
PHYSICAL REVIEW A 68, 052713 ~2003!
Scattering of slow electrons by polar molecules: Application of effective-range
potential theory to HCl

Wim Vanroose,* C. W. McCurdy,† and T. N. Rescigno‡

Computing Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
~Received 19 June 2003; published 21 November 2003!

We present a nonempirical potential model for studying threshold vibrational excitation of polar molecules
by electron impact. This work builds on the zero-range potential virtual state model of Gauyacq and Herzen-
berg@J. P. Gauyacq and A. Herzenberg, Phys. Rev. A25, 2959~1982!#, using known analytic properties of the
S matrix for a dipole potential to predict the analytic continuation of the negative ion potential curve into the
continuum. We derive an equation that determines the nuclear dynamics which can be solved without the need
for an expansion in target vibrational states. The model is applied toe2-HCl and is found to capture the
essential features of the observed excitation cross sections, including both the threshold peaks as well as
oscillatory structures at energies above threshold.

DOI: 10.1103/PhysRevA.68.052713 PACS number~s!: 34.80.Gs
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I. INTRODUCTION

Vibrational excitation of the hydrogen halides by low
energy electron impact has continued to attract the atten
of experimentalists and theorists for many years. Of parti
lar interest are the pronounced threshold peaks in the vi
tionally inelastic cross sections which were first observed
Rohr and Linder some 25 years ago@1#. These early obser
vations prompted considerable debate about mechanisms
might be responsible for the observed structures and a v
ety of different explanations were put forth.

Two models were initially proposed to explain the o
served threshold peaks. Dube´ and Herzenberg@2# and Gauy-
acq and Herzenberg@3# argued that shape resonances co
not be involved since the observed angular distributions
threshold were isotropic, suggesting a strongs-wave compo-
nent ~the electron collision energies are less than 1 e!,
which in turn argued against a resonant trapping mechan
Thezero-range potential modelthey developed assumed th
the problem involves onlys-wave scattering. A virtual state
mechanism was proposed to account for the enhanceme
the wave function of a slow exiting electron. When vibr
tional motion was introduced into the fixed-nuclei pictur
nuclear-excited Feshbach resonances appeared below th
brational thresholds and, in their view, were responsible
the observed structures.

A different model, based on anonlocal projection opera-
tor theory, was proposed by Domcke and Cederbaum@4#.
Their treatment rests on the picture of a discrete state in
acting with a continuum and makes use of a projection
erator resonance formalism@5# that provides a formally exac
description of the nuclear motion with nonlocal complex p
tentials. In their treatment, the threshold behavior of
cross sections is a consequence of the strong coupling
tween a discrete resonance and a background dipole
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tinuum that mixess and p waves. The zero-range potenti
model and the nonlocal projection operator theory were b
parametrized to give a successful accounting of the obse
threshold peaks.

The early models were eventually followed by a series
ab initio calculations, most notably nonadiabaticR matrix
calculations@6# that included explicit coupling between ele
tronic and nuclear degrees of freedom, fore2-HF @7#,
e2-HCl @8#, and e2-HBr @9# scattering. These calculation
were successful in accounting for the qualitative behavior
the observed cross sections. Moreover, theR-matrix results,
and subsequent theoretical analyses@10,11# of their associ-
ated analytic structure, gave a picture of the dynamics
was consistent with a nuclear-excited Feshbach reson
mechanism.

What all of these approaches have shown is that
simple picture of a resonance, which lies close to the r
energy axis for compressed nuclear geometries and adia
cally evolves into an electronically bound negative ion as
internuclear distance increases, is drastically modified in
case of a polar molecule. Fandreyer and Burke’s@11# analy-
sis of thee2-HBr S matrix revealed that there was a sha
resonance, but the trajectory it traced when the internuc
distance was varied was disconnected from that of bo
HBr2. As the molecule is stretched from its equilibriu
value, the resonance is turned away from the real axis, mo
off into the lower half of the complex momentum~k! plane,
and never becomes a bound state.

