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Scattering of slow electrons by polar molecules: Application of effective-range
potential theory to HCI
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We present a nonempirical potential model for studying threshold vibrational excitation of polar molecules
by electron impact. This work builds on the zero-range potential virtual state model of Gauyacq and Herzen-
berg[J. P. Gauyacq and A. Herzenberg, Phys. Re25A2959(1982], using known analytic properties of the
S matrix for a dipole potential to predict the analytic continuation of the negative ion potential curve into the
continuum. We derive an equation that determines the nuclear dynamics which can be solved without the need
for an expansion in target vibrational states. The model is applieg tbICl and is found to capture the
essential features of the observed excitation cross sections, including both the threshold peaks as well as
oscillatory structures at energies above threshold.

DOI: 10.1103/PhysRevA.68.052713 PACS nuntber34.80.Gs

[. INTRODUCTION tinuum that mixess and p waves. The zero-range potential
model and the nonlocal projection operator theory were both
Vibrational excitation of the hydrogen halides by low- parametrized to give a successful accounting of the observed
energy electron impact has continued to attract the attentiotihreshold peaks.
of experimentalists and theorists for many years. Of particu- The early models were eventually followed by a series of
lar interest are the pronounced threshold peaks in the vibrab initio calculations, most notably nonadiabafcmatrix
tionally inelastic cross sections which were first observed bycalculationg 6] that included explicit coupling between elec-
Rohr and Linder some 25 years add. These early obser- tronic and nuclear degrees of freedom, fer-HF [7],
vations prompted considerable debate about mechanisms theit-HCI [8], and e -HBr [9] scattering. These calculations
might be responsible for the observed structures and a variwere successful in accounting for the qualitative behavior of
ety of different explanations were put forth. the observed cross sections. Moreover, Ramatrix results,
Two models were initially proposed to explain the ob-and subsequent theoretical analy§&8,11] of their associ-
served threshold peaks. Dubad Herzenberf] and Gauy- ated analytic structure, gave a picture of the dynamics that
acq and Herzenber@] argued that shape resonances couldvas consistent with a nuclear-excited Feshbach resonance
not be involved since the observed angular distributions amechanism.
threshold were isotropic, suggesting a strengave compo- What all of these approaches have shown is that the
nent (the electron collision energies are less than 1),eV simple picture of a resonance, which lies close to the real
which in turn argued against a resonant trapping mechanisnenergy axis for compressed nuclear geometries and adiabati-
The zero-range potential modéhey developed assumed that cally evolves into an electronically bound negative ion as the
the problem involves onlg-wave scattering. A virtual state internuclear distance increases, is drastically modified in the
mechanism was proposed to account for the enhancement cése of a polar molecule. Fandreyer and BurkéX analy-
the wave function of a slow exiting electron. When vibra- sis of thee™-HBr S matrix revealed that there was a shape
tional motion was introduced into the fixed-nuclei picture,resonance, but the trajectory it traced when the internuclear
nuclear-excited Feshbach resonances appeared below the distance was varied was disconnected from that of bound
brational thresholds and, in their view, were responsible foHBr~. As the molecule is stretched from its equilibrium
the observed structures. value, the resonance is turned away from the real axis, moves
A different model, based on r@onlocal projection opera- off into the lower half of the complex momentu(k) plane,
tor theory, was proposed by Domcke and Cederbauth  and never becomes a bound state.
Their treatment rests on the picture of a discrete state inter- A bound anion state does appear for larger internuclear
acting with a continuum and makes use of a projection opdistances, but its behavior as the internuclear distance is de-
erator resonance formalisff] that provides a formally exact creased is profoundly affected by the underlying electron-
description of the nuclear motion with nonlocal complex po-dipole interactior{12]. A polar molecular anion cannot have
tentials. In their treatment, the threshold behavior of thea true “virtual state,” that is, a state with a purely imaginary
cross sections is a consequence of the strong coupling b&-value in the lower half plane, close to the real axis. If we
tween a discrete resonance and a background dipole cotrack the pole position of a bound diatomic anion as the
internuclear separation is decreased, then for some critical
distanceR, the binding energy will go to zero. If the distance

