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High-zmz Rydberg states in strong magnetic fields
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We calculate spectra and wave functions of Rydberg atoms in strong magnetic fields using adiabatic basis
sets, which reflect the different time scales of the electronic motion parallel and transverse to the magnetic
field. For large absolute values of the azimuthal quantum numberm, nonadiabatic corrections are found to be
negligible, and the adiabatic basis states and their energies are exact solutions. With decreasing value ofumu,
the system turns nonadiabatic, and the statistical behavior of the spectra changes from being consistent with
classically regular to being consistent with classically chaotic motion. A relation describing the parameter
region in which this transition occurs is obtained.
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I. INTRODUCTION

Being a paradigm of ‘‘quantum chaos,’’ the diamagne
hydrogen atom has been extensively investigated both in
periment and theory@1–3#. In the laboratory, such system
could be realized in the form of laser-excited Rydberg sta
in magnetic fields of the order of a few tesla. Most resea
on the field has dealt with subspaces of low values of
conserved magnetic quantum numberumu, because these
subspaces are experimentally accessible through direct
excitation, and because the classically chaotic dynamics
dominantly occurs at lowumu. Experimental work began
with the seminal discovery of quasi-Landau resonance
the Rydberg excitation spectra of atoms in strong magn
fields @4#. In later work, more complex spectral modulatio
@5,6# were found. Level repulsion, a quantum indicator f
classically chaotic dynamics, has been measured using la
with a spectral resolution high enough to resolve individ
Rydberg lines@7#. Unusually narrow resonances above t
ionization limit have been observed@8#, which were identi-
fied as positive-energy states in higher Landau bands@9,10#.
Theoretical investigations, reviewed in Refs.@1–3#, have in-
cluded large-scale quantum-mechanical matrix calculati
@11#, adiabatic expansion methods that reflect the differ
time scales of the electronic motion transverse and paralle
the magnetic field@9,10#, and semiclassical closed-orbit a
proximations, which are used for a multitude of problem
@1–3,12#. The existing theoretical and experimental wo
provides a consistent and complete picture of quantu
classical correspondence in diamagnetic Rydberg atoms

In the present paper, we investigate the properties of
magnetic Rydberg states in the much less studied regim
high umu. Low-lying states in this regime have been calc
lated by Deloset al. @13#. On grounds of the corresponden
principle, the classical Rydberg-electron trajectories con
ered in Sec. II demonstrate that high-umu diamagnetic Ryd-
berg states qualitatively differ from their low-umu counter-
parts. We continue in Sec. III with the description of
quantum-mechanical analysis of the bound states tha
based on adiabatic basis sets. Our method is concept
similar to the work presented in Refs.@9,10#. We use similar
adiabatic basis sets as in Ref.@9#, namely, the ones in which
1050-2947/2003/68~5!/052502~9!/$20.00 68 0525
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the adiabatic basis states are obtained in a transpa
straightforward manner via numerical integrations of on
dimensional Schro¨dinger equations for the fast and slo
variables of the system. In contrast to the work in Ref.@9#,
we include the effects of all nonadiabatic corrections. In R
@10#, different adiabatic basis sets were used and nona
batic corrections were included, but only low-umu manifolds
were considered.

In our analysis of the obtained quantum spectra and w
functions, we show in Sec. IV that for largeumu and B the
Born-Oppenheimer approximation applies, i.e., the motio
parallel and transverse to the magnetic field adiabatic
separate. We then investigate typical nonadiabatic effects
study in detail how with decreasingumu the Born-
Oppenheimer approximation breaks down. We thereby id
tify a quantitative condition onm andB that describes ove
which range the transition between adiabatic and nona
batic quantum behavior occurs. This is one of our main
sults. We then show in Sec. V that upon variation ofumu from
large to small values the energy-level statistics changes
manner that is consistent with a transition from classica
regular to chaotic dynamics. This ‘‘quantum-chaotic’’ trans
tion is found to follow a classical scaling behavior govern
by the same variable that also describes the degree of a
baticity in the system.

The regularity and adiabatic separability of the system
largeumu andB is not unexpected, because at largeumu andB
the Coulomb potential merely represents a weak, smo
perturbation to the problem of an electron in a homogene
magnetic field~which is a separable problem!. Further, our
observation of a regular-to-chaotic transition upon variat
of umu complements recent work on such transitions a
function of quantum defects@14#.

Our work has been motivated by recent experiments
cold plasmas and cold Rydberg atom gases prepared in n
zero magnetic fields by the laser excitation of clouds of las
cooled atoms. These experiments have revealed novel c
sional dynamics@15–17#. It has, in particular, been found
that high-angular-momentum Rydberg states can bec
populated through collisions or recombination. Fundam
tally, an extension of cold-plasma research into the dom
of strong magnetic fields appears critical, because the m
©2003 The American Physical Society02-1
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netic field is one of the most important parameters in a
astrophysical, terrestrial, or man-made plasma. A str
magnetic field will increase the plasma lifetime, alter t
plasma dynamics, and change the nature of any Rydber
oms contained within the plasma. Further, due to the pinn
of free charges toB-field lines, the addition of a strong mag
netic field to cold plasmas is likely to suppress collision
electron heating mechanisms@18#, potentially opening an av
enue to the generation of a strongly coupled electron c
ponent in a cold plasma.

