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Effects of a random noisy oracle on search algorithm complexity

Neil Shenvi, Kenneth R. Brown, and K. Birgitta Whaley
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~Received 3 April 2003; published 20 November 2003!

Grover’s algorithm provides a quadratic speed-up over classical algorithms for unstructured database or
library searches. This paper examines the robustness of Grover’s search algorithm to a random phase error in
the oracle and analyzes the complexity of the search process as a function of the scaling of the oracle error with
database or library size. Both the discrete- and continuous-time implementations of the search algorithm are
investigated. It is shown that unless the oracle phase error scales asO(N21/4), neither the discrete- nor the
continuous-time implementation of Grover’s algorithm is scalably robust to this error in the absence of error
correction.
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I. INTRODUCTION

Issues of fault tolerance and error correction are of b
theoretical and practical interest in designing and impleme
ing quantum algorithms. One approach to diminishing
effects of error focuses on error correcting codes, which
be used to correct errors once they have occurred@1,2#. An-
other approach which has also proven successful is tha
decoherence-free subspaces, which involves mapping a c
putation onto a subspace that is relatively free from error@3#.
This second approach is of interest because it is an exam
of passive, rather than active, error correction. The succes
the passive approach leads to the question of whether e
ing quantum algorithms are inherently robust to errors, a
if they are not, whether there might exist modified imp
mentations of these algorithms that are robust to certain
rors, i.e., without requiring active error correction.

In this paper, we analyze the robustness of Grover’s a
rithm to error. Grover’s search algorithm is the basis fo
number of quantum algorithms@4–6#. Most of these algo-
rithms involve the use of an oracle, a black box device wh
takes as input a quantum state in the computational basis
returns as output some function of that state. Given a per
noiseless oracle, Grover’s search algorithm attains a q
dratic speed-up over classical search algorithms. Howe
this speed-up is predicated upon the perfect implementa
of the oracle. Although, for the purposes of analysis,
oracle is often treated as a ‘‘black box’’ whose inner wor
ings are unknown, any physical implementation of Grove
algorithm must also include a physical implementation of
oracle and this may be imperfect. Therefore it is of interes
ascertain what effect the accuracy of the oracle impleme
tion has on the overall complexity of the algorithm. We ma
use of this term here as it is employed in computer scie
terminology, namely, the complexity of an algorithm is d
fined as the number of computational steps required in o
to achieve a predetermined fixed probability of success.

Several previous papers have studied the effects of or
noise on Grover’s algorithm, using various models@7–11#.
We consider here the random phase error model, addres
it within both discrete- and continuous-time implementatio
of the search algorithm. The effect of random phase error
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the discrete-time Grover’s algorithm was already studied
merically in Ref.@7#. In this paper we derive analytic resul
for this model and present numerical evidence verifying
validity of these results. We analyze the complexity of t
search algorithm as a function of the scaling of the erro
and arrive at bounds on the error that must be satisfied f
constant probability of success. In particular, we find that
order to achieve a constant success probability indepen
of the library size that is being searched, the oracle e
must scale at most asN21/4, whereN is the library size. We
also analyze the effect of phase errors on a continuous-
analog of the search algorithm. This is found to be relativ
straightforward to study within a density-matrix approac
We find that this leads to similar results for the complexity
a function of the scaling of the errors, namely, that there is
upper bound ofO(N1/2) on algorithmic complexity ford
>1/4 andO(N122d) for d<1/4, when the error scaling goe
asN2d. We further show that these bounds are tight; in oth
words, the algorithmic complexity has a lower bound
V(N1/2) for d>1/4 andV(N122d) for d<1/4. @Following
standard computer science notation, we will use the follo
ing to characterize the growth of certain functions: We w
say that f (n) is bounded above byg(n), i.e., f (n)
5O„g(n)…, if there are positive constantsc andk such that
0< f (n)<cg(n) for n>k. Similarly, f (n) is bounded below
by g(n), i.e., f (n)5V„g(n)… if 0<cg(n)< f (n) for con-
stantsc,k>0 andn>k.#

This result has practical importance in determining t
amount of oracle error that is allowable as the size of
library is increased. We will show that our complexity resu
imply that if the library size is increased by a factor ofk, the
oracle error must decrease by a factor ofk1/4 in order to
attain a similar probability of success.

The remainder of this paper is organized as follows. S
tion II describes the random-phase error model for a no
oracle, summarizes the Grover search algorithm in
discrete-time implementation, and then derives the effec
the oracle noise on this implementation. Section III deriv
the effect of oracle noise on the continuous-time formulat
of Grover’s algorithm proposed by Farhi and co-workers
Refs. @12,13#. We summarize and present conclusions
Sec. IV.
©2003 The American Physical Society13-1
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II. DISCRETE-TIME SEARCH

A. Quantum search with a phase oracle

A phase oracle is a quantum oracle that ‘‘marks’’ one
more computational basis states with a specified phase~usu-
ally 21). For a functionf (x)→$0,1%, wherex denotes an
n-bit binary string, a phase oracle implements the followi
operation:

ux&→
O

~21! f (x)ux&. ~1!

The search problem is as follows. Given an oracleO which
implements the functionf (x)→$0,1%, find a state in the
computational basisx for which f (x)51. Assuming a per-
fect, noiseless oracle~the concept of a noisy oracle is intro
duced below!, the well-known result for the complexity o
Grover’s algorithm, i.e., for the quantum search problem
O(AN/M ), where M is the number of states for whic
f (x)51 @14–17#. In contrast, the classical complexity of th
search problem isO(N/M ) @18#. Thus, the quantum algo
rithm provides a quadratic speed-up over the classical a
rithm.

