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Levinson theorem with the nonlocal Aharonov-Bohm effect

De-Hone Lin*
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30043, Taiwan

~Received 28 April 2003; published 5 November 2003!

Levinson theorem for a charged particle moving in an arbitrary short-range potential and the field of the
Aharonov-Bohm magnetic flux is established. The theorem constructs the relationda(0)5nap between the
phase shiftda(k) of scattering state at zero momentum and the total numberna of bound states for theath
angular-momentum channel, wherea5um1m0u is a real number (m5 integer, andm052F/F0 with F being
the magnetic flux andF05hc/e the fundamental flux quantum!. The relation means that the phase shift at the
threshold of zero momentum can serve as a counter for the bound states in the general angular-momentum
channel.
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I. INTRODUCTION

In 1949, Levinson discovered one of the most beaut
theorems in quantum mechanics@1#. Well known as the
Levinson theorem, it clarifies the relation between the ph
shifts of a quantum particle scattered by a short-range po
tial and the number of bound states therein. In thr
dimensional space, the theorem can be described as

d l~0!5nlp, l 51,2, . . . ,

whered l(0) denotes the phase shift of scattered state wi
linear momentumk at the threshold of zero momentum, i.e
k5 0, in the angular-momentum channell, andnl is the total
number of bound states in the angular-momentum channl
allowed by the short-range potential. When the angular m
mentuml 50, the theorem must be modified to

d0~0!5~n011/2!p

due to the existence of a zero-energy resonance~a half-
bound state!. Later some authors devoted Levinson’s ver
cation to discuss the elegant theorem by way of the differ
manners, or generalized it to the more general cases@2–8#.
Slightly different from the three-dimensional case, Levins
theorem in two dimensions can be expressed as@8#

dm~0!5nmp, m50,1,2, . . . , ~1!

wheredm(0) is the phase shift of scattering state at thresh
of angular-momentum channelm, andnm is the total number
of the bound states in the same channel. The total numbe
bound states in the angular-momentum channel2m is the
same as that ofm. This is due to the fact that the phase sh
and the number of bound states just relate to the ang
momentumm via its absolute valueumu in cylindrically sym-
metric system. Ten years after Levinson’s work, Aharon
and Bohm found that a charged particle can be influenced
the magnetic field even if the particle is nowhere in the
gion of nonzero field strength@9#. The phenomenon is some
what counterintuitive and represents a nonlocal and topol
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cal effect in quantum mechanics. The term ‘‘nonloca
means that it exists even when the charged particle pa
through a field-free region and is only associated with
entire closed curve. It is ‘‘topological’’ in the sense that th
phase interference is unaffected when the particle path
closed curve is deformed within the field-free region. Fo
years later, Aharonov-Bohm~AB! effect had great impact on
our comprehension of the foundation of quantum the
@10#, and helped in the understanding of the quantum H
effect @11,12#, superconductivity@12,13#, and so forth.

In this paper we shall generalize the Levinson theorem
a charged particle moving in an arbitrary short-range pot
tial to include the field of the nonlocal AB effect. This pap
is organized as follows. In the following section we establ
the partial-wave method for scattering theory in two dime
sions for a short-range potential and the nonlocal AB effe
The asymptotic behavior of phase shifts at threshold is
cussed in Sec. III. In Sec. IV, the Levinson theorem is g
eralized to charged particles moving in the potentialV(r),
which is less singular thanr22 when r<a and V(r)50
whenr>a, and in the field of the nonlocal AB effect usin
Green’s-function method. The number of bound statesna for
a given general angular momentuma5um1m0u is related to
the phase shiftsda(0) of zero-momentum scattering states
follows:

da~0!5nap, a5um1m0u, ~2!

wherem is an integer, andm052F/F0 with F being the
AB flux and F05hc/e the fundamental flux quantum. Ou
discussions are summarized in Sec. V.

