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Lower bounds on the complexity of simulating quantum gates
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We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation
using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound
holds for arbitraryn-qubit gates.
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I. INTRODUCTION

Understanding quantum dynamics is at the heart of qu
tum physics. Recent ideas from quantum computation h
stimulated interest in studying the physical resources nee
to implement quantum operations. In addition to a qualitat
understanding of what resources are necessary, we w
like to quantify the resource requirements for universal qu
tum computation and other information processing tasks.
timately, we would like to understand the minimal resourc
that are necessary and sufficient to implement partic
quantum dynamics.

As a first step towards answering these questions, it
been shown that there is a sense in which all entang
dynamics are qualitatively equivalent. In particular, it h
been shown that anyn-qudit two-body Hamiltonian capabl
of creating entanglement between any pair of qudits is
principle, universal for quantum computation, when assis
by arbitrary single-qudit unitaries@1–8#. Thus, any particular
entangling two-qudit Hamiltonian can be used to simul
any other, provided local unitaries are available. This s
gests that such dynamics are a fungible physical resourc

Having established the qualitative equivalence of all
tangling dynamics, we would like to quantify their informa
tion processing power. In particular, it is interesting to co
sider the minimal time required to implement a unita
operationU on a two-qubit system, using a fixed Ham
tonianH and the ability to intersperse fast local unitary o
erations on the two qubits. This problem was studied
Khaneja, Brockett, and Glaser@9#, who found a solution us-
ing the theory of Lie groups. Their results, although giving
solution in principle, are neither explicit about the form
the minimal time, nor do they explain how to construct
elements of the time-optimal simulation. Further work
Vidal, Hammerer, and Cirac@10#, from a different point of
view, resulted in an explicit formula for the minimal time
and gave a constructive procedure for minimizing that ti
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~see also Ref.@11#, where an alternate proof is given by th
same authors!.

The purpose of the present paper is to give a simplifi
proof that the formula of Vidal, Hammerer, and Cirac is,
fact, a lower bound on the simulation time. Note that t
difficult part of Refs. @10#, @11# was proving the lower
bound; finding a protocol to meet the lower bound was co
paratively easy.

The main advantages of our proof are its simplicity a
conceptual clarity, as compared to the ingenious, but ra
complex, arguments in Refs.@9–11#. This simplicity is
achieved by making use of a powerful result from line
algebra, Thompson’s theorem. We expect that Thomps
theorem might be useful for many other problems in qu
tum information theory. A second advantage of using T
ompson’s theorem is that it does not rely on special prop
ties of two-qubit unitary operators. Therefore, essentially
same arguments give a lower bound on the time require
implement ann-qubit unitary operation using a fixedn-qubit
interaction Hamiltonian, and fast local unitary operations

Our approach to the proof of the lower bound has its ro
in the framework of dynamic strength measures for quant
operations@12#. The dynamic strength framework is an a
tempt to develop a quantitative theory of the power of d
namical operations for information processing. The idea is
associate with a quantum dynamical operation, such a
unitary operationU, a quantitative measure of its ‘‘strength.
In Ref. @12# it was shown that such strength measures can
used to analyze the minimal time required for the implem
tation of a quantum operation. The present paper take
similar approach, but instead of using a single real numbe
quantify dynamic strength, we use a vector-valued meas
This can also be compared to the analysis of optimal sim
lation of Hamiltonian dynamics using a set of seve
strength measures@13#.

Our paper is structured as follows. Section II review
some background material on majorization, Thompso
theorem, and the structure of the two-qubit unitary matric
The main result, the lower bound on optimal simulation,
proved in Sec. III. We conclude in Sec. IV by presenting o
generalization of the lower bound ton qubits and suggesting
some directions for future work. In addition, an append
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CHILDS, HASELGROVE, AND NIELSEN PHYSICAL REVIEW A68, 052311 ~2003!
gives a procedure for calculating a canonical decomposi
of two-qubit unitary gates.