*Electronic address: wivanroose@Ibl.gov is further decreased, then the pole passes thrésgd into
"Electronic address: cwmccurdy@Ibl.gov the lower half of the complex momentum plane. For a non-
*Electronic address: tnrescigno@Ibl.gov polar system, this trajectory would be one that moves
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straight down the negative imaginakyaxis. But for a polar tion for the present development.

system, there is a branch cut along this axis and the pole The outline of this paper is as follows. The theory is pre-
splits into mirror-image pairs ohigher Riemann sheets as it sented in the following two sections. In Sec. I, we discuss
passes through the origiii3]. The virtual state trajectory the procedure we use to construct the adiabatic potential
thus possesses a discontinuous slope or “kink” as it passe@irve for the negative ion and its analytic continuation into
through the origin; the angles at which the mirror-image vir-the complex momentum plane. The derivation of the
tual state poles emerge from the origin are uniquely detereffective—range m'odel is thgn _outlined in Sec. I11. Our results
mined by the value of the dipole momentRit [12,13. The for e”-HCI vibrational excitation are presented in Sec. IV.
fact that the bound-state and resonance trajectories do n&€ction V contains some concluding remarks.

connect is a direct consequence of the dipole field that

strongly mixes thes- andp-wave continua and is an example Il. POTENTIAL CURVE OF THE NEGATIVE ION

of generalized level repulsion in the continuui4—17. The principal assumption of the effective-range model
This analytic structure was also predicted by Domgkg] P P P . 9 '
for very low-energy electron scattering by polar molecules,

and confirmed by Fandreyer and Burke’s calculatifiil. . . ) .
The nonlocal resonance model has been extensively ré; that the target provides the electron with a potential well

fined over the past two decades and has been very success gt Is on the verge of b|nd!ng an extra eIecF(or!. Thus small
isplacements of the nuclei about their equilibrium position

in_reproducing details of ‘the experimentally measure can cause this bound state to appear or vanish. To describe

e -HX cross section$19,20. In the case of HC[19], for . . . )
example, it reproduces both the threshold peaks and thtgls dynamics, we must be able to construct an adiabatic

; . otential curve for the molecular anion. This is not a problem
higher-energy structure caused by an outer well in the boun : LT .
. : . or nuclear geometries where the anion is electronically
portion of the HCI' potential-energy curve. This level of . L :
T .bound: one can perforrab initio structure calculations for
agreement would seem to indicate that the low-energy colli:

; . ; .the bound portion of the potential curve. For the unbound
sion dynamics between electrons and weakly polar diatomic

molecules is completely understood. So what motivationportion of the curve, we rely onan an.alysis Qf th_e Iong-_range
one may ask, is there for revisiting th}s problem? part of the electron-molecule interaction, which is dominated

Our primary objective here is the formulation of ab by the dipole field.

initio model which captures the essential features of the ObR The binding properties Of. a fixed dipole potential are well
. . ; nown and have been studied by a number of authors. Here,
served cross sections at low energies, does not require ar

T . . ; we follow the treatment of Dey-Leblond[26]. The Schie
elaborate parametrization in its execution and is applicable tainger equation for an electron in a dipole field is given by

more complicated systems. This in turn has prompted us to
reexamine the zero-range potential model. Like Gauyacq and
Herzenberd 3], we use effective-range theory as the starting _ EA+e D(R) 1 —E ‘R)=
! w(riavd)!R)_ov (1)

point for deriving an equation that determines the nuclear 2 3
dynamics. What we end with is a model which, structurally
at least, resembles the local complex potential or “BoomerwhereD is the dipole moment and depends on the internu-
ang” model[21] which has proven to be a very useful tool in clear separatioR. Equation(1) is separable in spherical po-
describing resonant vibrational excitation, i.e., a complexJar coordinates. Choosing the axis to coincide with the
inhomogeneous wave equation which determines the lowdipole momenD and writing
energy collision cross sections. Furthermore, the equation
can be solved without resorting to an expansion in target
vibrational states. Another element in our formulation is the
use of a dipole coupled partial-wave model to predict the
analytic continuation of the negative-ion potential curve intogives the following equations for the radial and angular parts
the continuum, which allows one to build a nonempirical of the wave function:
model whose only input is the potential curve of the anion in
the region where it is bound, the potential curve of the target, d?  Iy(Ih+1)
and itsR-dependent dipole moment. Car? + o —2E