A bound anion state does appear for larger internuc
distances, but its behavior as the internuclear distance is
creased is profoundly affected by the underlying electr
dipole interaction@12#. A polar molecular anion cannot hav
a true ‘‘virtual state,’’ that is, a state with a purely imagina
k value in the lower half plane, close to the real axis. If w
track the pole position of a bound diatomic anion as
internuclear separation is decreased, then for some cri
distanceRo the binding energy will go to zero. If the distanc
is further decreased, then the pole passes throughk50 into
the lower half of the complex momentum plane. For a no
polar system, this trajectory would be one that mov
©2003 The American Physical Society13-1
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VANROOSE, McCURDY, AND RESCIGNO PHYSICAL REVIEW A68, 052713 ~2003!
straight down the negative imaginaryk axis. But for a polar
system, there is a branch cut along this axis and the p
splits into mirror-image pairs onhigherRiemann sheets as
passes through the origin@13#. The virtual state trajectory
thus possesses a discontinuous slope or ‘‘kink’’ as it pas
through the origin; the angles at which the mirror-image v
tual state poles emerge from the origin are uniquely de
mined by the value of the dipole moment atRc @12,13#. The
fact that the bound-state and resonance trajectories do
connect is a direct consequence of the dipole field t
strongly mixes thes- andp-wave continua and is an examp
of generalized level repulsion in the continuum@14–17#.
This analytic structure was also predicted by Domcke@18#
and confirmed by Fandreyer and Burke’s calculations@11#.

The nonlocal resonance model has been extensively
fined over the past two decades and has been very succe
in reproducing details of the experimentally measu
e2-HX cross sections@19,20#. In the case of HCl@19#, for
example, it reproduces both the threshold peaks and
higher-energy structure caused by an outer well in the bo
portion of the HCl2 potential-energy curve. This level o
agreement would seem to indicate that the low-energy c
sion dynamics between electrons and weakly polar diato
molecules is completely understood. So what motivati
one may ask, is there for revisiting this problem?

Our primary objective here is the formulation of anab
initio model which captures the essential features of the
served cross sections at low energies, does not requir
elaborate parametrization in its execution and is applicabl
more complicated systems. This in turn has prompted u
reexamine the zero-range potential model. Like Gauyacq
Herzenberg@3#, we use effective-range theory as the start
point for deriving an equation that determines the nucl
dynamics. What we end with is a model which, structura
at least, resembles the local complex potential or ‘‘Boom
ang’’ model@21# which has proven to be a very useful tool
describing resonant vibrational excitation, i.e., a compl
inhomogeneous wave equation which determines the l
energy collision cross sections. Furthermore, the equa
can be solved without resorting to an expansion in tar
vibrational states. Another element in our formulation is t
use of a dipole coupled partial-wave model to predict
analytic continuation of the negative-ion potential curve in
the continuum, which allows one to build a nonempiric
model whose only input is the potential curve of the anion
the region where it is bound, the potential curve of the targ
and itsR-dependent dipole moment.

Like the boomerang model, which has recently been
tended to look at resonant nuclear motion in several dim
sions@22,23#, our effective-range model can be extended
polyatomics, with only modest computational requiremen
provided a suitable anion potential surface can be c
structed. Interesting threshold structures have, in fact, b
observed in the vibrational excitation cross sections of po
atomic targets, such as CO2 @24# and CS2 @25#, which are
nonpolar in their equilibrium geometry, but acquire a tra
sient dipole moment upon bending. While our initial app
cations here are focused one2-HCl, the application of this
model to polyatomic targets has provided additional moti
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tion for the present development.
The outline of this paper is as follows. The theory is pr

sented in the following two sections. In Sec. II, we discu
the procedure we use to construct the adiabatic poten
curve for the negative ion and its analytic continuation in
the complex momentum plane. The derivation of t
effective-range model is then outlined in Sec. III. Our resu
for e2-HCl vibrational excitation are presented in Sec. I
Section V contains some concluding remarks.

II. POTENTIAL CURVE OF THE NEGATIVE ION

The principal assumption of the effective-range mod
for very low-energy electron scattering by polar molecul
is that the target provides the electron with a potential w
that is on the verge of binding an extra electron. Thus sm
displacements of the nuclei about their equilibrium positi
can cause this bound state to appear or vanish. To des
this dynamics, we must be able to construct an adiab
potential curve for the molecular anion. This is not a proble
for nuclear geometries where the anion is electronica
bound: one can performab initio structure calculations for
the bound portion of the potential curve. For the unbou
portion of the curve, we rely on an analysis of the long-ran
part of the electron-molecule interaction, which is domina
by the dipole field.

