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We have derived cross sections for Compton scattering of very hard incident phéteps inc®) from
K-shell electrons, exact in the nuclear chafg& he nuclear potential was taken to be of Coulomb form. The
calculation of the extreme relativistiER) S-matrix element involved was carried out analytically. In the
present case, this is the viable alternative to an impracticalbleitio numerical computation. In order to
obtain the dominant behavior of the matrix element in the lasgdimit, the momentum transferred to the
nucleus needs to be ascribed a constatlieit arbitrary value in the limiting process. The result depends
critically on the spectral range in which the scattered-photon enesgy situated. We start by considering the
w, range covering the Compton line, for which the ratig/ w, needs to be kept finite. We show that in the ER
limit the Dirac electron spinors and Green'’s operator enteringSthatrix element can be replaced by their
relativistically modified Schidinger counterparts. This allows the application of integration methods devel-
oped by us earlier for the nonrelativistic matrix element. Remarkably enough, the sixfold integrals of the ER
matrix element can eventually be reduced to single integrals, expressible in terms of generalized hypergeo-
metric functions. The doubly differential cross sectidtv/dw, dQ, for the range of Compton line finally
results as a twofold integration, requiring a simple numerical computation. This is a rather unique example of
a most elaborate Coulomb problem that could be solved analytically, essentially in closed form. We subse-
quently consider the low-«f,— 0) and high-frequencyd,— »J*) ends of the scattered photon spectrum. For
w,—0 we find the expected infrared divergence, and verify the soft-photon theorem, which represents an
important check on our calculation. Finally, we present our numerical resulg?égidw, dQ),, analyzed at
fixed w, (angular distributions or fixed photon scattering anglspectral distributions We discuss the “de-
fect” and the width of the Compton line for both distributions.
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[. INTRODUCTION Compton structures. It does have the advantage of requiring
a modest amount of computation. Whereas, there exists an
The binding of an atomic electron entering Compton scatpriori justification for the validity of the NR impulse ap-
tering has the effect of broadening and shifting the spectrgbroximation, none has been given so far for its relativistic
line of the scattered photon with respect to that of a freeversion.
electron at rest. The effect depends critically on the energy of The definitive approach for solving the Compton problem
the initial photon. At x-ray energiesfigpw;<mc?), where  within the independent-electron approximation is the integra-
only outer shell, weakly bound electrons contribute promi-tion of its relativisticS-matrix element in the Furry picture of
nently to the scattering, the effect can be treated within nonQED (for the theoretical background of the relativistic treat-
relativistic (NR) quantum theory. In this case, the profile of ment, see Akhiezer and Berestetskii, Sec. 35 of R&jf. In
the Compton line provides valuable information on their mo-general, the evaluation has to be done numerically. Eventu-
mentum distribution in the initial state, a fact extensively ally, the “numericalSmatrix approach” was achieved in the
studied theoretically and experimentallg.g., see Refs, pivotal work by Suric, Bergstrom, Pisk, and Prgti. Their
[1,2], and references therginAt higher, y-ray energies, for program is capable of handling all atomic shells, within the
which 2w, is no longer small with respect tmc?, relativ-  independent-electron approximation with a relativistic cen-
istic theory is needed for the description, both because of thtral potential of the Hartree-Fock-Slater type. It offers a uni-
high energy of the incident photons, and the high nucleafied treatment of the whole photon spectrum, can achieve
chargesZ of the elements of practical intere&ppreciable high numerical accuracy, and represents a trustworthy basis
aZ). An overview of the relativistic regime of Compton for the analysis of experimental data. It is limited, however,
scattering was recently presented by Bergstrom and [Bjatt at high incoming photon energiésy,, by the convergence
see also Refl4]. of the partial wave summation it contains. In practice, the
Relativity is hard to deal with, so that various approxima-limitation sets in at abouk w;=2 mc?.
tions have been considered. A significant advancement was The goal of our paper is to treat the extreme-relativistic
the “relativistic impulse approximation,” e.g., see Ribberfors (ER) casef w;>mc? of Compton scattering, left uncovered
[5] and references therein. This heuristic approach is quitby the numericaEmatrix approach. We shall derive analytic
successful in describing the Compton line at higher energiesross sections for thi€ shell, exact irZ to dominant order in
but can give no information on special features of the specmc®/%w,. We are considering the case of a Coulomb poten-
trum, such as the infrared divergence or the resonant Ramatial, ignoring therefore screening corrections, which forkhe
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shell are known to be small. We proceed from matrix  For the Compton effect, the related process is the photo-
element for Compton scatterin@ef. [6], Sec. 33, our ap- effect, and the corresponding soft-photon theorem has been
proximation being that of retaining systematically only the proven and discussed in various approximations by Gavrila,
dominant order ifmc®/ w,. We shall focus mainly on the Sec. IV of Ref[8] (exact nonrelativistic Coulomb case with
cross sectiom?a/dw, dQ),, differential with respect to the retardation, McEnnan and Gavril§13(a)] (relativistic Cou-
energy and angles of the scattered photon. lomb case, correct Born approximatjpBergstrom and Pratt
The method we use for integrating the ER matrix element3] (numerical self-consistent potential casand Rosenberg
is based on a combination of analytic procedures developeand Zhou[15] (exact nonrelativistic case with retardation,
earlier in related contextqNR Compton scattering8], and  relativistic short range potential caséVe shall check the
ER Rayleigh scatterin§9]). We shall show that the Dirac theorem in the ER case. The related ER photoeffect cross
spinors and Green's operator needed in the calculation of thgections for theK shell were derived by Boydrl6], Nagel
extreme relativisticCompton matrix element can be replaced[17], and Prat{18]. This check offers an important confir-
by their nonrelativistic counterparts, taken with relativisti- mation of our analytic ER procedures. The issues concerning
cally modified parameters. This allows the integration of thethe infrared divergence and soft-photon theorem will only
ER matrix element in a manner similar to the NR cf8  briefly be touched upon here, as they have been treated in
The physical role of the many parameters of the scattering ignore detail elsewherfl9,20.
explicitly displayed by the formulas. We have here a most Our endeavor on ER Compton scattering was encouraged
elaborate Coulomb problem for which it was possible toby the new developments in the production of hard photons.
complete the calculation analytically and obtain the result inWhereas there are few natural radioactive souf2éas that
closed form(hypergeometric functionsin a situation when qualify for o /mc®>1, remarkable advances have been
a direct numerical computation is still prohibitive. made recently in the development of artificial sources, at
The problem we are treating was discussed, early on ielectron storage ring facilities. Hard rays can be obtained
the development of relativistic quantum mechanics, by Paulby Compton backscattering of ultrarelativistic storage ring
and Heisenbergsee Ref[10]), in connection with the be- beams with intense optical photon beams. This can yield
havior of the Compton line of an electron bound by a potenphotons of MeV energy, depending on the velocity of the
tial of nuclear chargeZ, in the limit of very high energy electrons and energy of the optical photons. A characteristic
hw;>mdc?. The question posed was: does the cross sectiofeature of thesey rays is that they are 100% linearly polar-
go over in this limit to the Klein-Nishina cross section for the ized. Energies of up to 32 MeViw/mc®=64) have been
free electron(independent oZ) or not? Using a qualitative reported[22(c)], 50 MeV are expected in the near future
argument based on the Klein-Nishina formula for a free elecf22(a)], and up to 225 MeV are considered to be attainable.
tron with nonvanishing initial momentum, Pauli answeredSuch photons have a very large rati@/mc?, and would be
the question in negativie.1]. On the occasion, he recognized excellent candidates for our cross sections.
that, in order to obtain the dominant behavior of the ER cross However impressive the achievements of the laboratory
section, one needs to keep fixed the magnitude of the maources may be at producing haydays, they cannot com-
mentum transferred to the nucleus. An accompanying papgrete with astrophysical sources. Spectacular progresg of
by Casimir[12] (also described in Sec. 35.3 of R¢6]), ray astronomy in the past decade has revealed the existence
confirmed the existence of 2Adependence for the ER limit of sources emitting photons in the enormous energy span
of the cross section. The approach used was inconsisterftom 1 MeV to 10 MeV, in many cases with high fluxes,
however: in the evaluation of the exa&tmatrix element, an see Ref[23]. The sources are either of galactic nat(eey.,
exact expression was adopted for the inifkakshell Dirac  spin-down pulsars, accreting x-ray binaries, supernovae rem-
spinor, whereas free electron approximations were used farants or extragalacti¢e.g., Seyfert and radio galaxies, blaz-
the final state spinor and the Green’s function. It has beears. This could represent another possible area of applica-
later realized that such lowest order Born approximations daion of our formulas.
not lead to correct results, not even to lowest ordew i) The content of the paper is the following. In Sec. Il we
e.g., see Sec. VI of Refl3(a)]. Our answer to the Pauli- present the relativistic matrix elements and cross sections of
Heisenberg question will also be negative, but is the result ointerest, within the Furry picture of QED. The incoming pho-
a consistenS-matrix approach. tons are taken to be linearly polarized, as are those produced
Another theoretical question related to Compton scatterby the storage-ring FEL sources. We consider mainly two
ing is that of the behavior of itS'matrix element and cross cross sections: the quadruply differential cross section, in
sections at low frequencies of the final photen (desig- which both the characteristics of the scattered photon and
nated as “soft). Various studies have found these to be di-ejected electron are recorded, and the doubly differential one,
vergent forw,— 0 (infrared divergencg in that they behave d?o/dw, d€),, in which only the characteristics of the scat-
as (1lhw,). The divergence is common to processes involv-tered photon are recorded. Section Il discusses the ER kine-
ing emission of a secondary photon that can share energyatics. In defining the notion of ER limit, we show that the
continuously with other particledere the ejected electrgn  dominant order of the cross sections foy— o0 is obtained
and is well known in QED(e.g., see Ref[14]). Moreover, by keeping the momentum transferred to the nucleus fixed in
the matrix elements and cross sections for such processes dhe limiting process. The result depends, however, critically
known to be related to those having the same initial condion the value ofw,. We consider the three, ranges:(i)
tion, but no secondary photon, by “soft-photon theorems.”soft-photon end ¢,—0), (ii) Compton line (,/w; finite),
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and (i) high-frequency endd«,— w1'®), which require dif- effect, in which all chargcteristics of the particles involved
ferent treatments in the ER limit. In Secs. IV=VI we study are recorded, can be written 4]