First steps towards high-B cold-plasma and Rydberg-ga
research have been taken. We have recently been ab
generate strongly magnetized cold plasmas and Ryd
atom gases in the laboratory@19#. Also, strongly magnetized
cold plasmas are being considered in very recent theore
work. With this emerging new direction in cold-plasma r
search comes a desire to calculate the quantum-mecha
properties of diamagnetic Rydberg states~lifetimes, transi-
tion rates, etc.!. Thereby, high-umu states are particularly im
portant because of their long lifetime and high density
states. We have already employed the method describe
Sec. III of the present paper to calculate radiative lifetimes
strongly magnetized high-umu Rydberg states@20#.

II. CLASSICAL DYNAMICS

Some intuition of what to expect when the magne
quantum numberumu is varied from small to large values ca
be obtained through classical trajectory calculations. We

sume a magnetic fieldB5Bẑ. In the classical problem, th
‘‘good’’ magnetic quantum numberm corresponds to the
conservedz component of the canonical angular momentu
l z5\m. At low umu and sufficiently highB and high energy,
the Rydberg-electron trajectories are chaotic, while in
case of highumu apparently regular classical drift orbits exis
The drift orbits exhibit the same characteristics as charg
particle orbits in Penning traps, namely cyclotron,z-bounce,
and magnetron oscillations@21,22#. The qualitatively differ-
ent types of orbits are displayed in Fig. 1. The fact that
high umu the motion is composed of three components w
quite different time scales was used as a justification to a
batically separate the classical motion and to semiclassic
quantize the system@21#. However, the exact quantum be
havior and the role of nonadiabatic effects remained elus
in that approach.

Following the correspondence principle, which usua
applies to Rydberg atoms, both the exact quantum states
the level spectra should reflect the existence of qualitativ
different classical domains. This will be shown explicitly
Secs. IV and V. Concerning the choice of a method to tr
the quantum-mechanical problem, it is obvious from Fig
and earlier work in the field that it is most efficient to fir
solve the problem using a Born-Oppenheimer separatio
the fast radial and the slowz-bounce motion. Even for low
umu, where quantum-chaotic signatures prevail, the adiab
separation of the motions parallel and transverse to thB
field has been found to be a fruitful approach@9#.
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III. QUANTUM-MECHANICAL ANALYSIS

We use numerically obtained basis sets of adiabatic w
functions. These functions match the shape of the relev
potential, defined in Eq.~1! below, in an optimal manner, an
therefore form ideal basis sets for the exact solution of
problem, giving good results even when the basis sets
small. We then calculate all nonadiabatic couplings, obt
exact solutions of the problem, and elaborate on the effe
of the nonadiabatic couplings on the exact spectra and ei
states.

Using an ansatz C(r )5(1/A2pr)c(r,z)eimf, the
Hamiltonian of a Rydberg atom with infinite nuclear mass
a magnetic fieldB5Bẑ becomes, in atomic units, cylindrica
coordinates, and in the symmetric gauge,

Ĥ52
1

2

]2

]r2 2
1

2

]2

]z2 1V~r,z!

with

V~r,z!52
1

Az21r2
1

m221/4

2r2 1
B2r2

8
1m

B

2
. ~1!

For large values ofumu, the potentialV(r,z) confines clas-
sical trajectories and quantum wave functions on thin a
long cylindrical shells aligned with theB field, leading to
regular classical motion with bounce frequencies mu
slower that the radial frequency, as manifested in Fig.
Therefore, it is advantageous to approach the problem v
Born-Oppenheimer separation of ther and z motions @9#.
With the reduced Hamiltonian for the fastr motion, Ĥr;z

5Ĥ1 1
2 ]2/]z2, the eigenvalue equation for ther motion at

fixed z reads

Ĥr;zc j~r;z!5U j~z!c j~r;z!. ~2!

m=0

m=-280

m=-1200

B=6 T

Magnetron

z-bounce

Cyclotron

2 x 10 a4
o

FIG. 1. Three classical trajectories of Rydberg electrons i

magnetic fieldB5(6 T)ẑ and energyE52531025 for the indi-
cated values of thez component of the canonical angular mome
tum m (E and m in atomic units!. The low-umu orbit is chaotic,
while the high-umu orbits are regular and display the three indicat
characteristic types of motion.
2-2
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HIGH-umu RYDBERG STATES IN STRONG MAGNETIC FIELDS PHYSICAL REVIEW A68, 052502 ~2003!
We numerically solve this equation for sets of about 50
grid points of thez coordinate, and find the adiabatic pote
tials U j (z) and the corresponding radial functionsc j (r;z).
The U j (z) have minima atz50, are symmetric inz, and
asymptotically approach positive values. Since we are pri
rily interested in finding the bound states, we compute
adiabatic potentialsU j (z) that satisfy U j (0),0 and are
therefore likely to support bound states. Due to the cons
Zeeman termmB/2 in Eq. ~1!, the number of potentials sup
porting bound states is larger for negativem than it is for
positivem; therefore we focus on negativem. For aB field of
6 T and umu>20 we typically find 5–30 potentials with
U j (0),0.