The binding properties of a fixed dipole potential are w
known and have been studied by a number of authors. H
we follow the treatment of Le´vy-Leblond @26#. The Schro¨-
dinger equation for an electron in a dipole field is given b

S 2
1

2
D1e

D~R!•r

r 3
2ED c~r ,u,f;R!50, ~1!

whereD is the dipole moment and depends on the inter
clear separationR. Equation~1! is separable in spherical po
lar coordinates. Choosing thez axis to coincide with the
dipole momentD and writing

c~r ,u,f;R!5
1

r
P~r !Q~u!eimf ~2!

gives the following equations for the radial and angular pa
of the wave function:

S 2
d2

dr2
1

l n~ l n11!

r 2
22ED P~r !50 ~3!

and

F 1

sinu

d

du S sinu
d

du D2
m2

sin2u
22D cosu

1 l n~ l n11!GQn~u!50, ~4!

wherel n( l n11) is a separation constant andm is an integer.
The separation constant is written in the form of an effect
3-2
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SCATTERING OF SLOW ELECTRONS BY POLAR . . . PHYSICAL REVIEW A68, 052713 ~2003!
angular momentuml n and is obtained by solving for th
eigenvalues of the angular equation, Eq.~4!. We need only
consider the lowest eigenvaluel 0 for the m50 case since
this is the only angular mode that gives rise to an attrac
centrifugal potential in Eq.~3! @2#. Lévy-Leblond @26# con-
sidered this problem and derived a power series for the
lution:

l 0~R!@ l 0~R!11#52
2D~R!2

3
1

11

30S 2D~R!2

3 D 2

2
133

450S 2D~R!2

3 D 3

1•••. ~5!

For a subcritical dipole moment (D,0.639eao), the cen-
trifugal term l 0 will be a nonintegralnegativenumber be-
tween2 1

2 and zero. We will henceforth drop the subscript
on l with the understanding that it refers to the solution
Eq. ~5!.

A nonintegral l value in the radial equation leads to
multivalued Jost functionFl(K) @13,27#. Indeed, close to the
origin, the Jost function for continuous angular moment
@12# reduces to a series that has terms that have nonint
exponents,

Fl~K;R!5a0~R!1a1~R!K21•••1b1~R!K2l 11

1b2~R!K2l 131•••, ~6!

whereK is the momentum of the electronic state relative
the threshold. A zero of the Jost functionFl(K;R) corre-
sponds to a pole of theS matrix. For a bound state, the ze
lies on the positive imaginaryK axis. Its behavior nea
threshold (K50) depends critically onl, which in turn de-
pends on the dipole moment through Eq.~5!. Sincel is nega-
tive for the case of a subcritical dipole, theK2l 11 term domi-
nates theK2 term in Eq.~6!, so close to the threshold, th
most important terms of the Jost function are

Fl~K;R!.a0~R!1b1~R!K2l 11. ~7!

Let Ro denote the nuclear coordinate at which the elect
becomes unbound, i.e.,K(Ro)50, and expand the coeffi
cients a0(R) and b1(R) about that point. We find that th
condition for a zero of the Jost function near threshold is

05a0~Ro!8~R2Ro!1b1~Ro!K2l 11 ~8!

or

K~R!5 ib~R2Ro!1/[2l (R)11], ~9!

where we have defined

ib[@2a0~Ro!8/b1~Ro!#1/[2l (R)11]. ~10!

We can now contrast the case of pures-wave scattering
from a nonpolar target with the polar case. WhenD vanishes,
l is zero and we get

K~R!} i ~R2Ro!, ~11!
05271
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that is, the pole moves linearly along the imaginaryk axis as
R passes throughRo . For a weakly polar target,l (R).
22D2/3 and we have, for smallD,

K~R!} i ~R2Ro!1/[12(4D2/3)]' i ~R2Ro!11(4D2/3). ~12!

There is now a branch point atR5Ro ; if D is irrational,
there are infinitely many branches. We will put the bran
line along the negative imaginary axis.

For R.Ro , k is positive imaginary, corresponding to
bound state. AsR decreases throughRo , k becomes com-
plex. We will consider its trajectory on what Herzenberg@13#
calls ‘‘the first counterclockwise sheet,’’ that is, measuri
the phase ofk counterclockwise from the positive real axi
From Eq.~12!, we get

K~R!}~Ro2R!11(4D2/3)eip[(3/2)1(4D2/3)], R,Ro .
~13!

