
PHYSICAL REVIEW A 68, 052709 ~2003!
Extreme relativistic Compton scattering by K-shell electrons
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We have derived cross sections for Compton scattering of very hard incident photons (\v1@mc2) from
K-shell electrons, exact in the nuclear chargeZ. The nuclear potential was taken to be of Coulomb form. The
calculation of the extreme relativistic~ER! S-matrix element involved was carried out analytically. In the
present case, this is the viable alternative to an impracticableab initio numerical computation. In order to
obtain the dominant behavior of the matrix element in the largev1 limit, the momentum transferred to the
nucleus needs to be ascribed a constant~albeit arbitrary! value in the limiting process. The result depends
critically on the spectral range in which the scattered-photon energyv2 is situated. We start by considering the
v2 range covering the Compton line, for which the ratiov2 /v1 needs to be kept finite. We show that in the ER
limit the Dirac electron spinors and Green’s operator entering theS-matrix element can be replaced by their
relativistically modified Schro¨dinger counterparts. This allows the application of integration methods devel-
oped by us earlier for the nonrelativistic matrix element. Remarkably enough, the sixfold integrals of the ER
matrix element can eventually be reduced to single integrals, expressible in terms of generalized hypergeo-
metric functions. The doubly differential cross sectiond2s/dv2 dV2 for the range of Compton line finally
results as a twofold integration, requiring a simple numerical computation. This is a rather unique example of
a most elaborate Coulomb problem that could be solved analytically, essentially in closed form. We subse-
quently consider the low- (v2→0) and high-frequency (v2→v2

max) ends of the scattered photon spectrum. For
v2→0 we find the expected infrared divergence, and verify the soft-photon theorem, which represents an
important check on our calculation. Finally, we present our numerical results ford2s/dv2 dV2 , analyzed at
fixed v2 ~angular distributions!, or fixed photon scattering angle~spectral distributions!. We discuss the ‘‘de-
fect’’ and the width of the Compton line for both distributions.

DOI: 10.1103/PhysRevA.68.052709 PACS number~s!: 32.80.Cy
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I. INTRODUCTION

The binding of an atomic electron entering Compton sc
tering has the effect of broadening and shifting the spec
line of the scattered photon with respect to that of a f
electron at rest. The effect depends critically on the energ
the initial photon. At x-ray energies (\v1!mc2), where
only outer shell, weakly bound electrons contribute prom
nently to the scattering, the effect can be treated within n
relativistic ~NR! quantum theory. In this case, the profile
the Compton line provides valuable information on their m
mentum distribution in the initial state, a fact extensive
studied theoretically and experimentally~e.g., see Refs
@1,2#, and references therein!. At higher,g-ray energies, for
which \v1 is no longer small with respect tomc2, relativ-
istic theory is needed for the description, both because of
high energy of the incident photons, and the high nucl
chargesZ of the elements of practical interest~appreciable
aZ). An overview of the relativistic regime of Compto
scattering was recently presented by Bergstrom and Prat@3#,
see also Ref.@4#.

Relativity is hard to deal with, so that various approxim
tions have been considered. A significant advancement
the ‘‘relativistic impulse approximation,’’ e.g., see Ribberfo
@5# and references therein. This heuristic approach is q
successful in describing the Compton line at higher energ
but can give no information on special features of the sp
trum, such as the infrared divergence or the resonant Ram
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Compton structures. It does have the advantage of requi
a modest amount of computation. Whereas, there existsa
priori justification for the validity of the NR impulse ap
proximation, none has been given so far for its relativis
version.

The definitive approach for solving the Compton proble
within the independent-electron approximation is the integ
tion of its relativisticS-matrix element in the Furry picture o
QED ~for the theoretical background of the relativistic trea
ment, see Akhiezer and Berestetskii, Sec. 35 of Ref.@6#!. In
general, the evaluation has to be done numerically. Eve
ally, the ‘‘numericalS-matrix approach’’ was achieved in th
pivotal work by Suric, Bergstrom, Pisk, and Pratt@7#. Their
program is capable of handling all atomic shells, within t
independent-electron approximation with a relativistic ce
tral potential of the Hartree-Fock-Slater type. It offers a u
fied treatment of the whole photon spectrum, can achi
high numerical accuracy, and represents a trustworthy b
for the analysis of experimental data. It is limited, howev
at high incoming photon energies\v1, by the convergence
of the partial wave summation it contains. In practice, t
limitation sets in at about\v1.2 mc2.

The goal of our paper is to treat the extreme-relativis
~ER! case\v1@mc2 of Compton scattering, left uncovere
by the numericalS-matrix approach. We shall derive analyt
cross sections for theK shell, exact inZ to dominant order in
mc2/\v1. We are considering the case of a Coulomb pot
tial, ignoring therefore screening corrections, which for theK
©2003 The American Physical Society09-1
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shell are known to be small. We proceed from theS-matrix
element for Compton scattering~Ref. @6#, Sec. 35!, our ap-
proximation being that of retaining systematically only t
dominant order inmc2/ \v1 . We shall focus mainly on the
cross sectiond2s/dv2 dV2, differential with respect to the
energy and angles of the scattered photon.

The method we use for integrating the ER matrix elem
is based on a combination of analytic procedures develo
earlier in related contexts~NR Compton scattering@8#, and
ER Rayleigh scattering@9#!. We shall show that the Dirac
spinors and Green’s operator needed in the calculation o
extreme relativisticCompton matrix element can be replac
by their nonrelativistic counterparts, taken with relativisti
cally modified parameters. This allows the integration of
ER matrix element in a manner similar to the NR case@8#.
The physical role of the many parameters of the scatterin
explicitly displayed by the formulas. We have here a m
elaborate Coulomb problem for which it was possible
complete the calculation analytically and obtain the resul
closed form~hypergeometric functions!, in a situation when
a direct numerical computation is still prohibitive.

The problem we are treating was discussed, early on
the development of relativistic quantum mechanics, by P
and Heisenberg~see Ref.@10#!, in connection with the be-
havior of the Compton line of an electron bound by a pot
tial of nuclear chargeZ, in the limit of very high energy
\v1@mc2. The question posed was: does the cross sec
go over in this limit to the Klein-Nishina cross section for th
free electron~independent ofZ) or not? Using a qualitative
argument based on the Klein-Nishina formula for a free el
tron with nonvanishing initial momentum, Pauli answer
the question in negative@11#. On the occasion, he recognize
that, in order to obtain the dominant behavior of the ER cr
section, one needs to keep fixed the magnitude of the
mentum transferred to the nucleus. An accompanying pa
by Casimir @12# ~also described in Sec. 35.3 of Ref.@6#!,
confirmed the existence of aZ dependence for the ER limi
of the cross section. The approach used was inconsis
however: in the evaluation of the exactS-matrix element, an
exact expression was adopted for the initialK-shell Dirac
spinor, whereas free electron approximations were used
the final state spinor and the Green’s function. It has b
later realized that such lowest order Born approximations
not lead to correct results, not even to lowest order inaZ,
e.g., see Sec. VI of Ref.@13~a!#. Our answer to the Pauli
Heisenberg question will also be negative, but is the resu
a consistentS-matrix approach.

Another theoretical question related to Compton scat
ing is that of the behavior of itsS-matrix element and cros
sections at low frequencies of the final photonv2 ~desig-
nated as ‘‘soft’’!. Various studies have found these to be
vergent forv2→0 ~infrared divergence!, in that they behave
as (1/\v2). The divergence is common to processes invo
ing emission of a secondary photon that can share en
continuously with other particles~here the ejected electron!,
and is well known in QED~e.g., see Ref.@14#!. Moreover,
the matrix elements and cross sections for such processe
known to be related to those having the same initial con
tion, but no secondary photon, by ‘‘soft-photon theorem
05270
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For the Compton effect, the related process is the pho
effect, and the corresponding soft-photon theorem has b
proven and discussed in various approximations by Gav
Sec. IV of Ref.@8# ~exact nonrelativistic Coulomb case wit
retardation!, McEnnan and Gavrila@13~a!# ~relativistic Cou-
lomb case, correct Born approximation!, Bergstrom and Prat
@3# ~numerical self-consistent potential case!, and Rosenberg
and Zhou@15# ~exact nonrelativistic case with retardatio
relativistic short range potential case!. We shall check the
theorem in the ER case. The related ER photoeffect cr
sections for theK shell were derived by Boyer@16#, Nagel
@17#, and Pratt@18#. This check offers an important confir
mation of our analytic ER procedures. The issues concern
the infrared divergence and soft-photon theorem will on
briefly be touched upon here, as they have been treate
more detail elsewhere@19,20#.

Our endeavor on ER Compton scattering was encoura
by the new developments in the production of hard photo
Whereas there are few natural radioactive sources@21# that
qualify for \v1 /mc2@1, remarkable advances have be
made recently in the development of artificial sources,
electron storage ring facilities. Hardg rays can be obtained
by Compton backscattering of ultrarelativistic storage ri
beams with intense optical photon beams. This can y
photons of MeV energy, depending on the velocity of t
electrons and energy of the optical photons. A characteri
feature of theseg rays is that they are 100% linearly pola
ized. Energies of up to 32 MeV (\v/mc2.64) have been
reported@22~c!#, 50 MeV are expected in the near futu
@22~a!#, and up to 225 MeV are considered to be attainab
Such photons have a very large ratio\v/mc2, and would be
excellent candidates for our cross sections.

