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Levinson theorem with the nonlocal Aharonov-Bohm effect
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Levinson theorem for a charged particle moving in an arbitrary short-range potential and the field of the
Aharonov-Bohm magnetic flux is established. The theorem constructs the refg{ioy=n, = between the
phase shifts,(k) of scattering state at zero momentum and the total numpef bound states for theth
angular-momentum channel, where=|m+ | is a real numberra=integer, andguo= —®/®, with ® being
the magnetic flux an@,=hc/e the fundamental flux quantymrThe relation means that the phase shift at the
threshold of zero momentum can serve as a counter for the bound states in the general angular-momentum
channel.
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[. INTRODUCTION cal effect in quantum mechanics. The term “nonlocal’
means that it exists even when the charged particle passes
In 1949, Levinson discovered one of the most beautifulthrough a field-free region and is only associated with the
theorems in quantum mechani€s]. Well known as the entire closed curve. It is “topological” in the sense that the
Levinson theorem, it clarifies the relation between the phasphase interference is unaffected when the particle path of
shifts of a quantum particle scattered by a short-range potertiosed curve is deformed within the field-free region. Forty
tial and the number of bound states therein. In threeyears later, Aharonov-Bohii\B) effect had great impact on

dimensional space, the theorem can be described as our comprehension of the foundation of quantum theory
[10], and helped in the understanding of the quantum Hall
6(0)=nm, 1=12,..., effect[11,17], superconductivity12,13, and so forth.

. ) In this paper we shall generalize the Levinson theorem for
where6;(0) denotes the phase shift of scattered state with & charged particle moving in an arbitrary short-range poten-
linear momenturk at the threshold of zero momentum, i.€., 5 1o include the field of the nonlocal AB effect. This paper
k= 0, in the angular-momentum chanmeandn, is the total s organized as follows. In the following section we establish
number of bound states in the angular-momentum channeli,e nartial-wave method for scattering theory in two dimen-
allowed by the short-range potential. When the angular mogjons for a short-range potential and the nonlocal AB effect.
mentuml =0, the theorem must be modified to The asymptotic behavior of phase shifts at threshold is dis-
cussed in Sec. lll. In Sec. IV, the Levinson theorem is gen-
eralized to charged particles moving in the potentiép),

due to the existence of a zero-energy resonafcdalf-  Which is less singular thap ® when p=<a and V(p)=0
bound statk Later some authors devoted Levinson’s verifi- Wheénp=a, and in the field of the nonlocal AB effect using
cation to discuss the elegant theorem by way of the differenfr€€n’s-function method. The number of bound statggor
manners, or generalized it to the more general cizeg]. @ diven general angular momentur |m+ wo| is related to
Slightly different from the three-dimensional case, Levinsonth€ Phase shift§,(0) of zero-momentum scattering states as
theorem in two dimensions can be expressefBas follows:

50(0):(n0+ 1/2)77

5m(0)=nm77, m=0,1,2 e, (1) 501(0):”:/77! a=|m+,LL0|, (2)

where§,,,(0) is the phase shift of scattering state at threshold

of angular-momentum channel, andn,, is the total number wherem is an integer, angeo=—®/®4 with ® being the
of the bound states in the same channel. The total number &B flux and ®,=hc/e the fundamental flux quantum. Our
bound states in the angular-momentum channet is the  discussions are summarized in Sec. V.

same as that ah. This is due to the fact that the phase shift

and the number of bound states just relate to the angular

momentunm via its absolute valufm| in cylindrically sym- Il. PARTIAL-WAVE METHOD FOR A SHORT-RANGE
metric system. Ten years after Levinson's work, Aharonov POTENTIAL AND AN AB MAGNETIC FLUX

and Bohm found that a charged particle can be influenced by The fixed-energy Green’s functio®®(r,r’;E) for a
the magnetic field even if the particle is nowhere in the reharged particle with mass propagating fronr’ to r satis-
gion of nonzero field strengfl®]. The phenomenon is some- fies the Schidinger equation

what counterintuitive and represents a nonlocal and topologi-

h
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Here the Hamiltonian of the system is given by,