B. Grover’s algorithm in absence of noise

The description of Grover’s algorithm in this paper fo
lows the discussion in Ref.@19#. The search is made on th
set ofN52n states represented by alln-bit binary stringsx
P$0,1%n. The states are denoted byux&. Within a discrete-
time computation model, Grover’s algorithm searches
marked or ‘‘target’’ states via repeated application of t
Grover iteration operatorG, which can be written as

G5~2uh&^hu2I !O, ~2!

whereuh&5(1/AN)(x50
N21ux& is the equal superposition ove

all states. From this point on, we will assume thatM51 to
simplify the discussion. The arguments can easily be
tended to the case whereM.1. Let the stateut& be the
‘‘marked’’ state. Then we can write out the explicit form o
the oracle as

O5I 1~eip21!ut&^tu. ~3!

Assuming that our registers are initialized touh&, it can be
shown that afterO(AN) applications ofG, the quantum
computer is approximately in the marked stateut& @14,15#.
This result is demonstrated by noting that the search a
rithm can be mapped onto a two-state subspace spanne
the two basis vectorsu1& and u2&, where

u1&5ut&, ~4!

u2&5
uh&2ut&^tuh&

A12u^tuh&u2
. ~5!

In other words,u1& is the marked state andu2& is the equal
superposition over all unmarked states.

When our initial stateuh& and the operatorG are rewritten
in the u1&, u2& basis,
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uh&5S A1

N

AN21

N

D , ~6!

G5S 12
2

N

2AN21

N

2
2AN21

N
12

2

N
D 5S cos~Q/2! sin~Q/2!

2sin~Q/2! cos~Q/2!
D ,

~7!

where

sin~Q/2!5
2AN21

N
, ~8!

we see that the effect of repeated applications ofG is to
make successive rotations byQ/2 on stateuh&. This conven-
tion for the definition ofQ is useful becauseQ represents
the angle of rotation applied by the operatorG on the Bloch
sphere defined for the Grover subspace spanned by the
statesu1& andu2&. We can therefore view Grover’s algorithm
as the process of rotating our initial stateuh& onto the target
stateut&[u1& by a discrete sequence of small rotations. F
small Q ~i.e., largeN), sinQ'Q, yielding an incremental
rotation angle of approximately (4AN21)/N'4/AN. Then
a rotation ofp rad on the Bloch sphere requiresO(AN)
applications ofG. Hence, Grover’s search algorithm requir
O(AN) calls to the oracle. The well-known lower bound fo
quantum search has been established asV(AN) @16#. Thus,
Grover’s algorithm is an optimal search.

C. Grover’s algorithm in presence of oracle noise

This O(AN) bound on the running time of the searc
assumes that the oracle exactly implements the phase o
tion specified by Eq.~1!. Instead, we could envision a mor
realistic oracle which implements Eq.~1! with some finite
degree of precision. Specifically, we adopt here the conc
of a noisy phase oracle introduced in Ref.@7# which imple-
ments the following operation:

ux&→
O

~ei (p1e)! f (x)ux&, ~9!

wheree is a small, random phase error (e!p) with prob-
ability distribution p(e). We will make the assumption tha
the error is zero-mean, i.e.,^e&50. For p(e)5d(e), the
noiseless oracle is recovered. In practice, the root-me
square magnitude ofe can be made small through a caref
physical implementation of the oracle. However, due to
finite precision of any experimental implementation, the a
eragemagnitudeof e will never be zero, i.e.,e rms5A^e2&
.0.

Given this more realistic oracle model, we now inves
gate whether Grover’s search algorithm is stillO(AN). The
explicit form of the noisy oracle can be written as
3-2
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O5I 1~ei (p1e)21!ut&^tu. ~10!

Then Grover’s iteration operatorG becomes

G5S S 211
2

NDei (p1e) 2AN21

N

2AN21

N
ei (p1e) 12

2

N
D , ~11!

which is clearly still unitary. To see the effects of the rando
error, we first note that any single-qubit unitary operator c
be written as

U5exp~ ia!Rn̂~F!5exp~ ia!FcosS F

2 D I 2 i sinS F

2 D n̂•sW G ,
~12!

where sW are the Pauli operators. Thus, Grover’s iterati
operator using the noisy oracle is equivalent, up to an ove
global phase factor, to a rotationRn̂(F) on the Bloch sphere
by some angleF about some directionn̂. We can determine
the values ofF and n̂ by using Eqs.~11! and ~12!,

cosS F

2 D5S 12
2

ND cosS e

2D , ~13!

sinS F

2 Dnx5
2AN21

N
sinS e

2D , ~14!

sinS F

2 Dny52
2AN21

N
cosS e

2D , ~15!

sinS F

2 Dnz52S 12
2

ND sinS e

2D . ~16!

A noiseless oracle can be recovered using these equation
settinge to zero. In that case we obtain the large-N Grover’s
rotation angleF'4/AN, with nx5nz50 andny51. Hence,
the noiseless Grover’s algorithm corresponds to a rotation
the Bloch sphere about they axis. The effect of a noisy
oracle is to add small, random perturbations to this rotat
axis, thereby changing the purey-axis rotation to a rotation
about an axisn̂ which also contains nonzerox andz compo-
nents.

To analyze the running time of the noisy search algorith
we will take the limit of largeN. This is a useful assumptio
for our current purposes since we are interested in the c
plexity of the search algorithm for largeN. From Eqs.~13!–
~16!, we can expressG up to a global phase factor as

G5expX2 iFH S 211
2

ND sinS e

2Dsz1
2AN21

N FsinS e

2Dsx

2cosS e

2DsyG J Y sinS F

2 D C, ~17!

where
05231
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sinS F

2 D5A12S 12
2

ND 2

cos2S e

2D .

