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High-|m| Rydberg states in strong magnetic fields
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We calculate spectra and wave functions of Rydberg atoms in strong magnetic fields using adiabatic basis
sets, which reflect the different time scales of the electronic motion parallel and transverse to the magnetic
field. For large absolute values of the azimuthal quantum numbeonadiabatic corrections are found to be
negligible, and the adiabatic basis states and their energies are exact solutions. With decreasing wélue of
the system turns nonadiabatic, and the statistical behavior of the spectra changes from being consistent with
classically regular to being consistent with classically chaotic motion. A relation describing the parameter
region in which this transition occurs is obtained.
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I. INTRODUCTION the adiabatic basis states are obtained in a transparent,
straightforward manner via numerical integrations of one-
Being a paradigm of “quantum chaos,” the diamagneticdimensional Schidinger equations for the fast and slow
hydrogen atom has been extensively investigated both in ex;ariables of the system. In contrast to the work in R6f,
periment and theory1-3]. In the laboratory, such systems we include the effects of all nonadiabatic corrections. In Ref.
could be realized in the form of laser-excited Rydberg statef10], different adiabatic basis sets were used and nonadia-
in magnetic fields of the order of a few tesla. Most researctbatic corrections were included, but only Idmwy manifolds
on the field has dealt with subspaces of low values of thavere considered.
conserved magnetic quantum numben|, because these In our analysis of the obtained quantum spectra and wave
subspaces are experimentally accessible through direct lasiemnctions, we show in Sec. IV that for largen| and B the
excitation, and because the classically chaotic dynamics pré&orn-Oppenheimer approximation applies, i.e., the motions
dominantly occurs at lowm|. Experimental work began parallel and transverse to the magnetic field adiabatically
with the seminal discovery of quasi-Landau resonances igeparate. We then investigate typical nonadiabatic effects and
the Rydberg excitation spectra of atoms in strong magnetistudy in detail how with decreasingm| the Born-
fields[4]. In later work, more complex spectral modulations Oppenheimer approximation breaks down. We thereby iden-
[5,6] were found. Level repulsion, a quantum indicator fortify a quantitative condition om and B that describes over
classically chaotic dynamics, has been measured using laseshich range the transition between adiabatic and nonadia-
with a spectral resolution high enough to resolve individualbatic quantum behavior occurs. This is one of our main re-
Rydberg lineg[7]. Unusually narrow resonances above thesults. We then show in Sec. V that upon variatiorirof from
ionization limit have been observég8], which were identi- large to small values the energy-level statistics changes in a
fied as positive-energy states in higher Landau b§8ds)].  manner that is consistent with a transition from classically
Theoretical investigations, reviewed in Rdf$-3|, have in-  regular to chaotic dynamics. This “quantum-chaotic” transi-
cluded large-scale quantum-mechanical matrix calculationsion is found to follow a classical scaling behavior governed
[11], adiabatic expansion methods that reflect the differenby the same variable that also describes the degree of adia-
time scales of the electronic motion transverse and parallel tbaticity in the system.
the magnetic field9,10], and semiclassical closed-orbit ap-  The regularity and adiabatic separability of the system at
proximations, which are used for a multitude of problemslarge|m| andB is not unexpected, because at lahgé andB
[1-3,12. The existing theoretical and experimental workthe Coulomb potential merely represents a weak, smooth
provides a consistent and complete picture of quantumperturbation to the problem of an electron in a homogeneous
classical correspondence in diamagnetic Rydberg atoms. magnetic field(which is a separable problemFurther, our
In the present paper, we investigate the properties of diaebservation of a regular-to-chaotic transition upon variation
magnetic Rydberg states in the much less studied regime @ff |m| complements recent work on such transitions as a
high |m|. Low-lying states in this regime have been calcu-function of quantum defecfg4].
lated by Deloset al.[13]. On grounds of the correspondence  Our work has been motivated by recent experiments on
principle, the classical Rydberg-electron trajectories consideold plasmas and cold Rydberg atom gases prepared in near-
ered in Sec. Il demonstrate that high} diamagnetic Ryd-  zero magnetic fields by the laser excitation of clouds of laser-
berg states qualitatively differ from their lojm| counter-  cooled atoms. These experiments have revealed novel colli-
parts. We continue in Sec. lll with the description of asional dynamic§15-17. It has, in particular, been found
guantum-mechanical analysis of the bound states that ihat high-angular-momentum Rydberg states can become
based on adiabatic basis sets. Our method is conceptualpopulated through collisions or recombination. Fundamen-
similar to the work presented in Ref€,10]. We use similar tally, an extension of cold-plasma research into the domain
adiabatic basis sets as in R3], namely, the ones in which of strong magnetic fields appears critical, because the mag-
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netic field is one of the most important parameters in any
astrophysical, terrestrial, or man-made plasma. A strong
magnetic field will increase the plasma lifetime, alter the
plasma dynamics, and change the nature of any Rydberg at-
oms contained within the plasma. Further, due to the pinning
of free charges t®-field lines, the addition of a strong mag-
netic field to cold plasmas is likely to suppress collisional
electron heating mechanisifik3], potentially opening an av-
enue to the generation of a strongly coupled electron com-
ponent in a cold plasma.

