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Effects of a random noisy oracle on search algorithm complexity
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Grover’s algorithm provides a quadratic speed-up over classical algorithms for unstructured database or
library searches. This paper examines the robustness of Grover’s search algorithm to a random phase error in
the oracle and analyzes the complexity of the search process as a function of the scaling of the oracle error with
database or library size. Both the discrete- and continuous-time implementations of the search algorithm are
investigated. It is shown that unless the oracle phase error scal@éNas'’), neither the discrete- nor the
continuous-time implementation of Grover’s algorithm is scalably robust to this error in the absence of error
correction.
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[. INTRODUCTION the discrete-time Grover’s algorithm was already studied nu-
merically in Ref.[7]. In this paper we derive analytic results
Issues of fault tolerance and error correction are of botHor this model and present numerical evidence verifying the
theoretical and practical interest in designing and implementvalidity of these results. We analyze the complexity of the
ing quantum algorithms. One approach to diminishing thesearch algorithm as a function of the scaling of the errors,
effects of error focuses on error correcting codes, which cagnd arrive at bounds on the error that must be satisfied for a
be used to correct errors once they have occurtez]. An- constant probability of success. In particular, we find that in
other approach which has also proven successful is that gfrder to achieve a constant success probability independent
decoherence-free subspaces, which involves mapping a corif the library size that is being searched, the oracle error
putation onto a subspace that is relatively free from g@pr ~ must scale at most ™, whereN is the library size. We
This second approach is of interest because it is an examp@so analyze the effect of phase errors on a continuous-time
of passive, rather than active, error correction. The success @nalog of the search algorithm. This is found to be relatively
the passive approach leads to the question of whether existtraightforward to study within a density-matrix approach.
ing quantum algorithms are inherently robust to errors, and¥Ve find that this leads to similar results for the complexity as
if they are not, whether there might exist modified imple- function of the scaling of the errors, namely, that there is an
mentations of these algorithms that are robust to certain etpper bound ofO(N'?) on algorithmic complexity fors
rors, i.e., without requiring active error correction. =1/4 andO(N'~??) for 5<1/4, when the error scaling goes
In this paper, we analyze the robustness of Grover’s a|goasN*5. We further show that these bounds are tight; in other
rithm to error. Grover’s search algorithm is the basis for awords, the algorithmic complexity has a lower bound of
number of quantum algorithm{@—6]. Most of these algo- Q(NY?) for 6=1/4 andQ(N*~2°) for 5<1/4. [Following
rithms involve the use of an oracle, a black box device whichstandard computer science notation, we will use the follow-
takes as input a quantum state in the computational basis af@g to characterize the growth of certain functions: We will
returns as output some function of that state. Given a perfecgay that f(n) is bounded above byg(n), i.e., f(n)
noiseless oracle, Grover's search algorithm attains a qua=O(g(n)), if there are positive constantsandk such that
dratic speed-up over classical search algorithms. Howevef)=<f(n)=<cg(n) for n=k. Similarly, f(n) is bounded below
this speed-up is predicated upon the perfect implementatioby g(n), i.e., f(n)=Q(g(n)) if 0=<cg(n)=<f(n) for con-
of the oracle. Although, for the purposes of analysis, thestantsc,k=0 andn=k.]
oracle is often treated as a “black box” whose inner work-  This result has practical importance in determining the
ings are unknown, any physical implementation of Grover'samount of oracle error that is allowable as the size of the
algorithm must also include a physical implementation of thdlibrary is increased. We will show that our complexity results
oracle and this may be imperfect. Therefore it is of interest tamply that if the library size is increased by a factorkpthe
ascertain what effect the accuracy of the oracle implementasracle error must decrease by a factorkdf* in order to
tion has on the overall complexity of the algorithm. We makeattain a similar probability of success.
use of this term here as it is employed in computer science The remainder of this paper is organized as follows. Sec-
terminology, namely, the complexity of an algorithm is de-tion Il describes the random-phase error model for a noisy
fined as the number of computational steps required in ordesracle, summarizes the Grover search algorithm in a
to achieve a predetermined fixed probability of success. discrete-time implementation, and then derives the effect of
Several previous papers have studied the effects of orackhe oracle noise on this implementation. Section Ill derives
noise on Grover's algorithm, using various modgls-11].  the effect of oracle noise on the continuous-time formulation
We consider here the random phase error model, addressiad Grover’s algorithm proposed by Farhi and co-workers in
it within both discrete- and continuous-time implementationsRefs. [12,13. We summarize and present conclusions in
of the search algorithm. The effect of random phase errors o8ec. IV.
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Il. DISCRETE-TIME SEARCH \F
N

A. Quantum search with a phase oracle

|7)= : (6)

A phase oracle is a quantum oracle that “marks” one or N—1
more computational basis states with a specified phzse N
ally —1). For a functionf(x)—{0,1}, wherex denotes an
n-bit binary string, a phase oracle implements the following > 2N=1
operation: 1— — I —
s N N ( cod0/2) sin(B/2)

IX>3>(—1)“X’|x>. (1) 2 N—1 2 —sin(®/2) cog0/2)]’