The phase ofk is greater than 3p/2, i.e., it is in the fourth
quadrant of thesecondRiemann sheet, a direct consequen
of the attractive nature of the effective potential. There i
mirror-image pole in the third quadrant with a phase angle
2p(1/214D2/3), as well as mirror-image pairs on highe
Riemann sheets. These we ignore.

We show the trajectory of a bound state in Fig. 1 for
case where the dipole strength decreases monotonically
R. The decreasing dipole strength causes the trajector
bend back toward the imaginaryk axis after it passes throug
the origin.

With the effective electron momentum defined by Eq.~9!,
we construct the negative-ion potential curve as

Vion~R!5Vneutral~R!1 1
2 K~R!2. ~14!

By construction,Vion crossesVneutral at Ro and acquires a
negative imaginary part forR,Ro . For R.Ro , Vion is real
and can be calculated byab initio techniques. For our pur
poses, it is presumed to be known. The single parameterb in
Eq. ~9! is chosen so that we get a smooth connection
tween the inner and outer portions of the ion curve.

FIG. 1. Trajectory of a pole of theS matrix in the complexK
plane for the dipole potential problem discussed in text. We use
dipole moment function appropriate for HCl. The circles correspo
to internuclear distance values of 1.25, 1.922 76, 2.5, 3.077 24,
and 4.422 76 bohrs.
3-3
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VANROOSE, McCURDY, AND RESCIGNO PHYSICAL REVIEW A68, 052713 ~2003!
The behavior ofVion differs markedly from what is see
in the case of a shape resonance. In the extreme case
pure virtual state that can exist in the absence of a dip
moment, the trajectory ofK(R) would follow the simple
parametrizationK(R)5 i (R2Ro), changing sign asR passes
throughRo . But 1

2 K(R)252 1
2 (R2R0)2 is always real and

negative, independent of the sign of (R2R0). This means
that for a pure virtual state, theVion curve is real and lies
below Vneutral except at the pointRo where they touch. The
introduction of a weak dipole moment does not dramatica
alter this picture:K(R) will move off the imaginary axis as i
passes through the origin andVion will acquire a negative
imaginary component. But for a weak dipole moment,
real part ofVion will generally fall below theVneutral poten-
tial curve.

We are now in a position to derive the nuclear wave eq
tion of our dynamical model.

III. NUCLEAR DYNAMICS IN THE EFFECTIVE-RANGE
MODEL

The basic idea behind the effective-range model is that
very low-energy scattering the wave function which d
scribes the scattered electron is independent of energy in
some radiusr o @28#. Insider o , the potential is strong and th
electron follows the nuclei adiabatically. The logarithmic d
rivative of wave function atr 5r o ,

f ~R!5S 1

c~r ;R!

]c~r ;R!

]r D
r 5r o

, ~15!

is introduced to avoid calculations in the inner region. T
log-derivative depends on the internuclear geometry, bu
assumed to be independent of the collision energy, on
assumption that the latter is small compared to the inte
potential.

UsingS-matrix boundary conditions, the wave function
the outer regionr .r o is replaced by the asymptotic form
corresponding to the lowest angular mode of the fixed dip
problem:

c~r ;R!5hl
2~k0r !x0~R!1(

n
Anhl

1~knr !xn~R!, ~16!

wherexn(R) is a target vibrational function with energyEn ,
kn5A2(E2En) is the electron channel momentum a
h1(2) is an outgoing~incoming! Hankel function. Note that
only theAn associated with real~open! kn contribute to the
cross sections. These in turn are determined by matching
log-derivative ofc at r o . The log-derivativef (R) is gener-
ally treated as a semiempirical parameter, but with the in
mation of the preceding section, it can be determined.

We assume that the wave function in the inner region
be equated with the adiabatic Siegert state associated
Vion , which is a purely outgoing wave at larger,

lim
r→`

c~r ;R!;exp@ iK ~R!r 2 l ~R!p/2#, ~17!
05271
f a
le

y

e

-

r
-
ide

-

e
is
e

al

le

he

r-

n
ith

whereK(R) is defined by the relative spacing between t
neutral and the anion surface@Eq. ~14!#:

K~R!5A2@Vion~R!2Vneutral~R!#. ~18!

