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Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interaction
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Bose-Einstein condensates~BEC’s! have recently been the subject of considerable study as possible analog
models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC
can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved space-times. In
two previous papers@Int. J. Mod. Phys. A18, 3735 ~2003!; Int. J. Mod. Phys. D~to be published!, e-print
gr-qc/0305061# we noted that a varying scattering length in the BEC corresponds to a varying speed of light in
the ‘‘effective metric.’’ Recent experiments have indeed achieved a controlled tuning of the scattering length in
85Rb. In this paper we shall discuss the prospects for the use of this particular experimental effect to test some
of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe.
We stress that these effects are generally much larger than the Hawking radiation expected from causal
horizons, and so there are much better chances for their detection in the near future.
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I. INTRODUCTION—MOTIVATION

Semiclassical gravity has played a central role in theo
ical physics. Phenomena such as the Hawking effect or
mological particle production are commonly considered
be crucial first steps on the way to building up a consist
fully quantum theory of gravity~see, for example, Ref.@1#!.
However a fundamental limit to these investigations is i
posed by the fact that their most basic description is base
linear quantum field theory~QFT! on a fixed~classical! con-
tinuum space-time. Several theoretical approaches have
developed to overcome this limitation: In a fashion that
can call ‘‘top-down,’’ string models~brane models! have in
some special situations developed a high-energy descrip
of the Hawking effect@2#, while ‘‘bottom-up’’ approaches,
based on stochastic gravity and the Einstein-Langevin an
sis of particle creation by a gravitational field, have in rec
years provided further insight@3,4#.

On the other hand, the physics community has so
lacked any possibility for direct experimental tests of the
ideas. Indeed this lack of experimental guidance is a se
hindrance with respect to further developments in semic
sical gravity ~or full-fledged quantum gravity for that ma
ter!. In particular we have noexperimentalguidance regard-
ing the manner in which the predictions of curved space-t
quantum field theory are changed once the hypothese
nondiscreteness and/or a nonfluctuating background are
laxed. In this regard the analog models of gravity develop
in recent years can be considered a first attempt to creat
arena which can serve as a theoretical, and possibly obse
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tional, laboratory to test aspects of these scenarios.
No experimental setup has yet been realized in which

predictions of analog models can be observationally tes
Nevertheless theoretical analyses of analog models@6,7#
have been so far remarkably successful in teaching us
semiclassical gravity phenomena are sensitive to poss
quantum gravity effects, such as modified~Lorentz violating!
dispersion relations@5#. ~See, for example, the trans
Planckian problem in the Hawking effect@6# and in cosmol-
ogy @8#.!

What we intend to discuss in this paper is a particu
class of experiment—that we hope could be realized in
very near future—wherein certain analog gravity model p
dictions could be tested. The interest in doing so would
just be that of confirming a now well-established theoreti
prediction, but mainly trying to evince deviations from th
naive theoretical predictions due to the intrinsic discrete
ture of the experimental system and/or to the possible rol
nonlinearities.

We shall focus our attention on the analog gravity syst
established by the propagation of linearized phase pertu
tions in a Bose-Einstein condensate@9–14#. In particular we
shall consider an experiment where a time-varying scatte
length is used to simulate the cosmological expansion of
universe, and its associated quantum creation of particle

It is interesting to note that in Ref.@15# the authors pro-
posed an explanation of the so-called ‘‘bosenova’’ pheno
enon @16# ~a controlled instability of the bulk condensa
induced by a sign variation of the scattering length! through
a particular implementation of a version of analog cosm
logical particle production. In that approach the entire bu
of the condensate is rendered unstable and suffers c
strophic breakdown. Our current paper takes a complem
tary approach: Instead of trying to explain an observed p
nomenon via analog cosmological particle production,
shall instead consider the most favorable conditions to
serve it—preferably without violent disruption of the enti
condensate.
©2003 The American Physical Society13-1
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The scheme of the paper will be as follows: In the follo
ing section we will review the physics of BECs regarding
analog gravity features. Section III will be devoted to t
discussion of how to simulate a Friedman-Robertson-Wa
~FRW! universe within a BEC. There exist two main rout
to do this. One considers an explosive expansion of the c
densate; the other makes use of the possibility of tuning
strength of the interaction between the different bosons in
condensate. This latter route will be the main concern of
paper.

In Sec. IV we will first qualitatively describe how th
modification of the interaction strength~encoded in the value
of the scattering length! yields cosmological particle cre
ation. Next, in Sec. IV A we will discuss~in the context of
current BEC technology! whether there exists a regime
which this particle creation process can actually be rep
duced. We will see that there is a limit on the rapidity
change of the background configuration, associated with
need to enforce a ‘‘Markov approximation,’’ in order for th
whole construction to make sense. However, this bound
leaves a lot of parameter space available to look for the
ticle creation effect. Section IV B reviews the cosmologic
particle creation process, emphasizing the particular feat
of BEC systems. Then, Sec. IV C discusses the actual
servability of the effect. Finally, we conclude with a sum
mary and discussion.

II. ANALOG GRAVITY IN BOSE-EINSTEIN
CONDENSATES

Bose-Einstein condensates have recently become su
of extensive study as possible analog models of general
tivity @9–14#. In particular it was shown that the propagatio
of phase perturbations in a BEC can under certain condit
closely mimic the dynamics of quantum fields in curv
space-times. In previous papers we noted that a varying s
tering length in the BEC system corresponds to a vary
speed of light in the ‘‘effective metric’’@13,14#. Recent ex-
periments have indeed achieved a controlled tuning of
scattering length in85Rb @17#. The effect is powerful enough
to lead to large nonperturbative changes in the effective m
ric. Let us start by very briefly reviewing the derivation
the acoustic metric for a BEC system.

In the dilute gas approximation, one can describe a B
gas through a quantum fieldĈ satisfying

i\
]

]t
Ĉ5S 2

\2

2m
¹21Vext~x!1k~a!Ĉ†Ĉ D Ĉ. ~1!

Herek parametrizes the strength of the interactions betw
the different bosons in the gas. It can be reexpressed in te
of the scattering length as

k~a!5
4pa\2

m
. ~2!
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As usual, the quantum field can be separated into a ma
scopic ~classical! condensate and a fluctuation:Ĉ5c1ŵ,
with ^Ĉ&5c. Then, by adopting the self-consistent mea
field approximation@18#

ŵ†ŵŵ.2^ŵ†ŵ&ŵ1^ŵŵ&ŵ†, ~3!

one can arrive at the set of coupled equations:

i\
]

]t
c~ t,x!5S 2

\2

2m
¹21Vext~x!1kncDc~ t,x!