=—h2V2/2u+V(r) andr represents the two-dimensional ‘b:J d*xBs, (12)
position vector. In the cylindrically symmetric system, the

angular decomposition of the Green’s function can be writteny, o coupling constary is related to the magnetic flux by

as =®d/47. InsertingA,=2gd;¢ into the nonintegrable phase
- oim(e- ") factor in Eq. (6), the magnetic interaction takes the
Gor,r';E)= >, G2(p,p";E) —s—, (4) form exd—iuf™d7 o(7')], where ¢=de/dr and pu,
m=—c 2m =—2eg/ic=—®/d, is a dimensionless number. The mi-
. . . . . . nus sign is a matter of convention. According to the discus-
with (p,¢) %emg ,the polar C(_)ordlnate? in two-dimensional jo, i Refs.[14—17], only phase factors with closed-loop
space ands(p,p";E) the radial Green's function. As a re- coniour are considered where the description of the electro-

sult, the left-hand sidéhs) of Eq. (3) can be brought to the magnetic phenomenon is complés]. Hence, we have
following form:

i [E+

m=—x

d? 1d m?

_+___
dp?2 pdp p?

ﬁ2

1 (7 .
mzzj dr’e(7"), (13
2u

—V(p)]

im(e— o) with integer valuesn corresponding to the winding number.
XG%(p,p':E € 5 The magnetic interaction is therefore purely nonlocal, and
m pvp ’ ) N ( ) H H
2 topological. The nonintegrable phase factor now becomes

) o exp{—iug(2mm+¢—¢')}. It can be included with the help of
For a charged particle affected by a magnetic field, Green'egisson’s summation formule.g., p. 469 of Ref{19])
function G(r,r’;E) is different fromG°(r,r’;E) by a glo- '
bally nonintegrable phase factft4,15:

—o0

o (r > fk=| dx > er™if(x). (14)

G(r,r’;E)=G°(r,r’;E)exp{h—Cf A(?).d?}. (6) A e
r!

So expressiori5) can be written as

d2+1d z? V(o)
dp2 pdp p? P

Here we have used the vector poten#igf) to represent the

magnetic field. For an infinitely thin tube of finite magnetic ”

flux along thez-direction under consideration, the vector po- dZmZ_m E+
tential can be described by -

ﬁZ

2p

el (Z=ro)(e+2mm—o’)

—yectxe XGy(p,p';E) (15

AN =29——75— (7) 2m ’
X+y
where the superscript 0 'G?n has been suppressed to reflect

wheree, e, stand for the unit vector along they axes, the inclusion of the AB effect. The summation over all indi-
respectively. Introducing the azimuthal angle around the AB.qg m forces z= 1o modulo an arbitrary integer number.

tbe, Thus, we have
e(r)=tan (y/x), (8) " 2 1d |mb g
Mo
the components of the vector potential can be expressed as m;x ‘E+ 2u\dp? pldp 2 —V(P)}
Ai=2gd;¢(r). (9) gime
X Glme ul(Prp " E) 55— (16)

The associated magnetic-field lines are confined to an infi-

nitely thin tube along the axis: .
In what follows, we shall denotien+ uq| = « briefly. We see

B3=2ge€3i;di9p(r)=4mgd(r, ), (100  that the influence of the AB effect to the radial Green'’s func-
tion is to replace the integer quantum numbewith a real
wherer, stands for the transverse vector=(x,y). Note  one « which depends on the magnitude of magnetic flux.
that the derivatives in front ofp(r) commute everywhere, Applying the Fourier expansion of function,
except at the origin where Stokes’ theorem yields

oo

1 1 — A
f d>X(dydy— dydy) (1) = %d(pZZﬂ'. (12) e—¢ ):m;x 5-© (e=e), (17)

Since the magnetic flux through the tube is defined by theo the right-hand sidérhs) of Eq. (3), one can show that the
integral radial Green'’s function satisfies
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£ 1d o ) . © [ ady i S e ime
E+ ﬂ d_p2+;$_? —V(p) G (p,p";E) explik-r)ex %fr,A(rydr —m:7x| J,(kp)e'™me,
(24)
=d8(p—p'). (18