Since bothe andN21/2 are small parameters, we can use
double Taylor expansion of the terms in the exponent w
respect toe and N21/2. Excluding second-order terms in
serted and higher and higher, we obtain

G5expF i S esz1
4

AN
syD G . ~18!

Again using the fact thate andN21/2 are both small pa-
rameters, we can make use of the Baker-Campbell-Hausd
formula @20# to arrive at

G5exp~ i esz!expS i
4

AN
syD 1OS e

AN
D

'Rẑ~2e!RŷS 2
4

AN
D . ~19!

Examining Eq.~19!, we observe that there are two impo
tant time scales that will be relevant to any physical imp
mentation. The first is the time scale of they-axis rotation,
AN. Taking the limit ase→0, we see that they-axis rotation
Rŷ is the ‘‘driving force’’ of the search algorithm, in that i
rotates the initial stateuh& towards the target stateut&. The
second important time scale, 1/e, is the time scale of the
random rotation about thez axis of the Bloch sphere,Rẑ .
This rotation is the effect of noise and does not advance
search process. Becausee is a random variable, this rotatio
aboutz will in general be different for each application ofG.
However, e does have a characteristic root-mean-squ
magnitudee rms , which is determined by the probability dis
tribution p(e). Then the characteristic time scale of th
z-axis rotation is determined by 1/e rms .

In general,e rms andAN are independent parameters:e rms
is the phase error that is specific to the experimental imp
mentation, whileN is the size of the database. However,
reality, these two parameters will be linked for a given e
perimental setup because the size of the database~i.e., the
number of statesN52n accessed by then qubits of the com-
puter! will affect the accuracy of the oracle implementatio
Note that the oracle acts on alln qubits @see Eq.~9!#. It
seems very unlikely thate rms would decrease asN increases,
since a greater number of qubits generally introduces m
potential for noise. In the best-case scenario, it might
possible to find a physical implementation for whiche rms is
essentially constant over a large range of values forN. To
ensure that our analysis is as general as possible, we
assume here thate rms scales asN2d, whered is some con-
stant that may take both positive and negative values
zero. We can then determine what effect the scaling cons
d has on algorithm performance. In particular, we shall d
termine the effect ofd upon the complexity of the algorithm
i.e., upon the number of Grover iterations required to achi
a given probability of successful measurement of the tar
stateu1&. This will allow us to further determine the max
3-3
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mum allowable oracle error scaling that ensures a cons
probability of success independent of the library size, fo
given rate of library growth.

D. Dynamics and scaling of the noisy Grover search algorithm

To analyze the dynamics of the Grover iteration, we o
serve that any pure state on the Bloch sphere can be re
sented in spherical coordinates by two angles,u and f,
where we defineu to be the angle from thez axis andf to be
the azimuthal angle. Here we have chosen our coordin
such that the target stateu1& is the south pole (u5p) and the
stateu2& is the north pole (u50) of our Bloch sphere. Be
cause the operatorG depends upon the random variablee,
each application ofG induces a new probability distributio
over the Bloch sphere, which we will denote byf (u,f). In
this notation, our initial state at timet50 is given by ad
function ~i.e., a pure state! centered onf50, with u
5sin21(1/AN)'1/AN.

Using this notation, we can write the probability of o
taining the stateu1& upon measurement aftert iterations as

P~ t !512
1

2E E cos~u! f t~u,f!sin~u!dudf

5
1

2
„12^cos~u!&…

5
1

2
~12^z&!. ~20!

Let us define the complexity of our search algorithm to
the number of iterations required to obtain a success p
ability of 2/3. We immediately see that if the probability o
obtaining stateu1& upon measurement aftert iterations is
P(t), then by repeating this procedure approximat
2/3P(t) times, we can boost the overall success probab
to 2/3. It should be noted that the choice of the constant
is arbitrary; in general, the choice of constant will not affe
the complexity of the algorithm. Thus, the overall comple
ity of our algorithm is O„t/P(t)…. Furthermore, Eq.~20!
states that in order to succeed with some desired probab
P* , our probability distribution functionf (u,f) must be
non-negligible whenu>u* , where

u* 5cos21~122P* !. ~21!

In other words, to obtain some desired probability of succe
P* , there must be a high probability of reaching points
the Bloch sphere with polar angle greater thanu* .

Having established this terminology, we will now give
phenomenological description of the evolution of the pro
ability distribution over the Bloch sphere. Specifically, w
would like to know what dependence the magnitude a
scaling of the errore rms has on the maximum attainable p
lar angle.

We first rewrite the effects of the Grover iterate as a fu
tion of polar coordinates. In the polar coordinates defin
above, thez rotation can be written as
05231
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f→
Rẑ

f1e, ~22!

u→
Rẑ

u. ~23!

If we momentarily neglect they-axis rotations, ourz-axis
rotation dynamics correspond to a random walk on the v
able f with periodic boundary conditions. To analyze th
effects of they rotation, we then take advantage of the fa
that 1/AN is a small quantity and expand in powers of 1/AN
to obtain

f→
Rŷ

f2sinf
cosu
sinu

4

AN
1O~1/N!, ~24!

u→
Rŷ

u1cosf
4

AN
1O~1/N!. ~25!