1k@2ñc~ t,x!1m̃c* ~ t,x!#, ~4!

i\
]

]t
ŵ5S 2

\2

2m
¹21Vext~x!1k2nTD ŵ1kmTŵ†. ~5!

Here

nc[uc~ t,x!u2; mc[c2~ t,x!, ~6!

ñ[^ŵ†ŵ&, m̃[^ŵŵ&, ~7!

nT5nc1ñ, mT5mc1m̃. ~8!

The equation for the classical wave function of the cond
sate is closed only when the back-reaction effect due to
fluctuations is neglected.~This back reaction is hiding in the
parametersm̃ and ñ.! This is the approximation contem
plated by the Gross-Pitaevskii equation. In general one
have to solve both equations simultaneously.

Adopting the Madelung representation for the wave fun
tion of the condensate

c~ t,x!5Anc~ t,x!exp@2 iu~ t,x!/\#, ~9!

and defining an irrotational ‘‘velocity field’’ byv[“u/m,
the Gross-Pitaevskii equation can be rewritten as a contin
equation plus an Euler equation:

]

]t
nc1“•~ncv!50, ~10!

m
]

]t
v1“S mv2

2
1Vext~ t,x!1knc2

\2

2m

¹2Anc

Anc
D 50.

~11!

These equations are completely equivalent to those of
irrotational and inviscid fluid apart from the existence of t
so-called quantum potential

Vquantum52\2¹2Anc/~2mAnc!,

which has the dimensions of an energy. Note that

nc ¹iVquantum[nc¹iF2
\2

2m

¹2Anc

Anc

G
5¹jF2

\2

4m
nc¹i¹j ln ncG , ~12!
3-2
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which justifies the introduction of the so-called quantu
stress tensor

s i j
quantum52

\2

4m
nc¹i¹j ln nc . ~13!

This tensor has the dimensions of pressure, and may
viewed as an intrinsically quantum anisotropic pressure c
tributing to the Euler equation. If we write the mass dens
of the Madelung fluid asr5mnc , and use the fact that th
flow is irrotational, then the Euler equation takes the form

rF ]

]t
v1~v•“ !vG1r“FVext~ t,x!

m G1“F kr2

2m2G1“•squantum

50. ~14!

Note that the termVext/m has the dimensions of specifi
enthalpy, whilekr2/(2m) represents a bulk pressure. Wh
the gradients in the density of the condensate are small
can neglect the quantum stress term leading to the stan
hydrodynamic approximation. Because the flow is irro
tional, the Euler equation is often more conveniently writt
in Hamilton-Jacobi form:

m
]

]t
u1S ~“u!2

2m
1Vext~ t,x!1knc2

\2

2m

¹2Anc

Anc
D 50.

~15!

Apart from the wave function of the condensate itself,
also have to account for the~typically small! quantum per-
turbations of system~5!. These quantum perturbations can
described in several different ways; here we are intereste
the ‘‘quantum acoustic representation’’

ŵ~ t,x!5e2 iu/\S 1

2Anc

n̂12 i
Anc

\
û1D , ~16!

wheren̂1 ,û1 are real quantum fields. By using this represe
tation Eq.~5! can be rewritten as

] tn̂11
1

m
“•~ n̂1“u1nc“ û1!50, ~17!

] tû11
1

m
“u•“ û11k~a!n12

\2

2m
D2n̂150. ~18!

Here D2 represents a second-order differential operator
tained from linearizing the quantum potential. Explicitly

D2n̂1[2 1
2 nc

23/2@¹2~nc
11/2!#n̂11 1

2 nc
21/2¹2~nc

21/2n̂1!.
~19!

The equations we have just written can be obtained easil
linearizing the Gross-Pitaevskii~GP! equation around a clas
sical solution:nc→nc1n̂1 , f→f1f̂1. It is important to
realize that in those equations the back reaction of the qu
tum fluctuations on the background solution has been
sumed negligible.
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We also see in those equations, Eqs.~17! and ~18!, that
time variations ofVext and time variations of the scatterin
length a appear to act in very different ways. Whereas t
external potential only influences the background equa
~15! ~and hence the acoustic metric in the analog desc
tion!, the scattering length directly influences both the p
turbation and background equations.

From the previous equations for the linearized pertur
tions it is possible to derive a wave equation forû1 ~or al-
ternatively, forn̂1). All we need is to substitute in Eq.~17!

the n̂1 obtained from Eq.~18!. This leads to a partial differ-
ential equation that is second order in time derivatives
infinite order in space derivatives. To simplify things we c
construct the symmetric 434 matrix

f mn~ t,x![F f 00 A f 0 j

••• • •••

f i0 A f i j
G . ~20!

~Greek indices run from 0–3, while Roman indices run fro
1–3.! Then, introducing (311) –dimensional space-time co
ordinates,xm[(t;xi), the wave equation foru1 is easily re-
written as

]m~ f mn]nû1!50, ~21!

where thef mn are differential operators acting on space on

f 0052Fk~a!2
\2

2m
D2G21

, ~22!

f 0 j52Fk~a!2
\2

2m
D2G21 ¹ ju0

m
, ~23!

f i052
¹ iu0

m Fk~a!2
\2

2m
D2G21

, ~24!

f i j 5
ncd

i j

m
2

¹ iu0

m Fk~a!2
\2

2m
D2G21 ¹ ju0

m
. ~25!

Now, if we make a spectral decomposition of the fieldû1 we
can see that for wavelengths larger than\/mcs ~this corre-
sponds to the ‘‘healing length,’’ as we will explain below!,
the terms coming from the linearization of the quantum p
tential~theD2) can be neglected in the previous expressio
in which case thef mn can be approximated by numbers, i
stead of differential operators.~This is the heart of the acous
tic approximation.! Then, by identifying

A2ggmn5 f mn, ~26!

the equation for the fieldû1 becomes that of a~massless
minimally coupled! quantum scalar field over a curved bac
ground,

Du1[
1

A2g
]m~A2ggmn]n!û150, ~27!
3-3
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with an effective metric of the form

gmn~ t,x![
nc

mcs~a,nc!F 2@cs~a,nc!
22v2# A 2v j

••• • •••

2v i A d i j

G .

~28!

Here the magnitudecs(nc ,a) represents the speed of th
phonons in the medium:

cs~a,nc!
25

k~a!nc

m
. ~29!

III. ANALOG MODELS FOR COSMOLOGICAL SPACE
TIMES

To find analog models for cosmological space times
will consider a generalized GP equation where the exte
potential and the coupling constant can both change w
time,

i\
]

]t
c~ t,x!5S 2

\2

2m
¹21Vext~ t,x!

1k~ t !uc~ t,x!u2Dc~ t,x!. ~30!

