practical matter the integral will always be cut off at
high momentum—most typically by the inverse time scale
7;51 over which the propagation speed changes, but if noth-
ing else the integral cannot be trusted for momenta higher
than that associated with the healing length,=27/¢ for
the reasons previously discussseée Sec. IV A

In order to gain a better understanding of the particle cre-
ation just described, it may be useful to study separately the
two opposite regimes characterizing this phenomenon. In
fact, for a given time scale of changg,, driving the particle
creation, one has a simplified description of the particle pro-
duction when considering the case of modes with frequen-
cies much smaller than #§ (sudden approximationor
much larger than thatdiabatic approximationAfter a brief
discussion of these regimes we shall deal with the full inter-
mediate case.

1. Sudden approximation

These expressions are related to the Bogoliubov coefficients

by [cf. Birrell-Davies equationf3.93]
a(Kin ,Kou) = @8> (Kin— Kouy, (67)
B(Kin ,Kou) = Bi®(Kin+ Kou) - (68)
The spectrum of particles in the final state is then

dN
d*Kout

= f |B(kin vkout)|2d3kin ) (69

which gives

dN
d®Kout

= [ 18280 5K+ ko k= B0
70)

A particularly useful approximation is to take the “sudden
limit.” Mathematically this consists of taking a step function
for the scale factor

ad(n) =ad+0(nlad—adl. (79)

Physically this means that one is considering that the change
in ag(#) is driven more rapidly than the frequency band one
is interested in. In this case, this means that the change is so
fast that the entire acoustic regime is exci(dtk time rate is
transhealing but sufficiently slowly that the GP equation
still continues to holdthe time rate is still subinteractian
However we shall still have to put in “by hand” a high
momentum cutoff, given by the healing length, .= Kneal
=2/ ¢, because beyond this point we cannot trust the dis-
persion relation to remain on the acoustic branch implicit in
our calculation.
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The relevant calculation can be preformed by simply con- dN 1 1
sidering the mathematicalo,—0 limit in Parker’s model. =53 5 . (82
Indeed thea and B coefficients are now momentum inde- dvdk (2m)7 exp(2mpokal) — 1

pendent and
. This is a correctly normalized Planckidhblackbody distri-
AgfT A bution. We can associate a temperatlinith the final pho-
|| = 2a.ag; | (78 " hon content produced by the expansion. Before doing that,
let us write down some useful relations between the frequen-
|a2i—a] cies associated with the pseudotimeand with the labora-
(77 tory time t. Asymptotically (either in the infinite past or in
the infinite future the relation between the tim¢ésand 7 is

; 2 4
As should be expected, particle production in this sudde@Ven byt~asn/cs+const-(mas/nc) 7+ const so that
limit depends only on the change in the scale factor. The

|Bl=

2asfasi .

particle production spectrum is now flémore precisely, . Ne Csi

phase-space limiteall the way up to the healing frequency. wj=—r 0= — 0=CkK, (83
A rigorous result is that foany monotonic change iag(7) ma; Asi

from ag; to ags the magnitudes of the and 8 coefficients

are less than or equal to those calculated for the sudden ap- Ne Csf

proximation [34]—consequently the sudden approximation wi= T of = 5 of=CsK. (84)
provides an absolute upper bound on particle production. M8 Asf

The number of phonons produced is
Here, the upper indices indicate with respect to which time a

Y g VY ) ; ATV frequency is defined, and the subscript@&nd f identify
N= &2 |BlKmax= 52| B(271§)°= == ?|B| : whether a particular magnitude is evaluated in the initial or
(78)  in the final configuration. Now it is easy to see that the labo-
ratory temperature that we would associate with the final

That is configuration in the adiabatic approximation is
47 V |ad—ag|? 1
N=— 53— 79 = ~1a22
3 53 4a§fa§i ( ) T ZﬁkBﬁCano ag;" . (85)