the Compton line. Section IV introduces the quantities
needed to calculate the matrix element in momentum space.
Whereas the final state spinor and the Dirac Green’s operator
need to be expressed only to dominant ordemict/% w4, 5
the initial state spinor has to be considered exactly, in order Xp“dp dQ,dr, dQo, @
to ensure the exa@ dependence of the final results. More- )
over, the final state spinor and the Dirac Green’s operator cayhere d(2, refers to the angles ok,, and thes function
be expressed in terms of their nonrelativistic counterpartstakes care of the conservation of energy

with relativistically modified parameters. Thus, at start, the

matrix element contains sixfold momentum integrals over Eotk1=Eptka. 2
nonrelativistic ingredients, and three parametric integrals. In

Sec. V we outline the integration of the ER of the matrix The matrix element entering here is given by

element for the Compton line. The sixfold momentum space

integrals can be evaluated in closed form, using formulas MO=MD+ME), ©)
derived in our earlier works. Of the three parametric inte-

grals, two can be carried out analytically, and the last one can 1)_ (-t e _

be expressed in terms of hypergeometric functions of two M _J f Upm, (r2)€ "2 72(@ ) G(r2,ry;42y)
variables,F;. In Sec. VI we give the complete analytic ex- _

pression of the doubly differential cross section X(@ )€1 gy (ry) drydry, 4
d2g/dw, dQ,. This reduces to a single integral over the

K
d4o= aZK—2|M(C)|25(E0+ K1~ Ep— 1)
1

modulus square of a combination Bf, functions. At zero _

photon-scattering angle, our results display a peculiar in- Mm:j fUf;ﬁq);(fz)e"‘l"z(a'Sl)G(fz,rl:Qz)
crease in order of magnitude of the cross section with respect _

to (mc®#Aw,), Nno matter what the characteristics of the X(a sp)e” " Uy, (ry)drydry. (5)

ejected electron are. F&&—0, the ER limit of the Klein-

Nishina formula is regained. Section VII contains a brlefuoml(rl) is the initial spinor of the electron, amf);)z(fz) is
presentation of the results for the low- and hlgh-frequenpy[he final, continuum spinor with incoming asymptotic spheri-
ends of the scattered photon spectrum. At low frequencie al waves, normalized per momentum intervi2s]
w,, the ER form of the soft-photon theorem is obtained. AtG(rz,rl;Q) is the Green’s function for the Dirac equation,

high frequenciegthe “tip” of the spectrum), a peculiar in- . )
crease in order of magnitude imc/% w,) of the cross sec- with energy parametei}. 2, and{}, are given by

tion is found. Section VIII contains our numerical results for
d?s/dw, dQ,. We analyze the resulting angular distribu-
tions (at fixed w,) and spectral distribution@t fixed photon
scattering angle Both present a Compton peak, and we dis-
cuss the behavior of its “defect(shift from free electron
line) and width.

The calculations we present are tedious. We shall be giv-
ing in the following the minimum amount of analytic infor- _ )
mation needed to understand the physics, and to make poE9r the electron spinors we need to takg=uy,'(r), Q
sible the reproduction of the intermediate steps. =E, Y=0, and for the Green's functionZp
=G(r,r";Q),Y=46(r—r"); | is the 4<X4 unit matrix.

In the following we shall not be interested in the depen-
dence of the cross section on all the characteristics of the
photons and electrons. We shall consider initially polarized

In the initial state of the process, we are dealing with aphotons but will not analyze their final polarizations. Neither
bound K-shell electron of energf,=y=(1—a%? and shall we analyze the final polarizations of the electron. The
magnetic quantum numben,=+(1/2), plus a photon of corresponding quadruply differential cross section per
momentums;, energyw,=«,, and polarization vectog,.  K-shell electron is
In the final state we have a continuum electron of asymptotic
momentump, energyE,=(1+p?* and magnetic quan- ~ ok 1
tum numberm,= *+(1/2), the scattered photon having mo- do=a Ky % 2
mentumee,, energyw,= k,, and polarization vectos,. We

91:E0+K1+i6, QZZEO_KZ_iS. (6)

The electron spinors and the Green’s function satisfy the
(homogeneous/inhomogenedrac equation

(a-P+pB—alr—Q)Ep=YlL. (7)

II. RELATIVISTIC MATRIX ELEMENTS
AND CROSS SECTIONS

> IMOP2S(Eg+ ky—Ep— k)

ml,mz

are using natural unitsi(=m=c=1), and denot@a=aZ, X p?dp dQ,dr, dQ,. (8
where « is the fine-structure constarin natural unitsa
=e?). Integration over the momenta of the electron givesdba-

The quadruply differential cross sectidior the Compton  bly differential cross sectignwve shall focus upofi26]
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d?a . (i) The range of the Compton linedefined by %
E IM©) =(k,/Kky)=const, withz such that
dK2 sz 2 ml my
X 8(Eg+ k1~ Ep—kp)p?dpdQ,.  (9) € <yp<l-w, (14)
[ll. EXTREME-RELATIVISTIC KINEMATICS where ¢’ and w are positive, sufficiently small quantities.

We shall show further that this spectral range covers, indeed,
the profile of the Compton line.

Equation(14) implies thatx, is obliged to tend to infinity
concomitantly withx,. From Eq.(2), we obtain in the ER

Our goal is to extract the dominant behavior, exacZin
of the cross sections Eg®8) and(9), for x;>1 (mathemati-
cally k;—o0). To this end, it is useful to express the matrix
elementsM™® and M® in terms of the momentum trans-

ferred to the nucleus limit
A=K, — K,— . (10) p=(1—n)Kk;—, (15
By rearranging the integrand M '*, Eq.(5) may be written 0 1= Ki_ Ky Ky Ky A
M(l)_f f[e ip- Irzu( ) (r,)]7e% 2(a-s,)e"*1 T2 =K§(1—77V1-V2)—K1-A

= .2 — =
xG(rZ!rl;Ql)elkl'rl(a{'Sl)uoml(rl) drldrz, —Kl(l 77) Pkq, (16)

(11) where we have used the notation Efj0), and

and similarly forM(2)

In the limit x;—, |A| may either tend to infinityif the
angles between the vectors involved are kept fixed may
remain finite(if the angles are allowed to decrease conve-This shows thap and x; are again quasiparallel in the ER
niently in the process However, the values oM® and  limit.