First steps towards higB-cold-plasma and Rydberg-gas
research have been taken. We have recently been able to
generate strongly magnetized cold plasmas and Rydberg
atom gases in the laboratgr§9]. Also, strongly magnetized
cold plasmas are being considered in very recent theoretical
work. With this emerging new direction in cold-plasma re- g 1. Three classical trajectories of Rydberg electrons in a
search comes a desire Fo calculate the gugntum-mechanlqﬁggnetic fieldB=(6 T) and energyE = —5x 105 for the indi-
properties of diamagnetic Rydberg statéitetimes, transi-  cated values of the component of the canonical angular momen-
tion rates, etg. Thereby, highm| states are particularly im- tum m (E and m in atomic unit3. The low{m| orbit is chaotic,
portant because of their long lifetime and high density ofwhile the hightm| orbits are regular and display the three indicated
states. We have already employed the method described aharacteristic types of motion.

Sec. Il of the present paper to calculate radiative lifetimes of
strongly magnetized highm| Rydberg statef20)]. IIl. QUANTUM-MECHANICAL ANALYSIS

We use numerically obtained basis sets of adiabatic wave
functions. These functions match the shape of the relevant
[l. CLASSICAL DYNAMICS potential, defined in Eq1) below, in an optimal manner, and
Some intuition of what to expect when the magnetictherefore fc_)rm ideal basis sets for the exact solutjon of the
: ) problem, giving good results even when the basis sets are
quantum numbejm| is varied from small to large values can gy “\ve then calculate all nonadiabatic couplings, obtain
be obtained through classical trajectory calculations. We aSsyact solutions of the problem, and elaborate on the effects
sume a magnetic fiel8=Bz. In the classical problem, the of the nonadiabatic couplings on the exact spectra and eigen-
“good” magnetic quantum numbem corresponds to the states.
conservedz component of the canonical angular momentum  yUsing an ansatz W (r)=(1\2mp)¢(p,2)e™?, the
I,=%m. At low [m| and sufficiently highB and high energy, Hamiltonian of a Rydberg atom with infinite nuclear mass in
the Rydberg-electron trajectories are chaotic, while in the, magnetic fiel®= B2 becomes, in atomic units, cylindrical

case of highm| apparently regular classical drift orbits exist. coordinates. and in the svmmetric gauge
The drift orbits exhibit the same characteristics as charged- ’ y gauge,

particle orbits in Penning traps, namely cyclotrafyounce, . 1 92 1 92

and magnetron oscillatio®1,22. The qualitatively differ- H==5-5-5-2+V(p,2)
ent types of orbits are displayed in Fig. 1. The fact that for
high |m| the motion is composed of three components withyith
quite different time scales was used as a justification to adia-

B=6T
Cyclotron
E——

z-bounce

batically separate the classical motion and to semiclassically 1 m2—1/4 B2p? B
guantize the systerf1]. However, the exact quantum be- V(p,2)=— + 52 + 8 +m§. (1)
havior and the role of nonadiabatic effects remained elusive VZitp p

in that approach. . )
PP For large values ofm|, the potentiaV(p,z) confines clas-

Following the correspondence principle, which usually’ . | trai . q f ; hi d
applies to Rydberg atoms, both the exact quantum states arff tra!ectprles an qu_antum wave un.ctlons on thin an
long cylindrical shells aligned with th& field, leading to

the level spectra should reflect the existence of qualitativelyo | lassical . ith b f . h
different classical domains. This will be shown explicitly in '€gular classical motion with bounce frequencies muc

Secs. IV and V. Concerning the choice of a method to tre Ir(])we; that_ t_he (rjadial frequency, as marr:ifﬁsted Ibnl Fig.. L.
the quantum-mechanical problem, it is obvious from Fig. 1] nerefore, it is advantageous to approach the problem via a

and earlier work in the field that it is most efficient to first Born-Oppenheimer separation of theand z mot|onsA[9].
solve the problem using a Born-Oppenheimer separation ofVith the reduced Hamiltonian for the fapt motion, H .,
the fast radial and the slowbounce motion. Even for low =H+ 4% 922, the eigenvalue equation for temotion at
|m|, where quantum-chaotic signatures prevail, the adiabatifixed z reads

separation of the motions parallel and transverse toBhe

field has been found to be a fruitful approdé&n. Hp;zz//j(p;z):Uj(Z) ¥i(p;2). 2
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We numerically solve this equation for sets of about 5000 Adiabatic spectra Exact s
grid points of thez coordinate, and find the adiabatic poten- - = :
tials U;(z) and the corresponding radial functiosi(p;z).
The U;(2) have minima az=0, are symmetric irg, and
asymptotically approach positive values. Since we are prima-
rily interested in finding the bound states, we compute all
adiabatic potentialdJ;(z) that satisfy U;(0)<0 and are
therefore likely to support bound states. Due to the constant
Zeeman termnmB/2 in Eq. (1), the number of potentials sup-
porting bound states is larger for negatinethan it is for
positivem; therefore we focus on negative For aB field of
6 T and|m|=20 we typically find 5-30 potentials with
U;(0)<o0.