The technical steps in the calculation change in a straight
ward manner and lead to a simple time-dependent acou
metric

ds25
nc

mcs
@2~cs

22v2! dt222v•dx1dx•dx#. ~31!

It is this time-dependent effective metric that we now wish
use for simulating a cosmological space-time and sub
quently probing cosmological particle production.

A. Cosmological analog by explosion

Starting from geometry~31! there are different ways in
which one can reproduce a cosmologically expanding ge
etry. Following Refs.@14,19–21# one can take a radial profil
for the velocityv5(ḃ/b)r , with b a scale factor dependin
only on t, and define a new radial coordinate asr b5r /b. In
these new coordinates, the metric will be expressed as

ds25
nc

mcs
@2cs

2dt21b2~drb
21r b

2dV2
2!#. ~32!

Now, one solution for the BEC wave function that repr
duces a FRW universe is this: Introducing a Hubble-like
rameter

Hb~ t !5
ḃ~ t !

b~ t !
, ~33!

the equation of continuity can be written as
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ṅc13Hb~ t !nc50, ⇒ nc~ t !5
n0

b3~ t !
, ~34!

with n05const. Then, the solution foru can be obtained
from Eq. ~15!

u5
ḃ

2b
mr21E

0

t

dt
kn0

b3~ t !
, ~35!

and it requires an external potential of the form

Vext~ t,r !52S b̈

2b
1

ḃ2

b2D mr2. ~36!

One could certainly construct such a potential in a ‘‘suf
ciently large’’ region aroundr 50; this would correspond to
a sufficiently large part of a homogeneous and flat FR
universe. Outside this region, the potential will have in pra
tice some confining walls. The final effective metric can
written as

ds252T2~ t !dt21as
2~ t !~drb

21r b
2dV2

2!, ~37!

with

as~ t ![S n0

mk
bD 1/4

and T~ t ![
n0

3

m3k2

1

as
9~ t !

. ~38!

So finally we end up with a FRW universe whose prop
Friedmann timet is related to the laboratory timet by t
5*T(t)dt.

Although this explosion route seems promising, o
should note that this analog model has substantial dr
backs. In particular it is easy to see from Eq.~35! that one
would get for the condensate a linearly rising velocity fie
v[“u/m}r . Hence this particular realization of a FRW e
fective geometry is guaranteed to possess an apparent
zon, a spherical surface in which the speed of the fluid s
passes the speed of sound. From a dynamical point of v
this might introduce many practical problems not intrin
cally inherent to the type of geometries we are trying
reproduce. Because of this, we view the use of an explod
medium as not being the preferred route for building an a
log for an expanding FRW universe.~For an alternate view,
where the explosion route is the primary focus of attenti
see Ref.@19#.!

B. Cosmological analog by varying speed of sound

Another way to reproduce cosmologically expanding co
figurations in, we think, a cleaner fashion is by taking adva
tage of the possibility to change the value of the scatter
length offered by some BECs@17#. Let us note that in Ref.
@21#, the authors already used the existence of time dep
dence on the scattering length, in combination with a tim
dependent external potential, to create explosive config
tion of the type described in the preceding section. Here,
are going to use this variability with a different strategy.
3-4



-
io
io
f
ly

in
an
d

f t
h

ed
or
g

ha
io
ta

y
r

or
ar
nd
,
ra
tu
B
n

tu

u
ng

nd
be

ity
l
me

p-
tion
ap-

ck-
ir

nt

the
ver,
alue
s-

ar-
ee’’
and
rre-

the
is-
ng
and

e

ct

n
le
f
te

ve

r-
nt-
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Let us again start from Eq.~31! but now withv50 at all
times:

ds252
nccs

m
dt21

nc

mcs
dx•dx. ~39!

Then, it is not difficult to envisage a situation in whichnc is
constant in a sufficiently large region~think of a sufficiently
large close-to-hard-walled box!. Then, the continuity equa
tion is directly satisfied and the Hamilton-Jacobi equat
tells us that with a fixed external potential the phase funct
u will depend only ont adapting itself to the changes o
k(t). Changing the scattering length with time direct
causes changes in the value of the propagation speedcs .
~That temporal changes in the velocity of sound can be
terpreted as a cosmological expansion without invoking
sort of velocity in the medium has already been suggeste
Ref. @22# in the context of superfluid helium.! We now define
t5*@nccs(t)/m#1/2dt and write

ds252dt21as
2~t!dx•dx, ~40!

where

as~t!5S nc

mcs~t! D
1/2

5S nc

mk~a! D
1/4

5S nc

4p\2D 1/4 1

a1/4
[

A

a1/4
.

~41!

In this model an expansion corresponds to a decrease o
scattering length and vice versa. The Hubble function for t
space time is

H5
as8

as
52

1

2

cs8

cs
52

1

2 S m

nc
D 1/2 ċs

cs
3/2

. ~42!

~The prime represents derivative with respect to the Fri
mann time, the dot derivative with respect to the laborat
time.! This is the model we will consider in the followin
discussion.

IV. ANALOG COSMOLOGICAL PARTICLE CREATION

Let us now present a qualitative explanation of how is t
we can closely simulate cosmological particle creat
within this model. We can start with a condensate in a s
tionary state described, in a sufficiently large volume, b
constant background densitync and a phase function linea
in time, u5E0t. This is a solution of the GP equation. F
this, one needs to have a potential that reproduces a l
enough close-to-hard-walled box and that satisfies the co
tion E052Vext2knc . Apart from this classical background
there will be some quantum fluctuations over it. At tempe
tures much below the critical temperature these quan
fluctuations are very small and can be described by the
goliubov equations.~These quantum fluctuations are prese
even at zero temperature owing to the so-called quan
depletion phenomenon, see, for example, Ref.@23#.! Let us
consider that these quantum fluctuations are in their vacu
state. If one now decreases the value of the scattering le
05361
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in a sufficiently slow manner~this issue will be discussed
below!, all the individual bosons~this is only an approximate
concept in an interacting theory! will be affected in the same
way. This means that the value of the backgrou
magnitudes—these are the coherent magnitudes—will
slowly modified. The GP equation tells you that the dens
function nc will be kept fixed while the phase function wil
develop a nontrivial dependence with time. At the same ti
the value of the speed of sound will decrease.

Now, apart from the background configuration, what ha
pens with the additional quantum fluctuations? The equa
satisfied by the quantum fluctuations is, in the acoustic
proximation~that is, for long wavelengths!, that of a mass-
less minimally coupled scalar field over an expanding ba
ground and therefore, it will yield cosmological pa
production of particles.

An interesting point to notice is that varying the consta
value of the external potentialVext(t) in the central homoge-
neous region changes the background configuration in
same manner as varying the scattering length does. Howe
as the speed of sound does not depend on this central v
of the external potential, its variations will not lead to co
mological particle creation.

