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Hyperspherical time-dependent method with semiclassical outgoing waves
for double photoionization of helium
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The hyperspherical time-dependent method with semiclassical outgoing waves for study ofdouble photo-
ionizationof helium is presented. It is closely related to the hypersphericalR-matrix method with semiclassical
outgoing waves@Phys. Rev. A65, 032711~2002!#: both split configuration space into two regions to solve the
stationary inhomogeneous Schro¨dinger equation associated with the one-photon ionization problem, and both
apply the same treatment to the outer region. However, the two methods differ radically in their treatments of
the problem in the inner region: the most recent one applies a time-dependent approach for calculating the
stationary wave function, while the previous one uses aR-matrix treatment. The excellent agreement observed
between the triple differential cross sections obtained from these two basically different methods provides very
strong support for both of them. Importantly, the very different numerical structures of both methods might
make the most recent one a better candidate for investigating the near-threshold region.
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The challenge for a precise theory of the double pho
ionization ~DPI! of He has been enhanced by the consid
able experimental progress achieved in the late 1990s.
absolute values of triple differential cross sections~TDCS! of
He were first measured in 1995 by a direct method that
derestimated the cross section by a factor of two@1#. More
recently, indirect methods, requiring the measurement o
coincidence events and renormalizing the TDCS to
known total ionization cross section have provided relia
results@2–4#.

On the theoretical side, the main difficulty in the study
three-body Coulomb problems consists in imposing the o
going wave boundary condition to the solution of the statio
ary Schro¨dinger equation. The most obvious way to circum
vent this difficulty is to switch to a nonstationary approac
The time-dependent close coupling~TDCC! method was first
applied to electron-impact ionization of H@5#. In 2001, the
authors considered the DPI process in He@6#, and later on, in
a variety of many-electron and/or excited systems. In 20
another nonstationary scheme for the study of electr
impact ionization of hydrogen has been put forward, wh
seems very promising@7#.

This difficulty can also be circumvented within the fram
work of stationary approaches, as demonstrated by the e
rior complex scaling~ECS! theory presented by the Liver
more group in 1999@8#, and by the hypersphericalR-matrix
with semiclassical outgoing waves (HRM-SOW) method
that we have put forward in 2000@9,10#. The first of these
theories, based on a complex rotation technique, has b
applied to electron-impact ionization of H, while the seco
of these theories, based on a combination ofR-matrix and
semiclassical techniques, has been applied to DPI of He

However, the idea that some mixing of time-depend
and stationary techniques could lead to still more powe
numerical tools had emerged earlier. Namely, the basic id
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for applying a time-dependent approach to the calculation
two-electron stationary wave functions were formulated
1997 @11,12#. Recently, a similar approach has been p
posed by the Livermore group@13#. Here, we apply the idea
of Refs.@11,12# to the DPI problem.

The basic features of the HRM-SOW and hyperspherica
time-dependent with semiclassical outgoing waves~HTD-
SOW! methods are the same. Both methods formulate
one-photon ionization problem in terms of the stationary
homogeneous Schro¨dinger equation

@H~rW1 ,rW2!2E#FE~rW1 ,rW2!5J0~rW1 ,rW2!, ~1!

where (rW1 ,rW2) are the radius vectors of the electrons w
respect to the nucleus,H is the two-electron Hamiltonian,E
is the total energy of the system, andFE is the double con-
tinuum wave function. The source term on the right-ha
side reads

J0~rW1 ,rW2!52 1
2 EW0•DW C0~rW1 ,rW2!, ~2!

where EW0 is the amplitude of the electric-field vectorEW(t)
5EW0cosvt, DW is the dipole operator, andC0 is the ground-
state wave function of He. Both methods define two spa
regions depending on the value of the hyperradiusR
5Ar 1

21r 2
2 compared to some critical valueR0. The region

R<R0 contains the singularity of the three-body interacti
potential atR50. In the external regionR.R0, by contrast,
the evolution of this potential withR is smooth. These dif-
ferent characteristics of the two regions call for differe
mathematical treatments. In the external region, both m
ods apply the same approach, obtained as a substantia
velopment of the extended Wannier ridge method~EWRM!
@14#. Namely, by treating theR-motion semiclassically, the
exact Schro¨dinger equation, which is second order overR, is
transformed into an equation of first order over amock time
©2003 The American Physical Society01-1
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related toR. This equation has the formal structure of a no
stationary Schro¨dinger equation, the initial condition o
which is provided by the treatment of the inner region. It
solved using a very powerful and stable unitary algorith
that can provide the solution at arbitrary large distances w
very high accuracy.

Within the HRM-SOW theory@9,10#, we treat the interna
region using anR-matrix treatment complemented by an ou
going adiabatic partial-waves condition atR5R0.

Presently we consider the internal region with a radica
different approach based on the fact that the solution o
stationary nonhomogeneous Schro¨dinger equation like Eq.
~1!, subjected to the outgoing wave boundary condition,
be obtained exactly as the Fourier-Laplace transform

FE~rW1 ,rW2!5E
0

`

dtC~rW1 ,rW2 ;t !exp~ ıEt! ~3!

of the solution of the associated Cauchy problem

ı
]

]t
C~rW1 ,rW2 ;t !5H~rW1 ,rW2!C~rW1 ,rW2 ;t !, ~4a!