Finally, we can write the combined effects of our noi
Grover’s operatorG using Eqs.~22!–~25!, as

f→
G

f2sinf
cosu
sinu

4

AN
1e, ~26!

u→
G

u1cosf
4

AN
, ~27!

where we have dropped terms ofO(1/N).
Having written the dynamics of the Grover operator

terms of polar coordinates on the Bloch sphere, we now c
sider the probability distribution of the quantum state ov
the Bloch sphere afterT Grover iterations. We will analyze
the dynamics forf!1, and then consider when this approx
mation is valid. In this regime, we can approximate t
Grover operator dynamics as

f→
G

f1e, ~28!

u→
G

u1
4

AN
. ~29!

It is evident that in this smallf limit, the f dynamics are
completely determined byz-axis rotation, which results in a
random walk on the variablef that is controlled by the
random variablee. The central limit theorem tells us tha
regardless of the probability distributionp(e) from which
the random variablee is sampled, after an adequate numb
of iterations the distribution off will converge to a Gaussian
with width e rmsAT:

f rms}e rmsAT, ~30!

whereT is the number of iterations.
Let us now consider when this approximation is val

Clearly, the condition thatf!1 is satisfied for the initial
statef050. We recall thate rms is assumed to scale asN2d,
whered is some constant. The validity of our smallf ap-
3-4
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proximation is found to be highly dependent on the scal
exponentd. We consider two cases:d.1/4 andd<1/4.

If d.1/4, we examine the probability distribution afte
T5lAN iterations, wherel is some small constant. Inspe
tion of Eq. ~30! shows that the probability distribution off
after T steps will then have widthAlN1/42d. SinceN can
certainly be made arbitrarily large, this justifies our assum
tion thatf is small. Within this regime, Eq.~28! shows that
the dynamics of the variableu are simply those of the deter
ministic y rotation with constant increment 4/AN. After T
iterations of this, we obtain

uT5u01
4T

AN
,

'
4T

AN
, ~31!

which is the same as the large-N limit of the noiseless
Grover search, Eq.~9!. Thus whend.1/4, the error has no
effect on algorithmic complexity for significantly largeN,
yielding a complexity ofO(N1/2). This bound is trivially
tight since the search problem is well known to have a low
bound ofV(N1/2) @16#. For the remainder of this section, w
will therefore analyze the complementary case, i.e., w
e rms scales asN2d with d<1/4, and determine the effect o
the error on algorithmic complexity. We note that this lat
case includes the best-case physical situation ofe rms inde-
pendent ofN, i.e., d50.

In order to analyze the system dynamics ford<1/4, let us
examine the probability distribution afterT iterations such
that

T5l/e rms
2 , ~32!

where l is a small constant. By Eq.~30!, the distribution
width f rms is proportional toAl. Thus, by selecting a sma
enough constantl, our approximation thatf is small is
again justified. Using Eqs.~28! and ~31!, we find that theu
rotation is again essentially deterministic, and that

uT5
4T

AN

5
4l

e rms
2 AN

5OS 1

e rms
2 AN

D . ~33!

Using Eq.~20!, we obtain

P~T!5
1

2 F12cosS l

e rms
2 AN

D G'
l2

4e rms
4 N

, ~34!

where we have used the fact thatl/e rms
2 AN!1 when d

<1/4. By proving that we can attain~essentially determinis
05231
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tically, as described above! a polar rotation ofat least
4l/e rms

2 AN in T5l/e rms
2 iterations, we have shown that th

complexity of the noisy search algorithm isO„T/P(T)…
5O(e rms

2 N). Taking the scaling ofe rms into account (e rms

;N2d) leads to the overall algorithmic complexit
O(N122d) @21#. So ford51/4 we obtain an optimal solution
having the same speed-up as the noiseless quantum se
For 0,d,1/4, we find a scaling intermediate between t
noiseless quantum and classical search algorithms. The q
tum speed-up factor decreases asd approaches zero and i
completely lost whend50. ~Note that the quantum searc
formally becomes slower than the classical search in
worst-case scenario when the phase errors increase witN,
i.e., d,0.!

In order to show that this complexity bound is tight, w
now will show that we can attainat mosta polar rotation of
O(1/e rms

2 AN) in subclassical time. Repeating the argume
above following Eq.~33! will then lead to the identification
of V(N122d) as a lower bound. Thus, we find tha
O(N122d) is a tight bound on the complexity in presence
noise. Obtaining a lower bound on the algorithmic comple
ity is important because without it, it would be uncle
whether we could further reduce our search complexity
running the noisy search algorithm for more thanO(1/e rms

2 )
iterations. The lower bound will demonstrate that af
O(1/e rms

2 ) iterations, it is impossible to achieve a supercla
sical enhancement in success probability.

To achieve a polar rotation greater thanO(1/e rms
2 AN), we

will need to obtain a significant probability density on th
region of the Bloch sphere described byu>c/e rms

2 AN,
wherec is a constant. Let us therefore consider the dynam
of a state on this region of the Bloch sphere. Given a p
state withf050 andp/2>u0>c/e rms

2 AN, we examine the
action of T iterations of the Grover algorithm on this stat
whereT5l/e rms

2 . Now, instead of choosingl small as pre-
viously, we selectl@1, which ensures a large width for th
long-time distribution of the azimuthal anglef, Eq. ~30!.
Thus afterT iterations with this large width, we obtain
completely uniform distribution on the variablef. We now
consider what happens to the polar variableu. Referring to
Eqs.~23! and ~25!, we find that afterT iterations we obtain

uuT2u0u<
T

AN

<
l

e rms
2 AN

5O~N21/212d!. ~35!

