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Hyperspherical time-dependent method with semiclassical outgoing waves
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The hyperspherical time-dependent method with semiclassical outgoing waves for stioybté photo-
ionizationof helium is presented. It is closely related to the hyperspheRgahtrix method with semiclassical
outgoing wave$Phys. Rev. A65, 032711(2002]: both split configuration space into two regions to solve the
stationary inhomogeneous Sctiager equation associated with the one-photon ionization problem, and both
apply the same treatment to the outer region. However, the two methods differ radically in their treatments of
the problem in the inner region: the most recent one applies a time-dependent approach for calculating the
stationary wave function, while the previous one us&sraatrix treatment. The excellent agreement observed
between the triple differential cross sections obtained from these two basically different methods provides very
strong support for both of them. Importantly, the very different numerical structures of both methods might
make the most recent one a better candidate for investigating the near-threshold region.
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The challenge for a precise theory of the double photofor applying a time-dependent approach to the calculation of
ionization (DPI) of He has been enhanced by the considertwo-electron stationary wave functions were formulated in
able experimental progress achieved in the late 1990s. ThHE997 [11,12. Recently, a similar approach has been pro-
absolute values of triple differential cross secti6RBCS) of ~ posed by the Livermore groya3]. Here, we apply the ideas
He were first measured in 1995 by a direct method that unof Refs.[11,12] to the DPI problem.
derestimated the cross section by a factor of fdb More ~ The basic features of theRM-SOW and hyperspherical
recently, indirect methods, requiring the measurement of aime-dependent with semiclassical outgoing waved D-
coincidence events and renormalizing the TDCS to theoOW methods are the same. Both methods formulate the

known total ionization cross section have provided reliable®N€-Photon ionization problem in terms of the stationary in-
results[2—4]. homogeneous Schiinger equation

On the theoretical side, the main difficulty in the study of > b R
three-body Coulomb problems consists in imposing the out- [H(r1.r2) —EIPe(rs r2) =Zo(r1.r2), @)
going wave boundary condition to the solution of the stationwhere ¢,,r,) are the radius vectors of the electrons with
ary Schralinger equation. The most obvious way to circum-respect to the nucleug{ is the two-electron HamiltoniarE
vent this difficulty is to switch to a nonstationary approach.is the total energy of the system, afig is the double con-
The time-dependent close coupli@PCC) method was first  tinuum wave function. The source term on the right-hand
applied to electron-impact ionization of F5]. In 2001, the  side reads
authors considered the DPI process in[HE and later on, in Lo .o Lo
a variety of many-electron and/or excited systems. In 2003, Eo(r1,r2)==3& DWo(ry,rp), 2
another nonstationary scheme for the study of electron- . , o -
impact ionization of hydrogen has been put forward, whichVhere & is the amplitude of the electric-field vecté(t)
seems very promisingy]. =&ycoswt, D is the dipole operator, and is the ground-

This difficulty can also be circumvented within the frame- state wave function of He. Both methods define two spatial
work of stationary approaches, as demonstrated by the extéegions depending on the value of the hyperradRis
rior complex scaling ECS theory presented by the Liver- = \/r12+r22 compared to some critical valug,. The region
more group in 19998], and by the hypersphericRmatrix =~ R<R, contains the singularity of the three-body interaction
with semiclassical outgoing waves R¥-SOW) method potential atR=0. In the external regioR>R,, by contrast,
that we have put forward in 200@®,10]. The first of these the evolution of this potential witlR is smooth. These dif-
theories, based on a complex rotation technique, has bederent characteristics of the two regions call for different
applied to electron-impact ionization of H, while the secondmathematical treatments. In the external region, both meth-
of these theories, based on a combinatiorRahatrix and  ods apply the same approach, obtained as a substantial de-
semiclassical techniques, has been applied to DPI of He. velopment of the extended Wannier ridge meti&dVRM)