However impressive the achievements of the laborat
sources may be at producing hardg rays, they cannot com
pete with astrophysical sources. Spectacular progressg
ray astronomy in the past decade has revealed the exist
of sources emitting photons in the enormous energy s
from 1 MeV to 107 MeV, in many cases with high fluxes
see Ref.@23#. The sources are either of galactic nature~e.g.,
spin-down pulsars, accreting x-ray binaries, supernovae r
nants! or extragalactic~e.g., Seyfert and radio galaxies, bla
ars!. This could represent another possible area of appl
tion of our formulas.

The content of the paper is the following. In Sec. II w
present the relativistic matrix elements and cross section
interest, within the Furry picture of QED. The incoming ph
tons are taken to be linearly polarized, as are those produ
by the storage-ring FEL sources. We consider mainly t
cross sections: the quadruply differential cross section
which both the characteristics of the scattered photon
ejected electron are recorded, and the doubly differential o
d2s/dv2 dV2, in which only the characteristics of the sca
tered photon are recorded. Section III discusses the ER k
matics. In defining the notion of ER limit, we show that th
dominant order of the cross sections forv1→` is obtained
by keeping the momentum transferred to the nucleus fixe
the limiting process. The result depends, however, critica
on the value ofv2. We consider the threev2 ranges:~i!
soft-photon end (v2→0), ~ii ! Compton line (v2 /v1 finite!,
9-2
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and~iii ! high-frequency end (v2→v2
max), which require dif-

ferent treatments in the ER limit. In Secs. IV–VI we stu
the Compton line. Section IV introduces the quantit
needed to calculate the matrix element in momentum sp
Whereas the final state spinor and the Dirac Green’s oper
need to be expressed only to dominant order inmc2/\v1,
the initial state spinor has to be considered exactly, in or
to ensure the exactZ dependence of the final results. Mor
over, the final state spinor and the Dirac Green’s operator
be expressed in terms of their nonrelativistic counterpa
with relativistically modified parameters. Thus, at start, t
matrix element contains sixfold momentum integrals o
nonrelativistic ingredients, and three parametric integrals
Sec. V we outline the integration of the ER of the mat
element for the Compton line. The sixfold momentum spa
integrals can be evaluated in closed form, using formu
derived in our earlier works. Of the three parametric in
grals, two can be carried out analytically, and the last one
be expressed in terms of hypergeometric functions of
variables,F1. In Sec. VI we give the complete analytic e
pression of the doubly differential cross secti
d2s/dv2 dV2. This reduces to a single integral over th
modulus square of a combination ofF1 functions. At zero
photon-scattering angle, our results display a peculiar
crease in order of magnitude of the cross section with res
to (mc2/\v1), no matter what the characteristics of th
ejected electron are. ForZ→0, the ER limit of the Klein-
Nishina formula is regained. Section VII contains a br
presentation of the results for the low- and high-frequen
ends of the scattered photon spectrum. At low frequen
v2 , the ER form of the soft-photon theorem is obtained.
high frequencies~the ‘‘tip’’ of the spectrum!, a peculiar in-
crease in order of magnitude in (mc2/\v1) of the cross sec-
tion is found. Section VIII contains our numerical results f
d2s/dv2 dV2. We analyze the resulting angular distrib
tions ~at fixedv2) and spectral distributions~at fixed photon
scattering angle!. Both present a Compton peak, and we d
cuss the behavior of its ‘‘defect’’~shift from free electron
line! and width.

The calculations we present are tedious. We shall be
ing in the following the minimum amount of analytic infor
mation needed to understand the physics, and to make
sible the reproduction of the intermediate steps.

II. RELATIVISTIC MATRIX ELEMENTS
AND CROSS SECTIONS

In the initial state of the process, we are dealing with
bound K-shell electron of energyE0[g5(12a2)1/2 and
magnetic quantum numberm156(1/2), plus a photon of
momentumk1, energyv1[k1, and polarization vectors1.
In the final state we have a continuum electron of asympt
momentump, energyEp5(11p2)1/2, and magnetic quan
tum numberm256(1/2), the scattered photon having m
mentumk2, energyv2[k2, and polarization vectors2. We
are using natural units (\5m5c51), and denotea[aZ,
where a is the fine-structure constant~in natural unitsa
5e2).

The quadruply differential cross sectionfor the Compton
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effect, in which all characteristics of the particles involve
are recorded, can be written as@24#

d4s5a2
k2

k1
uM (C)u2d~E01k12Ep2k2!

3p2 dp dVp dk2 dV2 , ~1!

where dV2 refers to the angles ofk2, and thed function
takes care of the conservation of energy

E01k15Ep1k2 . ~2!

The matrix element entering here is given by

M (C)5M (1)1M (2), ~3!

M (1)5E E upm2

(2)†~r2!e2 i k2•r2~a•s2!G~r2 ,r1 ;V1!

3~a•s1!ei k1•r1uom1
~r1! dr1dr2 , ~4!

M (2)5E E upm2

(2)†~r2!ei k1•r2~a•s1!G~r2 ,r1 ;V2!

3~a•s2!e2 i k2•r1uom1
~r1!dr1 dr2 . ~5!

uom1
(r1) is the initial spinor of the electron, andupm2

(2) (r2) is

the final, continuum spinor with incoming asymptotic sphe
cal waves, normalized per momentum interval@25#.
G(r2 ,r1 ;V) is the Green’s function for the Dirac equatio
with energy parameterV. V1 andV2 are given by

V15E01k11 i e, V25E02k22 i«. ~6!

The electron spinors and the Green’s function satisfy
~homogeneous/inhomogeneous! Dirac equation

~a•P1b2a/r 2V!JD5YI. ~7!

For the electron spinors we need to takeJD[upm
(2)(r ), V

[E, Y[0, and for the Green’s function JD
[G(r ,r 8;V),Y[d(r2r 8); I is the 434 unit matrix.

In the following we shall not be interested in the depe
dence of the cross section on all the characteristics of
photons and electrons. We shall consider initially polariz
photons but will not analyze their final polarizations. Neith
shall we analyze the final polarizations of the electron. T
corresponding quadruply differential cross section p
K-shell electron is

d4s̃5a2
k2

k1
(
s2

1

2 (
m1 ,m2

uM (C)u2d~E01k12Ep2k2!

3p2 dp dVp dk2 dV2 . ~8!

Integration over the momenta of the electron gives thedou-
bly differential cross section, we shall focus upon@26#
9-3
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d2s

dk2 dV2
5a2

k2

k1
È (

s2

1

2 (
m1 ,m2

uM (C)u2

3d~E01k12Ep2k2!p2 dp dVp . ~9!

III. EXTREME-RELATIVISTIC KINEMATICS

Our goal is to extract the dominant behavior, exact inZ,
of the cross sections Eqs.~8! and~9!, for k1@1 ~mathemati-
cally k1→`). To this end, it is useful to express the matr
elementsM (1) and M (2) in terms of the momentum trans
ferred to the nucleus

D[k12k22p. ~10!

By rearranging the integrand ofM (1), Eq. ~5! may be written

M (1)5E E @e2 ip•r2upm2

(2) ~r2!#†ei D•r2~a•s2!e2 i k1•r2

3G~r2 ,r1 ;V1!ei k1•r1~a•s1!uom1
~r1! dr1 dr2 ,

~11!

and similarly forM (2) .
In the limit k1→`, uDu may either tend to infinity~if the

angles between the vectors involved are kept fixed!, or may
remain finite~if the angles are allowed to decrease con
niently in the process!. However, the values ofM (1) and
M (2) at finite uDu are dominant over those foruDu→`. In-
deed, in the latter case the rapid oscillations of the expon
tial ei D•r2 in Eq. ~11! have an annihilating effect on the inte
gral, as opposed to the former case. Since we are intere
in a result to dominant order in (1/k2), we shall consider the
case

k1→`, D5finite; ~12!

this we shall designate as theER limit.
The ER calculation of the matrix element and cross s

tions depends on the range of the scattered photon spec
considered. One can distinguish three main ranges.

~i! The soft-photon end, defined by

k2,e, ~13!

wheree.0 and sufficiently small. In this range, the Com
ton effect and photoeffect, having the same initial conditio
are connected theoretically by the ‘‘soft-photon theorem
On the other hand, because any photon detector has n
sarily an energy resolution threshold«d below which it can-
not detect anything, fork2,«d , the Compton effect canno
be distinguished experimentally from the photoeffect~the
quantitiese and«d are unrelated!. This scattering regime will
be discussed in Sec. VII.