The search problem is as follows. Given an ord@lghich
implements the functiorf(x)—{0,1}, find a state in the
computational basig for which f(x)=1. Assuming a per- \here
fect, noiseless oraclghe concept of a noisy oracle is intro-

duced beloy; the well-known result for the complexity of 2JN-1
Grover’s algorithm, i.e., for the quantum search problem, is sin(®/2)= N
O(yN/M), where M is the number of states for which

f(x)=1[14-17. ]n contrast, the classical complexity of the \yo see that the effect of repeated applicationsGofs to
search problem i©(N/M) [18]. Thus, the quantum algo- make successive rotations By2 on statd 7). This conven-
rithm provides a quadratic speed-up over the classical alggjon, for the definition of@ is useful becaus® represents
rithm. the angle of rotation applied by the opera@®mon the Bloch
sphere defined for the Grover subspace spanned by the basis
B. Grover’s algorithm in absence of noise stated1) and|2). We can therefore view Grover’s algorithm

The description of Grover’s algorithm in this paper fol- @s the process of rotating our initial stag onto the target
lows the discussion in Ref19]. The search is made on the State|m)=[1) by a discrete sequence of small rotations. For
set of N=2" states represented by aibit binary stringsx ~ small @ (i.e., largeN), sin®~®0, yielding an incremental
<{0,11". The states are denoted by). Within a discrete- rotation angle of approximately (N—1)/N~4/\/N. Then
time computation model, Grover’s algorithm searches fora rotation of 7 rad on the Bloch sphere requir€(\/N)
marked or “target” states via repeated application of theapplications ofG. Hence, Grover’s search algorithm requires

()

()

Grover iteration operatoB, which can be written as O(yN) calls to the oracle. The well-known lower bound for
quantum search has been establishe@@agN) [16]. Thus,
G=(2[n)(nl-1O, 2 Grovers algorithm is an optimal search.

where| )= (1//N)=N"4|x) is the equal superposition over
all states. From this point on, we will assume that1 to
simplify the discussion. The arguments can easily be ex- This O(y/N) bound on the running time of the search
tended to the case wheM>1. Let the statgr) be the assumes that the oracle exactly implements the phase opera-
“marked” state. Then we can write out the explicit form of tion specified by Eq(1). Instead, we could envision a more
the oracle as realistic oracle which implements E@l) with some finite
. degree of precision. Specifically, we adopt here the concept

O=1+(e'"=1)|7)(]. (3)  of a noisy phase oracle introduced in R@f] which imple-

ments the following operation:

C. Grover’s algorithm in presence of oracle noise

Assuming that our registers are initialized tg), it can be
shown that afterO(y/N) applications ofG, the quantum o
computer is approximately in the marked state [14,15]. [x)— (e'(™+ )] x), 9)
This result is demonstrated by noting that the search algo-
rithm can be mapped onto a two-state subspace spanned fyiere € is a small, random phase erroe<€) with prob-

the two basis vectorgl) and|2), where ability distribution p(€). We will make the assumption that
B the error is zero-mean, i.e{¢)=0. For p(e)=4(e), the
D=1, (4) noiseless oracle is recovered. In practice, the root-mean-

square magnitude of can be made small through a careful

12)= |7)—| 7)1l 7) (5) ph_ysical implementation of t_he orac_le. Howeverz due to the
1- {7 7)]2 ' finite precision of any experimental implementation, the av-
eragemagnitudeof e will never be zero, i.e.gms= \(€?)
In other words|1) is the marked state ar|@) is the equal >0.
superposition over all unmarked states. Given this more realistic oracle model, we now investi-
When our initial statén) and the operato® are rewritten  gate whether Grover's search algorithm is B JYN). The
in the|1), |2) basis, explicit form of the noisy oracle can be written as
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O=1+(e(""9—1)|7)(7]. (10)
Then Grover’s iteration operat@ becomes
_1+E el(m+e) 2yN-1
N N
G= — , 11
2yN—1 i(m+e€) 1 2 ( )
N © N

which is clearly still unitary. To see the effects of the random
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7] f1-{ 1= ol 5.

Since bothe and N~ %2 are small parameters, we can use a
double Taylor expansion of the terms in the exponent with
respect toe and N~ 2. Excluding second-order terms in-
serted and higher and higher, we obtain

2

. (18

error, we first note that any single-qubit unitary operator can

be written as

U=expia)Ry(P)=exp(ia)

0}
CO;

(ORI
En~0'

(12

where ¢ are the Pauli operators. Thus, Grover’s iteration
operator using the noisy oracle is equivalent, up to an overall
global phase factor, to a rotatid®y(P) on the Bloch sphere

by some angleb about some direction. We can determine

the values ofb andn by using Eqs(11) and(12),

[} B 2 €
cos(i) —(1— N) cos(i , (13
)] 2JN—-1 €
sm( E) n,= N sm( 5) , (14
sm( %) ny=— ZI':—_1CO< g) (15
(D 2\ (€
sm(; n,= —(1— N S|n<§). (16)

Again using the fact tha¢ andN~*2 are both small pa-
rameters, we can make use of the Baker-Campbell-Hausdorff
formula[20] to arrive at

G=exp(ieoz)exp<i%ay)+0 Jiﬁ)
4
%R;(—e)R;,( - —.

VN

Examining Eq.(19), we observe that there are two impor-
tant time scales that will be relevant to any physical imple-
mentation. The first is the time scale of ti#axis rotation,
JN. Taking the limit ass— 0, we see that thg-axis rotation
R; is the “driving force” of the search algorithm, in that it
rotates the initial staten) towards the target state). The
second important time scale,el/is the time scale of the
random rotation about the axis of the Bloch sphereR;.
This rotation is the effect of noise and does not advance the
search process. Becausés a random variable, this rotation
aboutz will in general be different for each application Gf
However, e does have a characteristic root-mean-square
magnitudee,,s, which is determined by the probability dis-
tribution p(e). Then the characteristic time scale of the
z-axis rotation is determined by &/,s.