_ ) ) Inserting the result into Eq(22), making use of the
As a result, the corresponding radial wave equation reads asymptotic approximations of Bessel functions, and then
—V(p)]Rak(pFO,

comparing both asymptotic forms of Eq21) and(22), we
{ e
19 . .
19 > € m2j sing eme. (25

find the scattering amplitude in terms of phase shifts:
fle)=—
where the subscript setr(k) with k=2 E/#% denotes the V2K m==ee

state of scattering particle.

For short-range potential, i.e\/(p) vanishes forp>a,
the domain of the variable is divided into an internal region
(p<a) and an external regionp>a). The normalized ex-
terior solution is the linear combination of Bessel functions®Y
J.(kp) andN(kp) of the first and second kind, and may be

given by o= f f(¢)|%de. (26)

Rak(p) = VK[€083,(K)Jo(kp) = in S, (k)N ,(kp) ],
(200  Accordingly, the partial-wave representation of the total

) . ) cross section for a charged particle scattered by a short-range
where 6,(k) is the phase shift of the scattered radial Waventential and the nonlocal AB effect is given by

function which is used to measure the interaction in poten-
tial. The general solution of a scattering particlg(r) is %

d> 1d o2

_+___
dp? pdp  p?

ﬁZ
2u

It is worth noting that if the flux is quantized, i.euq is an
integer, the result reduces to the free of flux case. In most
cases, one concern is the total cross section, which is defined

given by superposition of the partial wavel ,(r) Ut:f E Sines,, . (27)
=R (p)e'™?, and reads Km===
“ We see that the cross section is completely determined by the
Wy(r)= _E VK[ c0s8,,(K)J,(Kp) scattered phase shifts which are concluded by the potential of
meTe different types and the magnetic flux. On the other hand, the
—siné, (k)N (kp)le'™e. (22) potential also determines the number of bound states. The

relation between the phase shifts and the number of bound

Because it must describe both incident wave and scatteregtates was first clarified by Levinsdi]. Here, due to the
wave at large distance, we naturally expect it to become nonlocal AB magnetic flux existence, the phase shifts are

affected globally, and so are the number of bound s{@@ls
[r]—ee ie [r _ In next two sections it will be showed that the relation be-
v (r) —— ]—'asym;< explik- r}expr ﬁ—f AN dr} ) tween the phase shift at threshold of the scattered wave func-
' tion and the number of bound states for the corresponding
i angular-momentum channel is connected by a general
+f(o) \[Eexp{ikp}, (22)  Levinson theorem.

where expik-r) describes the incident plane wave of a lll. PHASE SHIFTS NEAR p—0 AT THRESHOLD
charged particle with momentump=uk and Fagym(-)

stan_ds for its asymptotic form. The phase modulation of Fh‘? useful in the procedure of proof, the asymptotic behavior
nonintegrable phase factor comes from the fact that the fle|§ discussed in that follows. According to E4.9), when a
A(r) of AB magnetic flux affects the charged particle glo- potentialV/(p) is less singular thap~2, the solution has the
bally. To find the amplitudef(¢) we note that the plane power dependence gnnearp=0,
wave in Eq.(22) can be in terms of the expansion of the
partial waves in polar coordinates: p—0
- Ra(p.K) ~ p*, (28)
ik-r_ im ime
€ m;x M Im(kp)e™. 23 where we have useR,(p,k) to denote the solution of Eq.
(19) which satisfies the boundary condition E88). On the
Using the same procedure as in Eqsh—(16), the nonlocal  other hand, the external solution is given by E20). The
flux effect can be combined into the partial-wave expansionboundary conditions gi=a require that the logarithmic de-
and yields rivative be continuous,