From Eq.~2! it follows that in this casep takes the maxi-
mum possible value at givenk1. In the ER limit, we have
p>k1→`. Moreover, by combining this with Eqs.~10! and
~12!, we findp•k1>pk1 , i.e.,p is quasiparallel tok1 in the
angular range which gives the dominant contribution to
cross section.
05270
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~ii ! The range of the Compton line, defined by h
[(k2 /k1)5const, withh such that

e8,h,12Ã, ~14!

where e8 and Ã are positive, sufficiently small quantities
We shall show further that this spectral range covers, inde
the profile of the Compton line.

Equation~14! implies thatk2 is obliged to tend to infinity
concomitantly withk1. From Eq.~2!, we obtain in the ER
limit

p>~12h!k1→`, ~15!

p•k1[k1
22k1•k22k1•D

5k1
2~12hn1•n2!2k1•D

>k1
2~12h!5pk1 , ~16!

where we have used the notation Eq.~10!, and

ni[ki /k i ~ i 51,2!. ~17!

This shows thatp and k1 are again quasiparallel in the E
limit.

~iii ! The tip of the spectrum, located in the vicinity of
k2

max5E01k121, hence havingp>0. In this vicinity, k2

>k1→`, but h,1 ~strictly!. This case will be discussed i
Sec. VII.

We shall now derive some kinematic relations for t
range of the Compton line. To this end, we shall consi
k1 , k2, andD, as the variables characterizing the scatteri
instead of the original setk1 , k2, and p. Let us therefore
change the integration variables accordingly in Eq.~9!. The
energy conservationd functioncan be written as

d$E01k12k22@p211#1/2%

52~E01k12k2!d$~p211!2~E01k12k2!2%.

~18!

By eliminating herep in favor of D, we have

d$~p211!2~E01k12k2!2%

5d$2k1k2~12n1•n2!22E0~k12k2!

22D•~k12k2!1~D21a2!%. ~19!

Further, defining the unit vectoru, and the cosinew of its
angle withD, by

u[~n12hn2!/un12hn2u, w[u•~D/D!, ~20!

the right-hand side of Eq.~19! can be transformed into
9-4
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dH2k1un12hn2uDFw2
1

Dun12hn2u S k2~12n1•n2!

2E0~12h!1
~D21a2!

2k1
D G J

5
1

2k1un12hn2uD
dH w2

1

un12hn2uD

3S hj2E0~12h!1
~D21a2!

2k1
D J . ~21!

We have introduced here the notation

j[k1~12n1•n2!52k1 sin2
u

2
, ~22!

whereu is the angle between the unit vectorsn1 andn2. As
we are operating under the condition Eq.~14!, we haveun1
2hn2uÞ0. Note that we have made no approximations
handling thed function, Eq.~18!.

Returning to the cross section Eq.~8! and inserting Eqs.
~18!–~21! in it, we find

d4s̃5a2
k2

k1
(
s2

1

2 (
m1 ,m2

uMER
(C)u2

~g1k12k2!

k1un12hn2uD

3dH w2
1

un12hn2uD S hj2g~12h!

1
~D21a2!

2k1
D J dk2 dV2 D2 dD dVD , ~23!

containing the ER form of the matrix element. In Eq.~23!,
we have replacedE0 by g.

The d function in Eq.~23! allows us to draw importan
kinematic conclusions. If the unit vectorn2 is situated in an
angular range such that (12n1•n2) stays finite~finite angle
scattering!, we havej→` in the ER limit, and the value o
w for which thed function becomes singular is pushed
infinity, and hence lies outside its allowed interval of var
tion (21<w<11). Therefore, thed function will reduce
the value of the cross section Eq.~23! to zero. However, ifn2
varies in an angular range defined by

~12n1•n2!5O~1/k1!, ~24!

j will be finite, and the singularity of thed function can be
made to lie within the interval (21<w<11), so that the
cross section Eq.~23! be nonvanishing. We conclude that,
the ER limit, the range ofn2 that gives dominant contribu
tion to the cross section is small-angle scattering:n2>n1. As
u is small, one gets from Eq.~22! the connection

j.k1~u2/2!. ~25!

Thus, thed function plays a double role in Eq.~23!.
~a! It fixes the value ofw in the matrix elementMER

(C) at
05270
-

w̃[
1

un12hn2uD S hj2g~12h!1
~D21a2!

2k1
D ; ~26!

we shall denote the result of this replacement byM̃ER
(C) .

~b! It confines the integration overD, asw̃ needs to sat-
isfy

21<w̃<1. ~27!

This leads to a limitation onD.
The exact form of thed function in Eq.~23!, and hence

Eqs.~26! and~27!, contains corrective termsO(1/k1). Since
we are interested in obtaining a consistent result only
dominant order in 1/k1, it would appear that these term
should be discarded. However, as will become apparen
Sec. V, there is a peculiar increase of order of magnitude
the matrix element and cross sections when passing froj
Þ0 to j50, and the corrective term in Eq.~26! is needed for
a proper handling of this passage. We shall, therefore, ke
until it is safe to discard it.

When dealing solely with the casejÞ0, we can use in-
stead ofw̃ of Eq. ~26! the expression

w̃0[
q

D
, q[

h

~12h!
j2g. ~28!

@Recall that, according to condition Eq.~14!, we have to
lowest order in 1/k1 : un12hn2u5(12h).] In this approxi-
mation u,n1 ,n2 coincide, so thatw̃0 is the angle ofD with
any one of them. From Eq.~27! we get

D>uqu. ~29!

Note that when the cross section Eq.~8! is expressed in
terms of the variablesk1 , k2, andp, the energy conserving
d function places a constraint onp at givenk1 ,k2. In the
new variablesk1 , k2, and D, this is translated into a con
straint on the direction ofD, which should be at fixed angle
with u, given by Eq.~26!. ~Because of the quasiparallelism
of n1 and n2 , D is approximately also at fixed angle wit
n1.! However, the magnitude ofD is required to be in exces
of uqu, Eq. ~28!.

By integrating overw in Eq. ~23!, we get a new quadruply
differential cross section

d4s̃ER

dk2 dV2 dD dF

5a2 h
~g1k12k2!

k1 un12hn2u
D(

s2

1

2 (
m1 ,m2

uM̃ER
(C)u2.

~30!

We choose a reference frame that has thez axis along the
vectoru, Eq. ~20!, andn1 andn2 in theOxzplane; the polar
angles ofD areQ[arccosw, andF. The doubly differential
cross section Eq.~9! can then be written
9-5
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d2sER

dk2 dV2
5a2hE

uqu

`

DdDE
0

2p

dF(
s2

1

2 (
m1 ,m2

uM̃ER
(C)u2.

~31!

In passing from Eq.~30! to Eq. ~31! we have used Eq.~29!,
and the fact that nowun12hn2u.(12h).

We note that already Heisenberg and Pauli, Sec. 1 of R
@10#, had realized that Eqs.~12!, ~14!, and~24!, were the key
conditions needed to define the ER limit of the Compton l
for bound electrons, although no proof was given.

IV. MATRIX ELEMENT FOR THE RANGE
OF THE COMPTON LINE

To derive the ER form of the matrix element for therange
of the Compton line, case~ii !, it is convenient to express th
Green’s function G(r ,r 8;V) and the continuum spino
upm

(2)(r ), appearing in Eq.~11!, in terms of the correspondin
quantitiesGI(r ,r 8;V) andupm

I (2)(r ), for the iterated~second
order! Dirac equation. For the Coulomb potential th
~homogeneous/inhomogeneous! form of the iterated equation
can be written as@e.g., see Ref.@6#, Eq. ~14.21!, or Ref.
@27~a!##, Eq. ~3.6!#

@D1~W1a/r !22I 1 iaa•r /r 3#J I5YI. ~32!

Per definition,GI(r ,r 8;V) satisfies this equation withJ I

[GI(r ,r 8;W), W[V, Y[d(r2r 8) I , and upm
I (2)(r ) with

J I[upm
I (2)(r ), W[Ep5(p211)1/2, Y50. The connection

betweenGI andG is @28#

G52~a•P1b1a/r 21V!bGI b, ~33!

and that betweenupm
I (2) andupm

(2)

upm
(2)52

1

2
~a•P1b1a/r 1V!b upm

I (2) . ~34!

Thus, the matrix element Eq.~11! can be written as

M (1)5
1

2E E @e2 ip•r2$a•P21b1a/r 21Ep%buIpm2

(2) ~r2!#†

3ei D•r2~a•s2!e2 i k1•r2$a•P21b1a/r 21V1%

3bGI~r2 ,r1 ;V1!bei k1•r1~a•s1!uom1
~r1!dr1 dr2 ,

~35!

and similarly forM (2).
GI and upm

I (2) satisfy an integral Lippmann-Schwinge
type of equation following from Eq.~32!, the usefulness o
which will become apparent shortly. Defining

R~r ![ iaa•r /r 31a2/r 2, ~36!

the integral equation can be written in operator form as

J I5J0
I 1G0IRJ I . ~37!