II. PARTIAL-WAVE METHOD FOR A SHORT-RANGE
POTENTIAL AND AN AB MAGNETIC FLUX

The fixed-energy Green’s functionG0(r ,r 8;E) for a
charged particle with massm propagating fromr 8 to r satis-
fies the Schro¨dinger equation

FE2H0S r ,
\

i
¹ D GG0~r ,r 8;E!5d2~r2r 8!. ~3!
©2003 The American Physical Society05-1
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Here the Hamiltonian of the system is given byH0
52\2¹2/2m1V(r ) and r represents the two-dimension
position vector. In the cylindrically symmetric system, t
angular decomposition of the Green’s function can be writ
as

G0~r ,r 8;E!5 (
m52`

`

Gm
0 ~r,r8;E!

eim(w2w8)

2p
, ~4!

with (r,w) being the polar coordinates in two-dimension
space andGm

0 (r,r8;E) the radial Green’s function. As a re
sult, the left-hand side~lhs! of Eq. ~3! can be brought to the
following form:

(
m52`

` H E1F \2

2m S d2

dr2
1

1

r

d

dr
2

m2

r2 D G2V~r!J
3Gm

0 ~r,r8;E!
eim(w2w8)

2p
. ~5!

For a charged particle affected by a magnetic field, Gree
function G(r ,r 8;E) is different fromG0(r ,r 8;E) by a glo-
bally nonintegrable phase factor@14,15#:

G~r ,r 8;E!5G0~r ,r 8;E!expH ie

\cEr8

r
A~ r̃ !•dr̃ J . ~6!

Here we have used the vector potentialA( r̃ ) to represent the
magnetic field. For an infinitely thin tube of finite magnet
flux along thez-direction under consideration, the vector p
tential can be described by

A~r !52g
2yêx1xêy

x21y2
, ~7!

where êx ,êy stand for the unit vector along thex,y axes,
respectively. Introducing the azimuthal angle around the
tube,

w~r !5tan21~y/x!, ~8!

the components of the vector potential can be expressed

Ai52g] iw~r !. ~9!

The associated magnetic-field lines are confined to an
nitely thin tube along thez axis:

B352ge3i j ] i] jw~r !54pgd~r'!, ~10!

where r' stands for the transverse vectorr'[(x,y). Note
that the derivatives in front ofw(r ) commute everywhere
except at the origin where Stokes’ theorem yields

E d2x~]x]y2]y]x!w~r !5 R dw52p. ~11!

Since the magnetic flux through the tube is defined by
integral
05270
n

l

’s

B

s

fi-

e

F5E d2xB3 , ~12!

the coupling constantg is related to the magnetic flux byg
5F/4p. InsertingAi52g] iw into the nonintegrable phas
factor in Eq. ~6!, the magnetic interaction takes th
form exp@2im0*

tdt8ẇ(t8)#, where ẇ5dw/dt and m0
522eg/\c52F/F0 is a dimensionless number. The m
nus sign is a matter of convention. According to the disc
sion in Refs.@14–17#, only phase factors with closed-loo
contour are considered where the description of the elec
magnetic phenomenon is complete@18#. Hence, we have

m5
1

2pE
t

dt8ẇ~t8!, ~13!

with integer valuesm corresponding to the winding numbe
The magnetic interaction is therefore purely nonlocal, a
topological. The nonintegrable phase factor now becom
exp$2im0(2pm1w2w8)%. It can be included with the help o
Poisson’s summation formula~e.g., p. 469 of Ref.@19#!

(
k52`

`

f ~k!5E
2`

`

dx (
n52`

`

e2pnxif ~x!. ~14!

So expression~5! can be written as

E dz (
m52`

` H E1F \2

2m S d2

dr2
1

1

r

d

dr
2

z2

r2D G2V~r!J
3Gz~r,r8;E!

ei (z2m0)(w12mp2w8)

2p
, ~15!

where the superscript 0 inGm
0 has been suppressed to refle

the inclusion of the AB effect. The summation over all ind
ces m forces z5m0 modulo an arbitrary integer numbe
Thus, we have

(
m52`

` H E1F \2

2m S d2

dr2
1

1

r

d

dr
2

um1m0u2

r2 D G2V~r!J
3Gum1m0u~r,r8;E!

eimw

2p
. ~16!

In what follows, we shall denoteum1m0u5a briefly. We see
that the influence of the AB effect to the radial Green’s fun
tion is to replace the integer quantum numberm with a real
one a which depends on the magnitude of magnetic flu
Applying the Fourier expansion ofd function,

d~w2w8!5 (
m52`

`
1

2p
eim(w2w8), ~17!

to the right-hand side~rhs! of Eq. ~3!, one can show that the
radial Green’s function satisfies
5-2
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H E1F \2

2m S d2

dr2
1

1

r

d

dr
2

a2

r2 D G2V~r!J Ga~r,r8;E!