Now, what can we say about the observability of the p
ticle production process? The standard technique to ‘‘s
phonons is tomographic imaging. One opens the trap
looks at the expansion of the condensate. Phonons co
spond to distributions for the momentum of the atoms in
trap and different momenta correspond to different travel d
tances of the atoms after you switch off the trap. Taki
snapshots of this evolution shows the density contrasts
then the original momentum distribution.

If the wave functionĈ is split into the condensate wav
function c plus quantum excitationsŵ ~in this situation, we
mean atoms! then, the density you observe is

^Ĉ†Ĉ&5ucu21^ŵ†ŵ&, ~43!

as ^ŵ†&5^ŵ&50. Therefore, the observability of the effe
will depend on the value of the ratio

^ŵ†ŵ&

ucu2
5

1

nc
^ŵ†ŵ& ~44!

or more simply on the spatially integrated ratio

C[
1

Nc
E d3x^ŵ†ŵ&. ~45!

If this quantity is of the order of the unity~say 1/2 or 1/10!
then phonons can probably be ‘‘seen’’; if it is 1/100 the
seeing phonons is technologically difficult. If the partic
production process was so strong that the calculation oC
resulted in values close to unity or higher, this would indica
that the Bogoliubov mean-field approximation would ha
been violated, and the BEC itself disrupted.

Let us now perform some explicit calculations of the pa
ticle production expected in realistic situations with prese
day BECs in which the scattering lengtha is changed in time
3-5
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from some initial value to a different final value. We fir
have to know how quickly we can drive these tempo
changes while still ensuring that the different approximatio
involved in the analysis remain valid.

A. Varying a, validity of the GP equation

The previous analysis shows that in order to consider p
ticle creation driven by a time-varying scattering length
must be sure to work in a regime where the backgroun
‘‘instantaneously’’ reacting to the changes ina. Moreover the
very derivation of the effective metric description is based
the GP equation which we then want to make sure hold
each instant of time.

So we must first determine the upper bound on the ra
ity of the change in the scattering lengtha which still permits
the GP equation to hold. This will also give an upper bou
for the frequencies of the quasiparticles that might be crea
~if t is the shortest time scale over which we can drive
system thenn'1/t is the largest frequency of the quasipa
ticle we can create!. The validity of the GP in describing th
Bose-Einstein condensate is related to the validity of sev
crucial assumptions which permit us to perform certain
proximations on the fundamental multiparticle Hamiltoni
description. The relevant approximations are generally sta
to be the ‘‘mean-field’’ approximation and the dilute gas a
proximation. It is nevertheless important to note that in
dynamical situation a third approximation, which we can c
‘‘Markovian’’ approximation, is implicitly assumed.

Let us review the meaning and implications of these
proximations: The mean-field approximation is based on
assumption that most of the atoms are in the conden
phase and that the influence of the noncondensed frac
can be neglected. This implies that significant creation
quasiparticles with excessive energies can be dangerou
particular from the Bogoliubov dispersion relation@24#

v5Acs
2k21S \

2m
k2D 2

, ~46!

we can deduce that excitation of quasiparticles with wa
lengths comparable to the healing length would lead to f
particle states@for k.2p/j, j5\/(mcs), v'\2k2/(2m)].
This argument seems to imply that one should require
typical time scale for the change ina to be no shorter than
the healing time~which is the analog in this situation of th
Planck time in quantum gravity!.

The dilute gas approximation is instead related to the w
the interaction potential is simplified in the GP equatio
This approximation is valid ifnuau3!1, so we shall have to
keep the amplitude of the changes inna3 small in order to
satisfy this bound. We wish to emphasize that the stand
dilute gas approximation acting over two-body interactio
does not appear to be crucial for the analog gravity pictur
hold. As long as the interaction termkuc(t,x)u2 can be gen-
eralized to be some higher order, but still local, termp(ucu)
an analog gravity description is not precluded~see, for ex-
ample, Ref.@11#!.
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Finally the Markovian approximation is related to the fa
that in dynamical situations the two-body time-depend
scattering matrix can have a complicated form due to
‘‘memory’’ of the system~see, e.g., Sec. IV A of the paper b
Köhler and Burnett@25#!. Basically in these situations th
system is described by a GP-like equation where the inte
tion term includes a ‘‘delay term’’ described by an integr
tion over different times. The necessary assumption in or
to have a Markovian description of the dynamics~which
together with the two previous approximations leads to
GP equation! is then that the time scales on which extern
parameters are changing are longer than the two-body c
sional duration; that is, longer than the time scale over wh
a single interaction happens.~In simplest form, we are asking
that the scattering length does not change significantly d
ing the period when a pair of atoms are interacting.!

We can estimate the two-body collisional time by a simp
calculation. All we need is the typical size of the region
strong interaction of two atoms in the condensate and
typical speed with which they move. The first quantity c
be assumed to be of the order of the van der Waals s
length: the interatomic potentialV(r ) is characterized by a
short-range region of strong chemical bonding and a lo
range van der Waals potential,

V→2C6 /r 6. ~47!

This leads to a van der Waals scale length@26–29#

lvdW5
1

2 S 2mC6

\2 D 1/4

. ~48!

This length is basically the size of the region of strong int
action: for r !lvdW the scattering wave function oscillate
rapidly due to the strong interaction potential. In alka
ground-state interactions,C6 is the same for all hyperfine
states of a given atomic pair; consequently,lvdW is the same
for all collision channels. For example in the case of Na2, it
is about 2.4 nm. We shall assume here genericallylvdW
'1 nm.

Regarding the typical speed of the atoms, this is set by
de Broglie momentum generated by the trap confinem
p5h/R and v̄5p/m. We shall assume a trap of typical siz
of 10 mm. We then get

t int5
lvdW

v̄
5

lvdWmR

h
. ~49!

We now confront this quantity with the time scale we have
be faster than in order to create modes with waveleng
shorter than the condensate sizeR. This is tsize5R/cs . So

t int

tsize
5

lvdWmcs

h
5

lvdW

j
. ~50!

For typical BEC systemsj'1 mm–0.1mm ~assuming that
the scattering length ranges from 1 to 100 nm! so
3-6
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t int

tsize
5

lvdW

j
'102321022. ~51!

Note thatt int can be computed to be

t int5
lvdW

v̄
5

lvdWmR

h

5
~1029 m!~853109 eV!~1025 m!

~931016 m2/s2!@2p~6.5310216 eV!#

'231026 s, ~52!

so a microsecond is the shortest time scale allowed for
change ina. Note that this interaction time is shorter than t
healing timetheal5j/cs'1023–1025 s which plays the role
of the ‘‘Planck time’’ in this system. Thus the GP equation
valid in the entire ‘‘subhealing’’ regime, which is the primar
regime of interest, and continues to hold well into the ‘‘tran
healing’’ regime~although the previous comments regardi
the breakdown of the mean-field approximation in this
gime remain valid!.