II. BACKGROUND

This section reviews the relevant background needed
our proof. Section II A reviews the basic notions of majo
ization, introduces Thompson’s theorem, and explains h
to use Thompson’s theorem and majorization to relate pr
erties of a product of unitary operators to properties of
individual unitaries. Section II B introduces the canonical d
composition, a useful representation theorem for two-qu
unitary operators, and Section II C presents an analogous
composition for Hamiltonians.

A. Majorization and Thompson’s theorem

Our analysis uses the theory of majorization together w
Thompson’s theorem. More detailed introductions to ma
ization may be found in Ref.@14#, Chaps. 2 and 3 of Ref
@15#, and in Refs.@16#, @17#.

Suppose x5(x1 ,...,xD) and y5(y1 ,...,yD) are two
D-dimensional real vectors. The relationx is majorized byy,
written xay, is intended to capture the intuitive notion thax
is less ordered~i.e., more disordered! than y. To make the
formal definition we introduce the notation↓ to denote the
components of a vector rearranged into nonincreasing or
so x↓5(x1

↓ ,...,xD
↓ ), wherex1

↓>x2
↓>¯>xD

↓ . Thenx is ma-
jorized byy, that is,xay, if

(
j 51

k

xj
↓<(

j 51

k

yj
↓ ~1!

for k51,...,D21, and the inequality holds with equalit
whenk5D.

To connect majorization to Hamiltonian simulation, w
use a result of Thompson relating a product of two unit
operators to the individual unitary operators. Recall that
arbitrary pair of unitary operators can be written in the fo
eiH andeiK , for some HermitianH andK. Thompson’s theo-
rem provides a representation for the producteiHeiK in terms
of H andK.

Theorem 1 (Thompson [18]). Let H, K be Hermitian ma-
trices. Then there exist unitary matricesU, V such that

eiHeiK5ei ~UHU†1VKV†!. ~2!

The proof of Thompson’s theorem in Ref.@18# depends
on a result conjectured earlier by Horn@19#. A proof of this
conjecture had been announced and outlined by Lidskii@20#
at the time of Thompson’s paper. However, remarks in R
@18# suggest that Ref.@20# did not contain enough detail t
be considered a fully rigorous proof. Fortunately, a proof
Horn’s conjecture has recently been fully completed a
published. See, for example, Refs.@21#, @22# for reviews and
references.

Thompson’s theorem may be related to majorization us
the following theorem of Ky Fan.

Theorem 2 (Ky Fan [15,23]). Let H, K be Hermitian ma-
trices. Thenl(H1K)al(H)1l(K), wherel(A) denotes
05231
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the vector whose entries are the eigenvalues of the Herm
matrix A, arranged into nonincreasing order.
Combining the results of Ky Fan and Thompson, we ha
the following.

Corollary 3. Let H, K be Hermitian matrices. Then ther
exists a Hermitian matrixL such that

eiHeiK5eiL ; l~L !al~H !1l~K !. ~3!

We will not apply this corollary directly, but we have in
cluded it here because it captures the spirit of our later ar
ment, combining the Thompson and Ky Fan theorems
relate the properties of a product of unitaries to the in
vidual unitaries themselves. Corollary 3 can be regarded
vector-valued analog of the chaining property for dynam
strength measures used in Ref.@12# to establish lower
bounds on computational complexity.

B. The canonical decomposition of a two-qubit gate

The canonical decompositionis a useful representatio
theorem characterizing the nonlocal properties of a two-qu
unitary operator. It was proved by Khaneja, Brockett, a
Glaser@9# using ideas from Lie theory. Kraus and Cirac@24#
have given a constructive proof using elementary notio
while Zhanget al. @25# have discussed the decomposition
detail from the point of view of Lie theory. The decompos
tion states that any two-qubit unitaryU may be written in the
form

U5~A1^ B1!ei ~uxX^ X1uyY^ Y1uzZ^ Z!~A2^ B2!, ~4!