Again, provided thatd<1/4, this difference can be mad
arbitrarily small by selecting a large enoughN. Thus, afterT
iterations, our probability distribution of the polar coordina
u is confined within an arbitrarily small window aroundu0,
but is uniformly distributed on the azimuthal coordinatef.
Figure 1 shows a graphical representation of these dynam

Let us now consider the effects when the Grover opera
is subsequently applied to such a probability distribution t
3-5
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is uniform in f. We will show that there exists a symmet
in the associatedu transformations in this regime, such th
one half of all azimuthal anglesf are associated with au
rotation in one direction, and the other half are associa
with u rotations of equal magnitude in the opposite directio
To reveal this symmetry, we show that the transformat
f→f1p on Eqs.~26! and ~27! results in an exactly oppo
site rotation in theu direction to that associated with th
azimuthal anglef. From Eq.~35!, we know that the distri-
bution of uT will be arbitrarily close tou0. Since we have
assumed that our initial state was located in the regionp/2
>u0>c/e rms

2 AN, we can rewrite Eq.~26! as follows:

f→
G

f2sinf
cosu
sinu

1

AN
1e

'f2sinf
e rms

2 AN
c

1

AN
1e

5f2sinf
e rms

2

c 1e. ~36!

We now make use of the arbitrariness in choice of the c
stantc, choosingc@1 so thatc@sinf, making the second
term arbitrarily small. Hence we obtain

f→
G

f1e, ~37!

which demonstrates that the transformationf→f1p has
no net effect on the azimuthal dynamics. On the other ha
our u dynamics become

u→
G

u1cos~f1p!
4

AN
1O~1/N!

5u2cosf
4

AN
1O~1/N!. ~38!

Equation ~38! shows that the transformationf→f1p
causes the polar angleu to be rotated in the opposite direc
tion, as a consequence of the change in sign of the cf

FIG. 1. Graphical representation of the noisy oracle Grover
gorithm dynamics whenp/2>u>c/e rms

2 AN. The target stateu1& is
located at the south pole of the Bloch sphere. The north pole is s
u2&, Eq. ~5!. After T iterations, a pure state atu0 and f0 will
become completely mixed with respect to thef variable but will be
confined to an arbitrarily small window aroundu0 in theu variable.
Subsequent applications ofG will then give an equal probability of
increasing or decreasing the polar angle, corresponding to a ran
walk in u.
05231
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factor. It follows that oncef has reached a uniform distri
bution, there will be an equal probability of rotatingu by
4/AN in the positive and negative directions. This behavio
valid over the entire region of the Bloch sphere specified
our initial conditionp/2>u0>c/e rms

2 AN. As a result, theu
dynamics over this entire region no longer resemble a de
ministic rotation towardsu5p, but instead resemble a ran
dom walk onu with step size of approximately 4/AN. Figure
1 shows a graphical representation of these dynamics.

Using the central limit theorem, we find that

u rms}At/N, ~39!

where t is the number of iterations after the uniform distr
bution inf has been attained, i.e., after the firstT iterations.
Consequently, to ‘‘move’’ the polar angle of the probabili
distribution by some small angleDu now takes time propor-
tional toDu2N. From Eq.~20!, the corresponding change i
the probability of a successful measurement of the tar
state is

DP'
1

2
sinDuDu'

1

2
Du2}Dt/N. ~40!

Thus, once we have entered the region of the Bloch sph
characterized byp/2>u>c/e rms

2 AN, the probability of a
successful measurement further increases only at the
t/N. This is the same as the classical result and conseque
we can attain no further speed-up over the classical a
rithm once we have entered this regime. The polar an
O(1/e rms

2 AN) thus constitutes an upper bound on the rotat
that can be achieved in subclassical time. Hence, by the
guments given above, our boundO(N122d) on the complex-
ity of the noisy quantum search algorithm is a tight boun

E. Summary of discrete time noise Grover search

Using the above results, we can now give an accur
phenomenological description of the dynamics of the no
search algorithm. We identify the critical time scale of t
algorithm astmixing51/e rms

2 , which is the mixing time of the
z rotation induced by the random error. For timest
!tmixing , the algorithm proceeds more or less determinis
cally, and the initial state is rotated towards the target s
u1&, attaining a polar angle ofu51/e rms

2 AN. However, for
times t@tmixing , the f variable becomes completely mixe
and theu rotation, which is the driving force of the searc
process, has an equal probability of increasing or decrea
the polar angle of the probability distribution. As a result, t
u dynamics also become those of a random walk, and
searching rate becomes classical. Therefore, in order to
the maximum speed-up over the classical algorithm, the b
methodology we can employ is to run the algorithm fort
!tmixing , measure, and then repeat this process to boost
overall success probability. This protocol will allow the su
classical scaling to be retained.

The effects of the scaling ofe rms on the complexity of the
search algorithm are seen to be different according to
value of the error scaling indexd. We saw that ifd.1/4, the
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search algorithm was essentially unaffected by the prese
of error and the complexity is identical to the noiseless qu
tum search result ofO(AN). On the other hand, ifd<1/4,
then the optimal speed-up is obtained by running the a
rithm for t5O(1/e rms

2 ) iterations, achieving a maximum po
lar angle ofu5O(1/e rms

2 AN) and then measuring. Expand
ing Eq. ~20! yields the measurement success rateP(t)
5O(1/e rms

4 N) and a resulting algorithmic complexity o
O„t/P(t)…5O(e rms

2 N)5O(N122d). So the optimal error
scaling is given byd>1/4, i.e., the errors scale asO(N21/4).
In contrast, the most physically realistic constant error sc
ing d50, corresponding to a constant error over a range oN
values, yields no speed-up over the classical search.