Like the boomerang model, which has recently been ex-
tended to look at resonant nuclear motion in several dimenyq
sions[22,23, our effective-range model can be extended to
polyatomics, with only modest computational requirements, { 1 d

1 ‘
w(r,a,cﬁ;R):;P(r)@(ﬁ)e'm"’ 2

P(r)=0 ()

2
provided a suitable anion potential surface can be con- —(sin 0—) — m —2D cosé
structed. Interesting threshold structures have, in fact, been sin’ 6

observed in the vibrational excitation cross sections of poly-
atomic targets, such as G®24] and C$ [25], which are
nonpolar in their equilibrium geometry, but acquire a tran-
sient dipole moment upon bending. While our initial appli-
cations here are focused en-HCI, the application of this wherel,(I,+1) is a separation constant antis an integer.
model to polyatomic targets has provided additional motiva-The separation constant is written in the form of an effective

+1,(Ih+1)|0,(6)=0, 4
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angular momentunt,, and is obtained by solving for the 1
eigenvalues of the angular equation, E4). We need only 0.75
consider the lowest eigenvalug for the m=0 case since

this is the only angular mode that gives rise to an attractive
centrifugal potential in Eq(3) [2]. Lévy-Leblond[26] con- w 0.25

0.5

sidered this problem and derived a power series for the soo o
lution: =
-0.25
2D(R)? 11/2D(R)?\? 0.5
lO(R)[|0(R)+1]__ 3 +§)( 3 ~0.75
_@ ZD(R)Z ’ (5) 0.04 0.08 0.12
450 3 Real k

FIG. 1. Trajectory of a pole of th& matrix in the complexX
plane for the dipole potential problem discussed in text. We used a

trifugal term I, will be a nonintegralnegativenumber be- . ! . _
tw —1and We will h forth d th bscriot 0 dipole moment function appropriate for HCI. The circles correspond
een™ 3 and zero. We will hencetor rop the subscrip to internuclear distance values of 1.25, 1.922 76, 2.5, 3.077 24, 3.75

on | with the understanding that it refers to the solution of 4 4 49276 bohrs
Eqg. (5). ' '
A nonintegrall value in the radial equation leads to a 4t is, the pole moves linearly along the imaginkmxis as

multivalued Jost functiodf; (K) [13,27]. Indeed, close to the R passes througlR,. For a weakly polar target,(R)=
origin, the Jost function for continuous angular momentum_»>p2/3 and we have. for smab

[12] reduces to a series that has terms that have noninteger

For a subcritical dipole moment)<0.63%4a,), the cen-

exponents, K(R)oi (R—Ry) M1~ (4D*B<j(R—R,)1+(4D*3) (1)
F(K;R)=ag(R)+ay(R)K?+ - - +by (R)K? "1 There is now a branch point &=R,; if D is irrational,
+by(RIK2 34 ... 6) there are infinitely many branches. We will put the branch

line along the negative imaginary axis.

whereK is the momentum of the electronic state relative to  FOr R>R,, k is positive imaginary, corresponding to a
the threshold. A zero of the Jost functioFj(K;R) corre- ~bound state. AR decreases througR,, k becomes com-
sponds to a pole of th matrix. For a bound state, the zero Plex. We will consider its trajectory on what Herzenbgtg]
lies on the positive imaginarK axis. Its behavior near calls “the first counterclockwise sheet,” that is, measuring
threshold K=0) depends critically o, which in turn de- the phase ok counterclockwise from the positive real axis.
pends on the dipole moment through ). Sincel is nega-  Fom Eq.(12), we get
tive for the case of a subcritical dipole, th8'** term domi- 14 (4D23) i 2

_ , _ (4D2/3) i 7((312) + (4D23)]
nates theK? term in Eq.(6), so close to the threshold, the K(R)=(R,—R) e , R<R,

most important terms of the Jost function are (13

The phase ok is greater than 3/2, i.e., it is in the fourth
guadrant of thesecondRiemann sheet, a direct consequence
rpf the attractive nature of the effective potential. There is a
mirror-image pole in the third quadrant with a phase angle of
— 7(1/2+4D?/3), as well as mirror-image pairs on higher
Riemann sheets. These we ignore.