B. Analytical calculations: Changing a over a finite amount
of time

Now that we have estimated how fast the change in
scattering length can be driven, we can propose a partic
time dependence and derive an estimate for the relative
duction of phonons. Particle production in an expanding u
verse has been extensively studied in the framework of se
classical gravity~see, e.g., Ref.@1#!. In this regard the scope
of this section will be to present an example of these ca
lations to nonspecialists as well as to evaluate the experim
tal feasibility of an experimental test.

As a test bed we shall choose a slightly simplified vers
of Parker’s model@30#. The FRW metric with flat spatia
sections can be alternatively written as

ds252as
6~h!dh21as

2~h!dx•dx, ~53!

in which we are using for convenience a special type
pseudotimeh5*(nc /mas

4)dt with as5(nc /mcs)
1/2.

The scale factor is independent ofx hence the mode de
composition for the quantum scalar field can be written a

û1~h,x!5E d3k

~2p!3/2
@ake

ik•xck~h!1ak
†e2 ik•xck* ~h!#,

~54!

where theck(h) are solutions of the equation

d2ck

dh2 1as
4~h!k2ck50, ~55!

which satisfy the normalization condition

i ~ck* ]hck2ck]hck* !51. ~56!
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Imagine now that the scale factoras undergoes a finite
amount of expansion in a monotonic fashion. This mea
that the scale factor passes from an initial valueasi at h5
2` to a final valueas f at h51` ~or what is the same, tha
the scattering length passes from an initial valueai to a final
value af). Space-time can be approximated at early tim
and at late times, respectively, by two different Minkows
space-times. As is standard, we will assume that the quan
scalar field is initially in the vacuum state associated with
initial Minkowski space-time. Then, we want to calculate t
particle content of this state in the final Minkowski spac
time.

There is a particularly convenient choice of functio
as(h) for which the physics is clear and for which one c
exactly solve Eq.~55!:

as
4~h!5

asi
4 1as f

4

2
1

as f
4 2asi

4

2
tanhF h

h0
G . ~57!

~This is a slight simplification of the model considered
Parker@30#; a variation of this model can be found in Re
@1#, see p. 60 and thereafter! If we now impose as boundar
condition for a solution that ath.2`

ck~h→2`!5~2kasi
2 !21/2exp~2 ikasi

2 h!, ~58!

one finds a particular set of exact solutions@1,31#

ck
in~h!5

1

A2kasi
2

exp@2 ik~as f
2 1asi

2 !h/2#

3@2cosh~h/h0!#2 ikh0(as f
2

2asi
2 )/2

3 2F1S 11 ikh0@as f
2 2asi

2 #/2,

1 ikh0@as f
2 2asi

2 #/2;

12 ikh0asi
2 ;

1

2
@11tanh~h/h0!# D . ~59!

These solutions correspond to positiveingoingmodes. Simi-
larly, the precise form of the exact solutions that ath.
1` admit the asymptotic form

ck~h→1`!5~2kas f
2 !21/2exp~2 ikas f

2 h! ~60!

~the positiveoutgoingmodes! is

ck
out~h!5

1

A2kas f
2

exp@ ik~as f
2 1asi

2 !h/2#

3@2cosh~h/h0!# ikh0(as f
2

2asi
2 )/2

3 2F1S 12 ikh0@as f
2 2asi

2 #/2,

2 ikh0@as f
2 2asi

2 #/2;
3-7
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12 ikh0asi
2 ;

1

2
@12tanh~h/h0!# D . ~61!

The Bogoliubov coefficients relating the early time~ingoing!
and late time~outgoing! bases are then defined as

ck
in~h→`!5

1

A2kas f
2 @akexp~2 ikas f

2 h!1bkexp~ ikas f
2 h!#.

~62!

From this expression, and the exact solutions above, one
show @1,31–32# that

ak5
2as fasi

as f
2 1asi

2

3
G~2 ikh0asi

2 !G~2 ikh0as f
2 !

G~2 ikh0@as f
2 1asi

2 #/2!G~2 ikh0@as f
2 1asi

2 #/2!
,

~63!

bk52
2as fasi

as f
2 2asi

2

3
G~2 ikh0asi

2 !G~1 ikh0as f
2 !

G~1 ikh0@as f
2 2asi

2 #/2!G~1 ikh0@as f
2 2asi

2 #/2!
,

~64!

and that

uaku25
sinh2~pkh0@as f

2 1asi
2 #/2!

sinh~pkh0asi
2 !sinh~pkh0as f

2 !
, ~65!

ubku25
sinh2~pkh0@as f

2 2asi
2 #/2!

sinh~pkh0asi
2 !sinh~pkh0as f

2 !
. ~66!

These expressions are related to the Bogoliubov coeffici
by @cf. Birrell-Davies equation~3.93!#

a~k in ,kout!5akd
3~k in2kout!, ~67!

b~k in ,kout!5bkd
3~k in1kout!. ~68!

The spectrum of particles in the final state is then

dN

d3kout

5E ub~k in ,kout!u2d3kin , ~69!

which gives

dN

d3kout

5E ubku2d3~0W !d3~k in1kout!d
3kin5ubku2d3~0W !.

~70!
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We now use the standard scattering theory result tha
momentum-spaced function evaluated at zero is propo
tional to the volume of the ‘‘universe,’’ in this case the vo
ume of the BEC,

d~0W !→ V

~2p!3 ~71!

to see that

dN

d3kout

5
V

~2p!3 ubku2. ~72!

Equivalently

dN

dkout
5

V

2p2 ubku2kout
2 , ~73!

and the total number of emitted phonons is

N5
V

2p2E
0

`

ubku2k2dk. ~74!

As a practical matter the integral will always be cut off
high momentum—most typically by the inverse time sca
h0

21 over which the propagation speed changes, but if no
ing else the integral cannot be trusted for momenta hig
than that associated with the healing lengthkheal52p/j for
the reasons previously discussed~see Sec. IV A!.

In order to gain a better understanding of the particle c
ation just described, it may be useful to study separately
two opposite regimes characterizing this phenomenon
fact, for a given time scale of change,h0, driving the particle
creation, one has a simplified description of the particle p
duction when considering the case of modes with frequ
cies much smaller than 1/h0 ~sudden approximation! or
much larger than that~adiabatic approximation!. After a brief
discussion of these regimes we shall deal with the full int
mediate case.