The good news for current purposes is that this scales as In order to estimate this temperature we need to convert
(R/€)°. Now the trap siz&kis of the order of 1Qum, while  the time scale over which the scattering length changgs,

the healing length is in the range from 1 to Quin; thus  from the pseudotime to the laboratory time. To do this we
(RI€)3~10° to 1C. A prefactor this big is desirable in terms define

of producing an observable effect. As far (scattering

length, this can range from 100 nm to 1 nm, so the ratio dt
a;/a; is up to~100. SinceaZ (scale factoris xa™*? we to= 105 (86)
haveaZ /a2 up to~10. Therefore 1 y=0

2

FE a2—aZ|? For the particular profile, Eq(57), associated with this
==

=——D =2 (80)  model Eq.(86) evaluates to
4asfasi
which is of the order of 1—so there is no enormous suppres- . m a‘s‘ﬁra‘s‘f B a‘s‘iJra‘S‘f
sion coming from the Bogoliubov factor. All in all, we esti- tO_r]_C 2 7 H52e f 7o- (87)
sf¥s

mate thatN~10*~10" phonons can be produced in the sud-

den approximation. , )
If we use this relation betweety and 7y, the temperature

2. Adiabatic approximation would be
In contrast, when the parametmska.ﬁf is large compared 4. a4
with unity (that is, for large enough momentand provided T— 1 i it Agy 89)
as>agj, we have dmkg to aa?
| Bl 2= (81) In this way we check the intuitive idea that in the expansion
exp(27-r770ka§i) -1 process one would create phonons with frequencies inversely
related to the temporal scale of change of the configuration

so that the spectrum of phonons in the final state is in laboratory. The number of phonons in the final state is
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V{(3) 1 on time scales close to the healing time, one could produce a
N~ — 73 bath of (almos} thermal phonons so energetic that even the
T (2mneas;) mean-field approximation might break downausing the
4. 4\3 complete disruption of the condensate
_ VE(3) _ {3 v asi+ Agg (89) When the peak frequency tends toward the healing fre-
8monaal, 64> (Coitg)®\ aaZ | quency we see that the low-frequency part of the observable

spectrum will develop important departures from thermality.

Contrary to what happens in the sudden approximationWe shall now turn to the general intermediate case and de-
the adiabatic approximation is taking into account the rapidscribe the full spectrum of phonons created in our toy model.
ity with which the configuration changes. Thus, the totalThen, we will discuss the observability of the cosmological
number of phonons calculated by trusting the adiabatic apparticle creation effect in terms of the ratiddefined in Eq.
proximation throughout the whole range of frequencies i945).
suppressed with respect to the sudden approximation calcu-
lation by a factor of 0.1 times tfe./to)°, that is, 0.1 3. Intermediate regime
X [(healing timg/ (evolution time)*—this factor consisting Let us now consider an intermediate regime: Look at large
of a dimensionless number coming from the detailed expresmomenta and ignore for the time being any cutoff arising
sion for the integral times the cubed ratio of the healing timefrom the interaction time scale or the healing length, then
in the condensate to the time over which the scattering length
is forced to change. Withy~ 10, We still get somewhere |Bl2—exd —4mpokaZ] as k—eo, (90)

between 100 and 2@phonons. Oncéy~10Qt,, this is re- . ) .
duced to somewhere between #tand 100 phonons: but in SO the particle spectrum is always exponentially suppressed

this case we will also run into problems from finite volume at sufficiently high momenta. If we pick, to be longer than
effects—t, is then comparable to the sound crossing time for® N€aling timeso that we cannot use the sudden approxima-
the condensate and the momentum-spafienctions appear- t|on_) but stlll_suﬁlluently short that we cannot_ use the adia-
ing above are smeared out due to the finite volume of thatic ezlpproxmatm_n, then we will need to retain the full form
condensate(This point is carefully addressed in a rather dif- ©f | BI*. The resulting spectrum of phonons is

ferent physical context in Ref33], though many of the

; 2 _ .2

mathematical manipulations appearing therein are very simi- dN _ 1 . SinfP[  ok(ag;—a5,)/12] (91)
lar to the present situation. o dvdlk  (27)° sinH 7 pokad]sint myoka ]