5d~r2r8!. ~18!

As a result, the corresponding radial wave equation read

H E1F \2

2m S d2

dr2
1

1

r

d

dr
2

a2

r2 D G2V~r!J Rak~r!50,

~19!

where the subscript set (a,k) with k[A2mE/\ denotes the
state of scattering particle.

For short-range potential, i.e.,V(r) vanishes forr.a,
the domain of the variabler is divided into an internal region
(r,a) and an external region (r.a). The normalized ex-
terior solution is the linear combination of Bessel functio
Ja(kr) andNa(kr) of the first and second kind, and may b
given by

Rak~r!5Ak@cosda~k!Ja~kr!2sinda~k!Na~kr!#,

~20!

whereda(k) is the phase shift of the scattered radial wa
function which is used to measure the interaction in pot
tial. The general solution of a scattering particleCk(r ) is
given by superposition of the partial waveCak(r )
5Rak(r)eimw, and reads

Ck~r !5 (
m52`

`

Ak@cosda~k!Ja~kr!

2sinda~k!Na~kr!#eimw. ~21!

Because it must describe both incident wave and scatt
wave at large distance, we naturally expect it to become

Ck~r ! ——→
ur u→`

FasympS exp$ ik•r%expH ie

\cEr8

r
A~ r̃ !•dr̃ J D

1 f ~w!A i

r
exp$ ikr%, ~22!

where exp(ik•r ) describes the incident plane wave of
charged particle with momentump5mk and Fasymp(•)
stands for its asymptotic form. The phase modulation of
nonintegrable phase factor comes from the fact that the fi
A( r̃ ) of AB magnetic flux affects the charged particle gl
bally. To find the amplitudef (w) we note that the plane
wave in Eq.~22! can be in terms of the expansion of th
partial waves in polar coordinates:

eik•r5 (
m52`

`

i mJm~kr!eimw. ~23!

Using the same procedure as in Eqs.~14!–~16!, the nonlocal
flux effect can be combined into the partial-wave expansi
and yields
05270
-
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exp~ ik•r !expS ie

\cEr8

r
A~ r̃ !•dr̃ D 5 (

m52`

`

i aJa~kr!eimw.

~24!

Inserting the result into Eq.~22!, making use of the
asymptotic approximations of Bessel functions, and th
comparing both asymptotic forms of Eqs.~21! and ~22!, we
find the scattering amplitude in terms of phase shifts:

f ~w!5
1

A2pk
(

m52`

`

ei (da2p/4)2i sindaeimw. ~25!

It is worth noting that if the flux is quantized, i.e.,m0 is an
integer, the result reduces to the free of flux case. In m
cases, one concern is the total cross section, which is defi
by

s t5E
2p

p

u f ~w!u2dw. ~26!

Accordingly, the partial-wave representation of the to
cross section for a charged particle scattered by a short-ra
potential and the nonlocal AB effect is given by

s t5
4

k (
m52`

`

sin2da . ~27!

We see that the cross section is completely determined by
scattered phase shifts which are concluded by the potenti
different types and the magnetic flux. On the other hand,
potential also determines the number of bound states.
relation between the phase shifts and the number of bo
states was first clarified by Levinson@1#. Here, due to the
nonlocal AB magnetic flux existence, the phase shifts
affected globally, and so are the number of bound states@20#.
In next two sections it will be showed that the relation b
tween the phase shift at threshold of the scattered wave f
tion and the number of bound states for the correspond
angular-momentum channel is connected by a gen
Levinson theorem.

III. PHASE SHIFTS NEAR r\0 AT THRESHOLD

Since the behavior of phase shifts nearr→0 at threshold
is useful in the procedure of proof, the asymptotic behav
is discussed in that follows. According to Eq.~19!, when a
potentialV(r) is less singular thanr22, the solution has the
power dependence onr nearr50,

Ra~r,k! ;
r→0

ra, ~28!

where we have usedRa(r,k) to denote the solution of Eq
~19! which satisfies the boundary condition Eq.~28!. On the
other hand, the external solution is given by Eq.~20!. The
boundary conditions atr5a require that the logarithmic de
rivative be continuous,
5-3
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1

Ra

dRa

dr U
r5a2

5
1

Rak

dRak

dr U
r5a1

, ~29!

and thus yield the formula for the phase shift,

tanda5
kaJa8 ~ka!2gaJa~ka!

kaNa8 ~ka!2gaNa~ka!
. ~30!