(19

A noiseless oracle can be recovered using these equations by |n general e, and N are independent parametees;,s

settinge to zero. In that case we obtain the lafgesrover’s
rotation angleb~4/y/N, with n,=n,=0 andn,=1. Hence,

is the phase error that is specific to the experimental imple-
mentation, whileN is the size of the database. However, in

the noiseless Grover’s algorithm Corresponds to a rotation Ofba"ty, these two parameters will be linked for a given ex-
the Bloch sphere about the axis. The effect of a noisy perimental setup because the size of the datakiase the
oracle is to add small, random perturbations to this rotatiomhumber of statebl=2" accessed by the qubits of the com-
axis, thereby changing the puyeaxis rotation to a rotation putep will affect the accuracy of the oracle implementation.

about an axis which also contains nonzersoandz compo-
nents.

Note that the oracle acts on alil qubits [see Eq.(9)]. It
seems very unlikely that,,,s would decrease ds increases,

To analyze the running time of the noisy search algorithmsince a greater number of qubits generally introduces more
we will take the limit of largeN. This is a useful assumption potential for noise. In the best-case scenario, it might be
for our current purposes since we are interested in the conpossible to find a physical implementation for whiehs is

plexity of the search algorithm for largé. From Eqs(13)—
(16), we can expres6 up to a global phase factor as

G= ol 142 inf =
=eXp —1I — +N 2 SiN| =

g

where

2yN-1
N

€

sinf = |o,+ Oy

7

essentially constant over a large range of valuesNoiTo
ensure that our analysis is as general as possible, we will
assume here that,,s scales adN ™ °, wheres is some con-
stant that may take both positive and negative values, or
zero. We can then determine what effect the scaling constant
6 has on algorithm performance. In particular, we shall de-
termine the effect o6 upon the complexity of the algorithm,
i.e., upon the number of Grover iterations required to achieve
a given probability of successful measurement of the target
state|1). This will allow us to further determine the maxi-
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mum allowable oracle error scaling that ensures a constant R;
probability of success independent of the library size, for a Pp—Pte, (22)
given rate of library growth. R:

06— 6. (23

D. Dynamics and scaling of the noisy Grover search algorithm

= | he d . fthe G . . b If we momentarily neglect thg-axis rotations, ourz-axis
0 analyze the dynamics of the Grover iteration, We 0b-,aii5n dynamics correspond to a random walk on the vari-
serve that any pure state on the Bloch sphere can be repr

di herical di b : q Sble ¢ with periodic boundary conditions. To analyze the
sented in spherical coordinates by two anglésand ¢, effects of they rotation, we then take advantage of the fact

where we defing to be the angle from theaxis and¢ to be . . .
the azimuthal angle. Here we have chosen our coordinate[tga;bltg/iﬁ 's a small quantity and expand in powers offw

such that the target stafte) is the south poled= ) and the
state|2) is the north pole =0) of our Bloch sphere. Be- R; cosf 4
cause the operatdd depends upon the random variakle ¢—>¢—sin¢§n—0 — +O(1/N), (29
each application o6 induces a new probability distribution VN
over the Bloch sphere, which we will denote b9, ¢). In
this notation, our initial state at time=0 is given by ad
function (i.e., a pure stajecentered on¢$=0, with 6
=sin"(1/\/N)~1/yN.

Using this notation, we can write the probability of ob- Finally, we can write the combined effects of our noisy
taining the stateél) upon measurement afteiterations as  Grover’s operatoG using Eqs.(22)—(25), as

0R90+ b 4 +O(1N) (25)
— COSQp — .
N

1 . G 6 4
P(t>=1—§f fcosw)ftw,cﬁ)sm(e)daw ¢H¢—sm¢§f—m—m+e, (26)
1
=3 (1~{cod0)) 6= 9+ cos il (27)
— ¢\/N’

1
=5(1=@). (20 \yhere we have dropped terms O{L/N).

Having written the dynamics of the Grover operator in
Let us define the complexity of our search algorithm to beterms of polar coordinates on the Bloch sphere, we now con-
the number of iterations required to obtain a success probsider the probability distribution of the quantum state over
ability of 2/3. We immediately see that if the probability of the Bloch sphere aftef Grover iterations. We will analyze
obtaining statel1) upon measurement aftériterations is  the dynamics foip<1, and then consider when this approxi-
P(t), then by repeating this procedure approximatelymation is valid. In th|s_ regime, we can approximate the
2/3P(t) times, we can boost the overall success probability>rover operator dynamics as
to 2/3. It should be noted that the choice of the constant 2/3

G
is arbitrary; in general, the choice of constant will not affect ¢— dp+e, (28
the complexity of the algorithm. Thus, the overall complex-
ity of our algorithm isO(t/P(t)). Furthermore, Eq(20) G
states that in order to succeed with some desired probability 0— 0+\/_N' (29

P*, our probability distribution functiorf(#6,®) must be

N *
non-negligible wherg=6*, where It is evident that in this smallp limit, the ¢ dynamics are

e 1 . completely determined bgaxis rotation, which results in a
0" =cos *(1—2P%). (2D random walk on the variables that is controlled by the
random variablee. The central limit theorem tells us that
In other words, to obtain some desired probability of succesgegardless of the probability distribution(e) from which
P*, there must be a high probability of reaching points onthe random variable is sampled, after an adequate number

the Bloch sphere with polar angle greater tin _ of iterations the distribution of will converge to a Gaussian
Having established this terminology, we will now give a \ith width emaT

phenomenological description of the evolution of the prob-

ability distribution over the Bloch sphere. Specifically, we Drms™® Grmsﬁv (30)

would like to know what dependence the magnitude and

scaling of the errog, s has on the maximum attainable po- whereT is the number of iterations.