It follows that f (R)5 iK (R).
Matching the logarithmic derivatives of Eqs.~17! and

~16! at r 5r o leads to

iK ~R!5

k0hl
2~k0r o!8x0~R!1(

n
knAnhl

1~knr o!8xn~R!

hl
2~k0r o!x0~R!1(

n
Anhl

1~knr o!xn~R!

.

~19!

We further reorganize the matching equation using the
that xn is a vibrational state of the neutral Hamiltonia
Hneutral ,

knxn~R!5A2~E2En!fn~R!5A2@E2Hneutral~R!#xn~R!,
~20!

and replace each appearance ofkn with the operator
A2@E2Hneutral(R)#. The matching equation now become

iK ~R!Fhl
2~k0r o!x0~R!1(

n
Anhl

1~knr o!xn~R!G
5A2~E2Hneutral!Fhl

2~k0r o!8x0~R!

1(
n

Anhl
1~knr o!8xn~R!G . ~21!

Equation~21! can be further simplified if we assume th
r o can be chosen large enough so that the Hankel funct
can be replaced by their asymptotic forms,hl

1/2(kr);exp
(1/2ikr2lp/2). With this assumption Eq.~21!, after rear-
rangement, becomes

@2K~R!1A2~E2Hneutral!#(
n

Anei (kn1k0)r oxn~R!

5@K~R!1k0#x0~R!. ~22!

Note that the factorsei (k01kn)r o can be incorporated into a
redefinition of the coefficientsAn without changing theexci-
tation cross sections, which are proportional touAnu2. So the
matching equation is now independent ofr o , as in the zero-
range potential model@28#.

Equation~22! can be converted to a set of linear equatio
for the unknown coefficientsAn by multiplying from the left
with xn and integrating overR. This is the procedure used i
Refs. @2,3#. There can, however, be convergence proble
with such a linear system@28#. In many cases, the negative
ion curve is very different from the neutral curve and m
even be dissociative, in which case the expansion in vib
tional states of the neutral target may not converge.
3-4
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Equation~22! can be solved without an expansion in ta
get vibrational states. If we define the nuclear wave funct
C(R) as

C~R!5(
n

Anei (kn1k0)r oxn~R!, ~23!

we obtain the following inhomogeneous differential equ
tion:

@2K~R!1A2~E2Hneutral!#C~R!5@K~R!1k0#x0~R!.
~24!

Equation~24! can easily be solved in ways that avoid t
convergence problems associated with an expansion in ta
vibrational states.

To solve Eq.~24!, we must specify appropriate bounda
conditions. For that purpose, it is useful to recast Eq.~24!
into the form of a driven Schro¨dinger equation. If we define

C~R!5@K~R!1A2~E2Hneutral!#V~R!, ~25!

we can then write Eq.~24! as

@2K~R!1A2~E2Hneutral!#@K~R!

1A2~E2Hneutral!#V~R!5@K~R!1k0#x0~R!

~26!

or, using Eq.~14!, as

$2~E2Hion!1@A2~E2Hneutral!,K~R!#%V~R!

5@K~R!1k0#x0~R!. ~27!

As R→`, K(R) goes to a constant and the commutator
Eq. ~27! vanishes, giving

~E2Hion!V~R!5 1
2 @K~R!1k0#x0~R!, R→`. ~28!

It is clear from Eq.~28! thatV(R) is effectively the wave
function that describes the temporary molecular state
moves asymptotically on the negative-ion curve. For to
energies E below the dissociative attachment thresho
V(R) will go to zero asR→`, while above the dissociation
threshold, the appropriate boundary condition forV(R) is
that it behave asymptotically as a purely outgoing wa
Having solved the nuclear wave equation~NWE!, Eq. ~27!,
the excitation amplitudes are then evaluated by projec
the solution onto a target vibrational state:

An5E xn~R!C~R!dR5E xn~R!@K~R!1kn#V~R!dR.

~29!