Here we define Ja8 (r)5dJa(r)/dr and ga

5adRa /Radrur5a2. Note that Eq.~28! is independent ofk,
and Eq.~18! depends onk only throughk2. Therefore either
Ra or dRa /dr must be an integral function ofk, and hence
are the even function ofk. Accordingly, ga can only have
one of the following forms@8#:

ga→ba
1~ka!2l a

1

,

ga→ba
2~ka!22l a

2

,

ga→ca1ba~ka!2l a,

whereba
6 , andca , andba are nonzero constants, andl a

6 , l a

are the natural numbers. Using the asymptotic forms
Bessel functions atr;0, it is easy to find that the leadin
term of Eq.~30! at threshold in any case is given by

tanda→da~ka!2ã, ~31!

wheredaÞ0 andã is a nonzero positive real number. Th
result will be useful in the following proof of the Levinso
method.

IV. THE LEVINSON THEOREM WITH THE NONLOCAL
AB EFFECT

Using the spectrum representation of the radial Gree
function of Eq.~18!,

Ga~r,r8;E!5(
k

uak~r!uak* ~r8!

Arr8~E2Eak1 i e!
, ~32!

the Green’s functionG(r ,r 8;E) is

G~r ,r 8;E!5 (
m52`

`

Ga~r,r8;E!
eim(w2w8)

2p

5 (
m52`

`

(
k

uak~r!uak* ~r8!

Arr8~E2Eak1 i e!

eim(w2w8)

2p
,

~33!

wheree501 has been defined for the retarded Green’s fu
tion and we usek to denote the discretized energy levels
a system moving in an attractive field. It is easy to see t
by making use ofRak5uak /Ar in Eq. ~19! the wave func-
tion uak(r) solves
05270
f
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d2uak

dr2
1F2m

\2
@Eak2V~r!#2

a221/4

r2 Guak50. ~34!

The wave functionuak(r) satisfies normalization condition

^uak ,uak8&5E
0

`

druak* ~r!uak8~r!5dkk8 . ~35!

So we find the following trace:

E drrGa~r,r;E!5(
k

1

~E2Eak1 i e!
. ~36!

With the help of the formula

1

x1 i e
5P

1

x
2 ipd~x!, ~37!

the imaginary part of integral in Eq.~36! reads

ImE drrGa~r,r;E!52p(
k

d~E2Eak!. ~38!

Thus the total number of bound states can be read off
integrating the formula overE from 2` to 02, and yields

ImE
2`

02

dEE drrGa~r,r;E!52na
2p, ~39!

wherena
2 is the number of bound states with negative en

gies corresponding to the channel of a general angular
mentuma\. We have performed the integral overE up to
02 instead of 0 for avoiding ambiguity. The possible ex
tence of a bound state with zero energy will be considere
Sec. V. We point out that the degeneracy betweenm and
2m in Eq. ~1! is broken in general due to the existence
magnetic flux of the nonlocal AB effect. A similar discussio
as above can be applied to the free charged particle mo
in the field of the AB effect and gives

ImE
2`

02

dEE drrGa
0~r,r;E!50. ~40!

Combining both Eqs.~39! and ~40!, we find

ImE
2`

02

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#52na

2p.

~41!

It is useful to discuss this result by the Dyson equation

G~r ,r 8;E!5GAB
0 ~r ,r 8;E!

1E dr 9GAB
0 ~r ,r 9;E!V~r 9!G~r 9,r 8;E!,

~42!

where we have usedGAB
0 (r ,r 8;E) to represent the Green’

functionG(r ,r 8;E) in the case ofV(r)50. With the help of
5-4
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Eq. ~33!, the integration of angular part can be carried o
and turns the equation into the single-dimensional one wi
general quantum numbera @16#

Ga~r,r8;E!5Ga
0~r,r8;E!

1E dr9Ga
0~r,r9;E!V~r9!Ga~r9,r8;E!.

~43!