Since the behavior of phase shifts npar 0 at threshold
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1 dR, _ 1 dRy 29
Ra dp p=a- Rak dp p=a+,
and thus yield the formula for the phase shift,
kaJ (ka)—y,J.(ka
tans, = (k) ~ yodal ). (30)
kaN,(ka) = y,N,(ka)
Here we define J.(p)=dJ,(p)/dp and v,

=adR,/R,dp|,-,-. Note that Eq(28) is independent ok,
and Eq.(18) depends ork only throughk?. Therefore either
R, or dR,/dp must be an integral function ¢ and hence
are the even function df. Accordingly, y, can only have
one of the following formg8]:

Ya—r b (ka)?e,
Yo—by (ka) 2,
’Ya*)Ca—’— ba(ka)2|a!

whereb’ , andc,, andb,, are nonzero constants, ahg, |,

are the natural numbers. Using the asymptotic forms o
Bessel functions gp~0, it is easy to find that the leading

term of Eq.(30) at threshold in any case is given by

tans,—d,(ka)2e, (31)

PHYSICAL REVIEW A 68, 052705 (2003

2u a’—1/4
+ ﬁ[EaK_V(p)]_ p2

d?u,,

dp?

u,.=0. (39

The wave functioru,,.(p) satisfies normalization condition

<um(vuou<’>: fO dPuZK(P)UaK’(P):‘SKK' . (35)
So we find the following trace:
f dppG(p,p;E)=2, ! 36
ppG.(p,p;E)= 2 (EZE. Tie) (36)
With the help of the formula
! —P1 i 7 3
xFie Tx w0, (37)

the imaginary part of integral in E¢36) reads

Im J dppGa<p,p;E>:—w§ S(E—E,.). (39

hus the total number of bound states can be read off by
ntegrating the formula oveE from —o to 0™, and yields

Imf(rdEj dppGoulpp:E)=—nm (39

wheren,, is the number of bound states with negative ener-

whered,#0 anda is a nonzero positive real number. The gies corresponding to the channel of a general angular mo-
result will be useful in the following proof of the Levinson mentuma#. We have performed the integral ovErup to

method.

IV. THE LEVINSON THEOREM WITH THE NONLOCAL
AB EFFECT

0~ instead of 0 for avoiding ambiguity. The possible exis-
tence of a bound state with zero energy will be considered in
Sec. V. We point out that the degeneracy betweeiand
—m in Eq. (1) is broken in general due to the existence of
magnetic flux of the nonlocal AB effect. A similar discussion

Using the spectrum representation of the radial Green'gs ahove can be applied to the free charged particle moving

function of Eq.(18),

Uai(p) UG, (p")

Gulp,p"E)= , 32
(o0 iE)= 2 Jop (E-Entie D
the Green’s functiorG(r,r’;E) is
- eim(‘Pf‘P’)
G(r,r ,E):mz_m Ga(pvp rE)T
- Uae(p)U%(p)  ememeD)
=== % pp (E-Egtie) 2T
(33

wheree=0" has been defined for the retarded Green’s func-
tion and we usex to denote the discretized energy levels of

in the field of the AB effect and gives

ImfidEf dppG2(p,p:E)=0. (40)

Combining both Eqs(39) and (40), we find
im [* A [ doplGu(pupiE) - CApupiENI=
(41)
It is useful to discuss this result by the Dyson equation
G(r,r';E)=G%(r,r';E)
+J’ dr"Gos(r,r";E)V(r")G(r",r";E),

(42

a system moving in an attractive field. It is easy to see that

by making use oR,.=u,,/\p in Eq. (19) the wave func-
tion u,,(p) solves

where we have useGgB(r,r’;E) to represent the Green’s
functionG(r,r’;E) in the case o¥/(p)=0. With the help of
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Eq. (33), the integration of angular part can be carried out 0
and turns the equation into the single-dimensional one with a Imf dpp[Galp,p;E)=Gy(p,p;E)]
general quantum number [16]