However, the idea that some mixing of time-dependenf14]. Namely, by treating thé&-motion semiclassically, the
and stationary techniques could lead to still more powerfukxact Schrdinger equation, which is second order oReiis
numerical tools had emerged earlier. Namely, the basic ideasansformed into an equation of first order ovemack time
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related toR. This equation has the formal structure of a non-yt) (1)
stationary Schidinger equation, the initial condition of 't'2:l1l2

which is provided by the treatment of the inner region. It is Ltlatl! - -
solved using a very powerful and stable unitary algorithm =(-ptrlr 2)\/(2|1+1)(2|2+1)(2|1+1)(2|2+1)

that can provide the solution at arbitrary large distances with o K / "o /

very high accuracy. > < (llkll) lell} Izklz) ®)
Within the HRM-SOW theory[9,10], we treat the internal o rkrt1 000/ [Kklyl,) | 000/

region using arR-matrix treatment complemented by an out-

going adiabatic partial-waves condition R& Ry, The initial condition for the function$:|(11?,2(rl,r2;t) is

Presently we consider the internal region with a radicallypptained from Eqs(4b) and(2) by introducing the expansion
different approach based on the fact that the solution of &f the ground-state wave functioff, of He over bipolar
stationary nonhomogeneous Satirger equation like Eq. harmonics, the coefficient functions of which are denoted as
(1), subjected to the outgoing wave boundary condition, ca(9), (r, r,). For a unit amplitude of the electric field and if

be obtained exactly as the Fourier-Laplace transform . . .
the dipole operator is expressed in the length gauge, one
obtains after some algebra

<I>E(F1,Fz)=f dtW(ry,ry;t)exp(1Et) 3
’ FOLrr20=12 WD L L r)FO (),
|1’|é 1727172 12
of the solution of the associated Cauchy problem )
where
J I - - -
|_q’(rl,r2;t):H(rl,rz)\I’(rl,rZ;t), (4a) LL’
Jt ) _ (=1
|1’|2'|i'|é(r1:r2) r1‘<)‘I2,I2( 1)2
W(F1,710)=1Zo(F1.). (4b) V(21 +1)(213+1)
: 1,11}
In our case, the'Py,_, two-electron function can be ex- XV(2L+1)(2L"+1) 000
panded over the bipolar harmonics as
l41,L) /L1l ,
X +{1
Fr S (Lo 2 7 Fl(ll,)lz(rl-rz;t) L'1l;)1 000 152
W(rq,rot)= Yio(r, o) ——. (5
(= 2 YER(FF)—— (5) 10

] ) which ensures the symmetry of the singlet initial wave func-
Note that the study of thi! =0 case provides the basis for tjon in exchange of the two electrons.
the treatment of any experimental situation. The symmetry of - Qur numerical procedure comprises two staggsdeter-

the wave function in the exchange of the two electrons isyining the expansion Coefficierﬁo?l (r1,r,) of the ground
imposed on the initial wave function, as shown below. The .o 12 . "
nonstationary equations for the coefficient functions.s't"’ueqj0 of the ;ystem over b_|polar h?r.mon'cs ggmd SQIV'
ED (r,.r,:t) read ing the nonstationary Eq6) with the initial conqmon given
ERPANE by Eq.(9). The Laplace transform of the solution according
to Eq. (3) then yields the double continuum wave function
J " D(rq,ry) gt any desired total enerdiy Note that within our
L Pt =(Hy (r) + 1, (r2))Fi (T rast) ;ppg)ach, it is enough to calculadg:(r,,r,) on the sphere
=R,.
e 1) _ To determine the He ground-state wave function, we have
+ ,E, |l,|2,|i,|é(r1'rZ)F|i,|é(rlvr27t)7 propagated in imaginary time the initial function taken in the
112 form proposed by Le Sedi5]. The details of this procedure
(6)  were described in Ref12]. Here however, the radial dis-
tances of the two electrons have been discretized on another