The solution of the Schro¨dinger equation for the slow
motion,

S 2
1

2

]2

]z2 1U j~z! D j jk~z!5Ejkj jk~z!, ~3!

yields the adiabatic energiesEjk and the corresponding ful
adiabatic wave functions C(r )
5(1/A2pr)eimfc j (r;z)j jk(z). Due to the symmetry of the
U j (z), the solutions have well-definedz parity.

The adiabatic solutionsc j (r;z)j jk(z) are orthonormal
and can be used to represent the exact Hamiltonian, Eq.~1!,
yielding matrix elements

H jk
j 8k85Ejkd j j 8dkk82E

z
j j 8k8~z!F d

dz
j jk~z!G S E

r
c j 8~r;z!

3F ]

]z
c j~r;z!Gdr D dz2

1

2Ez
j j 8k8~z!j jk~z!

3S E
r
c j 8~r;z!F ]2

]z2 c j~r;z!Gdr D dz, ~4!

in which the integral terms represent the nonadiabatic c
plings. One can explicitly show the symmetry of the non
diabatic couplings in (j ,k) and (j 8,k8). Further, due to the
well-definedz parity of the adiabatic potentialsU j (z), the
functionsj jk(z), and the functionsc j (r;z), only nonadia-
batic couplings between states with the samez parity exist,
as required by the symmetry of the problem. Also, to red
numerical computation errors we have used a modificatio
Eq. ~4! in which only products of first-orderz derivatives
occur instead of the second-orderz derivative@20#. The en-
ergies and eigenfunctions obtained via diagonalization of
matrix specified by Eq.~4! are exact up to basis truncatio
errors.

IV. TRANSITION FROM ADIABATIC TO NONADIABATIC
BEHAVIOR

A. Energy-Š j ‹ diagrams

In this section, we discuss how with decreasing value
umu nonadiabatic couplings grow in importance and progr
sively lead to a reorganization of the spectra. In Fig. 2,
compare adiabatic with exact spectra forB56 T and m5
2200, 280, and240. In the adiabatic spectra, we displa
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the level seriesEjk associated with the adiabatic potentia
U j (z) in separated columns labeled by the radial adiab
quantum numberj. In the graphs of the exact energy leve
the discrete quantum numberj is replaced by its quantum
average^ j &. Thus, the energy-^ j & diagrams of the exac
spectra have an abscissa related to the average energy
tained in the motion transverse toB, while the ordinate rep-
resents the~total! level energy. The energy-^ j & diagrams are
a useful tool to study the transition from adiabatic to non
diabatic behavior. The diagrams are also found to highli
structures that are due to quantum-classical corresponde

To quantify the degree of adiabaticity, we use a parame
related to the ratio between the radial andz-oscillation fre-
quenciesvr andvz . In the regime of moderate to highumu,
the value ofvr is approximately given by the cyclotron fre
quency, which in atomic units equalsB. The value ofvz is
obtained by expanding the potential in Eq.~1! aroundz50
for a fixed radial coordinater0. A suitable choice forr0 is
the radial coordinate of the potential minimum foruzu→`.
The adiabaticity parameterm̃ we use is defined by

m̃5
1

2 S vc

vz
D 4/3

5umuB1/3. ~5!

FIG. 2. Adiabatic~left! and exact energy levels~right! for B
56 T, evenz parity, energyE,2231025, and the indicated val-

ues ofm andm̃. The circles in the upper right panel indicate a fe
isolated nonadiabatic state-mixing events. The accumulations o
act levels along diagonal lines, highlighted by gray shadings

most clearly visible in the casem̃52.35, are due to resonances
the r andz motion, as discussed in the text.
2-3
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J. R. GUEST AND G. RAITHEL PHYSICAL REVIEW A68, 052502 ~2003!
We use this specific function because it turns out to
identical with the~classical! scaledz-angular momentum o
the system employed in Sec. V. For the casesm52200,
280, and240 of Fig. 2, the adiabaticity parameters arem̃
55.89, 2.35, and 1.18.

B. Adiabatic regime

For m̃55.89, the adiabatic and exact spectra are virtua
identical, showing that for thism̃ the nonadiabatic coupling
are generally weak and that most exact states are domin
by a single adiabatic basis state. Thus, the Bo
Oppenheimer approximation is clearly valid whenm̃ is of the
order of six or larger. The classical analogs of exact quan
states in the adiabatic regime are orbits such as the outer
in Fig. 1.