HereJ0
I is a solution of the equation
05270
f.

e

FD1
2aW

r
1~W221!GJ0

I 5Y, ~38!

and G0 is the Green’s function associated with it. For th
Green’s function case@Y5d(r2r 8)I # we need setJ0

I

[G0(r2 ,r1 ;V)I , while for the the continuum spinor cas
(Y50) we need setJ0

I [up
(2)(r )x. HereG0(r2 ,r1 ;V) and

up
(2)(r ) are solutions of the ordinary~nonspinor! equation

associated with Eq.~38!, and x is an arbitrary constan
spinor.x should be chosen such that the Dirac spinorupm

(2) in
Eq. ~34! reduces asymptotically to a normalized free parti
spinorxpm of the Dirac equation, Eq.~7!, with momentump
and spin projectionm on thez axis, as required by the matri
element Eq. ~4!. This can be achieved by choosingx
5xpm , and thusJ0

I [ up
(2)(r ) xpm @see also the comment

following Eq. ~49! below#. From Eq. ~38! it follows that
(2J0

I /2) satisfies the homogeneous/inhomogeneous Sc¨-
dinger equation for a Coulomb potential, in which the cha
a and energyE have been modified according to

a⇒aW, E⇒ 1
2 ~W221!. ~39!

We shall integrate in the following the matrix elemen
M (1),M (2), in momentum space. By Fourier transforming w
have

M (1)5
1

2 E E @$a•q1b1V~q!1Ep%bupm2

I (2)~q!#†~a•s2!

3$a•~p21k1!1b1V~p21k1!1V
1
%b

3GI~p21k1 ,p11k1 ;V1!

3b~a•s1!uom1
~p1!dp1 dp2 , ~40!

M (2)5
1

2E E @$a•q1b1V~q!1Ep%bupm2

I (2)~q!#†~a•s1!

3$a•~p22k2!1b1V~p22k2!1V
2
%b

3GI~p22k2 ,p12k2;V2! b~a•s2!uom1
~p1!dp1 dp2 ,

~41!

with the notationq[p21p1D. V(q) is the integral operator
in momentum space corresponding toV(r )[2a/r , see Ref.
@9#, Eq. ~12!. Equations~40! and ~41! are still exact.

Let us now consider the ER limit of the matrix elemen
Eqs.~40! and~41!. For theGreen’s function GI we shall use
the momentum-space form of Eq.~37!. Its first term J0

I

[G0(p2 ,p1 ;V)I contains the nonrelativistic momentum
space Coulomb Green’s function withmodified parameters
as in Eq.~39!, for which we can use the integral represen
tion of Schwinger@29# and Hostler@27#, see also Ref.@8~a!#,
Eqs.~18!–~20!,
9-6
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G0~p2 ,p1 ;V![2
X3

4p2E0

1

r2t
d

dr S 12r2

r

1

@X2~p12p2!21~p1
21X2!~p2

21X2!~12r!2/4r#2D dr, ~42!
ts
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of
wheret[a/X, X2[22V, with ReX.0. By modifying the
parameters according to Eq.~39!, we have

X2512V2, t5aV/X, ReX.0. ~43!

In fact, in Eqs.~40! and ~41! we need the ER limits of
GI(p21k1 ,p11k1 ;Eo1k11 i«), and GI(p22k2 ,p12k2 ;
Eo2k22 i«). It was shown in Ref.@9# that only the first
term of the integral equation forGI , Eq. ~37!, contributes to
these limits

lim
k1→`

GI~p21k1 ,p11k1 ;Eo1k11 i«!

5 lim
k1→`

G0~p21k1 ,p11k1 ;Eo1k11 i«!I , ~44!

lim
k2→`

GI~p22k2 ,p12k2 ;Eo2k22 i«!

5 lim
k2→`

G0~p22k2 ,p12k2 ;Eo2k22 i«!I , ~45!

if p1 andp2 belong to a finite domain; moreover, the limi
are proportional to (1/k1) and (1/k2), respectively@see Ref.
@9#, Eqs.~16!–~25!#. Since the integrals, Eqs.~40! and ~41!,
are assumed to be convergent,p1 andp2 vary essentially in
a finite volume, as required by Eqs.~44! and~45!. Therefore,
we are in a position to replace in our calculation the rela
istic GI with the nonrelativisticG0I with modified param-
eters, which represents a great simplification@30#. Note that
we can use, indeed, Eq.~45! for the calculation of the matrix
element Eq.~41!, because, at finiteh @see Eq.~14!#, we also
havek2→`.

Turning now to thefinal state spinor upm
I (2)(q), we recall

that in the case~ii ! we are studying,p→`. We shall again
use Eq.~37! in momentum space. Its first term contains t
nonrelativistic continuum Coulomb wave functionup

(2)(q),
which is the Fourier transform ofup

(2)(r )5Nce
ip•r

1F1„n,1;
2 i (pr1p•r )…, e.g., see Ref.@6#, Eq. ~29.38!; n is defined
nonrelativistically as n[(a/ ip). For momentum-
normalization, we shall take

Nc[2~2p!23/2e(p/2)unu G~11 i unu!. ~46!

By using a closed-loop integral representation for the con
ent hypergeometric function1F1 @31#, and taking its Fourier
transform, one obtains@see Ref.@8~a!#, Eq. ~17!#:

up
(2)~q![

4pNc

~2p!3/2 R«→0
S y21

y D n

3
1

$~q2py!21@«1 ip~12y!#2%2
dy. ~47!
05270
-

-

The integration contour encircles in counterclockwise se
the critical pointsy50 andy51 of the integrand, but leave
outside its pole; the principal value of the imaginary powen
in the integrand should be taken. However, Eq.~47! should
be entered in Eq.~36! with the relativistically modified value
of the parametern; this is

n[aEp / ip. ~48!

When considering the limitp→` of up
(2)(q), Eq. ~47!, it

can be shown~as for the Green’s function! that only the first
term of Eq.~37! contributes, and we have

lim
p→`

upm
I (2)~p1a!5 lim

p→`

up
(2)~p1a!xpm , ~49!

wherea may be any finite vector@32#. In our case, see Eq
~40!, a[p21D, both p2 and D being essentially finite. We
can, therefore, use instead of the relativisticupm

I (2) , the non-
relativistic up

(2)I , which is again a great simplification@30#.
This possibility is a consequence of condition Eq.~15!,
which forcesp→`.

We need to consider also the limits of the two curl
bracket operators in the integrand of Eq.~40!. The one acting
uponb GI becomes to leading orderk1(a•n111). As to the
one acting uponb upm2

I (2)(q), it reduces to (a•p1b1Ep)

@33#. Thus, on account of Eq.~49!, the square bracket in Eq
~40! contains up

(2)(p21p1D) multiplied by the spinor
(a•p1b1Ep) b xpm2

52xpm2
. For p→`, lim xpm2

5xnm2
, wherexnm2

has components 221/2$zm2
;(n•s)zm2

%;

we have denotedn[(pp), and byzm2
either (1,0) or (0,1),

depending on whetherm251 1
2 , or m252 1

2 .
For the initial state spinor uom1

(p… we need to use an
exact expressionin order to obtain the exactZ dependence of
the matrix element. We use the integral representation@9#

uom1
~q!5F f ~q!1

1

2
g~q!a•qGxom1

, ~50!

f ~q![
N0a

G~12g!
E

0

`

x2g
~11x!

@q21a2~11x!2#2
dx, ~51!

g~q![
2N0a

G~12g!

1

11gE0

`

x2g
1

@q21a2~11x!2#2
dx;

~52!

herexom1
is the constant spinor for a free particle at rest,

components$zm1
;0%, andN0 is the normalization constant

N0[
2g11/2a3/2

p F 11g

G~2g11!G
1/2

. ~53!
9-7
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Equations ~50!–~53! are obtained by starting from th
K-shell spinor in coordinate space@e.g., see Ref.@34#, Eqs.
~14.3!, ~14.4!, ~14.39!, or Sec. 5 of Ref.@12#, using an inte-
gral representation for the powerr g21 it contains@see Ref.
@35#, p. 1, Eq.~5!#, and Fourier transforming the result.~We
note that the integral representation forr g21 has been first
used in this context by Boyer@16#.! By introducing the inte-
gral representations forf (q) and g(q), we have achieved
that theirq dependence is similar to that of the nonrelativis
1s eigenfunction in momentum space, which can be ea
handled.

Finally, we get

MER
(1)5k1 limE E xnm2

† up
(2)* ~p21p1D!~a•s2!~a•n111!

3~a•s1!G0~p21k1 , p11k1 ;V1!

3F f ~p1!1
1

2
g~p1!a•p1Gxom1

dp1 dp2 . ~54!

Proceeding similarly forMER
(2) ,

MER
(2)52k2 limE xnm2

† up
(2)* ~p21p1D!~a•s1!~a•n211!

3~a•s2!G0~p22k2 ,p12k2 ;V2!

3F f ~p1!1
1

2
g~p1!a•p1Gxom1

dp1 dp2 . ~55!