The solution of the Schobinger equation for the slow
motion,

ectra
?@: S 5 s

Energy (10‘5 a.u.)

Energy (10 au.)

2

247
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+Uj(z))§jk(z):Ejk§jk(z)r 3 ;)7

2 4 6 8j10121416 0 2 4 6
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yields the adiabatic energiés) and the corresponding full
adiabatic wave functions W(r)
=(1\2mp)e€™yi(p;2) éi(2). Due to the symmetry of the
Uj(2), the solutions have well-definegparity.

The adiabatic solutions);(p;z)¢jk(z) are orthonormal
and can be used to represent the exact Hamiltonian{1gg.

a.u.)
o

-5

Energy (10

: m=-40 -
yielding matrix elements _700’ m=118 0=

5 10j 15 20 0 5 10<j>15 20

d
d—zfjk(z)

(L‘/’i’(p;z) FIG. 2. Adiabatic(left) and exact energy levelgight) for B

'Ikl
H}k = EJk(S“ ’5kk' — f fj ’k'(z)
z
=6 T, evenz parity, energyE<—2x10°, and the indicated val-

d ] 1 ues ofm andm. The circles in the upper right panel indicate a few
X E‘/’J(P'Z) dp) dz— §L§j 'k (2)€ik(2) isolated nonadiabatic state-mixing events. The accumulations of ex-
act levels along diagonal lines, highlighted by gray shadings and
92 most clearly visible in the casa=2.35, are due to resonances of
X L‘/’i’(p;z) 2 ¥i(piz)|dp|dz, (4 thep andz motion, as discussed in the text.

in which the integral terms represent the nonadiabatic coun€ 1evel seriess; associated with the adiabatic potentials
plings. One can explicitly show the symmetry of the nona-Yj(2) in separated columns labeled by the radial adiabatic
diabatic couplings inj(k) and (’,k'). Further, due to the quant.um numbey. In the graph_s of the exact energy levels,
well-definedz parity of the adiabatic potentiald;(z), the ~the discrete quantum numbgis replaced by its quantum
functions &,(z), and the functionsy;(p;z), only nonadia- average(j). Thus, the energy}) diagrams of the exact
batic couplings between states with the samperity exist, spectra have an _absmssa related to 'Fhe average energy con-
as required by the symmetry of the problem. Also, to reducdained in the motion transverse B) while the ordinate rep-

numerical computation errors we have used a modification of€Sents thetotal) level energy. The energfj) diagrams are
Eq. (4) in which only products of first-ordez derivatives & useful tool to study the transition from adiabatic to nona-

occur instead of the second-ordederivative[20]. The en- diabatic behavior. The diagrams are alsq found to highlight
ergies and eigenfunctions obtained via diagonalization of th&tructures that are due to quantum-classical correspondence.

matrix specified by Eq(4) are exact up to basis truncation 10 quantify the degree of adiabaticity, we use a parameter
errors. related to the ratio between the radial andscillation fre-

quenciesw, andw, . In the regime of moderate to highn|,
the value ofw , is approximately given by the cyclotron fre-
quency, which in atomic units equa The value ofw, is
obtained by expanding the potential in Ed) aroundz=0
A. Energy~(j) diagrams for a fixed radial coordinatg,. A suitable choice fop, is

In this section, we discuss how with decreasing value of® rad'ial cc?qrdinate of the potentialll min'imum flat —co.
|m| nonadiabatic couplings grow in importance and progresThe adiabaticity parameten we use is defined by
sively lead to a reorganization of the spectra. In Fig. 2, we 1 a3
compare adiabatic with exact spectra =6 T andm= .~ (%) —|m|B3, (5)

IV. TRANSITION FROM ADIABATIC TO NONADIABATIC
BEHAVIOR

—200, —80, and—40. In the adiabatic spectra, we display 2
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We use this specific function because it turns out to be Adiabatic states
identical with the(classical scaledz-angular momentum of . 96> . —10>
the system employed in Sec. V. For the cases — 200, 10 =1, ‘k 26 i 2’”k 19
—80, and—40 of Fig. 2, the adiabaticity parameters ane ‘
=5.89, 2.35, and 1.18.

W
i

B. Adiabatic regime

For m=5.89, the adiabatic and exact spectra are virtually

identical, showing that for thim the nonadiabatic couplings
are generally weak and that most exact states are dominated
by a single adiabatic basis state. Thus, the Born-

Oppenheimer approximation is clearly valid wheris of the
order of six or larger. The classical analogs of exact quantum T ) A W
states in the adiabatic regime are orbits such as the outer two 30 40 5.0 30 40 5.0
in Fig. 1. p(10*a. u.) p(10° a. u.)