We show the trajectory of a bound state in Fig. 1 for a

Fi(K;R)=ao(R) +by (R)K? 1, ()

Let R, denote the nuclear coordinate at which the electro
becomes unbound, i.eK(R,)=0, and expand the coeffi-
cientsag(R) and b;(R) about that point. We find that the
condition for a zero of the Jost function near threshold is

0=ap(R,)"(R—Ry)+by(Ry)K2 *1 (8)  case where the dipole strength decreases monotonically with
R. The decreasing dipole strength causes the trajectory to
or bend back toward the imaginakyaxis after it passes through
the origin.
K(R)=iB(R—R,) Y2 (R+1] 9) With the effective electron momentum defined by B3,

we construct the negative-ion potential curve as
where we have defined
V2R £ 1] Vion(R)=Vheutral R) + %K(R)Z- (14
1A=L~ 30(Ro)"/b1(Ro)] ' (19 By construction V., crossesV,quiral at R, and acquires a
We can now contrast the case of psrevave scattering negative imaginary part fdQR<R,. ForR>R,, Vjo, is real
from a nonpolar target with the polar case. Wiemanishes, and can be calculated kb initio techniques. For our pur-

| is zero and we get poses, it is presumed to be known. The single parangeier
Eqg. (9) is chosen so that we get a smooth connection be-
K(R)xi(R—R,), (11 tween the inner and outer portions of the ion curve.
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The behavior oV,,, differs markedly from what is seen whereK(R) is defined by the relative spacing between the
in the case of a shape resonance. In the extreme case ofhautral and the anion surfa¢Eq. (14)]:
pure virtual state that can exist in the absence of a dipole
moment, the trajectory oK(R) would follow the simple K(R)=v2[Vion(R) = Vheutra R) 1. (18
parametrizatioi (R) =i(R—R,), changing sign aR passes
throughR, . But $K(R)?=—3(R—R,)? is always real and It follows that f(R)=iK (R).
negative, independent of the sign ®R{ R). This means Matching the logarithmic derivatives of Eq§l7) and
that for a pure virtual state, th¥,,, curve is real and lies (16) atr=r, leads to
below V, ..iral €XCept at the poinR, where they touch. The
introduction of a weak dipole moment does not dramatically

alter this pictureK (R) will move off the imaginary axis as it kohy (Kor o) xo(R) + 2 KnAnhy" (Knl'6)" xn(R)
passes through the origin and,, will acquire a negative iK(R)=

imaginary component. But for a weak dipole moment, the hf(kofo)Xo(R)+z Ah" (Knt o) xn(R)

real part ofV;,, will generally fall below theV ¢ ,ra) POtEN- n
tial curve. (19

We are now in a position to derive the nuclear wave equa- ) ] ] ]
tion of our dynamical model. We further reorganize the matching equation using the fact
that x, is a vibrational state of the neutral Hamiltonian
IIl. NUCLEAR DYNAMICS IN THE EFFECTIVE-RANGE Hheutrar,
MODEL

Knxn(R)=V2(E—E,) ¢,(R) = \/2[E_ Hneutral(R) Ixn(R),
The basic idea behind the effective-range model is that for (20

very low-energy scattering the wave function which de- )

scribes the scattered electron is independent of energy insid@ld_replace each appearance lof with the operator

some radius, [28]. Insider ,, the potential is strong and the V2[E—Hneutra(R)]. The matching equation now becomes

electron follows the nuclei adiabatically. The logarithmic de-

rivative of wave function at=r,, iK(R)[h|(kof0)Xo(R)+§n: Anhr(knro)xn(R)}
1 9¢(r;R
f<R>=( : M) , (15 A R
H(r;R) ar r=r, =V2(E=Hpeutral) h| (Koro)" xo(R)
is introduced to avoid calculations in the inner region. The . ,
log-derivative depends on the internuclear geometry, but is +§n: Anhy” (Kalo) " Xn(R) |- (22)

assumed to be independent of the collision energy, on the
assumption that the latter is small compared to the internal Equation(21) can be further simplified if we assume that

potential. , L . 1, can be chosen large enough so that the Hankel functions
Using Smatrix boundary conditions, the wave functionin ., pe replaced by their asymptotic fornhq‘?,/_(kr)~exp

the outer regiorr>r is replaced by the asymptotic form +/—ikr—1/2). With this assumption Eq21), after rear-
corresponding to the lowest angular mode of the fixed dipol angement, becomes '

problem:
[—K(R)+2(E— Hneunao]; Aqe'tantkoloy (R)