Gu(p.p";E)=G2(p.p";E) =72, [S(E—Eq) — o(E=Eqe) I o)
n~0 ” " "o (49)
+ | dp"G,(p.p" E)V(p")G(p",p " E).
43 Integrating this equation ovéf from —« to « gives
Here G%(p,p’;E) is the radial Green’s function with/(p) Imj,wd EJ’ dpp[Ga(p.piE)~G(p,p;E)]=0. (50)
=0. Its spectrum representation can be in terms of discrete
sum The equation indicates that the total number of states in a
.0 o specific angular-momentum channel is not changed by an
2 ar(P)Uqgr(p") attractive field, except that some scattering states are pulled
Galp.p'iE)= W(E E tie) (44 gown into the bound-state region. Comparing E¢4) and
ax (50), we obtain the result
This can be achieved by requiring the wave functions to
vanish at a sufficiently large radilwhena<R for a short- |mf —dEJ dpp[Ga(p.p;E)—G2%p,p;E)]=n_ .
range potential. Taking the same trace with respect to Eq. 0 51
(43) as Eq.(36), we obtain (52)
Arriving here we complete the proof of rhs of the Levinson
dop[G (p.pE)—G%(p.p'E theorem with the nonlocal AB effect in EQR) by discretiz-
f pPLGalp.piB) a(poPiB)] ing the energy spectrum of continuous part. In the following

we shall prove the lhs of the Levinson theorem by directly
:f dpp[ J dp"Gg(p,p”;E)V(p")Ga(p",p;E)]. treating the continuous part of energy spectrum which will
gives the phase-shift expression of the total number of bound
(45) states at threshold. Including the continuous spectrum, Eq.
(32) takes the expression
With the help of Eqs(32) and (44), the equation becomes

Uae(p)U%,(p")
Jpp (E—E, +ie)

. Gu(p,p" E)= 2
fdpp[Ga(p,p;E)—Ga(p,p;E)]

B (Uger U2 (US| VU ) dk Uak(p)Uzi(p") 52
-2 (E—E° +i€)(E—E,+ie) (49 f Vpp (E—Eptie)’

) 0 o where we have used andk to denote the discrete and con-
The matrix elementu,,|V|u,, ) can explicitly carry out  tinuous spectrum, respectively. Using E6@5) and(37), we
have

(U V)= |80 (0 V() ) N P
m | dppG.(p.p;

d -H )
f puds(p)(H=Ho)u, (p) S SE-E.)
:(Eak’_EgK)<u8¢K:uaK’>v (47)

_ [ dKAE-E (Ut (59
whereH is the Hamiltonian in Eq(34),

Note thatE,, may be zero energy, and the wave functions
corresponding to the continuous spectrum has the normaliza-
tion condition

2
Ugk

Upn=

2 v )+(a2—1/4)ﬁ2
21 dp? g 2up?

=E_ . Uyp> (48

<uak!uak’>:fowdpqu(p)uak’(p):5(k_k,)- (54)

andH, is the Hamiltonian withV(p)=0. Substituting Eq.
(47) into Eq. (46) and taking the imaginary part, we obtain Integrating Eq(53) over E from 0~ to =, one finds that
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im [ "0 [ dopG.ip.piE)= 7 [ dk(up.u. "

which is divergent due tdu . ,Uq) = 8(0)==. The same

treatment forG%(p,p’;E) gives

lmf dEf dppei<p,p;E>=—wf dk(Uoy Ui
.
(56)

which is also infinity due tqu?, ,u®,)=6(0). Butboth in-

finities are of different order which leads to the Levinson

theory. To see this, let us first evaluate the difference

0 0
<uuzk !uak’>p0_<uak ’uak’>Po

PO Po
ZL deZk(p)uak/(p)—jo dpu® (p)ud,. (p),

(57)

and then take the limk’ —k andpy— . Herepg is a large

but finite radius. Employing Eq34) and the boundary con-

ditions
U(0)=0, u%(0)=0, (58
it is easy to find the expression
(kz_k,2)<uak 1uak’>p0
dU (p) duzy(p)
= * — - i
uak(pO) dp , Uk (pO) dp
0 Po
(59