The symbol ‘‘lim’’ has been introduced here to recall that t
integrals should be evaluated in the ER limit, i.e., by extra
ing their dominant behavior fork1 ,k2 ,p tending to infinity
in the manner discussed.

We have shown in this section that, as stated in the In
duction, the calculation of the Compton line matrix eleme
can be carried out with nonrelativistic wave functions a
Green’s function, with relativistically modified paramete
We also note that the ER matrix elements Eqs.~54! and~55!
can also be derived by using in Eqs.~4! and ~5!, the
Sommerfeld-Maue approximations~see Chap. 5, Sec. 8 o
Ref. @4# and Sec. 14.5 of Ref.@6#! for the final state Dirac
spinorupm2

(2)†(r2), and Green’s operatorG(r2 ,r1 ;V).

V. REDUCTION OF THE MATRIX ELEMENT
FOR THE RANGE OF THE COMPTON LINE

TO SINGLE INTEGRALS

We shall now carry out the evaluation of the integrals
Eqs. ~54! and ~55!. The four-component spinorsxom1

and

xnm2
entering here can be expressed in terms of the t

component spinorszm introduced in the preceding sectio
By expressing also thea matrices in terms of 232 s matri-
ces, after some manipulation the matrix elements can
written as

MER
(1)5 lim zm2

† @P1 i s•Q#zm1
, ~56!
05270
ly
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t
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-

e

MER
(2)52 lim zm2

† @P81 i s•Q8#zm1
, ~57!

where

P5
1

A2
H @~s1•s2!~12n1•n!1~s1•n!~s2•n1!#A

1
1

2
$@B•~n2n1!#~s1•s2!1~s1•B!@s2•~n1n1!#

2~s2•B!~s1•n!%J , ~58!

Q5
1

A2
H $2~s13s2!1@n1•~s13s2!#n1~s2•n1!~n3s1!

2~s1•s2!~n3n1!%A1
1

2
$@n1•~s13s2!#B

2@~s13s2!•B#n1~s1•B!~n3s2!2~s2•B!~n3s1!%

1
1

2
@~s1•s2!~n2n1!1~s2•n1!s1#3BJ . ~59!

We have introduced here the notation

A[k1E E up
(2)* ~p22k2!G0~p2 ,p1 ;V1!

3 f ~p12k1!dp1dp2 , ~60!

B[k1E E up
(2)* ~p22k2!G0~p2 ,p1 ;V1!~p12k1!

3g~p12k1!dp1dp2 . ~61!

P8 andQ8 are obtained fromP andQ by changingn1 into
n2, interchangings1 ands2, and replacing the integralsA, B,
by A8,B8; the latter are obtained fromA,B,by changingk2
into 2k1 , k1 into 2k2 ~hencek1 into k2), andV1 into V2.
No approximations were done in passing from Eqs.~54! and
~55! to Eqs.~56! and ~57!.

IntegralB can be expressed as a linear combination of
vectorsk1 , k2, andp, it contains. For consistency, we sha
introduce insteadk1 , k2, andD, or rather their unit vectors
n1 , n2, andd[D/D. Thus

B[d1n11d2n21d3d. ~62!

Insertion of this into Eqs.~58! and ~59!, will give the com-
plete dependence ofP andQ on the unit vectors of the prob
lem, s1 ,s2 ,n1 ,n2 ,d . Note thatn can be expressed in term
of the latter by using Eq.~10!:

n[
p

p
5

k1

p
n12

k2

p
n22

D

p
d. ~63!

In view of Eq.~15!, the first two terms here areO(1), while
the last one isO(1/k1).
9-8
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We proceed to derive the ER limits ofP, Q, P8, Q8. In
these expressions, we need to consider, on the one hand
integralsA,B, and on the other, the factors containing pro
ucts of unit vectors multiplying the integrals~we shall call
these ‘‘unit-vector factors’’!. In the process we shall take int
account the limitations imposed by the energy-conservind
function of Eq.~23!, as discussed in Sec. III.

We start by deriving theER dominant behavior of the
unit-vector factors. Scalar products like (s1•n2),(s2•n1), are
exactly 0 forj50. At jÞ0, they can be evaluated by intro
ducing a reference frame consisting ofn1, and two orthogo-
nal polarization vectorss18 ,s19 , chosen such thatn2 be in the
plane of n1 and s18 . Under these circumstancesn2

2

5(n2•n1)21(n2•s18)
2, and hence, with Eq.~26!, we have

(n2•s18)5O(1/Ak1). Since an arbitrary polarization vecto
s1 is a linear combination ofs18 and s19 , also (n2•s1)
5O(1/Ak1). In the case of (n13n2), one can use (n1
3n2)2512(n1•n2)25(j/k1)(11n1•n2) to show it to be
O(1/Ak1). Similarly, we find that products like (s1•n),
(s2•n),(n3n1),(n3n2), are of orderO(1/Ak1), and so is
the magnitude of the vectors (n12n2),(n2n1),(n2n2). On
the other hand, products like (s1•s2),(n13s1),(n3s1),
(s1•d),(d•n1), etc., areO(1), irrespective ofj. We need to
deal also with combinations like (12n1•n) and (1
2n2•n). With Eqs.~63! and~15!, we find atjÞ0 that they
areO(1/k1). A careful analysis shows that atj50, (12n1

•n)5(12n2•n)5O(1/k1
2).

Proceeding along these lines, and keeping only the do
nant unit-vector factors, we find in the ER limit

PER[ lim P5 lim
1

2A2

d3

12h
$h~s1•s2!@d•~n12n2!#

1~22h!~s1•d !~s2•n1!1h~s2•d !~s1•n2!%,

~64!

QER[ lim Q5 lim
1

A2
@K1n11K2s11K3~n13s1!#, ~65!

where

K152
1

2
d3H 2@s1•~n13d!#~s2•n1!

1
h

12h
~s1•s2!@d•~n13n2!#

1
h

12h
@~s13s2!•^n1~d•n2!2n2~d•n1!&#J ,

~66!

K25
h

2~12h!
$2@2A2~d11d2!#@s2•~n13n2!#%

1
h

2~12h!
d3$@~s13s2!•d #~s1•n2!

1~s1•s2!^s1•@~n12n2!3d #&%, ~67!
05270
the
-

i-

K35
22h

2 ~12h!
@2A2~d11d2!2d3~d•n1!#~s2•n1!.

~68!

Similarly, we obtain

PER8 [ lim P85 lim
1

2A2

d38

12h
@~s1•s2!^d•~n12n2!&

1~122h!~s1•n2!~s2•d !2~s1•d !~s2•n1!#,

~69!

whered 18 ,d 28 ,d 38 are the components ofB8 in a decompo-
sition as in Eq.~62!. Using further a decomposition fo
QER8 [ lim Q8 with respect to the same unit vectors as in E
~65!, we find atjÞ0:

K185
1

2
d38H @s1•~n13d !#~s2•n1!2@s2•~n13d !#~s1•n2!

2
1

12h
~s1•s2!@d•~n13n2!#

1
h

12h
~s13s2!•^n1~d•n2!2n2~d•n1!&J , ~70!

K285
1

2~12h!
@2A82~d181d28!#$2hn1•~s13s2!~s1•n2!

2@s2•~n13n2!#%1
1

2~12h!
d 38$~2h21!@~s13s2!•d #

3~s1•n2!1~s1•s2!^s1•@~n12n2!3d#&%, ~71!

K 3852
1

2~12h!
@2A82 ~d181d28!2d38~d•n1!#

3@2h~s1•s2!~s1•n2!1~s2•n1!#. ~72!

As easily seen, the unit-vector factors retained in Eqs.~64!–
~72! are all of orderO(1/Ak1) at jÞ0. However, theyall
vanish atj50, toO(1/Ak1). By considering the correction
to the unit-vector factors, it is not difficult to see that the
true order of magnitude atj50 is O(1/k1).

We now turn to the evaluation of theER dominant behav-
ior of the integrals A, B, A8, B8. We shall illustrate on the
case ofA how these sixfold integrals can be reduced anal
cally to single integrals. For similar procedures see Ref.@8#,
Sec. III, and Ref.@9#, Sec. IV. By inserting the integral rep
resentations Eqs.~42!, ~47!, and~50!, ~51!, into Eq.~60!, and
inverting the order of integrations, we find

A5NE
0

`

dx x2gLE
0

1

dr r2t1 R
«→0

dyS y21

y D 2n

3
1

4mL

]2

]L ]m

d

dr S 12r2

r
J~X2,L,m! D , ~73!

where
9-9
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J~X2,L,m![E E dp1 dp2

@~p22k̄2!21m2#@X1
2~p12p2!21a~p1

21X1
2!~p2

21X1
2!#2@~p22k1!21L2#

, ~74!
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N52
1

p2~2p!3/2G~12g!
pk1X1

3 N0 Nc* . ~75!

We have also denotedk̄2[k21py, m[«2 ip(12y), a
[(12r)2/4r, L[a(11x). In the ER limit, the parameter
entering here are@see Eqs.~43! and ~48!# n52 ia, X15
2 ik1 , t15 ia, for integralA, andn52 ia, X252 ik2 , t2
52 ia, for integral A8. It is understood that the limit«
→0 in Eq. ~73! should be taken after performing the deriv
tives with respect tor,m,L.