lar angle. Let us now consider when this approximation is valid.
We first rewrite the effects of the Grover iterate as a func-Clearly, the condition thatp<1 is satisfied for the initial

tion of polar coordinates. In the polar coordinates definedstatepo=0. We recall thak, s is assumed to scale &k °,

above, thez rotation can be written as where § is some constant. The validity of our small ap-
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proximation is found to be highly dependent on the scalingically, as described aboyea polar rotation ofat least

exponents. We consider two case$>1/4 ands<1/4.

If 6>1/4, we examine the probability distribution after
T=\N iterations, where\ is some small constant. Inspec-
tion of Eq.(30) shows that the probability distribution @f
after T steps will then have width A\NY4~?. SinceN can

4Nl €% N in T=\/€2,, iterations, we have shown that the
complexity of the noisy search algorithm B(T/P(T))
=O(er2mSN). Taking the scaling ok, s into account €,
~N7% leads to the overall algorithmic complexity

O(N?~29) [21]. So for §=1/4 we obtain an optimal solution

certainly be made arbitrarily large, this justifies our assumphaving the same speed-up as the noiseless quantum search.

tion that ¢ is small. Within this regime, E28) shows that
the dynamics of the variable are simply those of the deter-
ministic y rotation with constant increment ¢N. After T
iterations of this, we obtain

4T

N

01': 60"’

aT

N

which is the same as the larde-limit of the noiseless
Grover search, E(9). Thus whené>1/4, the error has no
effect on algorithmic complexity for significantly largs,
yielding a complexity ofO(N*?). This bound is trivially
tight since the search problem is well known to have a lowe
bound of(2(N?) [16]. For the remainder of this section, we
will therefore analyze the complementary case, i.e., whe
€:ms Scales adN~? with <1/4, and determine the effect of
the error on algorithmic complexity. We note that this latter
case includes the best-case physical situatios,Qf inde-
pendent of\, i.e., §=0.

In order to analyze the system dynamics st 1/4, let us
examine the probability distribution aftdr iterations such
that

(31)

T=M\€>

rms?

(32

where \ is a small constant. By Eq30), the distribution
width ¢, is proportional toy\. Thus, by selecting a small
enough constank, our approximation thatp is small is
again justified. Using Eqg28) and(31), we find that thed
rotation is again essentially deterministic, and that

) 4T
TN
A
ermsVN
1
=0| - . (33
Erms\/ﬁ
Using EQq.(20), we obtain
P(T) L s( A ) : (39
= — —CO ~ ,
2 Erzms\/ﬁ 46?msN

where we have used the fact thate?,.yN<1 when &
<1/4. By proving that we can attaiessentially determinis-

For 0<6<1/4, we find a scaling intermediate between the
noiseless quantum and classical search algorithms. The quan-
tum speed-up factor decreasesdapproaches zero and is
completely lost whens=0. (Note that the quantum search
formally becomes slower than the classical search in the
worst-case scenario when the phase errors increaseNyith
i.e., 6<0.)

In order to show that this complexity bound is tight, we
now will show that we can attaiat mosta polar rotation of
O(1/€2,sVN) in subclassical time. Repeating the argument
above following Eq.(33) will then lead to the identification
of Q(N'"2?%) as a lower bound. Thus, we find that
O(N?~2%) s a tight bound on the complexity in presence of
noise. Obtaining a lower bound on the algorithmic complex-
ity is important because without it, it would be unclear
whether we could further reduce our search complexity by
rrunning the noisy search algorithm for more tl’(a(mllefms)
iterations. The lower bound will demonstrate that after

(1/fr2ms) iterations, it is impossible to achieve a superclas-
sical enhancement in success probability.

To achieve a polar rotation greater thagl/e?,.\/N), we
will need to obtain a significant probability density on the
region of the Bloch sphere described WEc/e?, N,
wherec is a constant. Let us therefore consider the dynamics
of a state on this region of the Bloch sphere. Given a pure
state with¢po=0 and7/2=6,=c/€>,,N, we examine the
action of T iterations of the Grover algorithm on this state,
whereT=\/€2, . Now, instead of choosiny small as pre-
viously, we selech>1, which ensures a large width for the
long-time distribution of the azimuthal angl¢, Eq. (30).
Thus afterT iterations with this large width, we obtain a
completely uniform distribution on the variable. We now
consider what happens to the polar variableReferring to
Egs.(23) and(25), we find that aftelT iterations we obtain

| 61— 6o|=<

.
N

(39

Again, provided thats<1/4, this difference can be made

arbitrarily small by selecting a large enouyh Thus, afterT

iterations, our probability distribution of the polar coordinate

0 is confined within an arbitrarily small window aroursy,

but is uniformly distributed on the azimuthal coordinate

Figure 1 shows a graphical representation of these dynamics.
Let us now consider the effects when the Grover operator

is subsequently applied to such a probability distribution that
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12) 12) L2 factor. It follows that oncep has reached a uniform distri-
VA bution, there will be an equal probability of rotatirgyby
‘% Titerations m G 4/\N in the positive and negative directions. This behavior is
A < A valid over the entire region of the Bloch sphere specified by
- v our initial condition7/2= fy=c/ €%, JN. As a result, thef

dynamics over this entire region no longer resemble a deter-

ministic rotation toward¥= 7, but instead resemble a ran-
FIG. 1. Graphical representation of the noisy oracle Grover al-dom walk oné with step size of approximately ¢N. Figure

gorithm dynamics whemr/2=#=c/e? N. The target statel) is 1 shows a graphical representation of these dynamics.

located at the south pole of the Bloch sphere. The north pole is state Using the central limit theorem, we find that

|2), Eq. (5). After T iterations, a pure state a@, and ¢, will

become completely mixed with respect to thevariable but will be Orms™ VEIN, (39

confined to an arbitrarily small window arourdd in the 6 variable.