=[K(R)+kolxo(R). (22

¢<r;R>=hr<kor>xO(R>+; Ah (Ko xn(R), (16)

whereyx,(R) is a target vibrational function with energy, , A

k,=\2(E—E,) is the electron channel momentum and Note that the factorg'o**W'o can be incorporated into a

h*(7) is an outgoingincoming Hankel function. Note that redefinition of the coefficients,, without changing thexci-

only the A, associated with redopen k,, contribute to the tation cross sections, which are proportional#g|. So the

cross sections. These in turn are determined by matching tigatching equation is now independentrgf as in the zero-

log-derivative ofy atr,. The log-derivativef (R) is gener-  range potential modg¢P8|.

ally treated as a semiempirical parameter, but with the infor- Equation(22) can be converted to a set of linear equations

mation of the preceding section, it can be determined. for the unknown coefficientd,, by multiplying from the left
We assume that the wave function in the inner region camwith y, and integrating oveR. This is the procedure used in

be equated with the adiabatic Siegert state associated wifRefs.[2,3]. There can, however, be convergence problems

Vion. Which is a purely outgoing wave at large with such a linear systef28]. In many cases, the negative-
ion curve is very different from the neutral curve and may
lim ¢(r;R)~exdiK (R)r —1(R)7/2], (17 even be dissociative, in which case the expansion in vibra-
r—o tional states of the neutral target may not converge.
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Equation(22) can be solved without an expansion in tar-
get vibrational states. If we define the nuclear wave function .29
4 —_
(R) as = 0.08 33
5 =
. = .31
W(R)=2, Agel ™ 0oy, (R), 23 Z 2
n = 0.04 .32 &
= 5
we obtain the following inhomogeneous differential equa- 33
tion: 0.00 .34

1.5 2 2.5 3 3.5 4 4.5 5

[-K(R)+ V2(E—Heutran ¥ (R) =[K(R) + Kg] xo R()2.4) Internuclear distance (a.u.)

FIG. 2. Neutral and anion potential curves for HCI. Solid curve,
Equation(24) can easily be solved in ways that avoid the neutral ground state with lowest three vibrational levels indicated
convergence problems associated with an expansion in targetd dashed curves, real and imaginary parts of anion curve.
vibrational states.
To solve Eq.(24), we must specify appropriate boundary through the origin(Fig. 1) invalidates this approximation.
conditions. For that purpose, it is useful to recast &4)  Consequently, as we will see below, the NWE and BO-NWE
into the form of a driven Schriinger equation. If we define can give very different results close to vibrational thresholds.

V(R)=[K(R)+ V2(E-Hpeura) JUR), (29 IV. APPLICATION TO HCl
we can then write Eq(24) as We have applied the previously outlined theory to the case
of e”-HCI vibrational excitation. The parameters required
[—K(R)+ V2(E—Hpeutra) IIK(R) for the nuclear wave equation were obtained as follows. For
+ V2(E—Hroura) JQ(R) =[K(R) + Kol xo(R) the bound portion of the HCl potential curve, we used the

ab initio configuration-interaction calculations of Astrand
(26)  and Karlstron{29]. Their calculations give & HCI™ curve
that has a shallow outer well centered at 4 bohr and crosses

or, using Eq(14), as the neutral HCI ground-state curve near 2.5 bohr. For the

CHo) 4 \/_— ground-state HCI curve, we used a Morse potential with pa-

{2(E—Hion) +[V2(E—Hyeutra) K(R) }Q(R) rameters taken from the work of Cizek, Horacek, and Dom-
=[K(R)+kolxo(R). (27)  cke[30]. The analytic continuation of the HCturve was

carried out using the dipole coupled partial-wave model out-
As R—x, K(R) goes to a constant and the commutator inlined in Sec. Il. This procedure requires tiedependent
Eq. (27) vanishes, giving dipole moment of the neutral target. This data was taken
. from theab initio calculations of ONeil, Rosmus, Norcross,
(E=Hion) Q(R)=3[K(R) +kolxo(R), R—%. (28)  and Wermef31]. We used a value of 2.54 bohr for the cross-
ing point R,. Finally, we chosef=0.4 in Eq. (9) to
aﬁmoothly connect the real and complex portions of the anion
curve. The potential curves for HCL and HCWe used are
depicted in Fig. 2.
The ion curve is obtained by addidd (R)? to the neu-