Here Ga
0(r,r8;E) is the radial Green’s function withV(r)

50. Its spectrum representation can be in terms of disc
sum

Ga
0~r,r8;E!5(

k

uak
0 ~r!uak

0* ~r8!

Arr8~E2Eak1 i e!
. ~44!

This can be achieved by requiring the wave functions
vanish at a sufficiently large radiusR whena!R for a short-
range potential. Taking the same trace with respect to
~43! as Eq.~36!, we obtain

E drr@Ga~r,r;E!2Ga
0~r,r;E!#

5E drr H E dr9Ga
0~r,r9;E!V~r9!Ga~r9,r;E!J .

~45!

With the help of Eqs.~32! and ~44!, the equation becomes

E drr@Ga~r,r;E!2Ga
0~r,r;E!#

5(
kk8

^uak8 ,uak
0 &^uak

0 uVuuak8&

~E2Eak
0 1 i e!~E2Eak81 i e!

. ~46!

The matrix element̂uak
0 uVuuak8& can explicitly carry out

^uak
0 uVuuak8&5E

0

`

druak
0* ~r!V~r!uak8~r!

5E
0

`

druak
0* ~r!~H̃2H̃0!uak8~r!

5~Eak82Eak
0 !^uak

0 ,uak8&, ~47!

whereH̃ is the Hamiltonian in Eq.~34!,

H̃uak[F2
\2

2m

d2

dr2
1S V~r!1

~a221/4!\2

2mr2 D Guak

5Eakuak , ~48!

and H̃0 is the Hamiltonian withV(r)50. Substituting Eq.
~47! into Eq. ~46! and taking the imaginary part, we obtain
05270
t
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ImE drr@Ga~r,r;E!2Ga
0~r,r;E!#

5p(
kk8

@d~E2Eak
0 !2d~E2Eak8!#u^uak

0 ,uak8&u
2.

~49!

Integrating this equation overE from 2` to ` gives

ImE
2`

`

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#50. ~50!

The equation indicates that the total number of states i
specific angular-momentum channel is not changed by
attractive field, except that some scattering states are pu
down into the bound-state region. Comparing Eqs.~41! and
~50!, we obtain the result

ImE
02

`

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#5na

2p.

~51!

Arriving here we complete the proof of rhs of the Levinso
theorem with the nonlocal AB effect in Eq.~2! by discretiz-
ing the energy spectrum of continuous part. In the followi
we shall prove the lhs of the Levinson theorem by direc
treating the continuous part of energy spectrum which w
gives the phase-shift expression of the total number of bo
states at threshold. Including the continuous spectrum,
~32! takes the expression

Ga~r,r8;E!5(
k

uak~r!uak* ~r8!

Arr8~E2Eak1 i e!

1E dk
uak~r!uak* ~r8!

Arr8~E2Eak1 i e!
, ~52!

where we have usedk andk to denote the discrete and con
tinuous spectrum, respectively. Using Eqs.~35! and~37!, we
have

ImE drrGa~r,r;E!

52p(
k

d~E2Eak!

2pE dkd~E2Eak!^uak ,uak&. ~53!

Note thatEak may be zero energy, and the wave functio
corresponding to the continuous spectrum has the norma
tion condition

^uak ,uak8&5E
0

`

druak* ~r!uak8~r!5d~k2k8!. ~54!

Integrating Eq.~53! over E from 02 to `, one finds that
5-5
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ImE
02

`

dEE drrGa~r,r;E!52pE dk^uak ,uak&,

~55!

which is divergent due tôuak ,uak&5d(0)5`. The same
treatment forGa

0(r,r8;E) gives

ImE
02

`

dEE drrGa
0~r,r;E!52pE dk^uak

0 ,uak
0 &,

~56!

which is also infinity due tôuak
0 ,uak

0 &5d(0). But both in-
finities are of different order which leads to the Levins
theory. To see this, let us first evaluate the difference

^uak ,uak8&r0
2^uak

0 ,uak8
0 &r0

5E
0

r0
druak* ~r!uak8~r!2E

0

r0
druak

0* ~r!uak8
0

~r!,

~57!

and then take the limitk8→k andr0→`. Herer0 is a large
but finite radius. Employing Eq.~34! and the boundary con
ditions

uak~0!50, uak
0 ~0!50, ~58!

it is easy to find the expression

~k22k82!^uak ,uak8&r0

5uak* ~r0!
duak8~r!

dr U
r0

2uak8~r0!
duak* ~r!

dr
U

r0

.