It is interesting to compare these results to the anal
results for a constant phase error oracle given in Ref.@7#. In
the constant phase error model, the oracle applies the s
phase exp@i(p1e)# to the marked state at each iteration.
can be shown that for a constant phase error of magnitude,
the error must scale ase5O(N21/2) in order to obtain a
quadratic speed-up over the classical search. The differe
in error accumulation between the constant and rand
phase error processes can be compared~for example! to the
ballistic and diffusive regimes of Brownian motion, respe
tively. Constant phase errors tend to accumulate quic
since they are all in the same ‘‘direction.’’ On the other han
subsequent random phase errors can cancel each othe
and thus accumulate more slowly.

Let us now consider a question of physical importan
Given an oracle with error magnitudee rms and a library of
sizeN, let us assume that we can attain some constant
cess rateP after T iterations. Given a larger library of siz
N85kN, we wish to obtain the same success rateP after
T85AkT iterations. In other words, we wish to obtain th
ideal quantum search complexity ofO(AN8) also for a larger

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = log
10

N

〈 P
 〉

ε
rms

 = 101/ 2

ε
rms

 = 10 3/4

ε
rms

 = 10 1

ε
rms

 = 10 5/4

ε
rms

 = 10 3/2

ε
rms

 = 10 7/4

FIG. 2. Results of numerical simulations of the discrete-ti
implementation of Grover’s algorithm with a noisy oracle. T
oracle noise is determined by the probability distributionp(e) ~Sec.
II C!. ^P& is the average success rate of 100 trials andN is the
library size. The curves correspond to calculations with error m
nitudes ofe rms51020.5,1020.75,1021,1021.25,1021.5,1021.75, where
the labeling goes from left to right.
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library size. What is the maximum allowable oracle err
e rms8 for the larger library? The answer to this question fo
lows immediately from our previous analysis. We know th
e rms can scale asN2d with d>1/4 without affecting algo-
rithmic complexity. Thus the maximum allowable error
the oracle for the larger library ise rms8 5k21/4e rms . As an
example, if the library size is doubled, the oracle error for
larger library is required to be at most 0.84 the correspond
error for the smaller library.

To verify the validity of our analytic results, we can simu
late the effects of a noisy oracle numerically. Given a libra
of sizeN, we simulated Grover’s search algorithm using t
procedure described in Sec. II C. For each iteration of
search algorithm, a phase errore was selected from a zero
mean Gaussian distribution with standard deviatione rms .
The algorithm was run fort5pAN/4 iterations and the
maximal probability of success attained was recorded. T
process was repeated 100 times and the average su
probability was calculated. Figure 2 plots the average pr
ability of success,̂P&, versus the library size,n5 log10N, for
various values ofe rms . Figure 3 shows the value of log10erms
that yields a constant success probability ofP51/2 for a
given library size. As predicted by our analysis above,
find that in order to obtain a constant success rate as a f
tion of n ~or N), the error must scale ase rms}N21/4.

III. EFFECT OF NOISE ON CONTINUOUS TIME ANALOG
OF QUANTUM SEARCH

In this section, we analyze the effect of noise on a sligh
different model for quantum search that has been propo
by Farhi and Gutmann@12#. In this model, one again starts i
the symmetric superposition of all states,uh&, and then ap-
plies the following Hamiltonian:

H05uh&^hu1ut&^tu5Hh1Ht , ~41!

-

FIG. 3. Oracle error magnitudee rms for given library sizeN,
which yields an average success rate ofP51/2 for the discrete-time
implementation of Grover’s algorithm with a noisy oracle. Th
slope of the best-fit line is 4.002, which corresponds toe rms

}N21/4 and an error scaling parameterd51/4.
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whereut& is the marked state. Note that this Hamiltonian
directly related to Grover’s iterate, Eqs.~2! and ~3!. Action
of Eq. ~2! amounts to simply applying the HamiltonianHh
for a timep, followed by applying the HamiltonianHt for a
time p. Clearly, the two operators, Eqs.~2! and~41!, would
be equivalent if Hh and Ht commuted. However
@Hh ,Ht#5(1/AN)(uh&^tu1ut&^hu). Thus the two methods
become similar for largeN and are formally equivalent asN
approaches infinity.

Farhi and Gutmann calculated the time evolution of
system when one starts in the equal superposition stateuh&.
They found that

e2 iHt uh&5e2 i t H F 1

AN
cosS t

AN
D 2 sinS t

AN
D G ut&

1AS 12
1

ND cosS t

AN
D uh&}. ~42!

They noticed that at timet5pAN/2, the initial stateuh&
has evolved to the marked stateut&5u1&. The time required
to evolve to the marked state scales asO(AN), matching the
complexity of Grover’s algorithm with respect to an orac
As a result, we take the time that it takes to reach the mar
state as a function ofN to be the measure of the complexi
of a continuous time algorithm.

As noted above, in the limit of largeN the continuous
time and discrete Grover’s algorithm are formally equivale
Therefore, it seems useful to also evaluate the effect o
fluctuating ‘‘oracle’’ in the continuous time picture. The co
tinuous time Hamiltonian that models a discrete quant
search noisy oracle with phase fluctuatione is given by

H5Hh1~11j!Ht5uh&^hu1~11j!ut&^tu. ~43!

Here j is a time-dependent, Markovian stochastic varia
that satisfies*0

pjdt5e. We shall assume thate fluctuates
and that it can be described by a Gaussian distribution.

In order to evaluate the Hamiltonian and its effect on
initial state, it is simpler to transform to our orthonorm
two-state basesu1& andu2& defined by Eqs.~4! and~5!. One
can then decompose the transformed Hamiltonian into
corresponding spin operators to find that

H5S 11
j

2D I1S 1

N
1

j

2Dsz1
1

AN
AS 12

1

NDsx . ~44!