where A1 , A2 , B1 , B2 are single-qubit unitaries, and th
three parametersux , uy , and uz characterize the nonloca
properties ofU.1 Without loss of generality, we may choos
the local unitaries to ensure that

p

4
>ux>uy>uuzu, ~5!

and we refer to the set of parameters chosen in this wa
thecanonical parametersfor U. We will see below that these
parameters are unique. We define thecanonical formof U to
be

Ucª~A1
†

^ B1
†!U~A2

†
^ B2

†!, ~6!

up to local unitaries,Uc is equivalent toU. It will be conve-
nient to assume through the remainder of this section thaU
has unit determinant. This is equivalent to requiring thatA1 ,
A2 , B1 , B2 can all be chosen to have unit determinant.

The canonical parameters turn out to be crucial to res
about simulation of two-qubit gates. If

Uc5ei ~uxX^ X1uyY^ Y1uzZ^ Z! ~7!

1Prior to Ref. @9#, Makhlin @26# gave a proof that the nonloca
properties ofU are completely characterized byux , uy , anduz , but
did not write down the canonical decomposition explicitly.
1-2
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is the canonical form ofU, then we define thenonlocal con-
tent f(U) of U by f(U)ªl(HU), where

HUªuxX^ X1uyY^ Y1uzZ^ Z. ~8!

Explicitly, the components off(U) are

f15ux1uy2uz , ~9!

f25ux2uy1uz , ~10!

f352ux1uy1uz , ~11!

f452ux2uy2uz . ~12!

We now outline a simple procedure to determine the
nonical parameters of a two-qubit unitary operator. Our
planation initially follows Refs.@11# and @27#. However, as
explained below, there is an ambiguity in the procedure
scribed in those papers, related to the fact that the logari
function has many branches. Our procedure resolves this
biguity.

To explain the procedure, we need to introduce a piec
notation, and explain a simple observation about single-q
unitary matrices. Thespin flipoperation on an arbitrary two
qubit operator is defined as

M̃ª~Y^ Y!MT~Y^ Y!, ~13!

whereY is the Pauli sigmay matrix, and the transpose op
eration is taken with respect to the computational basis. N
that the spin flip operation may also be written asM̃5MT,
where the transpose is taken with respect to a different ba
the magic basis@28#,

u00&1u11&

&
, i

u00&2u11&

&
,

i
u01&1u10&

&
,

u01&2u10&

&
. ~14!

The observation about single-qubit unitary matrices that
need is the following. LetU be any single-qubit unitary ma
trix with unit determinant. Then

UYUT5Y, ~15!

where the transpose is taken in the computational basis.
simple identity is easily verified.

Now supposeU is an arbitrary two-qubit unitary with uni
determinant. By definition of the spin flip, and substituti
the canonical decomposition, we have

UŨ5~A1^ B1!Uc~A2^ B2!~Y^ Y!

3~A2
T

^ B2
T!Uc~A1

T
^ B1

T!~Y^ Y!. ~16!

By the identity Eq.~15! we see that

UŨ5~A1^ B1!Uc~Y^ Y!Uc~A1
T

^ B1
T!~Y^ Y!. ~17!
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Using the fact thatY^ Y commutes withX^ X, Y^ Y, and
Z^ Z, we see thatY^ Y commutes withUc , and thus

UŨ5~A1^ B1!Uc
2~Y^ Y!~A1

T
^ B1

T!~Y^ Y!. ~18!

Finally, applying Eq.~15! again gives

UŨ5~A1^ B1!Uc
2~A1

†
^ B1

†!. ~19!