In the adiabatic regime, nonadiabatic state mixing only
occurs when two adiabatic states are accidentally near degen- Exact states
erate. In that case, adiabatic states with quantum nunjbers | p=70> | p=71>
andj’ become mixed and generate exact levels with values 10
(j) and(j") that are closer together the closer the near de-
generacy is. An inspection of the upper-right panel of Fig. 2,
where a few distinguishable and isolated mixing events are
identified, shows that in the adiabatic regime there exists an
approximate selection rule for nonadiabatic state mixing:
mixing is seen to occur mostly between near-degenerate
adiabatic states withnumbers differing by one. This selec-
tion rule can be traced to the relative importance of(éma-
bedded radial integrals in Eq(4). For fixedz, the depen-
dence of the potentiaV(p,z) in Eq. (1) on p is fairly
harmonic in the vicinity of the radial potential minimum.
Further, thez dependence of the radial wave functions -10
¥;(p;z) mostly consists of a slight translation j that is
linear inz, as evidenced by the wave function plots in Fig. 3.
Thus, ©/9z) ¥(p;2)~ = a(dldp)i(p;z), where a is the _ _ _ _
amount of radial translation of; perz interval. The direc- FIG. 3. Acase of _exceptlona[ly strong nonadiabatic coupling of
tion of the linear shift, i.e., the sign in front af, equals the M= —200 states in Fig. 2. The figure shows gray scale representa-
sign ofz Considering the properties of the wave functions oftions of wave function propabllltles in thez plane. On the left pair
the quantum harmonic oscillator, it is seen thatOf panels, the wave functions of the accidentally near-degenerate

(9192) ;(p;2) approximately yieldst  times a linear com-  2diabatic state§j = 1k=26) and|j=2k=19) are displayed. The
bination of l,//j+1(p;Z) and l;bjfl(l);z)- As a result, the first a(_jlabatlc st?ielizbztg(_:ome mixed by virtue of the_nonz_adlabatlc cou-
o . o pling termH!Z53 =75 in Eq. (4). The exact calculation yields a pair
radial integral in Eq(4) becomes large only if thenumbers 172 . e
. - . . of quantum states that are near-degenerate linear superpositions of

of the involved states differ by one. Further considerations, ", yiapatic statd§ = 1k=26) and|j=2k=19). In the depicted
Sh‘?W that the secozn(iarznbedde)j radial mtegrall In Eq,‘(‘})’ case, the mixed exact states are labefed 70) and |p=71), ac-
which 'nVOIV.eS a'G loz )‘/’i(P;Z) and Wou!d y'leld MIXING  cording to rank in energy value. In the upper-right panel of Fig. 2,
between adiabatic levels withnumbers differing by two, e state$p=70) and|p="71) are located in the lowest circle. The
provides smaller contributions. In this way, the dominance okquipotential lines of the potential in E¢L) are shown in the left
nonadiabatic couplings between states wittumbers differ-  pair of panels. Note the different scalespimndz. Further, note that
ing by one, as seen fan=>5.89 in Fig. 2, can be explained. an adiabatic stat k) denotes the (R—1)th z-bounce state with

One of these nonadiabatic mixing events marked in theadial quantum numbeyj, because our calculations are for states
upper-right panel of Fig. 2 is investigated more closely inwith evenz parity. The dashed lines superimposed on the exact
Fig. 3. There, the-dependent variations of the average radialduantum states are classical periodic trajectories calculated for an
coordinates of the adiabatic wave functions, the derivative§nergy equal to that of the quantum states.
of which yield the value ofa used in the preceding para-
graph, present a qualitative measure for the strength of theolved adiabatic levels. The wave functions of the mixed
nonadiabatic coupling. Since these variations are very slighgtates are localized around classical periodic trajectories, as
the nonadiabatic coupling is small and only leads to noticeindicated by the dashed lines in Fig. 3. The periodic trajec-
able state mixing because of the near-degeneracy of the iteries correspond to resonances of ph@ndz motion: during

z(10° a. u.)
[ =]

{
W
L

z(10° a. u.)
o o

M|
VAR LR T

30 40 50 30 40 5.0
p(10° a.u) p (10” a.u)
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onez-bounce oscillation an integer number of radial oscilla- - = i
tions occur. The example in Fig. 3 and other cases we have - = - = !
studied suggest that the few, isolated cases of nonadiabati3 - &
state mixing that occur in the adiabatic regime coincide with ,* h —@ -
resonances of the classigahndz motion. This finding con-
forms with the commonly known fact that nonadiabatic ef-
fects are maximal if there is a resonance between the motion
in the relevant degrees of freedom.

Do

2104

Energy (10

[ R

bt IR

by
SOy !
ad b

C. Transition regime

w
A
-
wd

With decreasing value of, the exact spectra in Fig. 2
deviate farther from the adiabatic spectra, signaling the
breakdown of the Born-Oppenheimer approximation. In the
energy¢j) diagrams, two distinct regimes of nonadiabatic
behavior can be identified. Am is decreased, the arrange-
ment of exact energy levels in the enekgy-diagrams first
changes from largely adiabatien&5.89 in Fig 2 into a
transitional pattern in which a fraction of energy levels still - o b s

| p=84 >

3 w

L z(10°a. u)