Sincep, is a large radius, the asymptotic form of HGO)

can be used to evaluate the equality. With the help of
asymptotic behavior of the Bessel functions it can be found

p== 2 amT T
Uak= VPR ~ —cogkp— == 7+ 8u(K) |,

(60)
which in the limitk’ —k leads to
_po, 1dok) 1
(Ut Uar)oo ="+ 2 gk~ 2k
x{cosam cog 2kpg+25,(k)]
+sinaa sin 2kpg+26,(k)]}.  (61)
The same procedure fcnlgk gives
p== 2 amT T
U= VpRak ~ \[;CO{ kp— =~ Z} (62

and

PHYSICAL REVIEW A 68, 052705 (2003

Po

0 0
<uak ’uak’>PO:_

1
o m{COSa’W cos Xp,g

+sinam sin 2kpg}. (63

So we obtain

0 0
<uak !uak’>p0_ <uak ’uak’>P0

_1.dd,(k)
T o dk

+ 8(k)sinar sirf s, (k)

1
+ > s(k)cosar sin 26 ,(Kk)

Ccosa

— cog 2Kpg)sirt s, (k)

sina T
2k

cog 2kpg)sin 26,(k), (64)

where we have used the well-known formula

Kk

lim
poﬁoo

= 5(K). (65)

Since Eq(31) is valid, two terms containing(k) in Eq. (64)
vanish. So from Eqg55) and(56) we find

lmfo_dEf dpp[Gal(p,p;E)—Go(p,p;E)]
=4,00)—5,()—cosam lim
po—*

sinam
2

» cog 2k
><J dkwsinz&a(k)ﬁt lim
0

po—*

dk———sin 25,,(k).

= cog2kpg) .
X fo " (66)

The integrals can be divided into two regions. The first from
0 to 0" vanishes on account of E¢31), while the second
from 0" to <« also vanishes in the limjp,— because the
factor cos(Rpp) oscillates very rapidly. Thus we have

'mf:,dEf dpp[Gu(p.piE)—Go(p,piE)]
= 64(0) = 8y(). (67)

Combining Eqgs(51) and(67), we obtain the Levinson theo-
rem with the nonlocal AB effect:

8a(0) = (@) =N 7, a=|m+pug|,

m=0,+1,=2,.... (68)

052705-6



LEVINSON THEOREM WITH THE NONLOCA. . .. PHYSICAL REVIEW A 68, 052705 (2003

V. DISCUSSION 2

2P B V()] &
S LEak— VP
ﬁ2 p2

d?u

4
A. On the existence of a zero-energy bound state dp2 Uak=0, (75

+

As an explanation, let us consider a potential well with
radius a and depthV(p)=—V, for p<a; V(p)=0 for d?U
p>a. Using Eq.(19), it is not difficult to find that the energy “do?
spectrum is determined by p

a’—1/4

2n ~ ~
ﬁ[Eak_V(p)]_ p Uk=0. (76)

+

With the boundary conditions of E¢58) and the asymptotic

1) (i
Jo-1(Ba)  HiZi(iNa) (69)  form of radial functionu, in Eq. (60), it is easy to find that

= ,
J.(Ba) HB(ira) ~
sin[ 8,(K) = 64(k)]
where=\2u(Vo—|E)/%, N=2u|E[/#, andH' is the
Hankel function of the first kind. So a zero-energy bound __ wd V(p)—V u U .
state in this case is determined By_,(koa)=0 with k, h2kJo PLV(p)=V(p)luak(p)Uaklp)

=\2uVy/h for a>1 (see beloyw The existence of a zero-
energy bound state would not change the result in B8+
(41), and thus Eq(51). But Eq. (55) will receive an addi-
tional 7 to become

(77

WhenV(p)=0 we deduce the integral representation

oo - __ T 0
ImJ' dEJ' dPPGa(P,P,E): - WJ’ dk<uakvuak>' Slnaa(k)_ hzk 0 dPV(P)Uak(P)Uak(P)- (78)
o=