The momentum integral Eq.~74! was encountered an
calculated elsewhere@36#. Using Eq.~23! given there@see
also Ref.@8#, Eqs.~33! and ~34!#, we have for ourJ in Eq.
~74!, see Ref.@37#,

d

dr S 12r2

r
J~X2,L,m! D5

16p4

X2

1

c
,

c[@~X1L!21k1
2#@~X1m!21k̄2

2#22r@4~k1•k̄2!X2

1~L21k1
22X2!~m21k̄2

22X2!#

1r2@~X2L!21k1
2#@~X2m!21k̄2

2#. ~76!

This gives further

A5NE
0

`

dx x2gE
0

1

dr r2t1 R
«→0

dyS y21

y D 2n 1

y21

3H u01u1y1u2y2

c3
2

v01v1y

c2 J , ~77!

whereui ,v i , are polynomials inx andr of at most second
degree, which do not depend ony.

The contour integration over the variabley in Eq. ~77! can
be performed analytically, by applying the residue theore
Sincec has the formc[c0(y2y0), the integrand is analytic
with respect toy outside the integration contour througho
the whole complexy plane, with the exception of the pole a
y0, and vanishes as 1/y2 at infinity. The residue theorem ca
be applied by closing the contour at infinity; the calculati
is quite tedious.

As a result, in the ER limit, the integrand of the integr
over r in Eq. ~77! has the form@R(r)# iaQ(r), whereR(r)
and Q(r) are complicated rational functions. Surprising
enough, we could find a functionU(r) such that
dU(r)/dr5$@R(r)# iaQ(r)%ER, which makes the integra
tion trivial. One is thus left in the expression ofAER
5 lim A with a single integral.

The final expressions ofAER andAER8 are
05270
.

l

AER5
N

h Z AER
0 , AER8 52

hN

Z 8
AER

0 , ~78!

where

AER
0 5E

0

`

x2gF D21L2

D•n12 iLG ia

3F2~12 ia !L

~D21L2!2
1

a

~D•n12 iL!~D21L2!
Gdx

~79!

and

N5
p3/2N0 Nc*

A2@2k1~12h!# iaG~12g!
, ~80!

Z5g1D•n21j, Z 85g1D•n12h j. ~81!

A similar procedure can be followed in the calculation
B. We find

BER5
N

hZ BER
0 , BER8 52

h N

Z 8
BER

0 . ~82!

We give the components ofBER
0 , in a decomposition similar

to Eq. ~62!. In fact, onlyd11d2 andd3 are needed in Eqs
~66!–~68!, Ref. @38#, given by

d1
01d2

052
2 ia2

11gE0

`

x2gF D21L2

D•n12 iLG ia

3
1

~D21L2!~D•n12 iL!
dx, ~83!

d3
052

4a~12 ia !D

11g E
0

`

x2gF D21L2

D•n12 iLG ia 1

~D21L2!2
dx.

~84!

Equations~78! and ~82! represent the dominant behavio
in 1/k1 of the integralsAER,AER8 ,BER,BER8 . They undergo a
peculiar change of order of magnitude in theirj dependence
at j50. By taking into account the constraint imposed
thed function Eq.~23!, the integralsAER

0 ,AER8 0 ,BER
0 ,BER8 0 are

O(1), irrespective of the value ofj. This means that we can
replace theD•n1 they contain byD•u, and use the approxi
mate formw̃0 of Eq. ~28!, yielding D•n1>q. The denomi-
natorsZ,Z 8, Eq. ~81!, give rise to problems, however. W
first calculateexactlythe quantitiesD•n1 ,D•n2 they contain,
using the exact expression ofD•u[w̃ in Eq. ~26!. This gives
9-10
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Z5j
1

12h
1

1

k1

D21a2

2~12h!
1Oh , ~85!

Z 85j
h2

12h
1

1

k1

D21a2

2~12h!
1Oh

8 , ~86!

whereOh and Oh
8 contain terms of higher order inj, and

1/k1. Evidently, atjÞ0, Z andZ 8 areO(1) with respect to
1/k1. However, theseO(1) terms vanish atj50, which
means a change of order of magnitude for the integralsAER,
AER8 ,BER,BER8 . Thus, the correct order of magnitude of th
integrals isO(1) at jÞ0, andO(k1) at j50.

We now combine these findings for the integrals with t
behavior, discussed earlier, of the unit-vector factors. Aj
Þ0 we conclude that the order of magnitude of the ma
elementsMER

(1) ,MER
(2) is O(1/Ak1). On the other hand, we

have found that atj50 the unit-vector factors change o
order of magnitude, becomingO(1/k1) ~we have not calcu-
lated them in this case, however!. Taking into account also
the change of order of magnitude of the integrals, we fi
that the order of magnitude of the matrix elementsMER

(1) ,
MER

(2) at j50 increasesto O(1). Correspondingly, the differ-
ential cross section Eq.~31! will rise from O(1/k1) at j
Þ0, to O(1) at j50.

Unfortunately, we are not in a position to handle the ca
of j50 with our approximate formulas. This would requi
to include consistently all corrective terms ofO(1/k1) to the
unit-vector factors calculated. To this end one would need
start from Eqs.~40! and~41!, with the corrected expression
Eq. ~37! for GI and upm

I (2) , rather than from Eqs.~54! and
~55!, as we have done. Therefore, we shall restrict ourse
in the following to jÞ0. In this case, Eqs.~85! and ~86!
become, to dominant order,

Z5j
1

12h
, Z 85j

h2

12h
. ~87!

Note that these expressions can be obtained directly from
~81! by taking into account that atjÞ0 we can approximate
D•n1>D•n2>D•u>q, and then use Eq.~28!.

VI. DOUBLY DIFFERENTIAL CROSS SECTION
FOR THE RANGE OF THE COMPTON LINE

Having obtained the ER expression of the matrix eleme
we are now in a position to derive the cross sections, E
~30! and~31!, at jÞ0 . The first step is the summation ov
the electron polarizations. In view of Eqs.~56! and~57!, and
by using well-known summation formulas, we have

1

2 (
m1 ,m2

uM̃ER
(1)1M̃ER

(2)u25uPER2PER8 u21uQER2QER8 u2.

~88!

Note that, since at this stage we have taken into accoun
restrictions imposed by thed function of Eq. ~23!, we are
entitled to place a tilde overMER

(1) ,MER
(2) . The next step is the
05270
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summation overs2, which is a straightforward, albeit ver
tedious calculation. The result is rather compact

(
s2

1

2 (
m1 ,m2

uM̃ER
(1)1M̃ER

(2)u2>
~11h2!

k1h2j
T, ~89!

where

T5uNu2H u2AER
0 2@~d1

01d2
0!1d3

0w̃0#u2

1S 12
q2

D2D ud3
0u2J , ~90!

with q and w̃0 defined by Eq.~28!.
The quadruply differential cross section Eq.~30! can thus

be written (jÞ0)

d4s̃ER

dk2 dV2 dD dF
5a2

1

k1

~11h2!

h j
TD. ~91!

To pass to Eq.~31!, we have to carry out the integrals overF
andD. That overF is trivial, as there is noF dependence
left in our approximation. The final expression for theER
doubly differential cross sectionEq. ~31! at jÞ0 reads

d2sER

dk2 dV2
52pa2

1

k1

~11h2!

h j E
uqu

`

TD dD. ~92!

The quantities entering Eq.~92! are defined by Eqs.~90!,
~79!, ~83!, ~84!, ~87!, and ~28!. Note that there is nos1 de-
pendence left in the expression of the cross section Eq.~92!.
As a consequence, the expression will also give the cr
section averaged over the initial polarizations1.

We shall now show that the quantitiesh andd3
0 , entering

the expression ofT, can be expressed in terms of know
transcendentals. This will allow the transformation of the
expressions in view of a simpler computation. Let us co
sider, for example,d3

0 of Eq. ~84!. By changing the integra-
tion variable, the integral can easily be recognized to be
of a generalized hypergeometric function of several variab
x1 , . . . ,xn , of the Lauricella typeFD , e.g., see Ref.@39#,
Chap. VII, Eq.~8!,

FD ~a;b1 , . . . ,bn ;c;x1 , . . . ,xn!

5@G~c!/G~b!G~c2a!#E
0

1

ra21~12r!c2a21

3~12x1r!2b1
•••~12xnr!2bn dr. ~93!

We find, specifically,

d3
052

4a ~12 ia !D

11g

~D21a2! ia22

~q2 ia !1 i a

G~12g!G~g132 ia !

G~42 ia !

3FD~12g;22 ia,22 ia,ia;42 ia; x1 ,x2 ,x3!, ~94!

where
9-11
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x15
D

D1 ia
, x25

D

D2 ia
, x35

q

q2 ia
. ~95!