If we drop the commutator in Eq.~27! entirely, on the
assumption, in the sprit of the Born-Oppenheimer~BO! ap-
proximation, that the nuclear kinetic-energy operator co
mutes with the logarithmic derivative defined in Eq.~15!,
then we need only to deal with an inhomogeneous Sch¨-
dinger equation~BO-NWE!, Eq. ~28!, at all R. In the case of
a polar target, however, the behavior ofK(R) as it passes
05271
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through the origin~Fig. 1! invalidates this approximation
Consequently, as we will see below, the NWE and BO-NW
can give very different results close to vibrational threshol

IV. APPLICATION TO HCl

We have applied the previously outlined theory to the c
of e2-HCl vibrational excitation. The parameters requir
for the nuclear wave equation were obtained as follows.
the bound portion of the HCl2 potential curve, we used th
ab initio configuration-interaction calculations of Astran
and Karlstrom@29#. Their calculations give a2S HCl2 curve
that has a shallow outer well centered at 4 bohr and cro
the neutral HCl ground-state curve near 2.5 bohr. For
ground-state HCl curve, we used a Morse potential with
rameters taken from the work of Cizek, Horacek, and Do
cke @30#. The analytic continuation of the HCl- curve was
carried out using the dipole coupled partial-wave model o
lined in Sec. II. This procedure requires theR-dependent
dipole moment of the neutral target. This data was tak
from theab initio calculations of ONeil, Rosmus, Norcros
and Werner@31#. We used a value of 2.54 bohr for the cros
ing point Ro . Finally, we choseb50.4 in Eq. ~9! to
smoothly connect the real and complex portions of the an
curve. The potential curves for HCL and HCl2 we used are
depicted in Fig. 2.

The ion curve is obtained by adding12 K(R)2 to the neu-
tral HCl potential@Eq. ~14!#. For R.Ro , K(R) is positive
imaginary;Vion is purely real and lies belowVneutral , cor-
responding to an electronically bound state. ForR,Ro ,
K(R) lies in the fourth quadrant of the complex plane a
Vion is complex. SinceK(R) stays relatively close to the
negative imaginary axis, the real part ofVion stays below
Vneutral .

To solve the NWE@Eq. ~27!# and BO-NWE@Eq. ~28!#
equations, we used a discrete variable representation~DVR!
of the operatorsHneutral(R) and K(R) based on Lobatto
shape functions@32#. The DVR provides diagonal represen
tation of any local operator@K(R) and Vneutral(R), in this
case#, while the matrix elements of the derivative operato
needed to express the nuclear kinetic energy are given
simple analytic expressions@32#. For calculations at energie
above the threshold for dissociative attachment, we nee
impose outgoing-wave boundary conditions in solving t

FIG. 2. Neutral and anion potential curves for HCl. Solid curv
neutral ground state with lowest three vibrational levels indica
and dashed curves, real and imaginary parts of anion curve.
3-5
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NWE and BO-NWE equations. This is easily accomplish
within the DVR @33# by mapping the internuclear coordina
with the following exterior complex scaling transformation

R→M ~R!5H R, R,R0

R01~R2R0!eih, R>R0 ,
~30!

whereR0 is lies outside the interaction region. Exterior com
plex scaling automatically imposes the outgoing-wa
boundary condition@33#. The NWE and BO-NWE are then
replaced by a set of complex linear equations. For the NW
we need a representation of the operatorA2(E2Hneutral).
This is accomplished by diagonalizingHneutral in the DVR
basis and expressing the operator as

A2~E2Hneutral!'(
i

ui~R!A2~E2Ei !ui~R8!, ~31!

where Ei and ui are the eigenvalues and eigenvectors
Hneutral in the finite DVR basis. 200 DVR functions on a 2
bohr interval with R0513 bohrs were found to give con
verged results. The excitation coefficients, given by Eq.~29!,
were also obtained using Gauss-Lobatto quadrature wi
DVR representation of the target vibrational states. The
brational excitation cross sections are expressed in term
the excitation coefficients by the formula

s0n5
p

k0
2

kn

k0
uAnu2. ~32!

In Fig. 3, we plot the 0→1 and 0→2 cross sections ob
tained from the NWE and BO-NWE models. The most s
nificant differences between the two models are eviden
the immediate vicinity of then51 and n52 vibrational
thresholds, where the NWE produces sharper threshold s
tures. The threshold regions were found to be quite sens
to the detailed behavior ofK(R) in the crossing region. Un
fortunately, the calculations of Astrand and Karlstrom@29#,
which we used in the construction of the anion curve, g
only three points in the vicinity of the crossing, making
difficult to determine precise values for bothb and Ro .
Small changes inRo alter the magnitude and shape of t
threshold peaks, but this sensitivity is greatly reduced
soon as the collision energy is a few tenths of an eV abov
vibrational threshold, where the NWE and BO-NWE mod
give similar results. The oscillatory structures between
and 0.8 eV are associated with quasibound levels suppo
by the outer well in the HCl2 curve ~cf. Fig. 2!.