In the adiabatic regime, nonadiabatic state mixing o
occurs when two adiabatic states are accidentally near de
erate. In that case, adiabatic states with quantum numbj
and j 8 become mixed and generate exact levels with val
^ j & and ^ j 8& that are closer together the closer the near
generacy is. An inspection of the upper-right panel of Fig
where a few distinguishable and isolated mixing events
identified, shows that in the adiabatic regime there exists
approximate selection rule for nonadiabatic state mixi
mixing is seen to occur mostly between near-degene
adiabatic states withj numbers differing by one. This selec
tion rule can be traced to the relative importance of the~em-
bedded! radial integrals in Eq.~4!. For fixed z, the depen-
dence of the potentialV(r,z) in Eq. ~1! on r is fairly
harmonic in the vicinity of the radial potential minimum
Further, the z dependence of the radial wave functio
c j (r;z) mostly consists of a slight translation inr that is
linear inz, as evidenced by the wave function plots in Fig.
Thus, (]/]z)c j (r;z)'6a(]/]r)c j (r;z), where a is the
amount of radial translation ofc j per z interval. The direc-
tion of the linear shift, i.e., the sign in front ofa, equals the
sign ofz. Considering the properties of the wave functions
the quantum harmonic oscillator, it is seen th
(]/]z)c j (r;z) approximately yields6a times a linear com-
bination of c j 11(r;z) and c j 21(r;z). As a result, the first
radial integral in Eq.~4! becomes large only if thej numbers
of the involved states differ by one. Further consideratio
show that the second~embedded! radial integral in Eq.~4!,
which involves a (]2/]z2)c j (r;z) and would yield mixing
between adiabatic levels withj numbers differing by two,
provides smaller contributions. In this way, the dominance
nonadiabatic couplings between states withj numbers differ-
ing by one, as seen form̃55.89 in Fig. 2, can be explained

One of these nonadiabatic mixing events marked in
upper-right panel of Fig. 2 is investigated more closely
Fig. 3. There, thez-dependent variations of the average rad
coordinates of the adiabatic wave functions, the derivati
of which yield the value ofa used in the preceding para
graph, present a qualitative measure for the strength of
nonadiabatic coupling. Since these variations are very sli
the nonadiabatic coupling is small and only leads to noti
able state mixing because of the near-degeneracy of the
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volved adiabatic levels. The wave functions of the mix
states are localized around classical periodic trajectories
indicated by the dashed lines in Fig. 3. The periodic traj
tories correspond to resonances of ther andz motion: during

FIG. 3. A case of exceptionally strong nonadiabatic coupling
m52200 states in Fig. 2. The figure shows gray scale represe
tions of wave function probabilities in therz plane. On the left pair
of panels, the wave functions of the accidentally near-degene
adiabatic statesu j 51,k526& and u j 52,k519& are displayed. The
adiabatic states become mixed by virtue of the nonadiabatic c
pling termH j 52,k519

j 51,k526 in Eq. ~4!. The exact calculation yields a pa
of quantum states that are near-degenerate linear superpositio
the adiabatic statesu j 51,k526& and u j 52,k519&. In the depicted
case, the mixed exact states are labeledup570& and up571&, ac-
cording to rank in energy value. In the upper-right panel of Fig.
the statesup570& andup571& are located in the lowest circle. Th
equipotential lines of the potential in Eq.~1! are shown in the left
pair of panels. Note the different scales inr andz. Further, note that
an adiabatic stateu j ,k& denotes the (2k21)th z-bounce state with
radial quantum numberj, because our calculations are for stat
with even z parity. The dashed lines superimposed on the ex
quantum states are classical periodic trajectories calculated fo
energy equal to that of the quantum states.
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onez-bounce oscillation an integer number of radial oscil
tions occur. The example in Fig. 3 and other cases we h
studied suggest that the few, isolated cases of nonadia
state mixing that occur in the adiabatic regime coincide w
resonances of the classicalr andz motion. This finding con-
forms with the commonly known fact that nonadiabatic
fects are maximal if there is a resonance between the mot
in the relevant degrees of freedom.

C. Transition regime

With decreasing value ofm̃, the exact spectra in Fig.
deviate farther from the adiabatic spectra, signaling
breakdown of the Born-Oppenheimer approximation. In
energy-̂ j & diagrams, two distinct regimes of nonadiaba

behavior can be identified. Asm̃ is decreased, the arrang
ment of exact energy levels in the energy-^ j & diagrams first
changes from largely adiabatic (m̃55.89 in Fig 2! into a
transitional pattern in which a fraction of energy levels s
follows an arrangement similar to the adiabatic scheme
second fraction of levels accumulates along diagonal line
the energy-̂j & plane, and a third fraction appears to be ra
domly distributed. In Fig. 2, the casem̃52.35 exhibits a
typical transitional pattern. Asm̃ is lowered further, the frac-
tion of randomly distributed levels becomes overwhelmin
dominant. In the following, we focus on the second fracti
of energy levels, which is most prominent in the transition
regime.