70 .
70 In the case&k=+2uE /h— we expect that the potential

Hence Eq(67) gets an additionatr and turns into will become vanishingly small since the potentigl§) and
V(p) should not be more singular than? at the origin and

o _ 0 _ well behaved elsewhere as assumed. So the radial function
'mJO,dEJ dpp[Gaulp,piE) = Gulp.piE)] u, Will be very close to the corresponding free wave, i.e.,
uk(p) can be replaced withgk. Thus with the help of the
=0,(0) = 84()— . (7D asymptotic expression of E¢62) we deduce that
Therefore when a system contains a zero-energy bound state, 2u (= am T
the Levinson theorem reads siné,(k)=— —f dpV(p)cog| kp— —— — —}.
fi’kJo 2 4
84(0) = 8,(0) =(n, + 1) m=n,, (72) (79

The square of cosine function can be replaced with its mean

with n,=(n, +1). Here only wherw>1 the bound state is e 1/2 since a very largevalue leads to very rapid os-
a real zero-energy bound state. To see this recall(84).  ¢jjlations. So we have

WhenE_,=0, the exterior solutiong>0) satisfies

k— oo o0
. o
AU,  a?—1/4 sind, (k) — — —- f dpV(p). (80)
a7 5 Uga0=0. (73 h<kJo
p p
Hence we see that the phase shifig(k) tend to zero
Explicitly, u,q is given by (modulo 7) ask—« provided that the integral exists. This
suggests that a reasonable absolute definition of the phase
Ugo~p @112 (74 shift may be given by requiring that
which leads to the fact that the wave functiof lim &,(k)=0. (82)

K—s o0

~U,o/\p=1/p® cannot be normalized whem<1. On the
flip side, asa>1, 6,(0) obtains an additionat if a zero-
energy solution actually exists. For this case, Levinson the
rem becomes E(72).

The definition is physically reasonable since we require that
O'@,(k) =0 when the patrticle is effectively free. With this con-
vention the Levinson theorem is given by

B. The phase shifts at high energies 8,(0)=n,m, a=|m+puy, mM=0,x1,+2,...,

Let us investigate the behavior of the phase shifts wiaen (82)

is fixed butk— . For this purpose, we consider the scatter-5 result given in Eq(2). It means that the phase shift at the
ing by two potentialsV(p) and V(p). The corresponding threshold serves as a counter for the bound states in a general
radial equations read angular-momentum channel.
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given in the paper should be valid for a very general poten-

Several interesting effects caused by the nonlocal influlidl @s long as the potential decreases rapidly enough when

ence of the magnetic flux are concluded as follows.

(a8) When the flux is quantized, i.ek=m®d, the multiple
of a fundamental flux quantutmc/e, the Levinson theorem
will reduce to the free of flux case as|il]. In this case the
total number of bound states for the quantum nunrmhend
—m are the same exceph=0, and thus have the same
phase shifts.

(b) When the flux satisfie®/d,= half-odd integer, there

are two differentm corresponding to the same total number
of the bound states, so are the phase shifts at threshol

These are such that the number pains,rh) = (1,—2),(2,
—3) for ®/dy=—1/2.

(c) In general, whenb/®,+# integer, and half-odd inte-
ger, the total number of bound states fom are no longer

r—oo such that the total number of bound states in a general
angular-momentum channel is finite.

E. A possible experimental test

In Ref.[21], a general fractionalnonquantizefmagnetic

flux is observed in the superconducting film. Because of the

inevitable pinning of flux in superconductor, the flux finally
attaches to the defect or impurity which may carry the
8harge. A thin film can be viewed as a two-dimensional sys-

tem and because the screen effect exists in solid, the electric

interaction becomes a finite range interaction as mentioned
in the preceding paragraph. If a charged particle moves near

the impurity which may be captured by the impurity and

identical, and the phase shifts will be different from eachforms a bound-state system during a period, the system scat-

other.

D. Extension of the potential to a more general case

Although in the procedure of our proof we assume that

the potential must be less singular than? in Eq. (28) and
V(p)=0 for p>a, we do not specify the radiua beyond

tered by the other low-energy charged patrticle can be the test

ground of the phase shift and the number of bound states for
a general angular-momentum channel.
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