However, becausec5b11b21b3, the FD function of three
variables in Eq.~94! reduces to aFD function of two vari-
ables~also called Appell functionF1). Indeed@see Ref.@39#,
Chap. VII, Eq. (103)],

FD~a;b1 ,b2 ,b3 ;b11b21b3 ;x1 ,x2 ,x3!

5~12x3!2aF1S a;b1 ,b2 ;b11b21b3 ;
x12x3

12x3
,
x22x3

12x3
D .

~96!

Proceeding similarly in all cases, we get

T5uKu2H 4uL11L2u21S 12
q2

D2D uL3u2J , ~97!

where

L15
2

~D21a2!2

12 ia

32 ia
@~11g1q!~21g2 ia !F (2)

1 ia~q2 ia ! F (3)#, ~98!

L25
~11g1 ia !

~D21a2!~q2 ia !
F (1), ~99!

L352
4D

~D21a2!2

12 ia

32 ia
~21g2 ia !F (2), ~100!

uKu25
a5

16p2

22g

~11g!G~112g! S 2pa

12e22paD
3UG~21g2 ia !

G~32 ia !
U2S a2

q21a2D g21

e2ac. ~101!

We have denoted here

F (1)[F1~12g;12 ia,12 ia;32 ia; z1 ,z2!, ~102!

F (2)[F1~12g;22 ia,22 ia;42 ia;z1 ,z2!, ~103!

F (3)[F1~22g;22 ia,22 ia;42 ia;z1 ,z2!, ~104!

with

z1[
D1q

D1 ia
, z2[

D2q

D2 ia
, ~105!

and

tanc52~a/q!, 2p < c < 0. ~106!

The final form of the cross section Eq.~92! has thus been
expressed in terms of the quantities in Eqs.~97!–~105!. Note
05270
that the integral overD in Eq. ~92! is a function ofa andq,
and thatj and h are contained only inq of Eq. ~28!. The
evaluation of the Appell functions involved, as well as t
integration overD, has to be carried out numerically. Ou
results will be presented in Sec. VIII.

We have stated that the spectral regioncase~ii !, charac-
terized by Eq.~14!, contains the Compton line. This will b
illustrated in Sec. VIII by the numerical results. Here, w
shall check this in thecase of small a. Using simple proper-
ties of the Appell functionsF1, it is easy to see that the
dominant behavior of Eqs.~98!–~100! is

L1.
2~21q!

~D21a2!2
, L2.

2

~q2 ia !~D21a2!
,

L3.2
4D

~D21a2!2
. ~107!

Terms of ordera have been neglected in the numerators.
the other hand, because of the resonant nature of the den
nators, we shall use the exact form ofq, see Eq.~28!. We
write uKu2, Eq. ~101!, as

uKu2[
a5

16p2
S~a!e2ac. ~108!

Q(a), as defined by the equation, tends to 1 fora→0. We
leave its expression open, depending on the accuracy
sired. We note, however, that Eq.~108! contains the expo-
nentials e2ac and e22pa whose exponents are quite larg
even for relatively smallZ, so that it would be impractical to
approximate them by 1.

Inserting Eq.~107! into the expression ofT, Eq. ~97!, and
performing the simple integration overD in Eq. ~92!, yields
the smalla cross section

d2sER

dk2 dV2
5

a2

6 p
a5S~a!e2a c

1

k1

11h2

~12h!~q11!

3
8120q115q2

~q21a2!3
. ~109!

Let us now go to thefree electron limit, a→0. Equation
~109! contains the functional representation of thed(x) func-
tion

d~x!5
8

3p
lim
a→0

a5

~x21a2!3
. ~110!

Using well-known properties, we obtain

lim
a→0

d2sER

dk2 dV2
5

dsER
KN

dV2
dS k22

k1

11j D , ~111!

dsER
KN

dV2
[

1

2
a2

11~11j!2

~11j!3
. ~112!
9-12
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We recall thatk25k1(11j)21 is the ER form of the Comp-
ton formula for the scattered photon frequency, and t
dsER

KN/dV2 is the ER limit of the Klein-Nishina cross sectio
~e.g., see Sec. 28.5 of Ref.@6#!. Equation~111! then shows
that, indeed, our cross section Eq.~92! covers the spectra
region of the Compton line.

VII. LOW- AND HIGH-FREQUENCY ENDS OF THE
SCATTERED PHOTON SPECTRUM

We now turn to the discussion of the limiting cases~i! and
~iii ! of Sec. III. Case~i! will be mentioned here only for the
sake of completeness, as it has been treated elsewhere@19#.
In principle, it requires a different calculation than we ha
done for the Compton line, as the conditionh.e8 @i.e., k2
→`] of Eq. ~14! assumed in the former is incompatible wi
k2,e we now need. Neverthless, a closer look at the form
calculation shows that the assumptionk2→` was made only
for M (2), see Eq.~45!, and not forM (1). On the other hand
it is known that, of the two matrix elementsM (1) andM (2),
only M (1) ~for ‘‘photon absorption first’’! contributes domi-
nantly to the soft-photon limit, see Refs.@8~a!#, @13~a!#, @15#.
Then, the cross section we need is given, to dominant o
in (1/k2), by Eq. ~31! with M (2) neglected.

By leaving out the contribution ofM (2) from our calcula-
tion, we find that the cross sections can be expressed aj
Þ0)

d4sER
(C, IR)

dk2 dV2 dD dF
>

a

2p2

1

k1k2

D

j

dsER
(Ph)

dVp
, ~113!

d3sER
(C,IR)

dk2 dV2
>

a

2p2

k1

k2

1

j
sER

(Ph) , ~114!

where

dsER
(Ph)

dVp
[~2p!2ak1T(0), ~115!

sER
(Ph)[

~2p!3a

k1
E

g

`

T(0)D dD. ~116!

T(0) is the expression ofT, Eqs. ~97!–~105!, taken atk2
50. Note thatk2 is contained only inq of Eq. ~28! which

appears in the variablesz1 ,z2 , Eq. ~105!. Replacing in
these quantitiesq by 2g ~its value atk2 50), they become

z1
(0)5

D2g

D1 ia
, z2

(0)5
D1g

D2 ia
. ~117!

Thus,T(0) and the integral in Eq.~116! reduce to functions
of a only.

The cross sections Eqs.~113! and~114! diverge as (1/k2)
in the soft photon limit; this is the ‘‘infrared divergence
Moreover, by comparing with results by Nagel@17# and
Boyer @16#, we have shown in Ref.@19# that the quantities
(dsER

(Ph)/dVn) andsER
(Ph) represent, indeed, the ER limits o

the differential and total photoeffect cross sections. We h
05270
t

r

er

(

e

shown there that Eqs.~113! and~114! are expressions of the
‘‘soft-photon theorem’’ in the ER domain.

We now turn to case~iii !. We shall merely outline the
calculation, for the sake of obtaining the order of magnitu
of the result with respect to (1/k1). Note that we cannot use
our results for case~i! or ~ii !, since in these instances w
have assumedp→`. In the followingp is considered to be
a fixed, small vector.

Starting from Eqs.~4! and~5!, we can again make appea
in the integrals the momentum transfer Eq.~10!. We again
express the Dirac Green’s functionG in terms of that for the
iterated equationGI , Eq. ~33!, but we shall maintain the
usual Dirac expression for the final stateupm2

(2) . As k2>k1

→`, we can again apply Eqs.~44! and ~45!, to get the mo-
mentum space integral

MER
(1)5k1 lim E E upm2

(2)†~p21p1D!~a•s2!~a•n111!

3~a•s1!G0~p21k1 ,p11k1 ;V1! uom1
~p1!dp1 dp2 ,

~118!

and a similar expression forMER
(2) . These are akin to the one

we used in the high-energy Rayleigh scattering calculati
see, Eqs.~27!, ~28!, and~31! of Ref. @9# except that here the
final state is different from the initial one and lies in th
continuum. We can proceed by using the integral represe
tions, Eqs.~42! and ~50!, for G0 and uom1

, of the present
paper. This would allow an analytic handling of the matr
elements up to a certain point, beyond which a numer
evaluation will be needed.

The order of magnitude of matrix element Eq.~118! is
different from that of the Compton line, because now t
directionn is no longer quasiparallel ton1, but can be arbi-
trary. The unit-vector factors appearing in Eq.~118! are
O(1), and, as also the integrals they are multiplying a
O(1) @see Ref.@9#, Sec. III#, the whole matrix element Eq
~118! is now O(1).

Thus, at the tip of the spectrum we find that the doub
differential cross section Eq.~9! is O(1), irrespective ofj,
whereas for the contiguous spectral region of the Comp
line, it wasO(1/k1) or O(1), depending on whetherjÞ0 or
j50. This means that, forjÞ0, there is an increase of orde
of magnitude of the cross section at the tip of the spectr
~similar to that occurring in the angular distribution atj
50). Note that this behavior will not show up in our nume
cal computations for the Compton line, as this effect is n
contained in the formulas we shall be using.

VIII. RESULTS AND DISCUSSION

We now present the results of the numerical computat
of the cross section Eq.~92!. The Appell functionsF1 it
contains were evaluated using their integral representa
Eq. ~93!, combined with very accurate numerical integrati
routines.