Already in the adiabatic casem̃55.89 in Fig. 2, the scat-
tered nonadiabatic coupling events seem to be arran
along virtual diagonal lines through the energy-^ j & plane. As
the adiabaticity parameterm̃ is lowered, the manifestation
of nonadiabatic couplings become more widespread in
spectra and begin to mix adiabatic states withj numbers
differing by more than one. It also becomes obvious t
nonadiabatic effects do, in fact, nucleate along diagonal
tual lines through the energy-^ j & plane, as indicated by th
shaded regions in Fig. 2. This behavior is clearly observe
the casem̃52.35 of Fig. 2, where in certain energy rang
nonadiabatic couplings lead to the accumulation of 30–5
of all energy levels along such virtual lines. It turns out th
each such line marks a well-defined resonance between tr
and thez motion. Since nonadiabatic effects are expected
first manifest themselves on such resonances, the obse
nucleation behavior of nonadiabatic effects is expected
the following, it is explained why so many energy leve
accumulate on the virtual lines.

We will first point out that the accumulation of energ
levels along virtual lines in the energy-^ j & plane follows cer-
tain patterns. Since these patterns are most easily recogn
in systems with a large density of states, we discuss an
ample at a lower magnetic fieldB51 T andm52120 ~i.e.,
m̃51.94). The physics of this case is similar to that of t
casem̃52.35 in Fig. 2, but the average density of states
considerably higher. We show in Fig. 4 a detail of the spec
trum for B51 T andm52120 represented in the energ
^ j & plane. The line along which energy levels accumul
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corresponds to the 1:4 resonance~i.e., four radial oscillations
per z oscillation!. As indicated in the figure by circles, in
certain energy range the levels are systematically organ
in groups. These level patterns are significant, in that t
can be associated with a reproducible, well-defined beha
of the associated wave functions. This is demonstrated
plotting the wave functions of three level groups, labeled
B, and C in Fig. 4. The wave functions of the highest lev
within the groups clearly follow the periodic orbit that co
responds to the 1:4 resonance, and do not have any sig
cant structure transverse to the orbit. Thus, the wave fu
tions of the highest levels within the groups can be regar
as the fundamental wave functions of the groups. The w

FIG. 4. Exact energy levels vŝj & and plots of the wave func-
tions of the encircled and labeled level groups forB51 T andm
52120. Thep-quantum numbers of the wave functions refer
rank in energy value. The members of each group are sorted acc
ing to the number of wave-function maxima transverse to the
played periodic orbit, which generates the sequence. The transv
maxima are labeled through by the numbers imprinted on the w
functions. The contour lines of the potential in Eq.~1! are, for
clarity, only shown with the fundamental group members. The
peated plot of stateup584& on the right of group B demonstrate
that wave-function anomalies are connected with focal points
caustics of corresponding classical trajectories. The wave func
of the randomly selected high-lying stateup5504& corresponds to a
classically chaotic portion of phase space.
2-5
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J. R. GUEST AND G. RAITHEL PHYSICAL REVIEW A68, 052502 ~2003!
functions with the second-highest energies within the gro
are arranged around the same orbit as the fundamental w
functions, while exhibiting—in most of their parts—on
node in the direction transverse to the orbit. For the ne
lower levels, we tend to observe two nodes transverse to
orbit, and so on~see numbers imprinted on the wave functi
plots of Fig. 4!.

The observed quantization structure corresponds with
of invariant tori centered around a stable periodic orbit.
the case of Fig. 4, the periodic orbit is that of the 1:4 re
nance. The~semiclassical! density of quantum states assoc
ated with the set of tori is approximately proportional to t
energy derivative of the phase-space volume of the se
tori. We have calculated Poincare surfaces of section for
parameters of Fig. 4, and estimated that the semiclas
density of states of the torus set belonging to the 1:4 re
nance can approach 50% of the total density of states.
explains why in the energy-^ j & diagram in Fig. 4 so many
states accumulate on the line corresponding to the 1:4 r
nance.

For quantitative studies of the quantum states on the
variant tori, one may employ the well-known theory of mu
tidimensional semiclassical quantization of regular syste
which is reviewed by Gutzwiller@2#. In the present energy
conserving two-dimensional case, the ‘‘allowed’’ invaria
tori are characterized by the action integrals along two to
logically different closed loops in phase space, each of wh
generates a semiclassical quantum number. In our case
of these integrals is related to a longitudinal quantum nu
ber, which one may define as the number of wave-funct
maxima along a line that is parallel to the underlying pe
odic orbit. In Fig. 4, the assignment of longitudinal quantu
numbers to the fundamental wave functions is straight
ward. It is observed that from one fundamental wave fu
tion to the next-higher one the longitudinal quantum num
increases by two. This increment is to be expected, bec
we are only considering states with evenz parity, which must
all have an antinode in thez50 plane.