Note that ag,—t.4 the adiabatic approximation calcu- )
lation still results in one order of magnitude less than theand the total number of phonons produced is
equivalent calculation with the sudden approximation. More- V (= . sinf[myk(aZ—a)/2]
over, in this case, the whole range of observable phonons N= 52 k?— T —dk. (92
(with frequencies between the healing frequency and the trap ™ Jo  sini 7 gokag]sink mgokag;]

ggglézr:i?gs ?gi%gti?geigﬁggr?ﬁaOf I? pzpl;cil;a '“.%g:et_he We can now consider the actual spectrum described by Eq.
PP 170K 35 ' (92) by choosing plausible values for an experiment. How-

fore, to be more precise one will have to make an interme- . :
L A . . —ever in order to get the spectrum that might be observed one
diate analysis, in between the sudden and the adiabatic r g P g

gimes fias to convert the relevant guantities in E2fl) to the labo-

. . ratory counterparts.
Let us estimate the value of the temperatures associate Using the expressions in Eq84), and the relation be-

with the adiabatic approximation for temporal scales of : : : ;
. : Eq. I I

change within the observable window. From E8) we can LV;?: r:SO ando given in £q.(87), and alternatively rewritten
see that this temperature will Be= (10! K)/(t,s), and so, . s y s
for t, between 107 s (associated with the condensate size [ &itasi| [ 8T A
and 10° s (the shortest time scale compatible with the 07| 22 | 2a2c. U

. . . . . .. . asfcsf aS|CSI
acoustic approximation associated with the initial configura-
tion) will range from 1 nK to 1000 nK. From this estimate the number spectrum can be written(a& are reintroducing
we can already see that, by modifying the scattering lengtimere the expliciin andout indices

(93

4 t 4t
AW, i AgW;
sinI"F ’7Tt0 sf Zut 45| in
dn v f Bsi At S(Kip+ Koy d3k (94)
Clou @M Tl [ ek T
sinh 2m———-wqto |SINA 27 ——— wiyto
asi—’—asf asi—"asf

which implies
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sink? W—(agf_agi)agfwt
dN Vv at+al o (0! ,)?
= . (95
dol, 27 al ala? c?
out sin 2T ——— f 7 wgutto sinf 27 4SI S; wgutto f
asi_l_asf asi sf
|
Regarding the relqtive range of the scale faetgr we have dN V 1 (wf)ut)z
already seen that it can be deduced from the experimentally ——= 52 > 3
plausible range for the scattering length and we shall take dwour <7 oxd 4 Assi _1 Cst
agf/agi%]-O (Fig- 1)- Wagi :f Woytlo

For the final value of the speed of sound we shall take (99)
csi~1 mm/s. In fact also the range of the speed of sound can
be determined from the scattering length. This can be reasofy o combined plot of Eq¥95) and (99) is shown in Fig. 2.
ably varied in the proximity of a Feshb_ach resonance from 1 It is evident that apart from a minor discrepancy at lower
nm to 100 nm. Eor an experiment with h_eavy alka“.'metalfrequencies the two plots basically coincide from the peak
atoms(e.qg., rubidium the speed of sound will then typically frequency (2 kHz) on. This is not so surprising given that

range from few mm/s to 10 mm/s. ; . T 2 o S
The total number of phonons emitted is given by ;[ggoiacilci?/a\t:ri:Slzgozg?gls%r;r:(lp{f%k%P1 which in

4 4\3
N 1 \ a5f+asi) o222
= c a2,
167 (cqito)® | aZ@l; a45|—s4 wouito>1. (100
Si sf

= sinfP[x(a2/a—1)/2]
X f dx One can easily check that this inequality starts to be satisfied
for frequencies of the order of a few kHand holds for any
larger frequency

X
o sinf{x(aZ/aZ)]sinHx]

4 4

asf_*_asi

_ 1 V
167 (cqtto)?