~59!

Sincer0 is a large radius, the asymptotic form of Eq.~20!
can be used to evaluate the equality. With the help
asymptotic behavior of the Bessel functions it can be fou

uak5ArRak ;
r→`A2

p
cosFkr2

ap

2
2

p

4
1da~k!G ,

~60!

which in the limit k8→k leads to

^uak ,uak8&r0
5

r0

p
1

1

p

dda~k!

dk
2

1

2pk

3$cosap cos@2kr012da~k!#

1sinap sin@2kr012da~k!#%. ~61!

The same procedure foruak
0 gives

uak
0 5ArRak ;

r→`A2

p
cosFkr2

ap

2
2

p

4 G ~62!

and
05270
f
d

^uak
0 ,uak8

0 &r0
5

r0

p
2

1

2pk
$cosap cos 2kr0

1sinap sin 2kr0%. ~63!

So we obtain

^uak ,uak8&r0
2^uak

0 ,uak8
0 &r0

5
1

p

dda~k!

dk
1

1

2
d~k!cosap sin 2da~k!

1d~k!sinap sin2da~k!

1
cosap

pk
cos~2kr0!sin2da~k!

2
sinap

2pk
cos~2kr0!sin 2da~k!, ~64!

where we have used the well-known formula

lim
r0→`

sin2kr0

pk
5d~k!. ~65!

Since Eq.~31! is valid, two terms containingd(k) in Eq. ~64!
vanish. So from Eqs.~55! and ~56! we find

ImE
02

`

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#

5da~0!2da~`!2cosap lim
r0→`

3E
0

`

dk
cos~2kr0!

k
sin2da~k!1

sinap

2
lim

r0→`

3E
0

`

dk
cos~2kr0!

k
sin 2da~k!. ~66!

The integrals can be divided into two regions. The first fro
0 to 01 vanishes on account of Eq.~31!, while the second
from 01 to ` also vanishes in the limitr0→` because the
factor cos(2kr0) oscillates very rapidly. Thus we have

ImE
02

`

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#

5da~0!2da~`!. ~67!

Combining Eqs.~51! and~67!, we obtain the Levinson theo
rem with the nonlocal AB effect:

da~0!2da~`!5na
2p, a5um1m0u,

m50,61,62, . . . . ~68!
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V. DISCUSSION

A. On the existence of a zero-energy bound state

As an explanation, let us consider a potential well w
radius a and depthV(r)52V0 for r,a; V(r)50 for
r.a. Using Eq.~19!, it is not difficult to find that the energy
spectrum is determined by

b
Ja21~ba!

Ja~ba!
5 il

Ha21
(1) ~ ila!

Ha
(1)~ ila!

, ~69!

whereb5A2m(V02uEu)/\, l5A2muEu/\, andHa
(1) is the

Hankel function of the first kind. So a zero-energy bou
state in this case is determined byJa21(k0a)50 with k0

5A2mV0/\ for a.1 ~see below!. The existence of a zero
energy bound state would not change the result in Eqs.~39!–
~41!, and thus Eq.~51!. But Eq. ~55! will receive an addi-
tional p to become

ImE
02

`

dEE drrGa~r,r;E!52p2pE dk^uak ,uak&.

~70!

Hence Eq.~67! gets an additionalp and turns into

ImE
02

`

dEE drr@Ga~r,r;E!2Ga
0~r,r;E!#

5da~0!2da~`!2p. ~71!

Therefore when a system contains a zero-energy bound s
the Levinson theorem reads

da~0!2da~`!5~na
211!p5nap, ~72!

with na[(na
211). Here only whena.1 the bound state is

a real zero-energy bound state. To see this recall Eq.~34!.
WhenEa050, the exterior solution (r.0) satisfies

d2ua0

dr2
2

a221/4

r2
ua050. ~73!

Explicitly, ua0 is given by

ua0;r2a11/2, ~74!

which leads to the fact that the wave functionCa0

;ua0 /Ar51/ra cannot be normalized whena<1. On the
flip side, asa.1, da(0) obtains an additionalp if a zero-
energy solution actually exists. For this case, Levinson th
rem becomes Eq.~72!.