For the wave functions with excitations transverse to
underlying periodic orbit, the assignment of longitudin
quantum numbers is somewhat complicated, because
nodal lines of these wave functions do not follow simple g
patterns of curves parallel and transverse to the orbit,
incorporate multiple abnormal structures. To explain the o
gin of these complications, in the plot on the right of the
group in Fig. 4 we show a trajectory superimposed on
wave function of the second transverse excitation of the
group. The trajectory is the configuration-space projection
a phase-space orbit located on an invariant torus that is
tered around the 1:4 resonance of the radial and thez motion.
First, we observe a striking similarity between the over
shape of the wave function and the area covered by the
jectory. Further, the trajectory displays multiple focal poin
which mostly correspond to regions of enhanced wa
function amplitudes. Also, at the focal spots addition
‘‘waves’’ are inserted into the wave function, as is mo
clearly observed at the focus in thez50 plane. Such addi-
tional waves must be expected due to Maslov indices a
ciated with focal points. These and other observations m
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us confident that the invariant torus on which the display
trajectory is located is fairly close to the one that, in a str
sense, corresponds to the second transverse excitation o
B group. However, the wave-function irregularities asso
ated with the focal points of the displayed trajectory comp
cate the assignment of a longitudinal quantum number.
ditional complications arise due to the nontrivial structure
the wave function near the caustics of the trajectory. F
these reasons, we do not assign longitudinal quantum n
bers to the wave functions in Fig. 4.

The second action integral characterizing the allowed
variant tori around the 1:4 resonance is associated wit
transverse quantum number, which one may define as
number of wave-function maxima transverse to the unde
ing periodic orbit. For the wave functions in Fig. 4, the a
signment of transverse quantum numbers is fairly obvio
Note, however, that portions of the wave functions clea
show the complicating effect of focal points and caustics
trajectories on both the longitudinal and the transverse st
ture of the wave functions.

It will be possible to quantitatively reproduce the quan
zation structure displayed in Fig. 4 by multidimension
semiclassical quantization on invariant tori@2#. Such an ef-
fort is beyond the scope of the present paper, but it may
the subject of future work. We close this discussion by poi
ing out that the influence of classical trajectories on quant
systems has, in general, been extensively studied@1–3,12#,
and that there is a large amount of literature one can w
from.

For our purpose, an important aspect is that the bre
down of the Born-Oppenheimer separation of radial anz
motion does not immediately lead to a fully chaotic behavi
With decreasingm̃, the course of events in the classical sy
tem is that the simple structure of invariant tori present in
fully adiabatic case (m̃*6) gradually breaks up, giving way
to growing chaotic phase-space domains and new reg
phase-space domains. The latter are filled with new set
invariant tori centered around stable periodic orbits of
system. The new sets of invariant tori have clear manife
tions in the quantum spectra and the wave functions, as
have seen in this section. With decreasingm̃, the chaotic
fraction of classical phase space increases from;0 at m̃

56 to &100% atm̃51, as we have verified by inspectin
Poincare surfaces of section~not shown in this paper!. The
described transitional behavior occurs throughout a ra
wide range of the adiabaticity parameter (6*m̃*1).

D. Nonadiabatic chaotic regime

As discussed in the preceding section, the energy-^ j & dia-
grams allow us to distinguish between two distinct types
nonadiabatic domains. In the domain considered in S
IV C, the adiabatic quantization structure is replaced by
regular quantization structure generated by sets of invar
tori around the stable periodic orbits of the system. The ot
domain of nonadiabatic behavior corresponds to the porti
in the energy-̂j & diagrams in which the energy levels appe
to be disorganized. The latter domain becomes particul
2-6
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HIGH-umu RYDBERG STATES IN STRONG MAGNETIC FIELDS PHYSICAL REVIEW A68, 052502 ~2003!
prominent form̃&3, high energy, and loŵ j &. Typically,
wave functions of levels located in the disorganized portio
of the energy-̂j & diagrams are mixtures of many adiaba
states, and lack any regular node pattern or~obvious! align-
ment with classical trajectories. As a typical example of su
wave functions, in group D of Fig. 4 we show the wa
function of the levelup5504&, which has been randoml
picked from the disorganized portion of the energy-^ j & dia-
gram atB51 T andm52120. The disorganized portions i
the energy-̂j & diagrams expand with decreasingm̃; in the
casem̃51.17 of Fig. 2, almost the whole energy-^ j & diagram
is disorganized. Based on the discussion at the end of
IV C, it is obvious that the described phenomenology of
energy-̂ j & diagrams and the widespread appearance of w
functions such as the ‘‘chaotic’’ stateup5504& in Fig. 4 re-
flect a regular-to-chaotic transition of the classical system
the following section, we show that the statistical behavior
the quantum energy levels conforms with this assessme