M® at finite |A| are dominant over those foA|—o. In- (iii) The tip of the spectrumlocated in the vicinity of

deed, in the latter case the rapid oscillations of the exponen<; **=Ey+k;—1, hence havingp=0. In this vicinity, «,

tial e'A "2 in Eq. (11) have an annihilating effect on the inte- =«;—o, but <1 (strictly). This case will be discussed in

gral, as opposed to the former case. Since we are interest&egc. VII.

in a result to dominant order in (&4), we shall consider the We shall now derive some kinematic relations for the

case range of the Compton line. To this end, we shall consider

K, Ky, andA, as the variables characterizing the scattering,

k1—, A=finite; (120 instead of the original sek;, x,, andp. Let us therefore

change the integration variables accordingly in B). The

energy conservatiod functioncan be written as

ViEKi/Ki (|:1,2) (17)

this we shall designate as tlR limit

The ER calculation of the matrix element and cross sec-
tions depends on the range of the scattered photon spectrum ) N
considered. One can distinguish three main ranges. 8{Eqt k1~ Ko~ [p?+1]"3

(i) The soft-photon enddefined by =2(Eg+ Ky — K2)5{(P2+ 1)— (Eg+ k1— Kz)z}_
K<€, (13 (18)

wheree>0 and sufficiently small. In this range, the Comp-
ton effect and photoeffect, having the same initial conditions,
are connected theoretically by the “soft-photon theorem.”

By eliminating herep in favor of A, we have

On the other hand, because any photon detector has neces- 8{(p?+1)— (Eo+ k31— Kk2)%}

sarily an energy resolution threshalg below which it can- — 52 1—p - p.)—2E _

not detect anything, fok,<ey, the Compton effect cannot {2110 v,) ol k1~ K2)

be distinguished experimentally from the photoefféitte —2A- (K, — 1)+ (A%+a?)}. (19

quantitiese ande 4 are unrelated This scattering regime will
be discussed in Sec. VII.

From Eq.(2) it follows that in this case@ takes the maxi-
mum possible value at giver;. In the ER limit, we have
p=k;—0. Moreover, by combining this with Eq$10) and
(12), we findp- k;=pk4 , i.e.,p is quasiparallel tac; in the
angular range which gives the dominant contribution to the
cross section. the right-hand side of Eq19) can be transformed into

Further, defining the unit vectar, and the cosinev of its
angle withA, by

U= (v, — nw))l|vy— v, w=u-(A/A), (20
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ol s (1-rim) TR i PG .t Py
K| v1— VoAl W— w————| kp(l—wy -, W= - - -
ur e A|V1_ 77V2| 2 L2 |V1_ 77V2|A g 4 g 2K
2+ 2 . =~
—Eo(1—np)+ (Az—a) ] we shall denote the result of this replacemenﬂ\b&?g.
= (b) It confines the integration ove, asw needs to sat-
1 5( 1 isfy
= wW—
2K1|V1_ 7]"2|A |V1_ 77V2|A ~
—1lsw=1. (27)
(A%+3a?) )
X mEBollmm+ 5 - @Y This leads to a limitation o.

The exact form of theS function in Eq.(23), and hence
We have introduced here the notation Eqgs.(26) and(27), contains corrective term3(1/«,). Since
we are interested in obtaining a consistent result only to
0 dominant order in 1, it would appear that these terms
E=r1(1-v- 1) =2k 3'”2§v (22 should be discarded. However, as will become apparent in
Sec. V, there is a peculiar increase of order of magnitude of

whered is the angle between the unit vectarsand v,. As the matrix element and cross sections when passing fom
we are operating under the condition Efj4), we have|v, #0 to£=0, and the corrective term in E(R6) is needed for _
— 1| #0. Note that we have made no approximations in2 PrOPer handling of this passage. We shall, therefore, keep it

handling thes function, Eq.(18). until it is safe _to discard it_. _
Returning to the cross section E@) and inserting Eqs. ~ VWhen dealing solely with the case#0, we can use in-
(18)—(21) in it, we find stead ofw of Eq. (26) the expression
ksl ©pz YT K1 K2) ao=d =T e, 28
a2 2 2, MEF s A Tyt 29
_ _ _ [Recall that, according to condition E@l4), we have to
xo\w |v1— vy A ( 7= y(1=m) lowest order in 1#;: |v,— nv,|=(1—7%).] In this approxi-
A2+ a?) mationu,»;,v, coincide, so thatv® is the angle ofA with
+ (2— )dKz dQ, A2dA dQ,, (23 any one of them. From Eq27) we get
K1

. . A=|ql. (29)

containing the ER form of the matrix element. In Eg3),
we have replaceé, by y. _ Note that when the cross section E§) is expressed in

~ The & function in Eq.(23) allows us to draw important  tarms of the variables,, &, andp, the energy conserving
kinematic conclusions. If the unit vectes, is situated in an 5 function places a constraint gnat given x;,«,. In the
angular range such that {1v,-»,) stays finite(finite angle ey variabless;, #,, andA, this is translated into a con-
scattering, we have{—c in the ER limit, and the value of  graint on the direction oA, which should be at fixed angle
w for which the & function becomes singular is pushed to yjth y, given by Eq.(26). (Because of the quasiparallelism
infinity, and hence lies outside its allowed interval of varia- 4¢ v, andv,, A is approximately also at fixed angle with

tion (—1<ws=+1). Therefore, the5 function will reduce ,, ) However, the magnitude a is required to be in excess
the value of the cross section Eg3) to zero. However, iy,  f lal, Eq. (28).

varies in an angular range defined by By integrating ovew in Eq.(23), we get a new quadruply
differential cross section

(1_1/1' Vz):O(]./Kl), (24)
4~
& will be finite, and the singularity of thé function can be &
made to lie within the interval { 1<w=<+1), so that the diz dQ2, dA dP
cross section Eq23) be nonvanishing. We conclude that, in _
o ) , , (y+K1—Ky) 1 ~
the ER limit, the range o, that gives dominant contribu- =’ p—— A, = >, IMO2
tion to the cross section is small-angle scattermgs v;. As Ky =yl TG 2w,
0 is small, one gets from Eq22) the connection (30)
E=r1(6°12). (25  We choose a reference frame that has ztexis along the
vectoru, Eq.(20), andr; andw, in the Oxzplane; the polar
Thus, theé function plays a double role in E423). angles ofA are®=arccoswv, and®. The doubly differential

(a) It fixes the value ofw in the matrix elemenM () at cross section E¢9) can then be written
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f AdAf

In passing from Eq(30) to Eq.(31) we have used Ed29),
and the fact that now; — nw,|=(1— 7).

d OER .
dr,dQ, =a’y

d@E > M2

m1 mz

(31)

PHYSICAL REVIEW A 68, 052709 (2003

2aW
A+—+(W2 1|EL=Y, (38)

and G, is the Green’s function associated with it. For the
Green’s function casg Y=45(r—r’)I] we need setE{,

We note that already Heisenberg and Pauli, Sec. 1 of ReFEEGo(r2,r1;Q)I, while for the the continuum spinor case

[10], had realized that Eq§12), (14), and(24), were the key

(Y=0) we need seEy=ul")(r)x. HereG(r,,r,;Q) and

conditions needed to define the ER limit of the Compton Imeu( )(r) are solutions of the ordinargnonspinoy equation

for bound electrons, although no proof was given.

IV. MATRIX ELEMENT FOR THE RANGE
OF THE COMPTON LINE

To derive the ER form of the matrix element for tfamge
of the Compton linecase(ii), it is convenient to express the
Green’s function G(r,r’;Q)) and the continuum spinor

;] (), appearing in Eq(11), in terms of the corresponding
quantitiesG'(r,r’;Q) anduy7(r), for the iteratedsecond
ordep Dirac equation. For the Coulomb potential the
(homogeneous/inhomogenedtsrm of the iterated equation
can be written age.g., see Ref[6], Eq. (14.2)), or Ref.
[27(a)]], Eq. (3.6)]

[A+(W+alr)?—I+iaa- r/r¥]E'=YI. (32

Per definition,G'(r,r’;Q) satisfies this equation witfE'

=G'(r,r’;W), W=0, Y=8(r—r’) I, and up$(r) with

E'=ull )(r) W=E,=(p?+1)2 Y=0. The connection
betweenG' andG is [28]

G=—(a-P+B+alr,+Q)BG'B, (33
and that between ") andu{)
uly = ——(a P+B+alr+Q)Buy). (34)

Thus, the matrix element Eq1l1) can be written as

(1) 1 —ip-r () t
M =5 [e da- P2+B+a/r2+Ep}ﬁu|pm2(r2)]

xet 2 a s)e” 2 a- Pyt BHalr,+ Q)

XBel(rzarl;ﬂl)ﬁeml'rl(a'Si)uoml(rl)drl dry,

(35
and similarly forM ().
G' and uy!,”) satisfy an integral Lippmann-Schwinger

type of equation following from Eq(32), the usefulness of
which will become apparent shortly. Defining

R(r)=iaa-r/r3+a?/r?, (36)
the integral equation can be written in operator form as

(37

— o
=]
— —

b+ GoIRE!