Equation~19! suggests a procedure to determine the cano
cal parameters forU, based on the observation that

l~UŨ !5l~Uc
2!5~e2if1,e2if2,e2if3,e2if4!, ~20!

where thef j are related to the canonical parametersux , uy ,
anduz by Eqs.~9!–~12!. It is tempting to conclude that on
can determineux , uy , uz from the eigenvalues ofUŨ, sim-
ply by taking logarithms and inverting the resulting line
equations. Indeed, such a conclusion is reached in Refs.@11#
and @27#, using arguments similar to those just describ
Unfortunately, determining the canonical parameters is
quite as simple as this, becausez→eiz is not a uniquely
invertible function. In particular,eiz5ei (z12pm), wherem is
any integer, so there is some ambiguity about which bra
of the logarithm function to use in calculating the canonic
parameters. In fact, we prove later that no one branch of
logarithm function can be used. However, these consid
ations do allow us to reach the following conclusion.

Lemma 4.Let U be a two-qubit unitary. Then there exis
a HermitianH such that

UŨ5e2iH , l~H !5f~U !. ~21!

Moreover, if H is any Hermitian matrix such thatl(UŨ)
5l(e2iH) then it follows thatl(H)5f(U)1pmW , wheremW
is some vector of integers.

Although this lemma is sufficient to prove our later r
sults, there is in fact a simple method for exactly calculat
the canonical parameters. Because there are many app
tions of the canonical decomposition, we describe t
method in the appendix. The method will not be needed e
where in the paper.

C. The canonical form of a two-qubit Hamiltonian

Finally, we introduce one additional concept, thecanoni-
cal form of a two-qubit HamiltonianH @3#. Any two-qubit
HamiltonianH can be expanded as

H5 (
j ,k50

3

hjks j ^ sk . ~22!

Then let

H8ª
H1H̃

2
5 (

j ,kÞ0
hjks j ^ sk . ~23!

That is,H8 is just the Hamiltonian that results when the loc
terms inH are removed. It is not difficult to show thatH and
H8 are interchangeable resources for simulation in the se
1-3
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that, given fast local unitaries, evolution according toH for a
time t can be simulated by evolution according toHc for a
time t, and vice versa. Furthermore, by doing appropri
local unitaries, it can be shown@3# that simulatingH8 ~and
thusH! is equivalent to simulating the canonical form ofH,

Hc5hxX^ X1hyY^ Y1hzZ^ Z, ~24!

wherehx>hy>uhzu. Once again,H andHc are interchange-
able resources for simulation.

Note that the three parametershx , hy , hz are completely
characterized by the three degrees of freedom inl(Hc)
5l(H1H̃)/2, just as the three canonical parametersux , uy ,
uz are completely characterized by the three degrees of f
dom in l(Uc

2)5l(UŨ).

III. SIMULATION OF TWO-QUBIT GATES

We now return to the main purpose of the paper, prov
results about the time to simulate a unitary gate using en
gling Hamiltonians and fast local gates. We aim to prove
following result.

Theorem 5 (Vidal, Hammerer, Cirac [10,11], cf. Khanej
Brockett, and Glaser [9]). Let U be a two-qubit unitary op-
erator, and letH be a two-qubit entangling Hamiltonian
Then the minimal time required to simulateU using H and
fast local unitaries is the minimal value oft such that there
exists a vector of integersmW satisfying

f~U !1pmW a
l~H1H̃ !

2
t. ~25!

Note further that only two vectors of integers need to
checked,mW 5(0,0,0,0) andmW 5(1,1,21,21), since all the
other possibilities give rise to weaker constraints on
minimal time t @10,11#. The difficult part of the proof of
theorem 5 is the proof that Eq.~25! is a lower bound on the
simulation timet and it is this part of the proof that we focu
on simplifying. The proof that this lower bound may b
achieved follows from standard results on majorization, a
we refer the interested reader to Refs.@10#, @11# for details.

To prove that Eq.~25! constrains the minimal time fo
simulation, we begin by characterizing the canonical deco
position of a product of unitary matrices. LetL(U)
ªl(UŨ), and define the equivalence relationA;B for Her-
mitian matricesA andB if l(A)5l(B). Then we have the
following.

Lemma 6.Let U j be unitary matrices, and letH j be Her-
mitian matrices such thatU jŨ j5e2iH j . Then there exist Her-
mitian matricesK j such thatH j;K j , and

L~UN¯U1!5l~e2i ~K11¯1KN!!. ~26!