V. LEVEL STATISTICS

In the remainder of the paper, we study the variation
statistical properties of the spectra withB and umu. The
strength of the mixing of the adiabatic basis states and
concomitant level repulsion can be quantitatively measu
via the probability distributionP of the nearest-neighbor en
ergy splittings in the spectra, which is also known to refl
the nature of the dynamics of the corresponding class
system@1–3#. A Poissonian distribution indicates classica
regular dynamics, while a Wigner distribution indicates ch
otic dynamics. Since the average density of states stro
varies as a function of the energyE, we use a mapping func
tion S(E) defined such that the mapped values$S(En)% of
the quantum spectrum$En% have a constant average neare
neighbor separation of one on theSscale. The functionS(E)
is given by the leading term of the semiclassical numbe
quantum states with energy,E. In atomic units and for the
two-dimensional case of interest, it is

S~E!5
1

2

1

2pE0

E2Emin
A~E2E8!dE8, ~6!

where the factor 1/2 accounts for the fact that we only c
sider states with evenz parity. The integration variableE8 is
the kinetic energy, andEmin is the minimum energy of
V(r,z) from Eq. ~1!. The variableA(E2E8) represents the
area in therz plane whereV(r,z),E2E8,

A~E2E8!5E
V(r,z),E2E8

dzdr. ~7!

For B56 T and all subspaces ofm ranging from220 to
2450, we have computed the quantum spectra$En%. The
utilized adiabatic basis sets were truncated at an en
2231025. From the spectra$En% we have derived the cor
responding mapped spectra$Sn5S(En)% and their probabil-
ity distributionsP(s) for the nearest-neighbor separationss
of the S values.P(s) have been obtained for both the adi
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batic spectra, i.e., the eigenvalues obtained by solving
~3!, and for the exact spectra, i.e., the eigenvalues obta
by diagonalizing the matrix with elements defined in Eq.~4!.
To improve the statistics, the respective distributionsPad(s)
andPex(s) have then been averaged over small ranges om
that have a full width of about 12% of their averagem. This
width is large enough to yield reasonably smoothm-averaged
distributions P̃ad(s) and P̃ex(s), while being small enough
that the individual distributions contributing to the averag
do not vary significantly. In Fig. 5, we show a few plots
P̃ad(s) and P̃ex(s).

A quantitative figure for how Poisson- or Wigner-like
distribution P(s) is can be obtained by fittingP(s) with
functions of the type@23#

P~s,q!5q2e2qs erfc~ 1
2 Apq8s!1~2qq81 1

2 pq83s!

3e2qs2(1/4)pq82s2
. ~8!

with q8512q. The fit parameterq is 1 for a pure Poisso-
nian, 0 for a Wigner distribution, and varies between 0 an
for mixed distributions. Berry and Robnik@23# have shown
that Eq. ~8! yields a quite generally correct description
P(s) for systems such as ours~two-dimensional systems
with one dominant chaotic domain in classical phase spa!.
In Fig. 5, we show the fits of all distributions with function
of the type of Eq.~8!.

In Fig. 5, all P̃ad(s) appear Poissonian. This is expecte
as under the neglect of the nonadiabatic couplings the t
spectrum is merely the sum of overlapping and independ
series ofz-bounce energy levels, each series being gener
by a single adiabatic potentialU j (z). Nearest neighbors in
the total spectra generally belong to different series, and t
separations tend to be random. One can also argue that,
Born-Oppenheimer approximation were truly accurate,

Average m = 5.89~

Average m = 2.65~

Average m = 1.18~

FIG. 5. DistributionsP̃ad(s) ~open circles! and P̃ex(s) ~filled
circles! of nearest-neighbor energy splittings for the indicat
ranges ofumu andB56 T. The valuesqad (qex) and lines show the
respectiveq-fit results according to Eq.~8!. In the uppermost pane
we show, for reference, a perfect Poissonian (q50) and a Wigner
(q51) distribution.
2-7
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implied by neglecting the nonadiabatic couplings, the und
lying classical system would be adiabatically separable
thus regular. The corresponding quantum spectrum wo
thus exhibit a Poissonian distribution.

The q-fit results for theP̃ad(s), shown in Fig. 5, deviate
from the ideal Poissonian value 1. The deviation grows w
increasingumu andB. Regarding this behavior, we first no
that theq fits according to Eq.~8! are quite biased toward
q50, i.e., a minor deviation ofP̃ad(s) from a Poissonian
already leads to a large departure ofq from 1. Further, it has
been found before that quantum systems with classic
regular analogs may have distributionsP(s) that deviate
from Poissonians@11#. The deviations that occur in our cas
are apparently due to the fact that the adiabatic spectra
tain only a limited number ofz-bounce energy level series, a
seen in Fig. 2. The number of series decreases with incr
ing umu and B, leading to an increasing amount of correl
tions in the adiabatic spectra, and thus to increasing de
tions of P̃ad(s) from Poissonians.