1. Sudden approximation

A particularly useful approximation is to take the ‘‘sudde
limit.’’ Mathematically this consists of taking a step functio
for the scale factor

as
4~h!5asi

4 1Q~h!@as f
4 2asi

4 #. ~75!

Physically this means that one is considering that the cha
in as(h) is driven more rapidly than the frequency band o
is interested in. In this case, this means that the change
fast that the entire acoustic regime is excited~the time rate is
transhealing!, but sufficiently slowly that the GP equatio
still continues to hold~the time rate is still subinteraction!.
However we shall still have to put in ‘‘by hand’’ a high
momentum cutoff, given by the healing lengthkmax5kheal
52p/j, because beyond this point we cannot trust the d
persion relation to remain on the acoustic branch implicit
our calculation.
3-8
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The relevant calculation can be preformed by simply c
sidering the mathematicalh0→0 limit in Parker’s model.
Indeed thea and b coefficients are now momentum inde
pendent and

uau5
as f

2 1asi
2

2as fasi
, ~76!

ubu5
uas f

2 2asi
2 u

2as fasi
. ~77!

As should be expected, particle production in this sudd
limit depends only on the change in the scale factor. T
particle production spectrum is now flat~more precisely,
phase-space limited! all the way up to the healing frequenc
A rigorous result is that forany monotonic change inas(h)
from asi to as f the magnitudes of thea and b coefficients
are less than or equal to those calculated for the sudden
proximation @34#—consequently the sudden approximati
provides an absolute upper bound on particle production

The number of phonons produced is

N5
V

6p2 ubu2kmax
3 5

V

6p2 ubu2~2p/j!35
4p

3

V

j3 ubu2.

~78!

That is

N5
4p

3

V

j3

uas f
2 2asi

2 u2

4as f
2 asi

2
. ~79!

The good news for current purposes is that this scale
(R/j)3. Now the trap sizeR is of the order of 10mm, while
the healing length is in the range from 1 to 0.1mm; thus
(R/j)3'103 to 106. A prefactor this big is desirable in term
of producing an observable effect. As fora ~scattering
length!, this can range from 100 nm to 1 nm, so the ra
ai /af is up to '100. Sinceas

2 ~scale factor! is }a21/2 we
haveas f

2 /asi
2 up to '10. Therefore

ubu25
uas f

2 2asi
2 u2

4as f
2 asi

2
&2 ~80!

which is of the order of 1—so there is no enormous supp
sion coming from the Bogoliubov factor. All in all, we est
mate thatN'104–107 phonons can be produced in the su
den approximation.

2. Adiabatic approximation

In contrast, when the parameterh0kas f
2 is large compared

with unity ~that is, for large enough momenta!, and provided
as f@asi , we have

ubku2.
1

exp~2ph0kasi
2 !21

, ~81!

so that the spectrum of phonons in the final state is
05361
-

n
e

p-

as

s-

-

dN

dVd3k
.

1

~2p!3

1

exp~2ph0kasi
2 !21

. ~82!

This is a correctly normalized Planckian~blackbody! distri-
bution. We can associate a temperatureT with the final pho-
non content produced by the expansion. Before doing t
let us write down some useful relations between the frequ
cies associated with the pseudotimeh and with the labora-
tory time t. Asymptotically ~either in the infinite past or in
the infinite future! the relation between the timest andh is
given by t;as

2h/cs1const;(mas
4/nc)h1const so that

v i
t5

nc

masi
4

v i
h5

csi

asi
2

v i
h5csik, ~83!

v f
t 5

nc

mas f
4

v f
h5

cs f

as f
2

v f
h5cs fk. ~84!

Here, the upper indices indicate with respect to which tim
frequency is defined, and the subscriptsi and f identify
whether a particular magnitude is evaluated in the initial
in the final configuration. Now it is easy to see that the lab
ratory temperature that we would associate with the fi
configuration in the adiabatic approximation is

T5
1

2pkB
\cs fh0

21asi
22 . ~85!

In order to estimate this temperature we need to con
the time scale over which the scattering length changesh0
from the pseudotime to the laboratory time. To do this
define

t0[h0

dt

dh U
h50

. ~86!

For the particular profile, Eq.~57!, associated with this
model Eq.~86! evaluates to

t05
m

nc
S asi

4 1as f
4

2 Dh05S asi
4 1as f

4

2as f
2 cs f

D h0 . ~87!

If we use this relation betweent0 and h0, the temperature
would be

T5
1

4pkB
\

1

t0

asi
4 1as f

4

as f
2 asi

2
. ~88!

In this way we check the intuitive idea that in the expans
process one would create phonons with frequencies inver
related to the temporal scale of change of the configura
in laboratory. The number of phonons in the final state is
3-9
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N'
Vz~3!

p2

1

~2ph0asi
2 !3

5
Vz~3!

8p5h0
3asi

6
5

z~3!

64p5

V

~cs ft0!3 S asi
4 1as f

4

as f
2 asi

2 D 3

. ~89!

Contrary to what happens in the sudden approximat
the adiabatic approximation is taking into account the rap
ity with which the configuration changes. Thus, the to
number of phonons calculated by trusting the adiabatic
proximation throughout the whole range of frequencies
suppressed with respect to the sudden approximation ca
lation by a factor of 0.1 times (theal/t0)3, that is, 0.1
3@(healing time)/(evolution time)#3—this factor consisting
of a dimensionless number coming from the detailed exp
sion for the integral times the cubed ratio of the healing ti
in the condensate to the time over which the scattering len
is forced to change. Witht0'10theal we still get somewhere
between 100 and 105 phonons. Oncet0'100theal this is re-
duced to somewhere between 1021 and 100 phonons; but in
this case we will also run into problems from finite volum
effects—t0 is then comparable to the sound crossing time
the condensate and the momentum-spaced functions appear-
ing above are smeared out due to the finite volume of
condensate.~This point is carefully addressed in a rather d
ferent physical context in Ref.@33#, though many of the
mathematical manipulations appearing therein are very s
lar to the present situation.!

Note that ast0→theal the adiabatic approximation calcu
lation still results in one order of magnitude less than
equivalent calculation with the sudden approximation. Mo
over, in this case, the whole range of observable phon
~with frequencies between the healing frequency and the
frequency! is beyond the strict range of applicability of th
adiabatic approximation~remember thath0kas f

2 @1). There-
fore, to be more precise one will have to make an interm
diate analysis, in between the sudden and the adiabatic
gimes.

Let us estimate the value of the temperatures associ
with the adiabatic approximation for temporal scales
change within the observable window. From Eq.~88! we can
see that this temperature will beT.(10211 K)/( t0s), and so,
for t0 between 1022 s ~associated with the condensate siz!
and 1025 s ~the shortest time scale compatible with t
acoustic approximation associated with the initial configu
tion! will range from 1 nK to 1000 nK. From this estimat
we can already see that, by modifying the scattering len
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on time scales close to the healing time, one could produ
bath of ~almost! thermal phonons so energetic that even
mean-field approximation might break down~causing the
complete disruption of the condensate!.