C~rW1 ,rW2 ;0!5ıJ0~rW1 ,rW2!. ~4b!

In our case, the1PM50
o two-electron function can be ex

panded over the bipolar harmonics as

C~rW1 ,rW2 ;t !5 (
l 1 ,l 250

`

Yl 1 ,l 2
(1,0)~ r̂ 1 , r̂ 2!

Fl 1 ,l 2
(1) ~r 1 ,r 2 ;t !

r 1r 2
. ~5!

Note that the study of theM50 case provides the basis fo
the treatment of any experimental situation. The symmetr
the wave function in the exchange of the two electrons
imposed on the initial wave function, as shown below. T
nonstationary equations for the coefficient functio
Fl 1 ,l 2

(1) (r 1 ,r 2 ;t) read

ı
]

]t
Fl 1 ,l 2

(1) ~r 1 ,r 2 ;t !5„Hl 1
~r 1!1Hl 2

~r 2!…Fl 1 ,l 2
(1) ~r 1 ,r 2 ;t !

1 (
l 18 ,l 28

Vl 1 ,l 2 ,l
18 ,l

28
(1)

~r 1 ,r 2!Fl
18 ,l

28
(1)

~r 1 ,r 2 ;t !,

~6!

where

Hl~r !52
1

2

]2

]r 2
1

l ~ l 11!

2r 2
2

Z

r
, ~7!
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Vl 1 ,l 2 ,l
18 ,l

28
(L)

~r 1 ,r 2!

5~21!(L1 l 21 l 28)A~2l 111!~2l 211!~2l 1811!~2l 2811!

3 (
k50

` r ,
k

r .
k11 S l 1kl18

000
D H Ll 28l 18

kl1l 2
J S l 2kl28

000
D . ~8!

The initial condition for the functionsFl 1 ,l 2
(1) (r 1 ,r 2 ;t) is

obtained from Eqs.~4b! and~2! by introducing the expansion
of the ground-state wave functionC0 of He over bipolar
harmonics, the coefficient functions of which are denoted
Fl 1 ,l 2

(0) (r 1 ,r 2). For a unit amplitude of the electric field and

the dipole operator is expressed in the length gauge,
obtains after some algebra

Fl 1 ,l 2
(1) ~r 1 ,r 2 ;0!5ı (

l 18 ,l 28
Wl 1 ,l 2 ,l

18 ,l
28

(1,0)
~r 1 ,r 2!Fl

18 ,l
28

(0)
~r 1 ,r 2!,

~9!

where

Wl 1 ,l 2 ,l
18 ,l

28
(LL8)

~r 1 ,r 2!5r 1d l 2 ,l
28
~21! l 2

3A~2l 111!~2l 1811!

3A~2L11!~2L811!S l 11l 18

000
D

3H l 1l 2L

L81l 18
J S L1L8

000 D 1$1⇔2%,

~10!

which ensures the symmetry of the singlet initial wave fun
tion in exchange of the two electrons.

Our numerical procedure comprises two stages:~i! deter-
mining the expansion coefficientsFl 1 ,l 2

(0) (r 1 ,r 2) of the ground

stateC0 of the system over bipolar harmonics and~ii ! solv-
ing the nonstationary Eq.~6! with the initial condition given
by Eq. ~9!. The Laplace transform of the solution accordin
to Eq. ~3! then yields the double continuum wave functio
FE(r 1 ,r 2) at any desired total energyE. Note that within our
approach, it is enough to calculateFE(r 1 ,r 2) on the sphere
R5R0.

To determine the He ground-state wave function, we h
propagated in imaginary time the initial function taken in t
form proposed by Le Sech@15#. The details of this procedure
were described in Ref.@12#. Here however, the radial dis
tances of the two electrons have been discretized on ano
nonuniform mesh that is defined by

r i
k5

1

Z
@xk /a2arctan~xk /a!#a3, i 51,2 ~11!

with xk5kdx, k51, . . .,200,dx50.06 a.u., and a
52.6 a.u. The values of the parametersdx anda were cho-
sen so that the nonuniform mesh covers the vicinity of
1-2
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FIG. 1. ~Color online! TDCS obtained at 20
eV above threshold using circular polarization
the plane perpendicular to the photon beam vs
mutual angle of the two electrons. The respecti
energiesE1 andE2 of the two electrons are indi-
cated in the figures. Dashed blue line
HRM-SOW calculations; dashed red lines: HTD
SOW calculations; dots with error bars: measu
ments@4#.
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nucleus extremely densely, and the distant region m
sparsely: we thus getdr i.1024 a.u. at the origin anddr i
.0.2 a.u. at the borderr .28 a.u. By including five angula
configurations@ l ,l #,l 50,1,2,3,4, and taking the time propa
gation step asdt50.05 a.u., the procedure converges in 3
steps. The energy of the eigenstate obtained is equal
22.9039 a.u., the experimental value being22.9036 a.u.
@16#.