Here Zy, is a solution of the equation

assomated with Eq(38), and y is an arbitrary constant
spinor. y should be chosen such that the Dirac spimgy in

Eq. (34) reduces asymptotically to a normalized free particle
spinor x,,m of the Dirac equation, Ed7), with momentunp

and spin projectiom on thez axis, as required by the matrix
element Eq.(4). This can be achieved by choosing

= Xpm, and thusE4= ul)(r) x,m [see also the comments
following Eq. (49) below]. From Eq.(398) it follows that
(—Ey/2) satisfies the homogeneous/inhomogeneous Schro
dinger equation for a Coulomb potential, in which the charge
a and energ)E have been modified according to

a=aW, E=3i(W?-1). (39

We shall integrate in the following the matrix elements
M@ M@ in momentum space. By Fourier transforming we
have

M<1>=—f f[{a A+ B+V(Q) +Ep} AUyt ()] (e s)
X{a-(pat#e1) + B+ V(patry) +Q }B

04)
S1)Uom, (P1)dpy dp;,

XG (p2+Kl, 1+Kl!
X B(a- (40

1
M(Z):EJ f [{a g+ B+V(e)+Ep} Bub ()] (e sy)

X{a-(pp— 1) + B+V(p—

X G'(py—

Ko) QLB

Q) B(a: ) Uom, (P1)dp1 AP,
(41)

Ko,P1— K,

with the notatiog=p,+p+A. V(q) is the integral operator
in momentum space correspondingufr)=—a/r, see Ref.
[9], Eq. (12). Equationg(40) and (41) are still exact.

Let us now consider the ER limit of the matrix elements
Eqs.(40) and(41). For theGreen's function Gwe shall use
the momentum-space form of E@37). Its first term E'O
=Gy(p,,p1;Q)! contains the nonrelativistic momentum-
space Coulomb Green’s function withodified parameters
as in Eq.(39), for which we can use the integral representa-
tion of Schwingef29] and Hostlef27], see also Ref8(a)],
Eqgs.(18)—(20),
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1

Go(p2,p1;Q)=—

|

wherer=a/X, X?=—20, with ReX>0. By modifying the
parameters according to E@9), we have

4772 Op %

X?=1-02, r=aQ/X, ReX>0. (43
In fact, in Egs.(40) and (41) we need the ER limits of
G'(po+ ry, Pyt Ky Eot ki +ig), and G'(p— ko, pr— o)
E,—k,—ig). It was shown in Ref[9] that only the first
term of the integral equation fa@@', Eq.(37), contributes to

these limits

lim Gl(p2+ Kllpl+ Kl;E0+ K1+i8)

K1—®

= I|m Go(p2+K1,p1+Kl;Eo+K1+i8)|, (44)
K1—®
lim Gl(pz_Kz,pl_Kz;Eo_KZ_iS)
Kp—®
= I|m GO(pZ_K21p1_K2;Eo_K2_i8)|1 (45)

Ko—

if p; andp, belong to a finite domain; moreover, the limits
are proportional to (X;) and (1k,), respectivelyfsee Ref.
[9], Egs.(16)—(25)]. Since the integrals, Eq§40) and (41),
are assumed to be convergepy, andp, vary essentially in
a finite volume, as required by Eqg4) and(45). Therefore,
we are in a position to replace in our calculation the relativ
istic G' with the nonrelativisticG,l with modified param-
eters, which represents a great simplificafi8f]. Note that
we can use, indeed, EGL5) for the calculation of the matrix
element Eq(41), because, at finitey [see Eq(14)], we also
have k,— .

Turning now to thefinal state spinor {4~ (q), we recall
that in the caséii) we are studyingp—o. We shall again

use Eqg.(37) in momentum space. lts first term contains the

nonrelativistic continuum Coulomb wave functiofy(q),
which is the Fourier transform af{™)(r)=N.e""";Fy(n,1;
—i(pr+p-r)), e.g., see Refl6], Eq. (29.39; n is defined

nonrelativistically as n=(al/ip). For momentum-
normalization, we shall take
Ne=—(2m) ¥2e(™IN T (1+i|n]). (46)

By using a closed-loop integral representation for the conflu-

ent hypergeometric functiopF 4 [31], and taking its Fourier
transform, one obtainjsee Ref[8(a)], Eq. (17)]:

g5

Yy
X dy.
(a-py)2+le+ip1-y)Ia2

_ 4pN.

(-)
u =
(271')3/2

p

(@)

(47)

dp,
P [X3(py—p2)?+ (pI+ X3 (p3+X?)(1—p)?/4p]?

(42

The integration contour encircles in counterclockwise sense
the critical pointsy=0 andy=1 of the integrand, but leaves
outside its pole; the principal value of the imaginary power

in the integrand should be taken. However, Ey) should

be entered in Eq.36) with the relativistically modified value

of the parameten; this is

n=ak,/ip. (48

When considering the limip— of u{~(q), Eq.(47), it
can be showras for the Green’s functigrthat only the first
term of Eq.(37) contributes, and we have

lim up(p+a) = lim ul (p+a) xpm. (49)

pﬂoo pﬁoo

wherea may be any finite vectof32]. In our case, see Eq.
(40), a=p,+A, bothp, and A being essentially finite. We
can, therefore, use instead of the relativistﬁ)qﬁf), the non-
relativistic u 1, which is again a great simplificatiq30].
This possibility is a consequence of condition H45),
which forcesp— .

We need to consider also the limits of the two curly-
bracket operators in the integrand of E4Q0). The one acting
uponB G' becomes to leading ordef (a- v;+1). As to the
one acting uponB uy{)(a), it reduces to & p+ B+Ey)
[33]. Thus, on account of Eq49), the square bracket in Eq.
(40) contains ué_)(p2+ p+A) multiplied by the_ spinor
(a"p+ﬁ+Ep)IBXpm2:2Xpm2- For p—oo, I|m)(|om2
= Xnm, Wherex,m, has components 2/4 ¢y ;(n- 0) {m,}i
we have denoted=(pp), and bygm2 either (1,0) or (0,1),
depending on whethen,=+3, orm,=—3 .

For theinitial state spinor u,ml(p) we need to use an
exact expressioim order to obtain the exa@ dependence of
the matrix element. We use the integral representd®n

1
uoml(q)=[f(q)+ >9(@ @ a|xom,, (50
f( )EM ch (1+x) X, (51
VIra=—9)o ™ (a1
( )= 2Noa 1 Jwafy 1 dx-
SV=Ta—) 117 [q?+a%(1+x)%)>
(52

herex,n, is the constant spinor for a free particle at rest, of
components{gml;o}, andNg is the normalization constant

2y+1/25312 12

1+vy
rey+1)

No= (53

™
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Equations (50)—-(53) are obtained by starting from the M&)=—lim ¢ [P +io- Q' 1L, (57)
K-shell spinor in coordinate spa¢e.g., see Ref.34], Egs. 2 !
(14.3, (14.4), (14.39, or Sec. 5 of Ref[12], using an inte-

gral representation for the powet ! it contains[see Ref. where
[35], p. 1, Eq.(5)], and Fourier transforming the resultVe 1
note that the integral representation fof 1 has been first pP= _{[(%.52)(1_,,1.n)+(51.n)(52. v)]A
used in this context by Boy¢f6].) By introducing the inte- V2
gral representations for(q) and g(q), we have achieved 1
that theirqg dependence is similar to that of the nonrelativistic + 2{[B-(n= ) ](s1-S) + (51-B)[S- (N+ w7) ]
1s eigenfunction in momentum space, which can be easily 2
handled.
Finally, we get —(s,-B)(sy- n)}], (58)

M=y lim f J Xom U5 ¥ (P2 + P+ A) (e 5p) (e vy +1) 1
Q:E {—(&1X8) +[ v (X)) In+ (S v1)(NXs))
X(a-51)Go(po+ Ky, P1+ K10 1)

1
Xom, dp1 dp,. (54) — (s s)(NXw)jA+ S{[r-(5,X5) B

1
f(p1)+§g(p1)a~ P1

ing simi @) —[(s1X ) BIn+ (s, B)(NX $) — (S, B)(nX 57)}
Proceeding similarly foM¢g,

1
+5[(51-82)(n—vl)+(sz~vl>s1]><8 . (59

M= = i, lim f Xon U5 (P2 + P+ A) (@ p) (e v+ 1)
We have introduced here the notation
X( @ $)Go(Po— Ky, P1— #62;()5)

AEKljjUéi)*(pz_Kz)Go(pz,pliﬂl)

X f(py—#y)dp,dpy, (60)

1
X| f(p1)+ 5 9(P1) @ P1|Xom, dP1 dpa. (59)

The symbol “lim” has been introduced here to recall that the

integrals should be evaluated in the ER limit, i.e., by extract- g_— Klf J u(_)*(pz
ing their dominant behavior fokq,«,,p tending to infinity P

in the manner discussed.