'S

6 3 8 1 6 5 8 1 6 5 8 1
follows an arrangement similar to the adiabatic scheme, & pUYan) U0 2w) p00aw)
second fraction of levels accumulates along diagonal lines in C
the energy-j) plane, and a third fraction appears to be ran- I p=96 > 1p=93 > 1p=92 > 2

domly distributed. In Fig. 2, the casm=2.35 exhibits a

typical transitional pattern. As1 is lowered further, the frac-
tion of randomly distributed levels becomes overwhelmingly |.&
dominant. In the following, we focus on the second fraction
of energy levels, which is most prominent in the transitional
regime.
Already in the adiabatic case=5.89 in Fig. 2, the scat-

tered nonadiabatic coupling events seem to be arranged

along virtual diagonal lines through the enexgy-plane. As FIG. 4. Exact energy levels «§) and plots of the wave func-

the adiabaticity parameten is lowered, the manifestations tloisl;)g thfhenc'rde? and 'absled Iefvter: groups ;B)Ht.T andrfn t

of nonadiabatic couplings become more widespread in the =~ ep-quantum numbers of the wave functions reter 1o
spectra and begin to mix adiabatic states withumbers rank in energy value. The members of each group are sorted accord-
dli[;fering by morge than one. It also becomevsv obVious tha.ng to the number of wave-function maxima transverse to the dis-

diabatic effects do. in fact leate al di Vi layed periodic orbit, which generates the sequence. The transverse
nonadiabatic efiects do, In tact, nucleate along diagonal Vi, ayima are labeled through by the numbers imprinted on the wave

tual lines through the e“ef%!') plang, as indicated by the _functions. The contour lines of the potential in EQ) are, for
shaded regions in Fig. 2. This behavior is clearly observed iyarity, only shown with the fundamental group members. The re-
the casem=2.35 of Fig. 2, where in certain energy rangespeated plot of statgp=384) on the right of group B demonstrates
nonadiabatic couplings lead to the accumulation of 30—50 %hat wave-function anomalies are connected with focal points and
of all energy levels along such virtual lines. It turns out thatcaustics of corresponding classical trajectories. The wave function
each such line marks a well-defined resonance betwegn theof the randomly selected high-lying stafe=504) corresponds to a
and thez motion. Since nonadiabatic effects are expected t¢lassically chaotic portion of phase space.

first manifest themselves on such resonances, the observed

nucleatlon_ beh_awor of n_onadlabatlc effects is expected. Ir(':orresponds to the 1:4 resonargce., four radial oscillations
the following, it is explained why so many energy levels

accumulate on the virtual lines perz_oscillation). As indicated in the figure by_ circles, in a
We will first point out that t.he accumulation of energy certain energy range the levels are sy_ste_mahcal_ly organized
. . . ! in groups. These level patterns are significant, in that they
levels along virtual lines in the energy) plane follows cer- can be associated with a reproducible, well-defined behavior
fcain patterns._Since these patterns are most eas_ily recognizg the associated wave functions. Th’is is demonstrated by
in systems with a large dgn_sn of states, we dlscus_s an e>E)'Iotting the wave functions of three level groups, labeled A,
Emple ata lower ma_gnetlc f'_e:1 T_an_dn_]: —120(e., B, and C in Fig. 4. The wave functions of the highest levels
m=1.94). The physics of this case is similar to that of theyithin the groups clearly follow the periodic orbit that cor-
casem=2.35 in Fig. 2, but the average density of states isresponds to the 1:4 resonance, and do not have any signifi-
considerably higher. We show in Fig a detail of the spec- cant structure transverse to the orbit. Thus, the wave func-
trum for B=1 T andm=—120 represented in the energy- tions of the highest levels within the groups can be regarded
(j) plane. The line along which energy levels accumulateas the fundamental wave functions of the groups. The wave

. z(10%a.u)
" oo w

S 5

[ 8 10 6 8 10 6 8 10 ) 4 6 8 10
p(10°a.u)  p(10°a.u) p(10°a. u) p(10°a. u.)
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functions with the second-highest energies within the groupsis confident that the invariant torus on which the displayed
are arranged around the same orbit as the fundamental wat@jectory is located is fairly close to the one that, in a strict
functions, while exhibiting—in most of their parts—one sense, corresponds to the second transverse excitation of the
node in the direction transverse to the orbit. For the nextB group. However, the wave-function irregularities associ-
lower levels, we tend to observe two nodes transverse to thated with the focal points of the displayed trajectory compli-
orbit, and so orisee numbers imprinted on the wave functioncate the assignment of a longitudinal quantum number. Ad-
plots of Fig. 4. ditional complications arise due to the nontrivial structure of

The observed quantization structure corresponds with setie wave function near the caustics of the trajectory. For
of invariant tori centered around a stable periodic orbit. Inthese reasons, we do not assign longitudinal quantum num-
the case of Fig. 4, the periodic orbit is that of the 1:4 resopers to the wave functions in Fig. 4.
nance. Thesemiclassicaldensity of quantum states associ-  The second action integral characterizing the allowed in-
ated with the set of tori is approximately proportional to theyariant tori around the 1:4 resonance is associated with a
energy derivative of the phase-space volume of the set qfansverse quantum number, which one may define as the
tori. We have calculated Poincare surfaces of section for thﬁumber Of Wave_function maxima transverse to the under'y_
parameters of Fig. 4, and estimated that the semiclassicmg periodic orbit. For the wave functions in Fig. 4, the as-
density of states of the torus set belonging to the 1:4 resosignment of transverse quantum numbers is fairly obvious.
nance can approach 50% of the total density of states. Thiote, however, that portions of the wave functions clearly
explains why in the energg}) diagram in Fig. 4 so many show the complicating effect of focal points and caustics of
states accumulate on the line corresponding to the 1:4 res@mjectories on both the longitudinal and the transverse struc-
nance. ture of the wave functions.