Subsequent applications Gfwill then give an equal probability of wheret is the number of iterations after the uniform distri-

increasing or decreasing the polar angle, corresponding to a randobution in ¢ has been attained, i.e., after the fifsterations.

walk in 6. Consequently, to “move” the polar angle of the probability

distribution by some small angl®é now takes time propor-

is uniform in ¢. We will show that there exists a symmetry tional to A #°N. From Eq.(20), the corresponding change in

in the associated transformations in this regime, such that the probability of a successful measurement of the target

one half of all azimuthal angleg are associated with &  state is

rotation in one direction, and the other half are associated

with @ rotations of equal magnitude in the opposite direction.

To reveal this symmetry, we show that the transformation

¢— ¢+ on Eqgs.(26) and(27) results in an exactly oppo-

site rotation in theé direction to that associated with the Thus, once we have entered the region of the Bloch sphere

azimuthal anglep. From Eq.(35), we know that the distri-  characterized byr/2=6=c/e?,.N, the probability of a

bution of 6 will be arbitrarily close to¢,. Since we have successful measurement further increases only at the rate

assumed that our initial state was located in the regidh  t/N. This is the same as the classical result and consequently,

1 11y I

1 1
AP%ESinABAH%EAezocAt/N. (40)

= fo=cl e-ys\/N, We can rewrite Eq(26) as follows: we can attain no further speed-up over the classical algo-
rithm once we have entered this regime. The polar angle
G 0059i+ O(l/erzms\/ﬁ) thus constitutes an upper bound on the rotation
¢—¢=sindgng N € that can be achieved in subclassical time. Hence, by the ar-
guments given above, our bou@{N*~2%) on the complex-
 €mN 1 ity of the noisy quantum search algorithm is a tight bound.
~¢—sing C \/_N+€
E. Summary of discrete time noise Grover search
2
€ . .
—p—sine r(:ms+€_ (36) Using the above results, we can now give an accurate

phenomenological description of the dynamics of the noisy
search algorithm. We identify the critical time scale of the
algorithm amixing= llerzms, which is the mixing time of the
z rotation induced by the random error. For times
<tmixing, the algorithm proceeds more or less deterministi-
G cally, and the initial state is rotated towards the target state
p—dte (37 |1), attaining a polar angle of=1/e?,/N. However, for
timest>t,.ing, the ¢ variable becomes completely mixed
c]and the# rotation, which is the driving force of the search
process, has an equal probability of increasing or decreasing
the polar angle of the probability distribution. As a result, the
G 4 6 dynamics also become those of a random walk, and the
6— 6+ cog ¢+ ) — + O(1/IN) searching rate becomes classical. Therefore, in order to gain
VN the maximum speed-up over the classical algorithm, the best
methodology we can employ is to run the algorithm for
(38) <tmixing,» Measure, and_ f[hen repeat this process to boost our
overall success probability. This protocol will allow the sub-
classical scaling to be retained.
Equation (38) shows that the transformatio— ¢+ 7 The effects of the scaling af,,,s on the complexity of the
causes the polar angteto be rotated in the opposite direc- search algorithm are seen to be different according to the
tion, as a consequence of the change in sign of thepcos value of the error scaling indeXx We saw that if6>1/4, the

We now make use of the arbitrariness in choice of the con
stantc, choosingc>1 so thatc>sin ¢, making the second
term arbitrarily small. Hence we obtain

which demonstrates that the transformati$n- ¢+ 7 has
no net effect on the azimuthal dynamics. On the other han
our 6 dynamics become

4
=6-— cos¢ﬁ +O(1/N).
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n= Iong

FIG. 2. Results of numerical simulations of the discrete-time (G, 3. Oracle error magnitude, s for given library sizeN,
implementation of Grover's algorithm with a noisy oracle. The yich yields an average success rat®ef1/2 for the discrete-time
oracle noise is determined by the probability distributpde) (Sec.  jmplementation of Grover’s algorithm with a noisy oracle. The

IIC). (P) is the average success rate of 100 trials &hts the  gjope of the best-it line is 4.002, which corresponds efg
library size. The curves correspond to calculations with error magz. N ~1/4 and an error scaling parametés 1/4.

nitudes of ;=10 9510"%75101,10 12510 510 75 where

the labeling goes from left to right. library size. What is the maximum allowable oracle error

. . 4 i ? i i -
search algorithm was essentially unaffected by the presencﬁa‘m'S for the larger library? The answer to this question fol

of error and the complexity is identical to the noiseless quan'©Ws immediately from our previous analysis. We know that