When the fluctuations in the time evolution operatore2 iHt

are now considered, i.e., the resulting phaseeÞ0, it is useful
to approach the problem by examining the evolution of
density matrix. Consider an initial density matrix

r~0!5F a b

b* dG . ~45!

It is well established that a fluctuatingsz component of the
Hamiltonian leads to dephasing. For example, applying
fluctuating perturbation (j/2)sz for a timep yields
05231
e
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e

e

e

e

r~ t !5exp~2 iszp/2!r~0!exp~ iszp/2!. ~46!

Subsequently averaging over all possible values of the res
ing total phasee leads to the following evolution:

E 1

A2ps
e2e2/2s2

e2 i esz/2F a b

b* dGei e2/szde

5F a be2s2/2

b* e2s2/2 d
G . ~47!

Here s2 is the variance of the fluctuating phasee. Since it
has been assumed that the fluctuating fieldj is Markovian,
one can treat this as a dephasing term described by a d
constantG5s2/2p and then use the corresponding Blo
equations@22# to calculate the evolution of the system. Th
Markovian approximation is valid when the fluctuation ofj
is much faster than 1/AN. To analyze the system evolution
we therefore decompose our density matrix using the Bl
representation,

r5
1

2
I1

1

2
n̂•s. ~48!

The time evolution is calculated by solving the Bloch equ
tions for the components ofn̂ @22#:

ṅx5
2

N
ny2Gnx , ~49!

ṅy5
2

AN
AS 12

1

NDnz2
2

N
nx2Gny , ~50!

ṅz52
2

AN
AS 12

1

NDny . ~51!

In order to understand the effect of the dephasing on
algorithmic complexity, we examine these equations in
limit of large N and keep only terms that are of order 1/AN.
This yields only two coupled equations,ny andnz :

ṅy5
2

AN
nz2Gny , ~52!

ṅz52
2

AN
ny . ~53!

Our initial density matrix is given by

r5uh&^hu

5
1

2
I1

1

2 S 211
2

NDsz1
1

2 S 2AN21

N Dsx . ~54!

We note that the quantitynz is the projection onto the stat
u1& and thus provides a measure of how well the compu
tion is proceeding. Initially, we havenz5211(2/N), while
3-8
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our computation becomes complete whennz51. Solving the
differential equations in the large-N limit, Eq. ~53!, with ini-
tial conditionsny(0)50, nz(0)5211(2/N), yields the fol-
lowing solution:

ny~ t !5

2S 211
2

ND
AG2N216

S expF t

2
~2AG22AG2216/N!G

1expF t

2
~2AG22AG2216/N!G D ,

nz~ t !5

S 211
2

ND
2AG2N216

S ~2AG2N1AG2N216!

3expF t

2
~2AG22AG2216/N!G

1~AG2N1AG2N216!

3expF t

2
~2AG21AG2216/N!G D . ~55!

Ideally, we would like to find the time at whichnz(t)
51, or equivalently, the time when the probability of reac
ing the marked state is unity,

P~ t !5^tur~ t !ut&5
1

2
@11nz~ t !#51. ~56!

When measuring the complexity of Grover’s algorithm, ho
ever, we need only to find the time required such that
probability P(t) of being in the marked statet is greater
than some constant. For concreteness, we choose her
minimum time satisfyingP(t)5^tur(t)ut&>1/4.

To determine this time explicitly, we calculateP(t) as a
function of various values ofG in the limit of largeN. We
observe that in Eq.~55! the termAG2216/N is imaginary
when G,4/AN. Consequently, we expect that the behav
will be drastically different for the two regimes~a! G
,4/AN and ~b! G.4/AN. In order to make a direct com
parison between the continuous-time behavior and
discrete-time results, we choose the dephasing constantG to
scale withN in the same way as in Sec. II, namely,

G5aN22d}e rms
2 , ~57!

where a is the proportionality constant. This provides th
contact point of the continuous-time search algorithm w
the discrete-time algorithm of Sec. II. We then see that
gimes ~a! and ~b! correspond to the two regimes alrea
established in Sec. II, i.e., in region~a!, d>1/4, and in re-
gion ~b!, d<1/4. We note that our regions~b! and ~a! both
include d51/4. The boundary line between the regions o
curs whend51/4 anda54.

For G5aN22d,4/AN, i.e., in region~a!, we calculate
from Eq. ~55! that
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P~ t !5
1

2
1

1

2 S 211
2

NDet/2GS cos~A16/N2G2t/2!

1 iA G2N

G2N216
sin~A16/N2G2t/2!D . ~58!

We now pick a time

t85
2p

A16/N2G2
~59!

and find that

P~ t8!5
1

2
1

1

2 S 12
2

NDexpS 2
pG

A16/N2G2D . ~60!

Hence,

P~ t8!.
1

2
2O~1/N!. ~61!

Since this is larger than the value corresponding to our d
nition of minimum time, it implies that the complexity of th
search algorithm is bounded from above byO(t8). Inspec-
tion of Eq.~59! shows thatt8 is an increasing function ofG.
Therefore, in order to evaluate an upper bound fort8 in the
regime ~a! where d>1/4, we need to evaluatet8 for the
largest possible value ofG. The largest value ofG in this
regime lies on the boundary with regime~b!, namely, where
d51/4 anda54. Hence, we evaluatet8 as one asymptoti-
cally approaches the boundary between regions~a! and ~b!,
for a given error scalingd. We choosed51/4 anda54
2m, wherem is a small constant greater than zero. Sub
tuting in Eq. ~60! yields t852pAN/m. Thus the minimum
time will be on the order ofO(AN), corresponding to an
upper bound on the algorithmic complexity ofO(AN).
Hence ford>1/4, in regime~a!, the continuous-time searc
algorithm achieves its maximal algorithmic quantum spe
up. This is in agreement with the results from Sec. II, whi
showed that the discrete-time quantum search algori
yields the maximum algorithmic speed-up when the ro
mean-square errore rms is smaller thanN21/4, corresponding
to d>1/4.