When the peak frequency tends toward the healing
quency we see that the low-frequency part of the observa
spectrum will develop important departures from thermal
We shall now turn to the general intermediate case and
scribe the full spectrum of phonons created in our toy mod
Then, we will discuss the observability of the cosmologic
particle creation effect in terms of the ratioC defined in Eq.
~45!.

3. Intermediate regime

Let us now consider an intermediate regime: Look at la
momenta and ignore for the time being any cutoff arisi
from the interaction time scale or the healing length, then

ubu2→exp@24ph0kasi
2 # as k→`, ~90!

so the particle spectrum is always exponentially suppres
at sufficiently high momenta. If we pickh0 to be longer than
a healing time~so that we cannot use the sudden approxim
tion! but still sufficiently short that we cannot use the ad
batic approximation, then we will need to retain the full for
of ubu2. The resulting spectrum of phonons is

dN

dVd3k
5

1

~2p!3

sinh2@ph0k~as f
2 2asi

2 !/2#

sinh@ph0kas f
2 #sinh@ph0kasi

2 #
, ~91!

and the total number of phonons produced is

N5
V

2p2E
0

`

k2
sinh2@ph0k~as f

2 2asi
2 !/2#

sinh@ph0kas f
2 #sinh@ph0kasi

2 #
dk. ~92!

We can now consider the actual spectrum described by
~91! by choosing plausible values for an experiment. Ho
ever in order to get the spectrum that might be observed
has to convert the relevant quantities in Eq.~91! to the labo-
ratory counterparts.

Using the expressions in Eq.~84!, and the relation be-
tweent0 andh0 given in Eq.~87!, and alternatively rewritten
here as

t05S asi
4 1as f

4

2as f
2 cs f

D h05S asi
4 1as f

4

2asi
2 csi

D h0 , ~93!

the number spectrum can be written as~we are reintroducing
here the explicitin andout indices!
dN

d3kout

5
V

~2p!3E
sinh2Fp t0

as f
4 vout

t 2asi
4 v in

t

asi
4 1as f

4 G
sinhF2p

as f
4

asi
4 1as f

4
vout

t t0GsinhF2p
asi

4

asi
4 1as f

4
v in

t t0G d~k in1kout!d
3k in , ~94!

which implies
3-10
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dN

dvout
t

5
V

2p2

sinh2Fp
~as f

2 2asi
2 !as f

2

asi
4 1as f

4
vout

t t0G
sinhF2p

as f
4

asi
4 1as f

4
vout

t t0GsinhF2p
asi

2 as f
2

asi
4 1as f

4
vout

t t0G
~vout

t !2

cs f
3

. ~95!
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Regarding the relative range of the scale factoras , we have
already seen that it can be deduced from the experimen
plausible range for the scattering length and we shall t
as f

2 /asi
2 '10 ~Fig. 1!.

For the final value of the speed of soundcs f we shall take
cs f;1 mm/s. In fact also the range of the speed of sound
be determined from the scattering length. This can be rea
ably varied in the proximity of a Feshbach resonance from
nm to 100 nm. For an experiment with heavy alkali-me
atoms~e.g., rubidium! the speed of sound will then typicall
range from few mm/s to 10 mm/s.

The total number of phonons emitted is given by

N5
1

16p5

V

~cs ft0!3 S as f
4 1asi

4

as f
2 asi

2 D 3

3E
0

`

x2
sinh2@x~as f

2 /asi
2 21!/2#

sinh@x~as f
2 /asi

2 !#sinh@x#
dx

5
1

16p5

V

~cs ft0!3 S as f
4 1asi

4

as f
2 asi

2 D 3

F~as f
2 /asi

2 !, ~96!

so qualitatively we have the same behavior as in the a
batic approximation, modulated by a dimensionless funct
of the ratioas f /asi . ~This expression will remain valid a
long ash0 is longer than the healing time; at which stage o
should switch over to the sudden approximation.! Using hy-
perbolic trig identities the previous integral can be rewritt
as

F~z!5
1

2E0

`

x2H coth~zx!coth~x!212
1

sinh~zx!sinh~x!J dx

~97!

with

F~1!50, F~`!5
z~3!

4
'0.3005, and F~1/z!5z3F~z!.

~98!

For z.1 the functionF(z) quickly and smoothly approache
its asymptotic value.

In closing our analysis of the intermediate regime
want now to compare the exact spectrum equation~95! with
the spectrum obtained within the adiabatic approximati
Equation~82! can be easily rewritten in the laboratory va
ables as
05361
lly
e

n
n-
1
l

a-
n

e

.

dN

dvout
t

5
V

2p2

1

expF4p
as f

2 asi
2

asi
4 1as f

4
vout

t t0G21

~vout
t !2

cs f
3

.

~99!

The combined plot of Eqs.~95! and~99! is shown in Fig. 2.
It is evident that apart from a minor discrepancy at low

frequencies the two plots basically coincide from the pe
frequency ('2 kHz) on. This is not so surprising given tha
the adiabatic approximation impliesh0kas f

2 @1 which in
laboratory variables corresponds to

2
asi

2 as f
2

asi
4 1as f

4
vout

t t0@1. ~100!

One can easily check that this inequality starts to be satis
for frequencies of the order of a few kHz~and holds for any
larger frequency!.

FIG. 1. Number spectrum, Eq.~95!, as phonons permm3 per
unit out frequency. We have setcf510 mm/s andas f

2 /asi
2 ;10. The

typical timescalet0 is conservatively set equal to 1023s.
3-11
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C. Observability of the effect

In this section we will calculate the relevant ratioC de-
fined in Eq.~45!. We wantC>1/100 to make the phonon
easily detectable. By using Eq.~16! we can deduce that

C5
1

Nc
E d3xS 1

4nc
^n̂1n̂1&1

nc

\2^û1û1&2 i
1

2\
^@ n̂1 ,û1#& D .

~101!

In the acoustic regime and for the particular configuratio
we are looking at we know thatkn̂152] tû1. Considering
now that @ n̂1(x,t),û1(y,t)#5 i\d3(x2y) or equivalenty

@ û1(x,t),] tû1(y,t)#5 i\kd3(x2y), we can deduce this
starting from the fundamental commutation relati

@Ĉ†(x,t),Ĉ(y,t)#5d3(x2y), we can arrive at

C5
1

Nc
E d3xS 1

4nck
2^] tû1] tû1&1

nc

\2 ^û1û1&1
1

2
d~0! D .

~102!