B. The phase shifts at high energies

Let us investigate the behavior of the phase shifts whea
is fixed butk→`. For this purpose, we consider the scatt
ing by two potentialsV(r) and Ṽ(r). The corresponding
radial equations read
05270
te,

o-

-

d2uak

dr2
1F2m

\2
@Eak2V~r!#2

a221/4

r2 Guak50, ~75!

d2ũak

dr2
1F2m

\2
@Eak2Ṽ~r!#2

a221/4

r2 G ũak50. ~76!

With the boundary conditions of Eq.~58! and the asymptotic
form of radial functionuak in Eq. ~60!, it is easy to find that

sin@da~k!2 d̃a~k!#

52
pm

\2k
E

0

`

dr@V~r!2Ṽ~r!#uak~r!ũak~r!.

~77!

When Ṽ(r)50 we deduce the integral representation

sinda~k!52
pm

\2k
E

0

`

drV~r!uak~r!uak
0 ~r!. ~78!

In the casek5A2mEak/\→` we expect that the potentia
will become vanishingly small since the potentialsV(r) and
Ṽ(r) should not be more singular thanr 22 at the origin and
well behaved elsewhere as assumed. So the radial func
uak will be very close to the corresponding free wave, i.
uak(r) can be replaced withuak

0 . Thus with the help of the
asymptotic expression of Eq.~62! we deduce that

sinda~k!52
2m

\2k
E

0

`

drV~r!cos2Fkr2
ap

2
2

p

4 G .
~79!

The square of cosine function can be replaced with its m
value 1/2 since a very largek value leads to very rapid os
cillations. So we have

sinda~k! →
k→`

2
m

\2k
E

0

`

drV~r!. ~80!

Hence we see that the phase shiftsda(k) tend to zero
~modulop) ask→` provided that the integral exists. Thi
suggests that a reasonable absolute definition of the p
shift may be given by requiring that

lim
k→`

da~k!50. ~81!

The definition is physically reasonable since we require t
da(k)50 when the particle is effectively free. With this con
vention the Levinson theorem is given by

da~0!5nap, a5um1m0u, m50,61,62, . . . ,
~82!

a result given in Eq.~2!. It means that the phase shift at th
threshold serves as a counter for the bound states in a ge
angular-momentum channel.
5-7
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C. The effects of magnetic flux

Several interesting effects caused by the nonlocal in
ence of the magnetic flux are concluded as follows.

~a! When the flux is quantized, i.e.,F5mF0 the multiple
of a fundamental flux quantumhc/e, the Levinson theorem
will reduce to the free of flux case as in@8#. In this case the
total number of bound states for the quantum numberm and
2m are the same exceptm50, and thus have the sam
phase shifts.

~b! When the flux satisfiesF/F05 half-odd integer, there
are two differentm corresponding to the same total numb
of the bound states, so are the phase shifts at thresh
These are such that the number pairs (m,m)5(1,22),(2,
23) for F/F0521/2.

~c! In general, whenF/F0Þ integer, and half-odd inte
ger, the total number of bound states for6m are no longer
identical, and the phase shifts will be different from ea
other.

D. Extension of the potential to a more general case

Although in the procedure of our proof we assume t
the potential must be less singular thanr22 in Eq. ~28! and
V(r)50 for r.a, we do not specify the radiusa beyond
which V(r)50. Hence we expect that the Levinson theore
,

ity

05270
-

r
ld.

t

given in the paper should be valid for a very general pot
tial as long as the potential decreases rapidly enough w
r→` such that the total number of bound states in a gen
angular-momentum channel is finite.

E. A possible experimental test

In Ref. @21#, a general fractional~nonquantized! magnetic
flux is observed in the superconducting film. Because of
inevitable pinning of flux in superconductor, the flux final
attaches to the defect or impurity which may carry t
charge. A thin film can be viewed as a two-dimensional s
tem and because the screen effect exists in solid, the ele
interaction becomes a finite range interaction as mentio
in the preceding paragraph. If a charged particle moves n
the impurity which may be captured by the impurity an
forms a bound-state system during a period, the system s
tered by the other low-energy charged particle can be the
ground of the phase shift and the number of bound states
a general angular-momentum channel.
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