To complete the continuous-time analysis, we solve
P(t) in the regime~b! whered<1/4. Here evaluation ofnz
in the limit of largeN leads to

P~ t !5
1

2
2

1

2
e24t/NG. ~62!

SettingP(t8)51/4 and solving fort8 yields

t85
NG ln~2!

4
~63!

5O~N122d!. ~64!
3-9
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We have verified our conclusions by numerically simul
ing Eq.~55! for various values ofN andG. Figure 4 shows a
logarithmic plot of the minimum timet8 required to obtain a
success probability ofP(t8)51/4, as a function of the erro
scaling parameterd, for various values ofN. It is evident
that the algorithmic complexity shows a marked transition
d51/4, from scalingO(N1/2) for d>1/4, to O(N122d) for
d<1/4, as predicted by Eqs.~59! and ~64!, respectively.
Equivalently, we can state that the continuous-time quan
search algorithm with randomized phase error achieves m
mal complexity and hence maximum algorithmic speed
when e rms<N1/4 (d>1/4). This agrees with the results fo
the discrete-time algorithm.

IV. CONCLUSIONS

The analysis in this paper has provided a phenomenol
cal description of the dependence of the algorithmic co
plexity of Grover’s algorithm on the scaling of oracle pha
error for a discrete quantum search, and on stochastic Ha
tonian errors leading to phase error in a continuous-t
quantum search algorithm. In both the discrete- a
continuous-time versions of the algorithm, it was found th
if the phase error scaled with size asN2d, then ford<1/4
the effect on the complexity of the algorithm for largeN was
negligible. However, if the size scaling of the error lies in t

FIG. 4. Search timet8 for the continuous-time search algorithm
shown as a function of the oracle phase error scaling param
2d. Here t8 is defined as the time it takes to achieve a succ
probability of P(t8)51/4. The oracle phase error is measured h
by its size scaling parameterd, wheree rms5N2d ~see text!. The
search time shows a distinct transition between two regimes~a! and
~b!. In regime~a! the continuous-time algorithm for a database
size N matches the Grover bound ofO(N1/2) for large N, i.e.,
logN(t8)50.5. In regime~b! the quantum search speed-up is grad
ally lost asd decreases from the critical value 1/4 to 0. Atd50 we
have constant error, independent of the database size, and the s
time has now increased to equal the classical boundO(N), i.e.,
logN(t8)51. In the limit of largeN, the scaling of the search tim
with the error parameter ford>1/4 @region ~a!# is a constant,t8
5O(N1/2), while for d<1/4 @region ~b!#, it is t85O(N122d) ~see
text!.
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regimed<1/4, then for largeN it was determined that ther
is tight bound ofO(N122d) on the complexity of the searc
algorithm. In particular, this implies that in the presence
any constant~nonzero! amount of phase error in the orac
(d50), there exists some library sizeNmax above which the
quantum search algorithm no longer provides a quadr
speed-up. In this case, for databases of sizeN.Nmax, the
search time isV(N), which is equivalent to the classica
result and there is therefore no quantum speed-up. Inter
diate error scaling, 0,d,1/4, provides speed-up intermed
ate between the classical and quantum limits, respectiv
These results hold for both the discrete-time and continuo
time quantum search algorithms, and assume very little ab
the specific form of the underlying error processes.

The complexity analysis we have made here is also
portant for determining the precision needed in scaling u
quantum search. For instance, let us assume that we are
to implement a quantum search for a library of sizeN with
an oracle error of magnitudee rms . Then to perform a quan
tum search on a library of sizekN with equivalentaccuracy,
our results imply that we need to implement an oracle w
an error of at moste rms /k1/4. Since this must lie in the re
gime d>1/4, physically, this requires a system where t
phase error decreases as a function of database size. C
quently, the precision must increase exponentially as a fu
tion of the number of qubits, putting severe demands on
physical realization. In contrast, if the error and hence
precision is constant in the system size,~e.g., a system where
the natural linewidth is independent of the number of state!,
then there always exists a database size such that the q
tum approach offers no speed-up over the classical se
algorithm.

The main consequence of the nonrobustness of th
forms of quantum searches to oracle noise that was dem
strated here is a practical limitation on the size of the libra
on which may be searched with a quadratic speed-up u
quantum search algorithms without any explicit error corr
tion. This result has significant consequences for phys
implementation of quantum search algorithms, since
though quantum error correction can be used to reduce
error present in the oracle, such error correction procedu
can require significant resources@2#. In practice, it will there-
fore be necessary to balance thecostof error correction~in
both spatial and temporal resources! with the extent of
speed-up attained by a noisy quantum search. The ana
results presented in this paper provide a useful bound on
maximum oracle error permissible if a quadratic speed-u
to be retained. Above this maximum allowable error, w
must use error correction in any physical implementati
Conversely, below this maximum error, we can be confid
that error correction will not be necessary, provided th
oracle phase error is the primary source of error.

As a final comment we point out that although Grove
algorithm and its continuous-time analog are not inheren
robust to phase error in the oracle, it is not clear whet
other implementations of quantum search may be inhere
robust. Exploration of both active and passive error corr
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tion schemes for Grover’s algorithm will therefore be a va
able direction for future work.
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