Figure 5 demonstrates that, as the adiabaticity param
m̃ is decreased, the distributionsP̃ex(s) turn from Poisson-
like to Wigner-like. The change reflects the growing impo
tance of the nonadiabatic couplings with decreasingm̃.
Larger nonadiabatic couplings cause stronger level re
sions and thus more Wigner-like distributionsP̃ex(s). As
generally accepted, this change inP̃ex(s) reflects a corre-
sponding change of the dynamics of the analogous clas
system from regular to chaotic.

In the present classical system, the introduction of sca
variables@1,3# ~scaled positionr s5rB2/3, scaled canonica
momentum ps5pB21/3, scaled energye5EB22/3, and
scaled z-angular momentumm̃5umuB1/3) allows one to
eliminate the magnetic field from the classical equations
motion, thereby reducing the number of system parame
from three~energy,B field, andz-angular momentum! to two
~scaled energy and scaledz-angular momentum!. The
energy-averaged classical behavior is then solely determ
by the scaledz-angular momentum, which is identical wit
the adiabaticity parameter defined in Eq.~5!.

Since the Poisson- to Wigner-like transition of theP̃ex(s)
reflects the transition of classical behavior from regular

FIG. 6. Variation of theQ parameter defined in the text vs scal

z-angular momentumm̃ for B52 T, 6 T, and 20 T.
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chaotic, the Poisson-to-Wigner transition of the quant
spectra should follow the classical scaling property, i.e.,
transition should occur at a fixed value of the classical va
ablem̃. To verify the relevance of the classical scaling pro
erty of the system to the statistical behavior of its quant
energy levels, we have obtained and fit numerous distri
tions P̃ad(s) andP̃ex(s) for B52 T, 6 T, and 20 T. In Fig. 6,
we show the quantityQ5(qad2qex)/qad assembled from the
respectiveq-fit results vsm̃. Thereby, the~empirical! form of
Q used should eliminate the above noted systematic varia
of qad with umu andB.

From the agreement of all curves in Fig. 6 we conclu
that classical scaling applies, and that the transition fr
chaotic-to-regular dynamics largely occurs betweenm̃51
and 6, with most of the change happening in the rang
,m̃,4. This is the same range over which the system tu
from adiabatic to nonadiabatic. Chaotic dynamics occ
only up to a critical valuem̃'6. The majority of classical
phase space exhibits regular dynamics when integrated
m̃. Quantitatively, we have estimated that forB56 T and
energies below2531025 ~i.e., only counting states mor
strongly bound than ann5100 state atB50) state of the
order of 50 000 exist in the largely chaotic domain, and ab
the same number in the largely regular domain. Raising
maximum energy of counted states or increasing theB field
shifts the level-count balance to the regular domain.

VI. CONCLUSION

We have studied the spectra of high-umu Rydberg atoms in
strong magnetic fields as a function of an adiabaticity para
eterm̃5umuB1/3, and found that form̃*6 the dynamics par-
allel and transverse to the magnetic field adiabatically se
rate. This finding justifiesa posteriorithe approximations we
have made in previous semiclassical calculations@21#. We
have then investigated the effects of nonadiabatic coupli
on quantum spectra and wave functions, and found that
system undergoes a change from adiabatic to fully nona
batic behavior over a range 6*m̃*1. We have used a dif-
ferent representation of energy levels on the energy-^ j &
plane, which has allowed us to identify adiabatic and t
distinct nonadiabatic domains. Prominent structures in
energy-̂ j & diagrams could be explained using quantu
classical correspondence. Finally, the probability distribut
of nearest-neighbor energy splittings has been shown to
hibit a regular-to-chaotic transition over the range 6*m̃

*1. In our considerations, the variablem̃ has served two
distinct purposes: First, as an adiabaticity parameter suite
describe the transition between adiabatic and nonadiab
regimes, and, second, as a scaled variable of the clas
equations of motion suited to delineate classically regu
and chaotic regimes. The twofold significance ofm̃ explicitly
highlights the intimate relationship between the breakdo
of the Born-Oppenheimer approximation and the regular
chaotic transition.

Under experimental conditions where strongly magn
2-8
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tized Rydberg states are populated according to their den
of states and lifetimes, not according to optical select
rules, the adiabatically separable high-umu states will become
significantly populated. We expect that such conditions w
occur in cold, strongly magnetized plasmas, which is
emerging field in experimental physics. It is likely that th
accurate modeling of experiments on this field will requ
theoretical data on strongly magnetized high-umu Rydberg
states. We have already used the presented methods to
culate radiative lifetimes@20#. In the future, we intend to
cs

ys
t,

05250
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n
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cal-

calculate rf transition strengths, collision cross sections,
laser-induced recombination rates of strongly magneti
high-umu Rydberg states.
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