It is clear from Eq.(28) that{(R) is effectively the wave
function that describes the temporary molecular state th
moves asymptotically on the negative-ion curve. For tota
energiesE below the dissociative attachment threshold,

Q(R) will go to zero asR—, while above the dissociation tral HCI potential[Eq. (14)]. For R>R, . K(R) is positive

threshold, the appropriate boundary condition f¢R) is imaginary: V.. is ourely real and lies below cor-
that it behave asymptotically as a purely outgoing wave. ginary; Vion IS purely neutrals

Having solved the nuclear wave equatiWWE), Eq. (27), responding to an electronically bound state. FROXR,,

the excitation amplitudes are then evaluated by projectin (R). lies in the fom_thh quadrant of the _complex plane and
the solution onto a target vibrational state: jon 1S complex. SinceK(R) stays relatively close to the

negative imaginary axis, the real part \f,, stays below
Vneutral-
An= f Xn(R)W(R)dR= f Xn(RI[K(R) +k,]Q(R)dR. To solve the NWE[Eq. (27)] and BO-NWE[Eq. (28)]
(29) equations, we used a discrete variable representdiviR)
of the operatorsH e ral(R) and K(R) based on Lobatto
If we drop the commutator in Eq27) entirely, on the shape function§32]. The DVR provides diagonal represen-
assumption, in the sprit of the Born-Oppenheinf®0) ap-  tation of any local operatdrK(R) and V,euira(R), in this
proximation, that the nuclear kinetic-energy operator com<asd, while the matrix elements of the derivative operators
mutes with the logarithmic derivative defined in E45), needed to express the nuclear kinetic energy are given by
then we need only to deal with an inhomogeneous Schrosimple analytic expressioi82]. For calculations at energies
dinger equatiofBO-NWE), Eq.(28), at allR. In the case of above the threshold for dissociative attachment, we need to
a polar target, however, the behavior K{R) as it passes impose outgoing-wave boundary conditions in solving the
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NWE and BO-NWE equations. This is easily accomplished
within the DVR[33] by mapping the internuclear coordinate 14}
with the following exterior complex scaling transformation 121
R, R<R,
Ro+(R—Rg)e'”, R=Ry,

[y
o

R—M(R)= (30)

whereR; is lies outside the interaction region. Exterior com-
plex scaling automatically imposes the outgoing-wave & ,i
boundary conditiori33]. The NWE and BO-NWE are then
replaced by a set of complex linear equations. For the NWE, 2|

we need a representation of the operat@(E—Hcytral) -
This is accomplished by diagonalizir),e 4 in the DVR

ross section (A2)
(o)

H v
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

basis and expressing the operator as Energy (V)
V2(E=Hneura) ~ 2 ti(RIV2(E-E)U(R), (3D) o
1.2
where E; and u; are the eigenvalues and eigenvectors of = 1
Hneutrar in the finite DVR basis. 200 DVR functions on a 20 g
bohr interval withRy=13 bohrs were found to give con- § 0.8
verged results. The excitation coefficients, given by &§), w 0.6
were also obtained using Gauss-Lobatto quadrature with ¢ 8
DVR representation of the target vibrational states. The vi- ©0.4 1
brational excitation cross sections are expressed interms a .2
the excitation coefficients by the formula \