For quantitative studies of the quantum states on the in- |t will be possible to quantitatively reproduce the quanti-
variant tori, one may employ the well-known theory of mul- zation structure displayed in Fig. 4 by multidimensional
tidimensional semiclassical quantization of regular systemsemiclassical quantization on invariant tf2]. Such an ef-
which is reviewed by Gutzwillef2]. In the present energy- fort is beyond the scope of the present paper, but it may be
conserving two-dimensional case, the “allowed” invariant the subject of future work. We close this discussion by point-
tori are characterized by the action integrals along two topoing out that the influence of classical trajectories on quantum
logically different closed loops in phase space, each of whickystems has, in general, been extensively stufiecs,13,
generates a semiclassical quantum number. In our case, 0gfd that there is a large amount of literature one can work
of these integrals is related to a longitudinal quantum numsrom.
ber, which one may define as the number of wave-function For our purpose, an important aspect is that the break-
maxima along a line that is parallel to the underlying peri-down of the Born-Oppenheimer separation of radial and
odic orbit. In Fig. 4, the assignment of longitudinal quantummotion does not immediately lead to a fully chaotic behavior.

number; to the fundamental wave functions is straightforyys, decreasingn, the course of events in the classical sys-
ward. It is observed that from one fundamental wave func'tem is that the simple structure of invariant tori present in the

tion to the next-higher one the longitudinal quantum number llv adiabati =6 dually break .
increases by two. This increment is to be expected, becauég y adiabatic caseri=6) gradually breaks up, giving way

we are only considering states with eveparity, which must to growing chaotlc.phase-space doma}lns and new regular
all have an antinode in the=0 plane. phase-space domains. The latter are filled with new sets of

For the wave functions with excitations transverse to thé'nvariant tori centered ar?“”d. stable. periodic orbits qf the
underlying periodic orbit, the assignment of longitudinal s_yster_n. The new sets of invariant tori have clear_manlfesta-
guantum numbers is somewhat complicated, because ¢ions in the quantum spectra and the wave functions, as we
nodal lines of these wave functions do not follow simple gridhave seen in this section. With decreasimg the chaotic
patterns of curves parallel and transverse to the orbit, butraction of classical phase space increases frefh at m
incorporate multiple abnormal structures. To explain the ori-=6 to <100% atm=1, as we have verified by inspecting
gin of these complications, in the plot on the right of the B poincare surfaces of sectignot shown in this papgr The

group in Fig. 4 we show a trajectory superimposed on thejescribed transitional behavior occurs throughout a rather
wave function of the second transverse excitation of the B .. range of the adiabaticity parameterxm=1).

group. The trajectory is the configuration-space projection o
a phase-space orbit located on an invariant torus that is cen-
tered around the 1:4 resonance of the radial and thetion.
First, we observe a striking similarity between the overall As discussed in the preceding section, the enéjyydia-
shape of the wave function and the area covered by the trggrams allow us to distinguish between two distinct types of
jectory. Further, the trajectory displays multiple focal points,nonadiabatic domains. In the domain considered in Sec.
which mostly correspond to regions of enhanced waveiV C, the adiabatic quantization structure is replaced by a
function amplitudes. Also, at the focal spots additionalregular quantization structure generated by sets of invariant
“waves” are inserted into the wave function, as is mosttori around the stable periodic orbits of the system. The other
clearly observed at the focus in tlze=0 plane. Such addi- domain of nonadiabatic behavior corresponds to the portions
tional waves must be expected due to Maslov indices assan the energy-j) diagrams in which the energy levels appear
ciated with focal points. These and other observations makt be disorganized. The latter domain becomes particularly

D. Nonadiabatic chaotic regime
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oissonian

prominent form=3, high energy, and lowj). Typically,
wave functions of levels located in the disorganized portions
of the energy-j) diagrams are mixtures of many adiabatic
states, and lack any regular node patterriadavious align-
ment with classical trajectories. As a typical example of such - -
wave functions, in group D of Fig. 4 we show the wave
function of the level|p=504), which has been randomly
picked from the disorganized portion of the ene(gy-dia-
gram atB=1 T andm= —120. The disorganized portions in
the energyj) diagrams expand with decreasing in the
casem=1.17 of Fig. 2, almost the whole energj) diagram

is disorganized. Based on the discussion at the end of Sec.
IV C, it is obvious that the described phenomenology of the s
energy¢j) diagrams and the widespread appearance of wave ——
functions such as the “chaotic” statp=504) in Fig. 4 re- 0 1 2 g 3 4 >

flect a regular-to-chaotic transition of the classical system. In 5 5

the following section, we show that the statistical behavior of ~FIG. 5. DistributionsP,s) (open circles and Pe(s) (filled

the quantum energy levels conforms with this assessment. circles of nearest-neighbor energy splittings for the indicated
ranges ofm| andB=6 T. The values|,q(ge,) and lines show the

respectivey-fit results according to E(8). In the uppermost panel
we show, for reference, a perfect Poissonigr-Q) and a Wigner