We have shown in this section that, as stated in the Intro-
duction, the calculation of the Compton line matrix elementp,
can be carried out with nonrelativistic wave functions and
Green'’s function, with relativistically modified parameters.
We also note that the ER matrix elements E§4) and(55) iNto — rey, ey INto — ey (hencexy into k), andQ, into Q.

can also be derived by using in Eq&l) and (5), the o . :
Sommerfeld-Maue approximatiorisee Chap. 5, Sec. 8 of (I\Ilsg)i%plr%xsl.rr(wsg)ogﬁdvx(/g%e. done in passing from H&s) and

Ref. [4] and Sec. 14.5 of Ref6]) for the final state Dirac
spinoru)(r,), and Green's operatdB(ry,r;; Q).

— 1) Go(P2,P1;21)(P1— #e1)

X g(py— ) dp,dp,. (61)

andQ’ are obtained fronP and Q by changingw, into
,, Interchangings; ands,, and replacing the integrals B,
by A’,B’; the latter are obtained from,B,by changingk,

IntegralB can be expressed as a linear combination of the
vectorsky, Ky, andp, it contains. For consistency, we shall
introduce insteade;, k,, andA, or rather their unit vectors

V. REDUCTION OF THE MATRIX ELEMENT vy, v,, andé6=A/A. Thus
FOR THE RANGE OF THE COMPTON LINE
TO SINGLE INTEGRALS B=d,»,;+d,»,+d36. (62

We shall now carry out the evaluation of the integrals inlnsertion of this into Eqs(58) and (59), will give the com-
Egs. (54) and (55). The four-component spmorgOm and plete dependence & andQ on the unit vectors of the prob-

Xnm, €Ntering here can be expressed in terms of the twol€M, s1,%,71,7,,6 . Note thatn can be expressed in terms

component spinorg,, introduced in the preceding section. of the latter by using Eq(10):

By expressing also tha matrices in terms of X2 ¢ matri- P Ky Ky A

ces, after some manipulation the matrix elements can be n=—=—vw,— —v,— —6. (63
written as PP p- P
In view of Eq.(15), the first two terms here a@(1), while
ML=
Mg =lim gm [PHio-Qlém,, (56) the last one iD(1/k;).
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We proceed to derive the ER limits &, Q, P’, Q. In 2—7
these expressions, we need to consider, on the one hand, the K3=2(1—_77)[2A—(d1+d2)—d3(5' v1)](S- v1).
integralsA,B, and on the other, the factors containing prod- (68)

ucts of unit vectors multiplying the integra(sve shall call
these “unit-vector factorsj. In the process we shall take into  Similarly, we obtain
account the limitations imposed by the energy-conserding

function of Eq.(23), as discussed in Sec. lll. . o1 dj

We start by deriving theER dominant behavior of the Per=1im P'=|'mm m[(sl'szxﬁ'(”l_’@»
unit-vector factorsScalar products likes - »,),(s;- v,), are
exactly 0 foré=0. At £#0, they can be evaluated by intro- +(1=29)(s1- 1) (S 8) — (S 8) (S, 1) ],

ducing a reference frame consistinggf and two orthogo-
- o : (69)
nal polarization vectors; ,s|, chosen such that, be in the

plane of », and s;. Under these circumstance®? whered,d},d}, are the components & in a decompo-

= (v »)*+ (v 5)? and hence, with Eq(26), we have sjtion as in Eq.(62). Using further a decomposition for
(v2-51)=0(1hk;). Since an arbitrary polarization vector QL =lim Q' with respect to the same unit vectors as in Eq.
s, is a linear combination ofs; and s;, also (-s;) (65), we find até+0:

=0(1k,). In the case of #;X»,), one can use ¥

X 1))2=1—(vy-1,)?=(&lk)(1+ vy 1) to show it to be , 1,

O(1/xy). Similarly, we find that products likes(-n), K1=5d3) [s1- (X )1 w) ~ 8- (11X )18y w2)
(s,-n),(NXw;),(NXw,), are of orderO(1/\/x;), and so is

the magnitude of the vectors/{—v,),(n—»,),(N—»,). On _ L(Sl'sz)[& (11X y)]

the other hand, products likesy(s,),(r;Xs;),(nXs,), 1-79

(s;- 8),(6-v,), etc., areO(1), irrespective oft. We need to

deal also with combinations like (1w;-n) and (1 + L(slx S) (p1(6- 1) — vy(6- 1)) |, (70)
—w,-n). With Egs.(63) and(15), we find at{# 0 that they 1-7
areO(1/kq). A careful analysis shows that 40, (1—»,

n)=(1—r,-n)=0(1/k?). - DA — (A + AU 2w (5 % ,
Proceeding along these lines, and keeping only the domi- 2 2(1- 77)[ (di+do)J{2mm- (91X ) (5 92)

nant unit-vector factors, we find in the ER limit .
i i 1 ds { ( L6 1 _[82‘(V1X1/2)]} 2—(1_7’)d3{(27]_ D[(s1Xs,)- 8]
Per=Ilim P=lim—— ——{7(s;- (vi—7

= J2 1 %2 1~ V2

2 -7 X(81- 1)) + (8- S)(S1-[(v1— 1) X b))}, (72)
+(2=n)(s1- 8) (5 vy) + 1(S- 6) (51 1)}, 1
(64) K3= = o= [2A'~ (ditdy) —dy(dwy)]
1 X[279(s1 ) (S v2) + (S0 v1) ] (72)

Qer=lim Q= IimT[KlV1+ Kasi+Ks(viXsp)], (69
2 As easily seen, the unit-vector factors retained in EG4).—
where (72) are all of orderO(1/\/k,) at £#0. However, theyall
vanish at¢é=0, to O(1/\x;). By considering the corrections
1 to the unit-vector factors, it is not difficult to see that their
Ki=—5d3)2[81- (11X 9 ](s, 1) true order of magnitude at=0 is O(1/k,).

We now turn to the evaluation of tHeR dominant behav-
ior of the integrals AB, A’, B’. We shall illustrate on the
case ofA how these sixfold integrals can be reduced analyti-
cally to single integrals. For similar procedures see R&f.