_5 . . .
tum search result 0®(y/N). On the other hand, if<1/4, E'rtrRS can scalle {igN ThWIthth5> 1/4 .W'thOUt lf\ﬁecglng algo—_
then the optimal speed-up is obtained by running the algo?h mic clorr]lp e;(r: yll us I'be maxlfnuinkftllgwa eAerror n
rithm for t=0(1/e%, ) iterations, achieving a maximum po- € oracle for the farger library 18,ms= €rms- AS an

. example, if the library size is doubled, the oracle error for the
lar angle of0=O(1/e,2ms\/N) and then measuring. Expand- . . ; .
ing Eq. (20 yields the measurement success rig) larger library is required to be at most 0.84 the corresponding

—O(1/e: N d i lorithmi lexity of €O" for the smaller library.
= O(L/ermsN) and a resu tllrjggagorlt mic complexity of 14 yerify the validity of our analytic results, we can simu-
O(t/P(1))=0(€rmN)=0O(N ). So the optimal error

e X " late the effects of a noisy oracle numerically. Given a library
scaling is given byp=1/4, i.e., the errors scale &(N""").  of sizeN, we simulated Grover’s search algorithm using the
In contrast, the most physically realistic constant error Sca|procedure described in Sec. Il C. For each iteration of the
ing 6=0, corresponding to a constant error over arange of search algorithm, a phase errewas selected from a zero-
values, yields no speed-up over the classical search. _mean Gaussian distribution with standard deviatiggs.

It is interesting to compare these results to the analytigrpq algorithm was run fot=N/4 iterations and the
results for a constant phase error oracle given in Raf.In maximal probability of success attained was recorded. This
the constant phase error model, the oracle applies the same,cess was repeated 100 times and the average success
phase exp(m+¢)] to the marked state at each iteration. It ;. 5papility was calculated. Figure 2 plots the average prob-
can be shown that for a constant phase error of magnitude gpjjity of success;P), versus the library sizey=log;gN, for
the error must scale as=O(N"") in order to obtain a yarious values ok .. Figure 3 shows the value of lagme
guadratic speed-up over the classical search. The dlﬁerenc%t yields a constant success probability o 1/2 for a

in error accumulation between the constant and rando'ﬁiven library size. As predicted by our analysis above, we
phase error processes can be compéi@dexamplg to the  fiq that in order to obtain a constant success rate as a func-
ballistic and diffusive regimes of Brownian motion, respec-tion of n (or N), the error must scale as N~ L4

1 ms .

tively. Constant phase errors tend to accumulate quickly

since they are all in the same “direction.” On the other hand,

subsequent random phase errors can cancel each other (IDIIIJtEFFECT OF NOISE ON CONTINUOUS TIME ANALOG

OF QUANTUM SEARCH

and thus accumulate more slowly.
Let us now consider a question of physical importance. In this section, we analyze the effect of noise on a slightly

Given an oracle with error magnitudg,,s and a library of  different model for quantum search that has been proposed

sizeN, let us assume that we can attain some constant sugy Farhi and GutmanfiL2]. In this model, one again starts in

cess rateP after T iterations. Given a larger library of size the symmetric superposition of all statég), and then ap-

N’=kN, we wish to obtain the same success ratafter  plies the following Hamiltonian:

T’ = kT iterations. In other words, we wish to obtain the

ideal quantum search complexity ®{ N’) also for a larger Ho=|m){(7|+|m){7r|=H,+H,, (42
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where|7) is the marked state. Note that this Hamiltonian is p(t)=exp —io,712)p(0)expio,ml2). (46)
directly related to Grover’s iterate, Eq®) and (3). Action

of Eq. (2) amounts to simply applying the Hamiltonia, Subsequently averaging over all possible values of the result-
for a timer, followed by applying the HamiltoniaH . fora  ing total phases leads to the following evolution:

time 7r. Clearly, the two operators, Eg®) and(41), would

be equivalent if H, and H, commuted. However, f 1 o 2 ieo 2 a R
[H,.H1=@NN)(|9){7|+|7){5]). Thus the two methods 27s b* d

become similar for larg&l and are formally equivalent a¢
approaches infinity.

Farhi and Gutmann calculated the time evolution of the =
system when one starts in the equal superposition sgte
They found that

(47)

b*e~ $212 d

a b e* 32/ 2‘|

Here s? is the variance of the fluctuating phase Since it
has been assumed that the fluctuating figlid Markovian,

|7) one can treat this as a dephasing term described by a decay
constantl’=s%/27 and then use the corresponding Bloch
equationg22] to calculate the evolution of the system. This

s( t >|77>} (42) Markovian approximation is valid when the fluctuation &f

e Mp)=e icos( L) - sin( L)
VNN VN
1
TV 1= N) co JIN is much faster than YN. To analyze the system evolution,
we therefore decompose our density matrix using the Bloch
They noticed that at timée=7\/N/2, the initial statg ») ~ representation,
has evolved to the marked stdte =|1). The time required 11
to evolve to the marked state scaless/N), matching the p==1+ o, (48)
complexity of Grover’s algorithm with respect to an oracle. 2 2
As a result, we take the time that it takes to reach the marke

state as a function ol to be the measure of the complexity ﬁihe time evolution is calculated by solving the Bloch equa-

of a continuous time algorithm. tions for the components af [22]:

As noted above, in the limit of largdl the continuous >
time and discrete Grover’s algorithm are formally equivalent. hX:_ny_ I'n,, (49)
Therefore, it seems useful to also evaluate the effect of a N
fluctuating “oracle” in the continuous time picture. The con-
tinuous time Hamiltonian that models a discrete quantum -2 1 1 2 r 50
search noisy oracle with phase fluctuatiois given by ny_\/_ﬁ N/ ™ Yy (50