In the remainder of the paper, we study the variation of(q=1) distribution.
statistical properties of the spectra with and |m|. The
strength of the mixing of the adiabatic basis states and thbatic spectra, i.e., the eigenvalues obtained by solving Eq.
concomitant level repulsion can be quantitatively measured3), and for the exact spectra, i.e., the eigenvalues obtained
via the probability distributiorP of the nearest-neighbor en- by diagonalizing the matrix with elements defined in &).
ergy splittings in the spectra, which is also known to reflectTo improve the statistics, the respective distributi®hy(s)
the nature of the dynamics of the corresponding classica®nd Pe(s) have then been averaged over small ranges of
system[1—3]. A Poissonian distribution indicates classically that have a full width of about 12% of their averageThis
regular dynamics, while a Wigner distribution indicates cha-Width is large enough to yield reasonably smowtaveraged
otic dynamics. Since the average density of states stronglglistributionsP,{s) and Py(s), while being small enough
varies as a function of the ener§y we use a mapping func- that the individual distributions contributing to the averages
tion S(E) defined such that the mapped valy&E,)} of  do not vary significantly. In Fig. 5, we show a few plots of
the quantum spectruffE,} have a constant average nearest-p_(s) andP,(s).

neighbor separation of one on tBescale. The functios(E) A quantitative figure for how Poisson- or Wigner-like a

is given by the leading term of the semiclassical number ofjjstribution P(s) is can be obtained by fitting?(s) with
quantum states with energyE. In atomic units and for the  fynctions of the typd23]

two-dimensional case of interest, it is

Wigner  q,,=0.47
q,,=0.45

Iml=188-212
Averagem = 5.89

P (s)

Im|=85-95

P (s)

Im[=37-43
Average =1.18

P (s)

V. LEVEL STATISTICS

11 (E-En P(s,q)=q% Perfo(;mq's)+(2qq' +37q"%s)

S(E):EZ ) A(E—E’")dE’, (6) % @45 (147’25 (8)

where the factor 1/2 accounts for the fact that we only conwith q’=1—q. The fit parameteq is 1 for a pure Poisso-
sider states with evenparity. The integration variablé’ is  nian, 0 for a Wigner distribution, and varies between 0 and 1
the kinetic energy, andEy,, is the minimum energy of for mixed distributions. Berry and Robn[23] have shown
V(p,z) from Eq.(1). The variableA(E—E') represents the that Eq.(8) yields a quite generally correct description of
area in thepz plane whereV/(p,z)<E—E’, P(s) for systems such as our$wo-dimensional systems
with one dominant chaotic domain in classical phase gpace
In Fig. 5, we show the fits of all distributions with functions
A(E-E')= fv( et E,dZdP- (7)  of the type of Eq(8).
g In Fig. 5, all P,(s) appear Poissonian. This is expected,
ForB=6 T and all subspaces afi ranging from—20to  as under the neglect of the nonadiabatic couplings the total
—450, we have computed the quantum spe¢Ea}. The  spectrum is merely the sum of overlapping and independent
utilized adiabatic basis sets were truncated at an energseries ofz-bounce energy levels, each series being generated
—2x107°. From the spectréE,} we have derived the cor- by a single adiabatic potenti&l;(z). Nearest neighbors in
responding mapped spectf8,=S(E,)} and their probabil- the total spectra generally belong to different series, and their
ity distributionsP(s) for the nearest-neighbor separati®s separations tend to be random. One can also argue that, if the
of the S values.P(s) have been obtained for both the adia- Born-Oppenheimer approximation were truly accurate, as
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chaotic, the Poisson-to-Wigner transition of the quantum
1.0 0”0090 spectra should follow the classical scaling property, i.e., the
024 ° el 0T transition should occur at a fixed value of the classical vari-
3 3‘; o 6T ablem. To verify the relevance of the classical scaling prop-
= 0.6 :;ﬁ erty of the system to the statistical behavior of its quantum
gl " £ 2T energy levels, we have obtained and fit numerous distribu-
T 041 e tionsP,s) andP.,(s) forB=2 T, 6 T, and 20 T. In Fig. 6,
< 02 '..“5““ we show the quantit®) = (0aq— dey)/ dag aSSembled from the
"'vvfjg;?‘;e‘ respectivey-fit results vsm. Thereby, théempirica) form of
0.0 Y Y Y Y TS M ey, Q used should eliminate the above noted systematic variation
o 2z 3 4 5 6 7 8 of gaq With |m| andB.
m = |ml| B