_n _ Sec. lll, and Ref[9], Sec. IV. By inserting the integral rep-
* 1- n[(lesz)-<v1(5- v2) =V S v))]), resentations Eq$42), (47), and(50), (51), into Eq.(60), and

(66) inverting the order of integrations, we find

F (s 8 (X))

© B 1 - y—l -n
K2=2(1’f (T [2A=(ditdo) T[S (v X2} A:NL dxx “fo dep figwody(T)

7 1 & d(l—p2 n )
+2(1—_7])d3{[(31><32)'5](51'7’2) X4,U~A oA op dpl p J(X5A, 1) |, (73

T (81 8)(s1- [(11— 1) X 6])}, (67)  where
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JXEA M)EJ J' dp; dp, (74)
o [(P2— 1) >+ w2 IIX3(P1— P2)*+ a(PT+ XD (P3+ XD 17 (P~ 1) >+ A?]
|
and
N , 7N
1 AER:ﬁAgR* AER:_?AER! (78)
N=— P XS Ng NX . (75)
72(2m)3 T (1- ) ! ¢ where
We have also denotea,=r,+py, u=c—ip(l—y), « o _ [7._] A%+AZ )R
=(1—p)2/4p, A=a(1+x). In the ER limit, the parameters A= | X A DiA
entering here ar¢see Eqs.(43) and (48)] n=—ia, X;=
—iky, T=ia, for integralA, andn=—ia, X,=—ik5, 7 2(1-ia)A a
=—ia, for integral A’. It is understood that the limit > A2 : > |dX
—0 in Eq.(73) should be taken after performing the deriva- (A%+AD (A p—iA)(AT+AT
tives with respect tp,u,A. (79
The momentum integral Eq.74) was encountered and
calculated elsewherg36]. Using Eq.(23) given there[see and
also Ref[8], Egs.(33) and (34)], we have for ourd in Eq. 3 N
(74), see Ref[37], N 7“Ng N§ @0
o2 1674 1 V2[2k1(1= 7)]T (1~ )
- T
B 0 W) ity _ " _
dp X2 C Z=y+A-wt+é Z'=y+Avi—7pé (81

c=[(X+A)2+ k2][(X+ w) %+ k31— 2p[ 4( ey - 1) X2
+(A2+ k3= X2 (uP+ k5= X?)]
+p (X=A) 2+ k][ (X— )2+ 3] (76)

This gives further

e o ol
= X X T AR [ ——
0 0 pp £—0 y y y—1

" Uo+ Uiy +usy? votugy
c3 cz |’

(77

whereu; ,v;, are polynomials ix andp of at most second
degree, which do not depend gn
The contour integration over the varialien Eq. (77) can

be performed analytically, by applying the residue theorem. dg: -

Sincec has the fornc=cy(y—Y,), the integrand is analytic

with respect toy outside the integration contour throughout
the whole compley plane, with the exception of the pole at
Yo, and vanishes asy at infinity. The residue theorem can
be applied by closing the contour at infinity; the calculation

is quite tedious.

As a result, in the ER limit, the integrand of the integra

over p in Eq. (77) has the forn{R(p)12Q(p), whereR(p)

A similar procedure can be followed in the calculation of
B. We find

’ n N 0
Ber= — — Bewr

!

Ber=—3 BgR! (82

nZ

We give the components tﬁ!ﬁR, in a decomposition similar
to Eq. (62). In fact, onlyd;+d, andd; are needed in Egs.
(66)—(68), Ref.[38], given by

4 g0m 2ia2J'°° [ AZ+AZ R
1t 2__1+y OX A-v—iA
X ! d (83
X!
(A2+A%) (A v —iA)
4a(1—ia)Af°° . A%+ A2 ]ia 1 g
1+y 0 Avi—iA] (AZ4+A?)2 X
(84)

Equations(78) and(82) represent the dominant behavior
in 1/k, of the integralsAgg,Agr.Ber.Ber- They undergo a
peculiar change of order of magnitude in thgéidependence

jat§=0. By taking into account the constraint imposed by

the 6 function Eq.(23), the integralsA2;, ALS B2+, BLS are

and Q(p) are complicated rational functions. Surprisingly O(1). irréspective of the value &. This means that we can

enough, we could find a functionU(p) such that
dU(p)/dp={[R(p)1*Q(p)}er, Which makes the integra-
tion trivial. One is thus left in the expression @&gg
=lim A with a single integral.

The final expressions d&gg and A, are

replace theA- v, they contain byA-u, and use the approxi-
mate formw® of Eq. (28), yielding A- »;=q. The denomi-
natorsZ,Z’, Eq. (81), give rise to problems, however. We
first calculateexactlythe quantitieA- »; ,A - v, they contain,

using the exact expression Af u=w in Eq. (26). This gives
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1 1 A%+a? summation overs,, which is a straightforward, albeit very
2= T e 2= O (85 tedious calculation. The result is rather compact
1 o (1+ 72
2 2 2 (1) (2)12~
o 1 A%+a , > 2> MG+ MA2= T, (89)
Z'=¢ +— +0y,, (86) S 2 mom, Mer+ Ml Ky mPE

1-n xk12(1-7)
, where

where O, and O,, contain terms of higher order ig, and
1/k,. Evidently, até#0, ZandZ’ areO(1) with respect to _
1/k;. However, theseD(1) terms vanish at=0, which T:|N|2{|2AER_[(dg+dg)+diO]|2
means a change of order of magnitude for the integkals
Atgr,Ber,Bgr- Thus, the correct order of magnitude of the
integrals isO(1) até{+#0, andO(«;) at é=0. +

We now combine these findings for the integrals with the
behavior, discussed earlier, of the unit-vector factorséAt - )
#0 we conclude that the order of magnitude of the matrixWith g andw® defined by Eq/(28).

elementsM I(ElR)’MI(EZFg is O(1/\x7). On the other hand, we The quadruply differential cross section Eg0) can thus

have found that at=0 the unit-vector factors change of P& written €+0)
order of magnitude, becomin@(1/x;) (we have not calcu- 4~ 5
lated them in this case, howeyefaking into account also d"oer :azi (1+7°)
the change of order of magnitude of the integrals, we find dx, dQ,dA d® k1 7mé
that the order of magnitude of the matrix elemeMs§Y,
M) at £=0 increasego O(1). Correspondingly, the differ-
ential cross section Eq31) will rise from O(1/k,) at &
#0, toO(1) até=0.

Unfortunately, we are not in a position to handle the cas
of £&=0 with our approximate formulas. This would require
to include consistently all corrective terms©f1/«;) to the
unit-vector factors calculated. To this end one would need to

start from Eqs(40) and(41), with the corrected expressions The quantities entering Eq92) are defined by Eqs(90),

Eq. (37) for G' and u:orﬁ{), rather than from Eqs(.§4) and 79), (83), (84), (87), and(28). Note that there is ns, de-
(55), as we have done. Therefore, we shall restrict ourselve%enaencé left ’in thé expression of the cross section( &)
It?e::r(])(:nreont%mgg?n'tr?ai;t&gr. d('; this case, Eqs(85) and (86) As a consequence, the expression will also give the cross
' : ' section averaged over the initial polarizatign
1 2 We shall now show that the quantitissandd3, entering
Z=(——, Z'=¢§ 7 ] (87)  the expression off, can be expressed in terms of known
1-9’ 1- is Wi :
Y n transcendentals. This will allow the transformation of these
) ) _ expressions in view of a simpler computation. Let us con-
Note that these expressions can be obtained directly from E%ider, for exampledg of Eq. (84). By changing the integra-
(81) by taking into account that &0 we can approximate  {jon variable, the integral can easily be recognized to be that

2
1- %) |dg|2], (90)

TA. (92)

To pass to Eq(31), we have to carry out the integrals over

andA. That over®d is trivial, as there is nab dependence
left in our approximation. The final expression for tB&

edoubly differential cross sectiofig. (31) at £+ 0 reads

dZO'ER 2 1 (1+ 772) %
— =R _ona? =
dk,dQ, k1 mé lal

TAdA. (92

A-v=A-»,=A-u=q, and then use E¢28). of a generalized hypergeometric function of several variables
X1, - .. Xy, Of the Lauricella type-p, e.g., see Ref39],
VI. DOUBLY DIFFERENTIAL CROSS SECTION Chap. VII, Eq.(8),

FOR THE RANGE OF THE COMPTON LINE
Fp(a;bq, ... byicixyq, ... X))
Having obtained the ER expression of the matrix element,
we are now in a position to derive the cross sections, Egs.
(30) and(31), at £+ 0 . The first step is the summation over
the electron polarizations. In view of Eq&6) and(57), and
by using well-known summation formulas, we have X(1=X1p) P2+ (1=Xyp) ndp. (93

1
=[r<c>/r<b>r<c—a>]f0 pr (1 p)ea-t

1 ~ - We find, specifically,
E Z | M §51IR2+ M §5ng|2: | I:’ER_ P|,£R|2+ |QER_ QI’ER|2'

o da(l-ia)A (A%+ad)@ 2T (1-y)I(y+3-ia)
(8g)  d3=-—

1+vy (q—ia)*ia I'(4—ia)

Note that, since at this stage we have taken into accountthe  xF_(1-y:2—ia,2—ia,ia;4—ia; X;,Xs,X3), (94
restrictions imposed by thé function of Eq.(23), we are
entitled to place a tilde ovev &2 ,M&) . The next step is the where
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A A q

X1m3ATia *Taciar T q-ia (95)

However, because=Db;+b,+bs, theFy function ofthree
variables in Eq(94) reduces to & function of two vari-
ables(also called Appell functioir;). Indeed see Ref[39],
Chap. VI, Eqg. (1Q)],

Fp(a;by,b,,b3;b;+by+bgiX;,X5,X3)

X1 X3 Xo— X3>

=(1-x3) F
( 3) °F1 1-x3 ' 1—xg

a, bl b2 bl+ b2+ b3,
(96)
Proceeding similarly in all cases, we get

2

1—%)|L3|2], (@7

T=|K|2[4|L1+L2|2+

where
P (LT Q)2+ y—ia)F®
_— —ia
1~ (A2+a )23 Y q Y
+ia(q—ia) F®], (98)
:MF(D, (99
(A%+a?)(g—ia)
Lm— 17 aF®, (100
(A2+a2)2 3—ia
IK[2= a® 227 2ma
1672 (1+y)I'(1+2y) | 1—g 27
I(2+y—ia)|? v
(2+y-ia) e (101
I'(3—ia) | g’+a?