The second stage of our numerical procedure is perform
with the same nonstationary routine as the first one, but w
propagation in real time withdt50.08 a.u. using a 500
points mesh that covers the area about 88388 a.u. Ten an-
gular configurations,@ l ,l 11# and @ l 11,l # for l 50, . . . ,4
are included. The stationary wave functions have been m
tored on the sphereR0560 a.u., the largest one ever used
HRM-SOW theory@10#. The number of time steps neede
for computing the wave function at 20 eV above thresh
was 104.

The main difficulty in solving stationary problems wit
more than one dimension consists in imposing outgo
boundary condition. If these stationary problems are trea
using the nonstationary scheme defined by Eqs.~3,4!, this
becomes rather trivial. One just adds an absorbing auxil
potential concentrated at the box boundary, which effectiv
damps the wave function in that region to zero. It see
widely accepted that Ignatowsky@17# was the first to relate
the outgoing boundary condition to the infinitesimal abso
tion. In our case the absorbing imaginary potential cons
of three terms: g(r 1 ,r 2)52 igS(r 1 ,r 2)2 iga(r 1 ,r 2)
2 iga(r 2 ,r 1). All the terms absorb the waves outside t
sphereR15R015 a.u.. The first term provides uniform ab
sorption of the wave packet in that region, while the oth
two terms are concentrated in the vicinity of the axes a
absorb the short wavelets corresponding to the singly ion
states of He.

It is important to realize that our present approach and
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TDCC method@5,6# differ essentially. First, if both methods
usenonstationary techniques, they apply these techniques t
different formulations of the DPI problem: thestationaryone
in the HTD-SOW case and thenonstationaryone in the
TDCC case. One intrinsic advantage of the stationary form
lation is that it provides a function of precisely-defined e
ergy. On the other hand, an intrinsic difficulty of the nons
tionary formulation is that it introduces an arbitra
modelization of the time envelope of the radiation puls
Second, the techniques used are very different. The use o
absorbing potential is one great advantage of our met
since it allows us to continue the wave propagation as lo
as we wish. On the contrary, TDCC implies terminati
propagation before the waves reflected from the box bou
aries alter the outgoing wave packet: this leads to a p
energy definition within the nonstationary formulation of th
DPI used in this method. Additionally, we use the sp
propagation technique with a nonuniform spatial grid a
Cranck-Nickolson@18# partial propagators. This allows us t
reach at least three significant digits in the values ofFE on
the hypersphereR5R0, and to obtain the initial wave func
tion with 1024 relative precision of energy, which should b
compared with the 1% accuracy accepted in Ref.@6#. The
reason for these contrasted achievements of both metho
that the staggered leap-frog propagation scheme use
Refs.@5,6# is stable only if the time step remains smaller th
the square of the smallest spatial step@19#. Therefore, it can-
not be easily adapted to the work with dense grids.

To demonstrate the power of the present model, we co
pare its results with the corresponding measurements in
case of the experiment done by Achleret al. @4# at 20 eV
above threshold. The latter is selected because it prov
TDCS values on the absolute scale with a high statistics
can thus be considered a benchmark in the field. Figur
shows that the HTD-SOW results agree with experiment p
fectly. Moreover, the HTD-SOW results coincide with th
1-3
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HRM-SOW ones obtained from the most recent version
this theory@10#. In additional calculations, performed in th
conditions of the experiment done by Seccombeet al. at 25
eV above threshold@10,20#, the HTD-SOW and HRM-SOW
results show mutual deviations of the order of the exp
mental error bars for two kinematics. Thus, we are meetin
rare case in the theoretical physics when two substant
different approaches give practically identical results. T
constitutes very strong support for both methods.

However, preliminary calculations at 1 eV above thres
old, where no measurements are available yet, show m
substantial deviations of HTD-SOW from HRM-SOW.
Therefore, further work will concentrate on this regio
where HTD-SOW might possibly supersede HRM-SOW.
Going down in energy is indeed very likely to require
substantial increase of the size of the inner region tha
common to the two methods. Both methods might well n
face this demand with the same ease. Namely, the ‘‘Achi
heel’’ of HRM-SOW is that it relies upon the diagonalizatio
of an N3N matrix the structure of which does not allow an
storage saving. As the diagonalization run-time scales as3

@18# and storage requirements as N2, the risk of running into
.
t-

M

dy

ev
.

s.
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the computer’s limits regarding either the available mem
or the allowed computing time are significant. On the oth
side, the storage requirements of HTD-SOW scale as N,
so do the time requirements for a single propagation s
The only difficulty that could arise with HTD-SOW is a sub
stantial increase of the number of propagation steps requ
leading to a corresponding increase in the runtime. Howe
it seems that we are in a good position to take up the thre
old region challenge in the near future, which noab initio
method has ever attempted so far. This makes absolute c
plete experiments below 5 eV excess energy all the m
desirable.
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