For convenience of the graphical representation, we s
be considering the relative cross section
9-13
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s r5
d2sER

dk2 dV2
Y 4 a2

3pak1
. ~119!

At given k1 andZ, s r is a function of the two independen
variablesj and h. Physically interesting are the section
through the surfaces r(j,h), at h5const~angular distribu-
tions!, andj5const~spectral distributions!. We have calcu-
lateds r for three typical values ofZ513 ~Al !, 50 ~Sn!, and
82 ~Pb!. We have cut off the infrared divergent behavio
which is anyway not covered correctly by the present co
putation ~see Sec. VII!; the cut off is noticeable only a
high Z.

Figures 1–3 contain theangular distributions, at indi-
catedh. The location of the free Compton line is shown b
a dotted line. It is apparent that the height of the peak
creases with increasingh, while its locationjC shifts to-
wards smallerj, at allZ. In fact,jC lies always very close to
j0, the location of the free electron line,j05(12h)/h. The
full width at half maximum~FWHM! of the line, (Dj)C ,
decreases ash increases.

Figures 4–6 give thespectral distributions, at indicatedj.
The location of the free Compton line is again marked b
dotted line. For allZ, the height of the peak decreases w
increasingj, while its locationhC shifts towards largerh
and then smallerh. Again, the location ofhC is very close
to the location of the free electron line,h05(11j)21. For
all Z, the FWHM of the line (Dh)C first increases withh,
and then decreases.

The fact that the location of the Compton peak is un
pectedly so close to that of the free electron, for both dis
butions and at allZ, as well as the peculiar behavior of th
widths (Dj)C and (Dh)C require attention. For a quantitativ
discussion, we list the pertinent quantities in Tables I and

0.0 1.0 2.0 3.0 4.0 5.0

ξ

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
σ r

0.5

0.6

0.8

0.3 0.2

0.4

Z=13

FIG. 1. Extreme-relativistic doubly differential Compton cro
sections r , Eq. ~119!, for Z513, at fixed values ofh5k2 /k1,
indicated next to the Compton profiles, and variablej, Eq. ~22!.
The dotted lines mark the locations of the corresponding fr
electron Compton lines.
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I.

Let us start with theCompton defect, the shift of the
Compton peak from the location of the free line, defined
(dj)C[jC2j0 and (dh)C[hC2h0. The Compton defect
has attracted considerable interest at low photon ener
~e.g., see Ref.@40# and references therein!, theoretical and
experimental. At lowk1, the nonrelativistic defect for the
unscreened CoulombK shell is negative, and sizable. In th
ER case, from Tables I and II, the Compton defect is posit
and surprisingly small, as (dj)C /j0 is less than 1%, and
(dh)C /h0 is less than 3%, for allZ. One may well wonder if
this is not the reflection of some underlying physical arg
ment requiring that, in the ER limit, the peak should occur
the location for the free particle~recall the question raised b
Pauli and Heisenberg@10#, mentioned in the Introduction!.
This, however, is not the case. On the one hand, the erro
our computation are considerably smaller than the value

-

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

σ r
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0.5

0.3
0.2

0.4

Z=50

FIG. 2. The same as for Fig. 1, except thatZ550.
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FIG. 3. The same as for Fig. 1, except thatZ582.
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(dj)C and (dh)C , so that these have to be considered tr
nonzero. On the other hand, had this been the case, an
lytic evaluation of the defect should give zero to all orders
a. We shall prove that this is not so, by obtaining analy
expressions for (dj)C and (dh)C to the lowest two nonvan
ishing orders ina.

The analytic evaluation of (dj)C amd (dh)C requires
some care. In order that the result be consistent to a g
order in a, one needs to start from an adequate approxim
tion of the cross section. For example, Eq.~109! is a valid
starting point for a calculation toO(a2). Indeed, let us first
consider only the denominator of Eq.~109!. This would in-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

η

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
σ r

5
2

1

0.75

0.25

0.5

Z=13

FIG. 4. Extreme-relativistic doubly differential Compton cro
sections r , Eq. ~119!, for Z513, at fixed values ofj, Eq. ~22!,
indicated next to the Compton profiles, and variableh5k2 /k1.
The dotted lines mark the locations of the corresponding fr
electron Compton lines.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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1

2
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Z=50

FIG. 5. The same as for Fig. 4, except thatZ550.
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dicate that the Compton peak would occur atq50. The con-
clusion is illegitimate, however, because the terms linear iq
in the numerator shift the maximum to aq5O(a2). Note
that q dependence is contained also in the prefactor
1h2)/(12h)(q11), as well as ine2ac. Moreover, it turns
out that it is sufficient to know the coefficients of the powe
of q only to zeroth order ina. Equation~109! satisfies these
requirements, and is thus capable of rendering corre
(dj)C and (dh)C , to O(a2). If, on the other hand, one de
sires formulas valid toO(a4), one needs to proceed from th
exact Eq.~92!. A tedious calculation leads to

~dj!C
an/j0. 1

12 a22 1
8 a4. ~120!

On the other hand, (dh)C
an/h0 is j dependent. We find

-
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FIG. 6. The same as for Fig. 4, except thatZ582.

TABLE I. Characteristics of theangular distribution for the
Compton line, at givenZ and h. j0 represents the location of th
free-electron line; (dj)C and (dj)C

an are Compton defects, from th
computation, and according to Eq.~120!; (Dj)C and (Dj)C

an are
FWHM, from the computation, and according to Eq.~123!.

h j0 (dj)C (dj)C
an (Dj)C (Dj)C

an

Z513
0.20 4 0.0030 0.0030 0.39 0.39
0.50 1 0.0074 0.00074 0.095 0.097
0.80 0.25 0.00018 0.00018 0.024 0.024

Z550
0.20 4 0.035 0.035 1.58 1.49
0.50 1 0.0087 0.0089 0.39 0.37
0.80 0.25 0.0022 0.0022 0.099 0.093

Z582
0.20 4 0.040 0.055 2.89 2.44
0.50 1 0.011 0.014 0.72 0.61
0.80 0.25 0.0025 0.0035 0.18 0.15
9-15
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~dh!C
an/h0.

j~6112j15j21j3!

12~11j!2~212j1j2!
a21C~j! a4;

~121!

the coefficientC(j) has not been reproduced here becaus
is too complicated~it is the ratio of two ninth degree poly
nomials inj).

Thus, the Compton defects do not vanish toO(a4), as
stated. The values yielded by theO(a4) formulas agree quite
well with the computed ones even at largeZ, as can be seen
in Tables I and II. The tables emphasize the small numer
value of the defects (dj)C and (dh)C . The reason for this is
now apparent: on the one hand, the coefficients entering
analytic expansions ina2 are small, and on the other han

TABLE II. Characteristics of thespectral distributionfor the
Compton line, at givenZ and j. h0 represents the location of th
free-electron line; (dh)C and (dh)C

an are Compton defects, from th
computation, and according to Eq.~121!, with the O(a4) term in-
cluded; (Dh)C and (Dh)C

an are FWHM from the computation, an
according to Eq.~123!.

j h0 (dh)C (dh)C
an (Dh)C (Dh)C

an

Z513
0.25 0.80 0.00035 0.00035 0.016 0.016

1 0.50 0.00045 0.00045 0.024 0.024
5 1.66 0.00015 0.00015 0.013 0.013

Z550
0.25 0.80 0.0050 0.0049 0.061 0.060

1 0.50 0.0064 0.0064 0.098 0.093
5 1.66 0.0019 0.0020 0.055 0.052

Z582
0.25 0.80 0.013 0.012 0.107 0.098

1 0.50 0.016 0.016 0.17 0.15
5 1.66 0.0039 0.042 0.101 0.085
.H

-

-

ys
.
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he

the terms tend to cancel each other.
The heights of the Compton peaks for the angular a

spectral distributions ofs r , denotedHC and HC, respec-
tively, are according to Eqs.~109! and ~119!,

HC
an5S~a!e2ac

11h2

12h
, HC

an5S~a!e2ac
11~11j!2

j~11j!
.

~122!

Their values are in good agreement with the numericalHC
andHC.

We finally turn to theFWHM of the Comptonline (Dj)C
and (Dh)C . From Eq.~109! we find to lowest order ina,

~Dj!C
an.1.02

12h

h
a, ~Dh!C

an.1.02
j

~11j!2
a.

~123!

Tables I and II show that (Dj)C
an and (Dh)C

an agree very well
at smalla (Z513), with the exact widths, but that the agre
ment deteriorates at higherZ @with differences of order
O(a2), as expected#. Equation~123! reveals the characteris
tics of the exact (Dj)C , namely, its monotonic decrease wi
h, and the qualitative dependence of (Dh)C on j ~e.g., its
maximum atj.1).

We have thus shown that the elementary formulas E
~109!, ~120!–~123!, provide a good qualitative understandin
of the characteristics of the ER Compton line. In fact, th
even represent fairly adequate approximations.
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