3
) F(a?/a2), (96)

aZ@;
so qualitatively we have the same behavior as in the adia- 210° 1
batic approximation, modulated by a dimensionless function
of the ratioag;/as;. (This expression will remain valid as
long as7q is longer than the healing time; at which stage one
should switch over to the sudden approximatidising hy-
perbolic trig identities the previous integral can be rewritten 1510”1
as

_1 ) 2 L dN/dw
97)

107 |

with

F(1)=0, F(OO)ZQ%O.BOOS, and F(l/z)=2%F(2).

4
(99)

510°

Forz>1 the functionF(z) quickly and smoothly approaches

its asymptotic value. 0
In closing our analysis of the intermediate regime we

want now to compare the exact spectrum equat@S) with

the spectrum obtained within the adiabatic approximation. FIG. 1. Number spectrum, Eq95), as phonons pexm?® per

Equation(82) can be easily rewritten in the laboratory vari- unit out frequency. We have set=10 mm/s anch?/a%~10. The

ables as typical timescald, is conservatively set equal to 18s.

2 4 6 8 10
Frequency (kHz)
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(ﬁK)l/Z

(2m) ¥ 20(k) ]2 "

e—iwt+ik-X+ H.c.

bl(y,t):f d3k

2107 4
(103

and consider the appropriate particle content for the quantum
state. IfN, is the average number of particles with momen-
1510% | tum k in the quantum state, the previous magnitude can be
expressed as

dN/de C

AN

(N¢k) 1
Nchwk)'\'kdsk
(104

1 me
= Ngm fﬁw(k)N o2 fﬁ @ Nyd3k.
(109

107 -

510° 4 To reach this expression we have to substract the vacuum
contribution. If we consider now the sudden approximation
to calculate this ratéan upper limit to what one could get
we obtain
0 5 i 6 E o o[ 3honen o M& | N (106
Frequency (kHz) 8 ng hwheal Nc,

FIG. 2. Comparison of the exact number spectrum, @),  Wwith N the one in Eq(79). NOW 7 wpe,=10" 191 eV. In-
darker line in the graph, with the one obtained in the adiabaticstead mc=(atomic numberx 10”331 ev=10"1*1 eV.
apprOleathﬂ Eq(99. Both the spectra are shown as phonons perThe factor wpeo/mc@=10, so we have that the relevant
um?® per unit out frequency. In both the cases we havecset number C= 4N/N,. But N;=10° and N=10*-10". This
=10 mm/s anda¢/ag~10. The typical timescale, is conserva-  givesC=4x 102= 40. This number is based on the sudden

tively set equal to 10° s. approximation and will be smaller in a more realistic calcu-
lation. However, remembering the discussion on the adia-
C. Observability of the effect batic approximation we know that, for temporal scales of

In this section we will calculate the relevant raiode- ~ Changeto of the order of the healing time, the actual coeffi-

fined in Eq.(45). We wantC=1/100 to make the phonons cient C cannot be smaller than 0.1 times the previous esti-

. — 73 . - .
easily detectable. By using E¢L6) we can deduce that mate, i..,C=4x10 __4' Therefore, t_)y |mplement|n_g N
laboratory an expansive process within an intermediate

5 A regime, in between the healing timgg,= &/cs associated
C= _J d>x <n1nl>+ 7( 0161)— i ([n1,91]> : with the initial configuration {,=10"°) and the final con-
(101) figuration ¢,=10"3), one should be able to observe the ef-
fect.
In the acoustic regime and for the particular configurations V. SUMMARY AND DISCUSSION

we are looking at we know t_hatnl— — 0y, Con_S|der|ng In this work we have discussed the possibilities that BECs
now that [ny(x,t),61(y,1)]=i%6°(x—y) or equivalenty ey for simulating Lorentzian geometries of the cosmologi-
[61(x,1),3,0:(y,t)]=ihk5*(x~y), we can deduce this cal type in the laboratory. There are two inequivalent paths
starting from the fundamental commutation relationone can follow in this task. The first one is based on provok-