To calculate this average, we can expand the real field
eratorû1 in terms of the creation and annihilation operato
associated with the final configuration,

FIG. 2. Comparison of the exact number spectrum, Eq.~95!,
darker line in the graph, with the one obtained in the adiab
approximation, Eq.~99!. Both the spectra are shown as phonons
mm3 per unit out frequency. In both the cases we have secf

510 mm/s andas f
2 /asi

2 ;10. The typical timescalet0 is conserva-
tively set equal to 1023 s.
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s

p-

û1~y,t !5E d3k
~\k!1/2

~2p!3/2@2v~k!#1/2
ake

2 ivt1 ik•x1H.c.

~103!

and consider the appropriate particle content for the quan
state. IfNk is the average number of particles with mome
tum k in the quantum state, the previous magnitude can
expressed as

C5
1

2Nn~nck!
E \v~k!Nkd

3k12
~nck!

Nc
E 1

\v~k!
Nkd

3k

~104!

5
1

2Nc~mcs
2!
E \v~k!Nkd

3k12
mcs

2

Nc
E 1

\v~k!
Nkd

3k.

~105!

To reach this expression we have to substract the vac
contribution. If we consider now the sudden approximati
to calculate this rate~an upper limit to what one could get!
we obtain

C5H 3

8

\vheal

mcs
2

13
mcs

2

\vheal
J N

Nc
, ~106!

with N the one in Eq.~79!. Now \vheal.1021061 eV. In-
stead mcs

2.~atomic number!31021361 eV.1021161 eV.
The factor\vheal/mc2.10, so we have that the relevan
number C.4N/Nc . But Nc.106 and N.104–107. This
givesC.431022240. This number is based on the sudd
approximation and will be smaller in a more realistic calc
lation. However, remembering the discussion on the ad
batic approximation we know that, for temporal scales
changet0 of the order of the healing time, the actual coef
cient C cannot be smaller than 0.1 times the previous e
mate, i.e.,C.431023–4. Therefore, by implementing in
laboratory an expansive process witht0 in an intermediate
regime, in between the healing timestheal5j/cs associated
with the initial configuration (t0.1025) and the final con-
figuration (t0.1023), one should be able to observe the e
fect.

V. SUMMARY AND DISCUSSION

In this work we have discussed the possibilities that BE
offer for simulating Lorentzian geometries of the cosmolo
cal type in the laboratory. There are two inequivalent pa
one can follow in this task. The first one is based on prov
ing an expansive explosion in the condensate by chang
with time the characteristic frequency of an isotropic a
harmonic confining potential. This option implies that th
velocity profile of the condensate acquires arbitrarily hi
values at large distances from the center. So there is alwa
sphere at which the velocity of the expanding BEC wou
surpass its sound velocity: A sonic horizon would be form
In practice, due to the fact that physically realizable BE
are finite systems, one can only reproduce on them a por
of an expanding universe. Therefore one might argue that
sonic horizon would be formed outside the BEC. Howev

c
r
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the velocity of sound in BECs is so small~a few mm/s! that
in practical situations the sonic horizon will be formed w
inside the system. Now the existence of sonic horizons
certainly interesting in its own right, but is not inherent to t
simulation of cosmological space times. Moreover, the pl
sible dynamical instabilities associated with their formati
could mask the observation of purely cosmological effec

The alternative path to simulating a cosmological geo
etry that we have pursued in this paper is to take advan
of the possibility of varying the scattering length or, what
the same, the interaction strength between the atoms in
condensate. In this case, what we need is a confining po
tial with a sufficiently large almost flat minimum in which
portion of the condensate stays at rest. In this configurat
there is no formation of sonic horizons and thus we think i
~both conceptually and technically! a much cleaner path to
follow.

The description of the condensation phenomenon n
rally involves the separation of the system into a ‘‘classic
wave function~the condensate part! and quantum fluctua
tions. In the acoustic approximation we can think of the
quantum fluctuations as phonons over a classical backgro
geometry, in this case, the analog of a cosmological sp
time. Therefore, we can use the tuning of the scatter
length to simulate not only a classical cosmologically e
panding universe, but the quantum phenomenon of cos
logical particle creation. We have analyzed this well kno
process by using a minor variant of Parker’s model fo
finite amount of expansion@30#. Then, by working with nu-
merical estimates appropriate to currently accessible BEC
dilute gases, we have presented an analysis of the feasib
of observing the effect in real experiments.

We have seen that there is a more than plausible wind
for the observability of the effect with current technology.
current BECs the scattering length can easily be varied f
a 100 nm to 1 nm. This produces an expansion in the g
metrical scale factor of about three times. The temporal s
of change of the scattering length cannot be arbitrarily sh
It has to be slower than the time scale in which the inter
tion between two atoms proceeds. We have calculated
time scale to be of the order of microseconds. However,
have also seen that, by driving the previous finite amoun
expansion in a temporal scale of change of about fraction
millisecond, one could start to detect the presence of cos
logical particle creation. From here one could shorten
time scale down to tens of microsecond progressively am
fying the expected effect. By the time one reaches tens
microseconds the effect would have been amplified by a
tor of a hundred~with time scale still above the interactio
time! opening even the possibility of totally disrupting th
condensate.
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The relevant temporal scales of change for the effect to
observable are of the order of the healing time in the c
densate. Therefore we expect that apart from the pho
spectrum calculated by neglecting the modified dispers
relations at high energies, there will be also some produc
of quasiparticles. To observe the purely cosmological eff
one would have to keep this quasiparticle production und
certain level; thus, the temporal scale of change should
be driven significantly beyond the healing time.

In our analysis we have neglected finite-volume effec
However we shall now show that these effects are insign
cant for the typical condensate we considered here.
fractional change in the number of particles produc
due to finite volume effects is expected to be of t
order of 1/(KhealR)5j/(2pR)5(cutoff wavelength)/@2p
3(size of the condensate)#. The ratio between the healin
length and the BEC Thomas-Fermi radius can be expres
as a ratio between the harmonic trap length and the scatte
length:

R

j
5

2Ap

151/10S Nca

aho
D 2/5

. ~107!

For a harmonic-oscillator length of about 10mm, Nc'106

atoms, and a scattering length of 1 nm one getsR'17j. For
a scattering length ten times larger~easily achievable with a
Feshbach resonance and still compatible withNca

3!1) and
aho'1 mm one would getR'100j. This implies that
j/(2pR)<1% and hence finite-volume effects are neg
gible.

To conclude, our analyses suggest that it should be
ready possible to observe the process of cosmological
ticle creation in BEC analog systems, by changing the s
tering length from an initial value of about 100 nm to a fin
value of about 1 nm on times scales shorter than millis
onds but larger than tens of microseconds.
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