We have denoted here
FO=F,(1-y;1-ia,1-ia;3—ia; z,,z_), (102
F@=F,(1-y;2—ia,2—ia;4—ia;z, ,z_), (103
FO®=F,(2—y;2—ia,2—ia;4—ia;z, ,z_), (104

with

A+q A—q
“TAt+ias T A-ia (109
and
tangy=—(alq), —-w<y=<0. (106

The final form of the cross section E@2) has thus been
expressed in terms of the quantities in E§¥)—(105. Note
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that the integral oveA in Eg. (92) is a function ofa andg,
and that¢ and » are contained only i of Eq. (28). The
evaluation of the Appell functions involved, as well as the
integration overA, has to be carried out numerically. Our
results will be presented in Sec. VIII.

We have stated that the spectral regaase(ii), charac-
terized by Eq.(14), contains the Compton line. This will be
illustrated in Sec. VIl by the numerical results. Here, we
shall check this in thease of small aUsing simple proper-
ties of the Appell functiond=4, it is easy to see that the
dominant behavior of Eq$98)—(100) is

_ 2@2+aq) .z

b (A2+a2)? (q—ia)(A2+a?)’
L~ M (107)
T

Terms of order have been neglected in the numerators. On
the other hand, because of the resonant nature of the denomi-
nators, we shall use the exact form qfsee Eq.(28). We

write |K|?, Eg. (101), as

5
K|2= a 2ay
K] _167728(a)e .

(108

Q(a), as defined by the equation, tends to 1 &er0. We
leave its expression open, depending on the accuracy de-
sired. We note, however, that E(L08 contains the expo-
nentials e?” and e 2™ whose exponents are quite large
even for relatively smal, so that it would be impractical to
approximate them by 1.

Inserting Eq.(107) into the expression of, Eq. (97), and
performing the simple integration ovér in Eq. (92), yields
the smalla cross section

2 2 2
Poer _ @ egayerant T
dszQZ 677 Kl (1_7])(q+1)
8-+ 20q+ 1592
—20q qu (109
(g°+a)

Let us now go to théree electron limita— 0. Equation
(109 contains the functional representation of #{&) func-
tion

5

50 = o lim — 2 (110
X)=z— lim ————
37 40 (X2+a2)3
Using well-known properties, we obtain
d?oer d(rég ( K1
lim Ol kKo— —=|, 111
ano 0radQy  dQ, T\ 72 14¢ (119
dofR 1 _1+(1+&)7?
R _ 1 107 (112
a2, 27 (1+¢°
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We recall thatk,= «,(1+ &) "1 is the ER form of the Comp-

PHYSICAL REVIEW A8, 052709 (2003

shown there that Eq$113 and(114) are expressions of the

ton formula for the scattered photon frequency, and thatsoft-photon theorem” in the ER domain.

dokN/dQ, is the ER limit of the Klein-Nishina cross section

(e.g., see Sec. 28.5 of R¢B]). Equation(111) then shows
that, indeed, our cross section E§2) covers the spectral
region of the Compton line.

VII. LOW- AND HIGH-FREQUENCY ENDS OF THE
SCATTERED PHOTON SPECTRUM

We now turn to the discussion of the limiting casgsand

(ii ) of Sec. lll. Case(i) will be mentioned here only for the

sake of completeness, as it has been treated elseWt@re

In principle, it requires a different calculation than we have

done for the Compton line, as the conditigi> €’ [i.e., -

—oo] of Eq. (14) assumed in the former is incompatible with
Kx,< e we now need. Neverthless, a closer look at the former

calculation shows that the assumptios— o was made only
for M), see Eq(45), and not forM®). On the other hand,
it is known that, of the two matrix elemenkd* andM ),
only M@ (for “photon absorption first} contributes domi-
nantly to the soft-photon limit, see Ref8(a)], [13(a)], [15].

We now turn to caseiii). We shall merely outline the
calculation, for the sake of obtaining the order of magnitude
of the result with respect to (). Note that we cannot use
our results for caséi) or (ii), since in these instances we
have assumegd— . In the followingp is considered to be
a fixed, small vector.

Starting from Eqs(4) and(5), we can again make appear
in the integrals the momentum transfer Ef0). We again
express the Dirac Green'’s functi@hin terms of that for the
iterated equatiorG', Eq. (33), but we shall maintain the
usual Dirac expression for the final statf;,) . As k,=x;

—o0, we can again apply Eq#44) and (45), to get the mo-
mentum space integral

MB=wylim [ [ 0ol 2+ p+ ) @)@ m 1)

X(a-51)Go(Pa+ Ky, Pyt K13 Q1) Uom, (P1)dPy Py,
(118

Then, the cross section we need is given, to dominant order

in (1/x5), by Eq.(31) with M) neglected.
By leaving out the contribution df1(?) from our calcula-

and a similar expression fol 2. These are akin to the ones
we used in the high-energy Rayleigh scattering calculation,

tion, we find that the cross sections can be expressed as 6ee, Eqs(27), (28), and(31) of Ref.[9] except that here the

#0)
Po 0 _ o 1 Aded
dszﬂsz d(D_27T2 K1K> g de '
3 _(C,IR)
dog ™ @ kil ey (114
diodQy 272k € FR
where
dofD
=(2m)2%ar,TO), (119
dQ, !
2m)3a (=
ag’Rh)zi f TOA dA. (116)
K1 v

T is the expression of, Egs. (97)—(105), taken at,
=0. Note thatx, is contained only irmg of Eq. (28) which

appears in the variables, ,z_, Eq. (105. Replacing in
these quantitieg by — v (its value atx, =0), they become
A+y

A—ia’

o_A~Y

(0) __
z . pASSES
* A+ia’l 7T

(117

Thus, T and the integral in Eq(116) reduce to functions
of a only.
The cross sections Egdl13) and(114) diverge as (14,)

in the soft photon limit; this is the “infrared divergence.”

Moreover, by comparing with results by Nagel7] and
Boyer [16], we have shown in Refl19] that the quantities

(do¥/dQ,) and o) represent, indeed, the ER limits of

final state is different from the initial one and lies in the
continuum. We can proceed by using the integral representa-
tions, Eqgs.(42) and (50), for G, and Uom,» of the present

paper. This would allow an analytic handling of the matrix
elements up to a certain point, beyond which a numerical
evaluation will be needed.

The order of magnitude of matrix element E418) is
different from that of the Compton line, because now the
directionn is no longer quasiparallel tp,, but can be arbi-
trary. The unit-vector factors appearing in E4.18 are
O(1), and, as also the integrals they are multiplying are
0O(1) [see Ref[9], Sec. Ill], the whole matrix element Eq.
(118 is now O(1).

Thus, at the tip of the spectrum we find that the doubly
differential cross section Eq9) is O(1), irrespective of¢,
whereas for the contiguous spectral region of the Compton
line, it wasO(1/k,) or O(1), depending on whethef+# 0 or
£=0. This means that, faf+ 0, there is an increase of order
of magnitude of the cross section at the tip of the spectrum
(similar to that occurring in the angular distribution at
=0). Note that this behavior will not show up in our numeri-
cal computations for the Compton line, as this effect is not
contained in the formulas we shall be using.

VIIl. RESULTS AND DISCUSSION

We now present the results of the numerical computation
of the cross section Eq92). The Appell functionsF; it
contains were evaluated using their integral representation
Eq. (93), combined with very accurate numerical integration
routines.