Proof. We induct onN. The result is trivial forN51, so
we need only consider the inductive step. Using the f
l(AB)5l(BA), we have

L~UN11¯U1!5l~ŨN11UN11UN¯U1Ũ1¯ŨN!.
~27!
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By the inductive hypothesis there exist HermitianK j8 such
that H j;K j8 and

l~UN¯U1Ũ1¯ŨN!5l~e2i ~K181¯1KN8 !!. ~28!

Therefore,UN¯U1Ũ1¯ŨN5e2i (K191¯1KN9 ), for someK j9
;H j . Observe also that

ŨN11UN11;UN11ŨN115e2iH N11, ~29!

and thusŨN11UN115e2iK N119 for some KN119 ;HN11 . It
follows by substitution that

L~UN11¯U1!5l~e2iK N119 e2i ~K191¯1KN9 !!. ~30!

Applying Thompson’s theorem gives

L~UN11¯U1!5l~e2i ~K11¯1KN11!! ~31!

for someK j;K j9;H j , which completes the inductive ste
of the proof. j

Given this result, it is straightforward to complete th
proof of Eq.~25!.

Proof. Write U in the form

U5e2 iHt 1V1e2 iHt 2V2 ...Vk21e2 iHt k, ~32!

where t1 ,...,tk are times of evolution,t5t11¯1tk is the
total time for simulation, andVj are local unitaries. Without
loss of generality, we may assumeH is in canonical form.
Applying lemma 6, we obtain

L~U !5l~e2i ~H1t11¯1Hktk!!, ~33!

whereH j;H for eachj. Here we have used the observatio
VjṼj51, so all the contributions from local unitaries vanis
It follows from lemma 4 that

f~U !1pmW 5l~H1t11¯1Hmtm!, ~34!

and using Ky Fan’s theorem gives

f~U !1pmW al~H !~ t11¯1tm!, ~35!

which is Eq.~25!, as desired. j

IV. DISCUSSION

In this paper, we have provided a simplified proof of
lower bound on the time required to simulate a two-qu
unitary gate using a given two-qubit interaction Hamiltoni
and local unitaries. The bound follows easily from standa
results on majorization together with Thompson’s theor
on products of unitary operators.

Although we have described canonical decompositions
two-qubit gates in some detail, we note that our proof do
not actually require properties of the decomposition uniq
to two qubits. In fact, it is straightforward to prove an anal
of Eq. ~25! for ann-qubit system. For ann-qubit operatorM,
suppose we define a generalized spin flipM→M̃ as some
antihomomorphism (M1M 2̃5M̃2M̃1) on the group ofn3n
1-4
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unitary matrices, such thatMM̃5I wheneverM is local. For
example, the generalized spin flip could be the transp
operation in a basis such that, wheneverM is local, M is
orthogonal, i.e.,MM̃5I . It is not difficult to construct ex-
amples of such bases, at least whenn is even. An example is
the basis obtained by rotating the computational basis u
the transformation (I 2 iY ^ n)/&, for n even. This basis
change givesM̃5Y^ nMTY^ n, where the transpose is take
in the computational basis, and thus this operation gene
izes the transpose in the magic basis.

In this general setting the following lower bound on t
time required to implement ann-qubit gate holds.

Corollary 7. Let U be ann-qubit unitary operator, and le
H be an n-qubit Hamiltonian. Then the time required t
simulateU usingH and fast local unitaries satisfies

1

2
argl~UŨ !1pmW a

l~H1H̃ !

2
t. ~36!

for some vector of integersmW .
The proof follows simply by taking the arguments of bo

sides of Eq.~33! and applying Ky Fan’s theorem. All step
leading up to Eq.~33! remain valid forn-qubit systems using
the above definition of the generalized spin flip.