From the agreement of all curves in Fig. 6 we conclude

FIG. 6. Variation of theQ parameter defined in the text vs scaled that classical scaling applies, and that the transEion from
z-angular momenturm for B=2 T, 6 T, and 20 T. chaotic-to-regular dynamics largely occurs betwees 1
and 6, with most of the change happening in the range 2

implied by neglecting the nonadiabatic couplings, the under=mM<4. This is the same range over which the system turns
lying classical system would be adiabatically separable anffOM adiabatic to nonadiabatic. Chaotic dynamics occurs
thus regular. The corresponding quantum spectrum woul@nly up to a critical valuen~6. The majority of classical
thus exhibit a Poissonian distribution. phase space exhibits regular dynamics when integrated over

The g-it results for theP,(s), shown in Fig. 5, deviate M. Quantitatively, we have estimated that B~6 T and
from the ideal Poissonian value 1. The deviation grows withenergies below-5x10"° (i.e., only counting states more
increasing/m| andB. Regarding this behavior, we first note strongly bound than an=100 state aB=0) state of the
that theq fits according to Eq(8) are quite biased towards order of 50 000 exist in the largely chaotic domain, and about
g=0, i.e., a minor deviation oP.{s) from a Poissonian the same number in the largely regular. domam. Raising the
already leads to a large departureqdfom 1. Further, it has Maximum energy of counted states or increasingBHeld
been found before that quantum systems with classicallghifts the level-count balance to the regular domain.
regular analogs may have distributioRgs) that deviate
from Poissonian§ll]. The deviations that occur in our case
are apparently due to the fact that the adiabatic spectra con- VI. CONCLUSION

tain only a limited number af-bounce energy level series, as - : ;
seen in Fig. 2. The number of series decreases with increagfrwe have studied the spectra of hight Rydberg atoms in

) . . i ong magnetic fields as a function of an adiabaticity param-
ing |m| and B, !eadl_ng to an increasing amount of_correla_— terr~n—|m|Bll3 and found that fom=6 the dvnamics par-
tions in the adiabatic spectra, and thus to increasing devid N ' T ynamics p

tions of B((s) from Poissonians allel and transverse to the magnetic field adiabatically sepa-
1ons a ) . - rate. This finding justifies. posteriorithe approximations we

_ Figure 5 demonstrates that,~as the adiabaticity parameter. . \ade in previous semiclassical calculatif2s. We
m is decreased, the distributiofg,(s) turn from Poisson-  have then investigated the effects of nonadiabatic couplings
like to Wigner-like. The change reflects the growing impor-on quantum spectra and wave functions, and found that the

tance of the nonadiabatic couplings with decreasimg system undergoes a change from adiabatic to fully nonadia-
Larger nonadiabatic couplings cause stronger level repulhatic behavior over a rangestm=1. We have used a dif-
sions and thus more Wigner-like distributiofs,(s). As  ferent representation of energy levels on the enéjyy-
genera"y accepted, this Change ﬁn}x(s) reflects a corre- plane, which has allowed us to identify adiabatic and two
Sponding Change of the dynamics of the ana|ogous C|assicgi3tinct nonadiabatic domains. Prominent structures in the
system from regular to chaotic. energy¢j) diagrams could be explained using quantum-
In the present classical system, the introduction of scale@lassical correspondence. Finally, the probability distribution
variables[1,3] (scaled positiorrs=rB?3, scaled canonical ©f nearest-neighbor energy splittings has been shown to ex-
momentum p.=pB -3 scaled energye=EB %3 and hibit a regular-to-chaotic transition over the range @
scaled z-angular momentumm=|m|BY?) allows one to =1. In our considerations, the variabhe has served two
eliminate the magnetic field from the classical equations oflistinct purposes: First, as an adiabaticity parameter suited to
motion, thereby reducing the number of system parameterdescribe the transition between adiabatic and nonadiabatic
from three(energy,B field, andz-angular momentuijto two  regimes, and, second, as a scaled variable of the classical
(scaled energy and scalegangular momentum The  equations of motion suited to delineate classically regular
energy-averaged classical behavior is then solely determingghd chaotic regimes. The twofold significanceméxplicitly
by the scaled-angular momentum, which is identical with highlights the intimate relationship between the breakdown
the adiabaticity parameter defined in E§). _ of the Born-Oppenheimer approximation and the regular-to-
Since the Poisson- to Wigner-like transition of tRg(s) chaotic transition.
reflects the transition of classical behavior from regular to Under experimental conditions where strongly magne-
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tized Rydberg states are populated according to their densityalculate rf transition strengths, collision cross sections, and
of states and lifetimes, not according to optical selectionaser-induced recombination rates of strongly magnetized
rules, the adiabatically separable hight- states will become high{m| Rydberg states.

significantly populated. We expect that such conditions will
occur in cold, strongly magnetized plasmas, which is an
emerging field in experimental physics. It is likely that the
accurate modeling of experiments on this field will require  We acknowledge the support by the Chemical Sciences,
theoretical data on strongly magnetized hjgh}- Rydberg  Geosciences and Biosciences Division of the Office of Basic
states. We have already used the presented methods to ckRergy Sciences, Office of Science, U.S. Department of En-
culate radiative lifetimeg20]. In the future, we intend to ergy.
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