For convenience of the graphical representation, we shall

the differential and total photoeffect cross sections. We havée considering the relative cross section
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FIG. 1. Extreme-relativistic doubly differential Compton cross
sectiono,, Eq. (119, for Z=13, at fixed values ofp=k,/k,
indicated next to the Compton profiles, and variableEqg. (22).
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FIG. 2. The same as for Fig. 1, except tFat 50.

Let us start with theCompton defectthe shift of the

The dotted lines mark the locations of the corresponding free'Compton peak from the location of the free line, defined as

electron Compton lines.

(68)c=¢éc— &y and (671)c=nc— mo- The Compton defect

has attracted considerable interest at low photon energies

4 o?

3maky

dZO'ER

U':dKZdQZ/

(119

(e.g., see Ref[40] and references thergintheoretical and
experimental. At lowkq, the nonrelativistic defect for the

unscreened Coulomi shell is negative, and sizable. In the

At given k; andZ, o, is a function of the two independent
variables¢ and ». Physically interesting are the sections
through the surface, (&, 7), at n=const(angular distribu-
tions), and ¢=const(spectral distributions We have calcu-
lated o, for three typical values oZ=13 (Al), 50 (Sn), and
82 (Pb. We have cut off the infrared divergent behavior,
which is anyway not covered correctly by the present com-
putation (see Sec. VI, the cut off is noticeable only at
high Z.

Figures 1-3 contain thangular distributions at indi-
catedr. The location of the free Compton line is shown by
a dotted line. It is apparent that the height of the peak in-
creases with increasing, while its location & shifts to-
wards smalleg, at allZ. In fact, &: lies always very close to
&0, the location of the free electron lingy=(1— %)/ . The
full width at half maximum(FWHM) of the line, A¢)c,
decreases ag increases.

Figures 4—6 give thepectral distributionsat indicatedt.

The location of the free Compton line is again marked by a
dotted line. For allz, the height of the peak decreases with
increasingé, while its location 7 shifts towards largem
and then smaller;. Again, the location ofy: is very close

to the location of the free electron lingy=(1+¢) . For

all Z, the FWHM of the line QA n)c first increases withy,

and then decreases.

The fact that the location of the Compton peak is unex-
pectedly so close to that of the free electron, for both distri-
butions and at alZ, as well as the peculiar behavior of the
widths (A &) and (A n) ¢ require attention. For a quantitative
discussion, we list the pertinent quantities in Tables | and 1.

052709-14
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6.0

ER case, from Tables | and II, the Compton defect is positive
and surprisingly small, asd§)c/¢, is less than 1%, and
(6n)c!mg is less than 3%, for alZ. One may well wonder if
this is not the reflection of some underlying physical argu-
ment requiring that, in the ER limit, the peak should occur at
the location for the free particlgecall the question raised by
Pauli and Heisenberfll0], mentioned in the Introduction
This, however, is not the case. On the one hand, the errors of
our computation are considerably smaller than the values of
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FIG. 3. The same as for Fig. 1, except tFat 82.
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FIG. 4. Extreme-relativistic doubly differential Compton cross FIG. 6. The same as for Fig. 4, except tdat 82.

sectiono,, Eq. (119, for Z=13, at fixed values of, Eq. (22),
indicated next to the Compton profiles, and variabje «, /. dicate that the Compton peak would occugatO. The con-
The dotted lines mark the locations of the corresponding freeclusion is illegitimate, however, because the terms lineay in
electron Compton lines. in the numerator shift the maximum toge=0(a?). Note
that g dependence is contained also in the prefactor (1
+79)I(1—5)(q+1), as well as ire?®”. Moreover, it turns

it that it is sufficient to know the coefficients of the powers
of q only to zeroth order ira. Equation(109 satisfies these
requirements, and is thus capable of rendering correctly
(6€)c and (57)c, to O(a?). If, on the other hand, one de-
sires formulas valid t@®(a*), one needs to proceed from the
exact Eq.(92). A tedious calculation leads to

(6€)c and (67n)c, so that these have to be considered truly
nonzero. On the other hand, had this been the case, an a
lytic evaluation of the defect should give zero to all orders in
a. We shall prove that this is not so, by obtaining analytic
expressions for §&)c and (57)¢ to the lowest two nonvan-
ishing orders ire.

The analytic evaluation of §&)c amd (67%)c requires
some care. In order that the result be consistent to a given
order ina, one needs to start from an adequate approxima- (66) ¥ ¢g=a%—a*, (120
tion of the cross section. For example, Efj09) is a valid
starting point for a calculation t®(a?). Indeed, let us first - )
consider only the denominator of EQL09. This would in-  On the other hand,&)c/ 7, is £ dependent. We find

TABLE |. Characteristics of theangular distributionfor the

8.0 T T Compton line, at giverZ and 5. &, represents the location of the
I Z=50 | free-electron line; §€)c and (6€)&" are Compton defects, from the
70 B computation, and according to E(L20); (A¢)c and Q&)Y are
. 0; ; FWHM, from the computation, and according to Eg23).
50; i 7 o (08)c (66 (Ad)c (AHT
+ g Z=13
o 40+ 05 — 0.20 4 0.0030 0.0030 0.39 0.39
r b 0.50 1 0.0074 0.00074  0.095 0.097
3.0 0.75 1 0.80 0.25 0.00018 0.00018 0.024 0.024
r 7 Z=50
20 ! | . 020 4 0035 0035 158  1.49
I ; § T 050 1 00087 00089 039 037
Lo § A ‘ § 7 080 025 00022 00022 0099 0.093
00 } X A NYAN Z7=82
00 01 02 03 04 05 06 07 08 09 1.0 0.20 4 0.040 0.055 2.89 2.44
n 0.50 1 0.011 0.014 0.72 0.61

0.80 0.25 0.0025 0.0035 0.18 0.15

FIG. 5. The same as for Fig. 4, except t&at 50.
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TABLE Il. Characteristics of thespectral distributionfor the
Compton line, at giverZ and &. 7, represents the location of the
free-electron line; §77)c and (57)& are Compton defects, from the
computation, and according to EL.21), with the O(a*) term in-
cluded; A7) and (A 5)&" are FWHM from the computation, and

PHYSICAL REVIEW A 68, 052709 (2003

the terms tend to cancel each other.

The heights of the Compton peaks for the angular and
spectral distributions ofr,, denotedH: and H., respec-
tively, are according to Eq$109 and(119),

according to Eq(123. 1+ 72 14+(1+86)2
3 0 (e (6mE  (Amc (AnE (122
Z=13 . . .
025 080 000035 000035 0016 0016 ;r:g:: values are in good agreement with the numerigal
C.
; (1)'22 8'8881'2 8'888‘1‘2 g'gig g'gig We finally turn to theFWHM of the Comptotine (A¢)c
750 ' ' ' ' ' and (A 7)c. From Eqg.(109 we find to lowest order ira,
0.25 0.80 0.0050 0.0049 0.061 0.060 1- 7 ¢
1 0.50 0.0064 0.0064 0.098 0.093 (Ag)acnz 1.02—a, (A 7])%”21.02—2&
5 166 0.0019 00020 0.055 0.052 Y (1+8)
z=82 (123
0.25 080 0013 0012 0107 0098  rohies | and Il show thatX§)2"and (A )" agree very well
1 0.50 0.016 0.016 0.17 0.15 . . )
5 166  0.0039 0.042 0101  0.085 at smalla (Z=13), with the exact widths, but that the agree-
' ) ) ' ) ment deteriorates at highet [with differences of order
O(a?), as expecteld Equation(123) reveals the characteris-
). .3 tics of the exactA £), namely, its monotonic decrease with
(57 o= §(6+126+56°+¢8°) a2+ C(¢) a*: 7, and the qualitative dependence df+f)c on ¢ (e.g., its
121+ €)%(2+2£+&?) maximum até=1).
(121 We have thus shown that the elementary formulas Egs.

the coefficientC(£) has not been reproduced here because
is too complicatedit is the ratio of two ninth degree poly-
nomials in&).

Thus, the Compton defects do not vanishQ¢a?), as
stated. The values yielded by tia*) formulas agree quite
well with the computed ones even at laigeas can be seen

(109, (120—(123), provide a good qualitative understanding

I5f the characteristics of the ER Compton line. In fact, they

even represent fairly adequate approximations.
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