Unfortunately, we have not found any interesting e
amples withn.2 for which Eq.~36! provides a nontrivial
lower bound on the time required to implement some qu
tum gate. It would be interesting to construct cases wh
Eq. ~36! ~or some similar condition! does give a nontrivial
constraint on multipartite gate simulation. One might ima
ine that such techniques could be used to prove circuit lo
bounds on certain quantum computations, although it d
not seem likely that such bounds would be especially stro
given the well-known difficulty of this problem.
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APPENDIX: A METHOD FOR COMPUTING THE
CANONICAL PARAMETERS OF A TWO-QUBIT

UNITARY GATE

In this appendix, we describe a method for computing
canonical parameters of a two-qubit unitary, based on
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discussion in Sec. II B. The key is to take logarithms in ju
the right way. From Eqs.~5! and ~9!–~12!, we see that

3p

2
>2f1>2f2>2f3>2f4>2

3p

2
. ~A1!

It is not difficult to find examples where the first or la
inequality is saturated, so no single fixed branch of the lo
rithm function can be used to determine thef j . One might
hope instead that there exists a method for choosing a di
ent branch for each particularU, so that the correspondin
2f j lie within that branch. However, even this is not possib
in general. To understand this, note that

2f122f454~ux1uy!. ~A2!

In cases whereux5uy5p/4, we have 2f122f452p, in
which case the values 2f j do not lie inany one branch.

We now show how to compute thef j . The idea is that we
can first take the argument of the eigenvalues in Eq.~20!
over some fixed branch. Then we can systematically de
mine which of the resulting values have been shifted byp
from the value 2f j ~due to an incorrect branch! and correct
these values accordingly.

Let Sj , j 51,...,4 be defined as

2Sj5arg~e2if j !. ~A3!

That is, 2Sj are the arguments of the eigenvalues ofUŨ,
where we take the argument over the branch~2p/2, 3p/2#,
so that theSj are contained in the interval~2p/4, 3p/4#.
Considering the range of values thatf j may take, from Eq.
~A1!, and the particular branch we are using, it is clear th

Sj5H f j1f if f j<2
p

4
,

f j otherwise.

~A4!

From Eqs.~9!–~12! we have

f11f21f31f450. ~A5!

Combining Eqs.~A4! and ~A5!, we see that

S11S21S31S45pn, ~A6!

wheren is the number off j that are less than or equal t
2p/4. Possible values forn are 0, 1, 2, and 3@all four f j
cannot simultaneously be<2p/4, since that would contra
dict Eq. ~A5!#. Since thef j obey the ordering in Eq.~A1!,
then then values off j that are less than or equal to2p/4 are
f4 ,...,f42n11 , and the remaining 42n values greater than
p/4 aref1 ,...,f42n . Thus, using Eq.~A4!, we see that the
set of valuesSj consist ofn ‘‘shifted’’ f j values

f41p,...,f42n111p, ~A7!

and 42n ‘‘nonshifted’’ values off j

f1 ,...,f42n . ~A8!

Furthermore, all of the shifted values in Eq.~A7! are no less
1-5
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than any of the nonshifted values in Eq.~A8!. This is shown
by combining Eq.~5! with Eq. ~A2!, giving f12f4<p,
which when combined with Eq.~A1! implies thatf j<fk
1p for all j, k, as required. Therefore, the largestn values of
Sj are guaranteed to be the values in Eq.~A7!. Thus subtract-
ing p from the largest n values of Sj , gives us
f4 ,...,f42n11 , and the remaining 42n values ofSj give us
f1 ,...,f42n .
w,

.

ys

-

to

d

.
A.

05231
In summary, the nonlocal parametersux , uy , anduz may
be computed as follows. Find the arguments of the eigen
ues ofUŨ over the branch~2p/2, 3p/2#. Call these values
2Sj . Calculaten5(S11S21S31S4)/p. Replace then larg-
est values ofSj by those values minusp. The resulting val-
ues, when placed in nonincreasing order, are equa
(f1 ,f2 ,f3 ,f4). The parametersux , uy , and uz are then
found by inverting Eqs.~9!–~12!.
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