[PT(x,t),¥(y,t)]=8%(x—y), we can arrive at ing an expansive explosion in the condensate by changing
with time the characteristic frequency of an isotropic and
harmonic confining potential. This option implies that the
1 velocity profile of the condensate acquires arbitrarily high
- 3
B f dx w‘ Br10:01)+ h2<0101>+ 50 . values at large distances from the center. So there is always a
surpass its sound velocity: A sonic horizon would be formed.
In practice, due to the fact that physically realizable BECs
To calculate this average, we can expand the real field opgre finite systems, one can only reproduce on them a portion
erator §; in terms of the creation and annihilation operatorsof an expanding universe. Therefore one might argue that the
associated with the final configuration, sonic horizon would be formed outside the BEC. However,

(102 sphere at which the velocity of the expanding BEC would
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the velocity of sound in BECs is so sm&il few mm/$ that The relevant temporal scales of change for the effect to be
in practical situations the sonic horizon will be formed well observable are of the order of the healing time in the con-
inside the system. Now the existence of sonic horizons islensate. Therefore we expect that apart from the phonon
certainly interesting in its own right, but is not inherent to the spectrum calculated by neglecting the modified dispersion
simulation of cosmological space times. Moreover, the plaurelations at high energies, there will be also some production
sible dynamical instabilities associated with their formationof quasiparticles. To observe the purely cosmological effect
could mask the observation of purely cosmological effects. one would have to keep this quasiparticle production under a
The alternative path to simulating a cosmological geom-certain level; thus, the temporal scale of change should not
etry that we have pursued in this paper is to take advantagee driven significantly beyond the healing time.
of the possibility of varying the scattering length or, what is  In our analysis we have neglected finite-volume effects.
the same, the interaction strength between the atoms in théowever we shall now show that these effects are insignifi-
condensate. In this case, what we need is a confining potewgant for the typical condensate we considered here. The
tial with a sufficiently large almost flat minimum in which a fractional change in the number of particles produced
portion of the condensate stays at rest. In this configuratiordue to finite volume effects is expected to be of the
there is no formation of sonic horizons and thus we think it isorder of 1/KeaR) = ¢&/(27R) = (cutoff wavelength)/2 =
(both conceptually and technicallp much cleaner path to X (size of the condensatg) The ratio between the healing
follow. length and the BEC Thomas-Fermi radius can be expressed
The description of the condensation phenomenon natuas a ratio between the harmonic trap length and the scattering
rally involves the separation of the system into a “classical”length:
wave function(the condensate parand quantum fluctua-

tions. In the acoustic approximation we can think of these

i - R 2Jm[Na|?*
guantum fluctuations as phonons over a classical background hA c (107)
geometry, in this case, the analog of a cosmological space & 15Y10\ ay,

time. Therefore, we can use the tuning of the scattering
length to simulate not only a classical cosmologically ex-

panding universe, but the quantum phenomenon of cosmg-2" @ hargonic—osci!latcjlr Ienrg]]thf of about 0n, Ne~10°
logical particle creation. We have analyzed this well known@!0Ms, and a scattering length of 1 nm one getsl 7¢. For

process by using a minor variant of Parker's model for a® scattering length ten times Iarg(erasil_y achiev?ble with a
finite amount of expansiof80]. Then, by working with nu- Feshbach resonance and still compatible Wtla°<1) and

merical estimates appropriate to currently accessible BECs iino~1 #m one would getR~100¢. This implies that
dilute gases, we have presented an analysis of the feasibili§/ (27R)<1% and hence finite-volume effects are negli-
of observing the effect in real experiments. gible. _

We have seen that there is a more than plausible window 10 conclude, our analyses suggest that it should be al-
for the observability of the effect with current technology. In F€ady possible to observe the process of cosmological par-
current BECs the scattering length can easily be varied fronfC/€ creation in BEC analog systems, by changing the scat-
a 100 nm to 1 nm. This produces an expansion in the gec;_ermg length from an |n|t|a.l value of about 100 nm to a f!nal
metrical scale factor of about three times. The temporal scal¥@/ue of about 1 nm on times scales shorter than millisec-
of change of the scattering length cannot be arbitrarily shornds but larger than tens of microseconds.

It has to be slower than the time scale in which the interac-
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