H=H,+(1+&OH =|n)}n[+(1+&|n)(7. (43 s IT

Here ¢ is a time-dependent, Markovian stochastic variable 2= JN 1 N)ny' (D
that satisfies/jédt=e. We shall assume that fluctuates
and that it can be described by a Gaussian distribution. In order to understand the effect of the dephasing on the

In order to evaluate the Hamiltonian and its effect on thealgorithmic complexity, we examine these equations in the
initial state, it is simpler to transform to our orthonormal limit of large N and keep only terms that are of ordex/lV.
two-state basefdl) and|2) defined by Eqs(4) and(5). One  This yields only two coupled equations, andn, :
can then decompose the transformed Hamiltonian into the

corresponding spin operators to find that . 2
ny=\/—ﬁnz—1’ny, (52
H (1+§)|+ A PR \I1 1) (44)
= 5 ST 5|0t— - |0x-
2 N 2/7% N N/ X . 2
_ n,=—-—=n,. (53
When the fluctuations in the time evolution operagot' N

are now considered, i.e., the resulting phasd, it is useful

to approach the problem by examining the evolution of the Our initial density matrix is given by

density matrix. Consider an initial density matrix p=|n)7
a b 1 1 2 1[2yN-1
= . 4 =_1+=| = = —
p(0) b* d (45) SIH 5| —1+g)oat 3 N )ox. (54)

It is well established that a fluctuating, component of the We note that the quantity, is the projection onto the state
Hamiltonian leads to dephasing. For example, applying thél) and thus provides a measure of how well the computa-
fluctuating perturbation§/2)o, for a time 7 yields tion is proceeding. Initially, we have,= — 1+ (2/N), while

052313-8
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our computation becomes complete whgrs 1. Solving the 1 1 2
differential equations in the largg-limit, Eq. (53), with ini- P(t)==+=| —1+ —|e"| cog V16N —-T"?t/2)
tial conditionsn,(0)=0, n,(0)= — 1+ (2/N), yields the fol- 2 2 N

lowing solution: N
H & _T12
> +i \/FZN_16S|n(\/16/N r tIZ)). (58

2 -1+ =
t
ny(t)= J[2N—16 ex%i(_\/ﬁ_ I _16/'“)} We now pick a time
4 p[t< NN lG/N)D po__ 2T (59)
exp5(— VI —Ir<— , =
2 J16N-T?
14 2 and find that
n(t)= ————|( (— I[N+ I'*N-16
AN 2x/F2N—16(( VRN ) N I PO D N
P(t") 1 ex . (60)
2 2 N V16N —T?

Hence,

. :
X exp 5(_ JI2—\T2-16N)

+(JI°N+ JI'>N—16)

xexp%(—ﬁ+ JIZ—16MN)||. (55)

P(t’)>%—0(l/N). (62)

Since this is larger than the value corresponding to our defi-
nition of minimum time, it implies that the complexity of the
search algorithm is bounded from above ®ft’). Inspec-
tion of Eq.(59) shows that’ is an increasing function df.
Therefore, in order to evaluate an upper boundtfoin the
1 regime (a) where 6=1/4, we need to evaluate for the
P(t)=(7|p(t)|7)= §[1+ n,(t)]=1. (56) largest possible value df. The largest value of" in this
regime lies on the boundary with reginig), namely, where
6=1/4 anda=4. Hence, we evaluaté as one asymptoti-
ally approaches the boundary between regi@nsand (b),

Ideally, we would like to find the time at which,(t)
=1, or equivalently, the time when the probability of reach-
ing the marked state is unity,

When measuring the complexity of Grover’s algorithm, how-
ever, we need only to find the time required such that th . ) - N
probability P(t) of being in the marked state is greater Er a glr:/en error scahlr;m V\{{e c;hoosc:&—t:rllm anda—s4b "
than some constant. For concreteness, we choose here thd» WNEremis a sma ,cons ant greater than zero. Substi-
minimum time satisfying(t) = (7| p(t)| 7)= 1/4. tytlng in Eq.(60) yieldst’ =27N/m. Thus the minimum

To determine this time explicitly, we calculai(t) as a  time will be on the order OCN_N)' corresponding to an
function of various values of in the limit of largeN. We ~ Upper bound on the algorithmic complexity @(\N).
observe that in Eq(55) the term yT2— 16N is imaginary Henc.e foré= ;/4, |n.reg|me_(a), the continuous-time search
whenT'<4/\N. Consequently, we expect that the behaVioralgonthm achieves its maximal algorithmic quantum speed-
will be drastically different for the two regimegd) I up. This is in agreement with the results from Sec. I, which
<4/\N and (b) T>4/\N. In order to make a direct com- showed that the discrete-time quantum search algorithm
parison between the continuous-time behavior and thg/€lds the maximum algorithmic speg%up when the root-
discrete-time results, we choose the dephasing conEtémt Mean-square efraims is smaller tharN ™™, corresponding

scale withN in the same way as in Sec. Il, namely, to 5=1/4. . . .
To complete the continuous-time analysis, we solve for

(57) P(t) in the regime(b) where §<1/4. Here evaluation of,

= N—26 2 ! e
“« *e in the limit of largeN leads to

rms?
where « is the proportionality constant. This provides the 1 1
contact point of the continuous-time search algorithm with P(t)= = — —e 4/NT, (62)
the discrete-time algorithm of Sec. Il. We then see that re- 2 2
gimes (a) and (b) correspond to the two regimes already ) ) ]
established in Sec. Il i.e., in regida), 5=1/4, and in re- SettingP(t") = 1/4 and solving fott’ yields
gion (b), §<1/4. We note that our region®) and (a) both
include 6=1/4. The boundary line between the regions oc- t = NT"In(2)
curs whens=1/4 anda=4. 4