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7 K, ) Energy (eV)
Ton= 2 k_|An| : (32 o o .
oo FIG. 3. Vibrational excitation cross sections for HCI computed
with NWE and BO-NWE models. Solid curves, NWE; and dashed
In Fig. 3, we plot the 6-1 and 02 cross sections ob- curves, BO-NWE. Top panel, 81 cross section; and bottom
tained from the NWE and BO-NWE models. The most sig-panel, -2 cross section.
nificant differences between the two models are evident in
the immediate vicinity of then=1 andn=2 vibrational normalized to the theoretical values. As previously men-
thresholds, where the NWE produces sharper threshold strugioned, the calculations are extremely sensitive to details of
tures. The threshold regions were found to be quite sensitivehe anion potential curve in the vicinity of its crossing with
to the detailed behavior d€(R) in the crossing region. Un- the neutral, and thab initio data from which our models
fortunately, the calculations of Astrand and Karlstr29],  were constructed leaves some uncertainty about this region.
which we used in the construction of the anion curve, giveNevertheless, it is clear that the model calculations capture
only three points in the vicinity of the crossing, making it the essential features of the observed excitation cross sec-
difficult to determine precise values for bojh and R, . tions.
Small changes iR, alter the magnitude and shape of the
threshold peaks, but this sensitivity is greatly reduced as
soon as the collision energy is a few tenths of an eV above a
vibrational threshold, where the NWE and BO-NWE models We have formulated a model for low-energy electron-
give similar results. The oscillatory structures between 0.7molecule scattering that can be used in situations where the
and 0.8 eV are associated with quasibound levels supportesbllision dynamics is effected by the presence of a virtual
by the outer well in the HCI curve (cf. Fig. 2. state. The formulation is based on a zero-range model that
The results computed with the NWE and BO-NWE mod-approximates the electron-molecule interaction by a match-
els are compared with the experiment in Fig. 4. For the Oing condition that is independent of energy but changes with
—1 cross section, we show the experimental values of Schdarget nuclear geometry.
fer and Allan[34] from threshold to 0.5 eV, for collision The zero-range model was originally presented as an in-
energies above 0.5 eV, we use the more recent highfinite set of linear equations with parameters that were ad-
resolution data of Allaret al. [19]. The 0—2 data is taken justed to fit experimental observations. Our reformulation of
from Schafer and Allan and does not have the resolutionthe zero-range model has achieved two principal goals. The
needed to display the outer-well structures. To facilitate thdirst is to obviate the need for a semiempirical determination
comparison with theory, the numerical results were convoof the model parameters by deriving an approximation to the
luted with a Gaussian of 20-meV width. The experimentalcomplete anion potential curve using properties of electron-
results were all reported in arbitrary units and were hencealipole scattering. The advantage of such an approach is that

V. DISCUSSION
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The second feature of the reformulated zero-range model
is that the infinite system of linear equations can be recast in
the form of an inhomogeneous differential equation or
nuclear wave equation. This obviates the need for an expan-
sion in target vibrational states, which can diverge at ener-
gies above the threshold for dissociative attachment. More
importantly, it provides a viable path to extending the treat-
ment to polyatomic targets.

To illustrate the method, we have revisited the problem of
vibrational excitation of HCI by electron impact and showed,
for the first time, that a simple zero-range model predicts the
03 032 05 0% 07 Tos o oscillating structures in the cross sections. These oscillations

Energy (eV) originate from the shallow outer well in the HClpotential
curve and have been predicted by the projection operator
0.8 : : - - : : theory and confirmed experimentally. While our calculations
reproduce essential features of the observed excitation cross
sections, the correspondence with experimental data is not
perfect. This is caused by uncertainties in the availatle
initio data we used as input and the inability to treat the
p-wave shape resonance in our model, which is known to
play an important role at higher energies. Indeed, a disadvan-
tage of the current formulation is its limitation to low-energy
swave scattering. There are many interesting problems in
electron-molecule scattering where the cross sections display
both low-energy virtual state effects and the effects of shape
resonances at higher energies and the current approach is not
0.3 0.4 0.5 OE 6 OV7 0.8 0.9 able to deal with these situations in a unified way.
nergy (¢V) The present formulation of the zero-range model can be

FIG. 4. Vibrational excitation cross sections for HCI. Compari- €xtended to small polyatomic targets with modest computa-
son of NWE and BO-NWE model results with experiment. Solid tional effort and calculations on tre -CO, system are cur-
curves, NWE; dashed curves, BO-NWE; and dotted curves, experf—enﬂy underway.
mental results(see text for explanation Top panel, 6-1 cross
section; and bottom panel 02 cross section.
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