nonuniform mesh that is defined by

where
r-kzi[x /a—arctarix,/a)]a3, i=1,2 (11)
14 1(1+1) Z Pzt k ’ ’
H(N==5 5+ =T @)
ar 2r r .
with  x,=kdx, k=1,...,200,dx=0.06 a.u., and a
=2.6 a.u. The values of the parametdssanda were cho-
and sen so that the nonuniform mesh covers the vicinity of the
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nucleus extremely densely, and the distant region mor&@DCC method5,6] differ essentially First, if both methods
sparsely: we thus gefr;=10* a.u. at the origin andr; usenonstationary techniqueshey apply these techniques to
=0.2 a.u. at the bordar=28 a.u. By including five angular different formulations of the DPI problem: tis¢ationaryone
configurationd |,1],1=0,1,2,3,4, and taking the time propa- in the HTD-SOW case and theonstationaryone in the
gation step a$t=0.05 a.u., the procedure converges in 300TDCC case. One intrinsic advantage of the stationary formu-
steps. The energy of the eigenstate obtained is equal tdation is that it provides a function of precisely-defined en-
—2.9039 a.u., the experimental value beir@.9036 a.u. ergy. On the other hand, an intrinsic difficulty of the nonsta-
[16]. tionary formulation is that it introduces an arbitrary
The second stage of our numerical procedure is performenhodelization of the time envelope of the radiation pulse.
with the same nonstationary routine as the first one, but wittsecond, the techniques used are very different. The use of an
propagation in real time withst=0.08 a.u. using a 500 absorbing potential is one great advantage of our method
points mesh that covers the area abouk88 a.u. Ten an- since it allows us to continue the wave propagation as long
gular configurations[I,l+1] and[I+1,] for I=0,...,4 as we wish. On the contrary, TDCC implies terminating
are included. The stationary wave functions have been monpropagation before the waves reflected from the box bound-
tored on the spher®,=60 a.u., the largest one ever used inaries alter the outgoing wave packet: this leads to a poor
HRM-SOW theory[10]. The number of time steps needed energy definition within the nonstationary formulation of the
for computing the wave function at 20 eV above thresholdDPI used in this method. Additionally, we use the split
was 1d. propagation technique with a nonuniform spatial grid and
The main difficulty in solving stationary problems with Cranck-Nickolsor{18] partial propagators. This allows us to
more than one dimension consists in imposing outgoingeach at least three significant digits in the valuesbgfon
boundary condition. If these stationary problems are treatethe hyperspher&=R,, and to obtain the initial wave func-
using the nonstationary scheme defined by E@g)), this  tion with 10 relative precision of energy, which should be
becomes rather trivial. One just adds an absorbing auxiliargompared with the 1% accuracy accepted in Réf. The
potential concentrated at the box boundary, which effectivelyeason for these contrasted achievements of both methods is
damps the wave function in that region to zero. It seemghat the staggered leap-frog propagation scheme used in
widely accepted that IgnatowsKy 7] was the first to relate Refs.[5,6] is stable only if the time step remains smaller than
the outgoing boundary condition to the infinitesimal absorp-the square of the smallest spatial sf&g]. Therefore, it can-
tion. In our case the absorbing imaginary potential consistaot be easily adapted to the work with dense grids.
of three terms: g(ri,ry)=—igs(r1,ro)—iga(r1,rs) To demonstrate the power of the present model, we com-
—iga(ro,rq1). All the terms absorb the waves outside thepare its results with the corresponding measurements in the
sphereR;=Ry+5 a.u.. The first term provides uniform ab- case of the experiment done by Achletral. [4] at 20 eV
sorption of the wave packet in that region, while the otherabove threshold. The latter is selected because it provides
two terms are concentrated in the vicinity of the axes andrDCS values on the absolute scale with a high statistics and
absorb the short wavelets corresponding to the singly ionizedan thus be considered a benchmark in the field. Figure 1
states of He. shows that the HTD-SOW results agree with experiment per-
It is important to realize that our present approach and théectly. Moreover, the HTD-SOW results coincide with the
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HRM-SOW ones obtained from the most recent version ofthe computer’s limits regarding either the available memory
this theory[10]. In additional calculations, performed in the or the allowed computing time are significant. On the other
conditions of the experiment done by Secconebel. at 25  side, the storage requirements of HTD-SOW scale as N, and
eV above thresholftL0,20, the HTD-SOW and RM-SOW  so do the time requirements for a single propagation step.
results show mutual deviations of the order of the experi-The only difficulty that could arise with HTD-SOW is a sub-
mental error bars for two kinematics. Thus, we are meeting &tantial increase of the number of propagation steps required
rare case in the theoretical physics when two substantiall{eading to a corresponding increase in the runtime. However,
different approaches give practically identical results. Thigt seems that we are in a good position to take up the thresh-
constitutes very strong support for both methods. old region challenge in the near future, which ab initio
However, preliminary calculations at 1 eV above thresh-method has ever attempted so far. This makes absolute com-
old, where no measurements are available yet, show morelete experiments below 5 eV excess energy all the more
substantial deviations of HTD-SOW from RM-SOW.  desirable.
Therefore, further work will concentrate on this region,
whgre HTD-S_OW m|ght_ ppssmly super;edeRIH-SOV\(. ACKNOWLEDGMENTS
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