For I'=aN~2<4/|N, i.e., in region(a), we calculate
from Eq. (55) that =0O(N1" 2%, (64)

(63
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regimes=<1/4, then for largeN it was determined that there
is tight bound ofO(N'~2%) on the complexity of the search

--- N=10 . g N :
_____ N = 1020 algorithm. In particular, this implies that in the presence of

0.75[ e N =10%0 any constantnonzerg amount of phase error in the oracle
— N=10%° (6=0), there exists some library si2&,,,, above which the

quantum search algorithm no longer provides a quadratic
speed-up. In this case, for databases of 8izeN,,,, the
search time iQ2(N), which is equivalent to the classical
result and there is therefore no quantum speed-up. Interme-
diate error scaling, € §<1/4, provides speed-up intermedi-
ate between the classical and quantum limits, respectively.
These results hold for both the discrete-time and continuous-
. . time quantum search algorithms, and assume very little about
i 070 caled Phate Error (8] 0 0 the specific form of the underlying error processes.
The complexity analysis we have made here is also im-

portant for determining the precision needed in scaling up a

FIG. 4. Search tim¢’ for the continuous-time search algorithm, guantum search. For instance, let us assume that we are able

shown as a function of the oracle phase error scaling parametef0 implement a quantum search for a library of sitavith

— 6. Heret' is defined as the time it takes to achieve a succes?Jln oracle error of magnitude Then to perform a quan-
probability of P(t")=1/4. The oracle phase error is measured here 9 ms: P q

by its size scaling paramete wheree,,.=N"? (see text The tum search ona library of sizeN Wlt.h equivalentaccuracy _
search time shows a distinct transition between two regimesnd ~ OUr results imply that we need to implement an oracle with
(b). In regime(a) the continuous-time algorithm for a database of @n error of at MOSE, /K Since this must lie in the re-
size N matches the Grover bound @&(NY?) for large N, i.e.,  gime §=1/4, physically, this requires a system where the
logy(t')=0.5. In regime(b) the quantum search speed-up is gradu-phase error decreases as a function of database size. Conse-
ally lost asé decreases from the critical value 1/4 to 0.0 we  quently, the precision must increase exponentially as a func-
have constant error, independent of the database size, and the seafgfh of the number of qubits, putting severe demands on the
time has now increased to equal the classical boDitl), i.e.,  physical realization. In contrast, if the error and hence the
IogN(t )=1. In the limit of largeN, the s_callng qf the search tllme precision is constant in the system sit&g., a system where
with thl? error parameter foo= ;/4 [reg'(.m. (a)J s a Cf,nfstamt the natural linewidth is independent of the number of sjates
=0(NY?), while for §<1/4 [region(b)], it is t’ =O(N'"2%) (see . .
text. then there always exists a database size such tha_lt the quan-
tum approach offers no speed-up over the classical search
algorithm.
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We have verified our conclusions by numerically simulat-

ing Eq. (55) for various values oN andl". Figure 4 showsa '€ main consequence of the nonrobustness of these
logarithmic plot of the minimum time’ required to obtain a forms of quantum searches to oracle noise that was demon-

success probability oP(t')=1/4, as a function of the error strateq here is a practical Iimitgtion on the gize of the Iibrary
scaling parametes, for various values oN. It is evident ~©n which may be searched with a quadratic speed-up using
that the algorithmic complexity shows a marked transition aguantum search algorithms without any explicit error correc-
5=1/4, from scalingO(N¥3 for 5=1/4, to O(N*~2%) for tion. This result has significant consequences for physical
5<1/4, as predicted by Eqg59) and (64), respectively. implementation of quantum search algorithms, since al-
Equivalently, we can state that the continuous-time quanturthough quantum error correction can be used to reduce the
search algorithm with randomized phase error achieves mingrror present in the oracle, such error correction procedures
mal complexity and hence maximum algorithmic speed-ugcan require significant resourded. In practice, it will there-
when e,,s<NY* (6=1/4). This agrees with the results for fore be necessary to balance mstof error correction(in
the discrete-time algorithm. both spatial and temporal resourgesith the extent of
speed-up attained by a noisy quantum search. The analytic
results presented in this paper provide a useful bound on the
maximum oracle error permissible if a quadratic speed-up is
The analysis in this paper has provided a phenomenologio be retained. Above this maximum allowable error, we
cal description of the dependence of the algorithmic comimust use error correction in any physical implementation.
plexity of Grover’s algorithm on the scaling of oracle phaseConversely, below this maximum error, we can be confident
error for a discrete quantum search, and on stochastic Hamithat error correction will not be necessary, provided that
tonian errors leading to phase error in a continuous-timeracle phase error is the primary source of error.
guantum search algorithm. In both the discrete- and As a final comment we point out that although Grover’s
continuous-time versions of the algorithm, it was found thatalgorithm and its continuous-time analog are not inherently
if the phase error scaled with size BS °, then for5<1/4  robust to phase error in the oracle, it is not clear whether
the effect on the complexity of the algorithm for larjevas  other implementations of quantum search may be inherently
negligible. However, if the size scaling of the error lies in therobust. Exploration of both active and passive error correc-

IV. CONCLUSIONS
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