The results computed with the NWE and BO-NWE mo
els are compared with the experiment in Fig. 4. For the
→1 cross section, we show the experimental values of Sc
fer and Allan @34# from threshold to 0.5 eV; for collision
energies above 0.5 eV, we use the more recent h
resolution data of Allanet al. @19#. The 0→2 data is taken
from Schafer and Allan and does not have the resolu
needed to display the outer-well structures. To facilitate
comparison with theory, the numerical results were con
luted with a Gaussian of 20-meV width. The experimen
results were all reported in arbitrary units and were he
05271
d

e

,

f

a
i-
of

-
in

c-
ve

e

s
a

s
7
ed

-
0
a-

h-

n
e
-
l
e

normalized to the theoretical values. As previously me
tioned, the calculations are extremely sensitive to details
the anion potential curve in the vicinity of its crossing wi
the neutral, and theab initio data from which our models
were constructed leaves some uncertainty about this reg
Nevertheless, it is clear that the model calculations cap
the essential features of the observed excitation cross
tions.

V. DISCUSSION

We have formulated a model for low-energy electro
molecule scattering that can be used in situations where
collision dynamics is effected by the presence of a virt
state. The formulation is based on a zero-range model
approximates the electron-molecule interaction by a ma
ing condition that is independent of energy but changes w
target nuclear geometry.

The zero-range model was originally presented as an
finite set of linear equations with parameters that were
justed to fit experimental observations. Our reformulation
the zero-range model has achieved two principal goals.
first is to obviate the need for a semiempirical determinat
of the model parameters by deriving an approximation to
complete anion potential curve using properties of electr
dipole scattering. The advantage of such an approach is

FIG. 3. Vibrational excitation cross sections for HCl comput
with NWE and BO-NWE models. Solid curves, NWE; and dash
curves, BO-NWE. Top panel, 0→1 cross section; and bottom
panel, 0→2 cross section.
3-6
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ab initio input can be provided by standard quantum che
istry tools since we only require information on neutral a
anion potential curves for configurations where they are e
tronically bound. We also need the dipole moment of
neutral target as a function of nuclear geometry. In particu
fixed-nuclei electron-molecule scattering calculations are
required to determine the model parameters.

FIG. 4. Vibrational excitation cross sections for HCl. Compa
son of NWE and BO-NWE model results with experiment. So
curves, NWE; dashed curves, BO-NWE; and dotted curves, exp
mental results~see text for explanation!. Top panel, 0→1 cross
section; and bottom panel, 0→2 cross section.
J

J.
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The second feature of the reformulated zero-range mo
is that the infinite system of linear equations can be recas
the form of an inhomogeneous differential equation
nuclear wave equation. This obviates the need for an exp
sion in target vibrational states, which can diverge at en
gies above the threshold for dissociative attachment. M
importantly, it provides a viable path to extending the tre
ment to polyatomic targets.

To illustrate the method, we have revisited the problem
vibrational excitation of HCl by electron impact and showe
for the first time, that a simple zero-range model predicts
oscillating structures in the cross sections. These oscillat
originate from the shallow outer well in the HCl2 potential
curve and have been predicted by the projection oper
theory and confirmed experimentally. While our calculatio
reproduce essential features of the observed excitation c
sections, the correspondence with experimental data is
perfect. This is caused by uncertainties in the availableab
initio data we used as input and the inability to treat t
p-wave shape resonance in our model, which is known
play an important role at higher energies. Indeed, a disadv
tage of the current formulation is its limitation to low-energ
s-wave scattering. There are many interesting problems
electron-molecule scattering where the cross sections dis
both low-energy virtual state effects and the effects of sh
resonances at higher energies and the current approach
able to deal with these situations in a unified way.

The present formulation of the zero-range model can
extended to small polyatomic targets with modest compu
tional effort and calculations on thee2-CO2 system are cur-
rently underway.
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