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Lower bounds on the complexity of simulating quantum gates
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We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation
using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound
holds for arbitraryn-qubit gates.
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I. INTRODUCTION (see also Ref11], where an alternate proof is given by the
same authops

Understanding quantum dynamics is at the heart of quan- The purpose of the present paper is to give a simplified
tum physics. Recent ideas from quantum computation havproof that the formula of Vidal, Hammerer, and Cirac is, in
stimulated interest in studying the physical resources needddct, a lower bound on the simulation time. Note that the
to implement quantum operations. In addition to a qualitativedifficult part of Refs.[10], [11] was proving the lower
understanding of what resources are necessary, we woulsbund; finding a protocol to meet the lower bound was com-
like to quantify the resource requirements for universal quanparatively easy.
tum computation and other information processing tasks. Ul-  The main advantages of our proof are its simplicity and
timately, we would like to understand the minimal resourcesconceptual clarity, as compared to the ingenious, but rather
that are necessary and sufficient to implement particulagomplex, arguments in Refd9-11]. This simplicity is
quantum dynamics. , _ __achieved by making use of a powerful result from linear

As a first step towards answering these questions, it haélgebra, Thompson’s theorem. We expect that Thompson’s

been s_hown that t_her_e s a sense in which _aII ent"?mg"ngé’neorem might be useful for many other problems in quan-
dynamics are qualitatively equivalent. In particular, it has,[um information theory. A second advantage of using Th-

been sh.own that ang-qudit two-body Ham|I.ton|an capable_ ompson’s theorem is that it does not rely on special proper-
of creating entanglement between any pair of qudits is, in; f two-aubit unit i Theref tially th
principle, universal for quantum computation, when assiste €5 of two-qublt unitary operators. Theretore, essentially the
by arbitrary single-qudit unitarigd—8]. Thus, any particular same arguments give a lower bou.nd on 'the tlme requ[red o
entangling two-qudit Hamiltonian can be used to simulatdMPIéMent am-qubit unitary operation using a fixedqubit
any other, provided local unitaries are available. This Sug1nteract|on Hamiltonian, and fast local unitary operat_|ons.
gests that such dynamics are a fungible physical resource. ~ Our approach to the proof of the lower bound has its roots
Having established the qualitative equivalence of all enin the framework of dynamic strength measures for quantum
tangling dynamics, we would like to quantify their informa- operations{12]. The dynamic strength framework is an at-
tion processing power. In particular, it is interesting to con-tempt to develop a quantitative theory of the power of dy-
sider the minimal time required to implement a unitary namical operations for information processing. The idea is to
operationU on a two-qubit system, using a fixed Hamil- associate with a quantum dynamical operation, such as a
tonianH and the ability to intersperse fast local unitary op- unitary operatior, a quantitative measure of its “strength.”
erations on the two qubits. This problem was studied byin Ref.[12] it was shown that such strength measures can be
Khaneja, Brockett, and Glasg3], who found a solution us- used to analyze the minimal time required for the implemen-
ing the theory of Lie groups. Their results, although giving atation of a quantum operation. The present paper takes a
solution in principle, are neither explicit about the form of similar approach, but instead of using a single real number to
the minimal time, nor do they explain how to construct all quantify dynamic strength, we use a vector-valued measure.
elements of the time-optimal simulation. Further work by This can also be compared to the analysis of optimal simu-
Vidal, Hammerer, and CiraflQ], from a different point of lation of Hamiltonian dynamics using a set of several
view, resulted in an explicit formula for the minimal time, strength measurd4.3].
and gave a constructive procedure for minimizing that time Our paper is structured as follows. Section Il reviews
some background material on majorization, Thompson’s
theorem, and the structure of the two-qubit unitary matrices.

*Electronic address: amchilds@mit.edu The main result, the lower bound on optimal simulation, is

"Electronic address: hlh@physics.uq.edu.au proved in Sec. Ill. We conclude in Sec. IV by presenting our

*Electronic address: nielsen@physics.uqg.edu.au; www.ginfo.orggeneralization of the lower bound toqubits and suggesting
people/nielsen some directions for future work. In addition, an appendix
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gives a procedure for calculating a canonical decompositiotthe vector whose entries are the eigenvalues of the Hermitian

of two-qubit unitary gates. matrix A, arranged into nonincreasing order.
Combining the results of Ky Fan and Thompson, we have
Il. BACKGROUND the following.

) ) ) Corollary 3. Let H, K be Hermitian matrices. Then there
This section reviews the relevant background needed fogyists a Hermitian matrix. such that

our proof. Section Il A reviews the basic notions of major-

ization, introduces Thompson’s theorem, and explains how efelk=gl: N(L)<\N(H)+\(K). (3

to use Thompson'’s theorem and majorization to relate prop-

erties of a product of unitary operators to properties of thewe will not apply this corollary directly, but we have in-
individual unitaries. Section Il B introduces the canonical de-cluded it here because it captures the spirit of our later argu-
composition, a useful representation theorem for two-qubiinent, combining the Thompson and Ky Fan theorems to
unitary operators, and Section |l C presents an analogous deelate the properties of a product of unitaries to the indi-

composition for Hamiltonians. vidual unitaries themselves. Corollary 3 can be regarded as a
vector-valued analog of the chaining property for dynamic
A. Majorization and Thompson’s theorem strength measures used in R¢fL2] to establish lower

Our analysis uses the theory of majorization together withboundS on computational complexity.
Thompson'’s theorem. More detailed introductions to major- _ B _
ization may be found in Ref.14], Chaps. 2 and 3 of Ref. B. The canonical decomposition of a two-qubit gate

[15], and in Refs[16], [17]. The canonical decompositiois a useful representation
Suppose X=(X1,...Xp) and y=(yi,....yp) are two theorem characterizing the nonlocal properties of a two-qubit
D-dimensional real vectors. The relatigris majorized byy, unitary operator. It was proved by Khaneja, Brockett, and
written X<y, is intended to capture the intuitive notion thkat ~ Glaser[9] using ideas from Lie theory. Kraus and Cifa]
is less orderedi.e., more disordergdthany. To make the have given a constructive proof using elementary notions,
formal definition we introduce the notatignto denote the while Zhanget al.[25] have discussed the decomposition in
components of a vector rearranged into nonincreasing ordegietail from the point of view of Lie theory. The decomposi-
sox!=(x{,...Xp), wherexj=x3=---=xj. Thenx is ma-  tion states that any two-qubit unitatymay be written in the
jorized byy, that is,x<y, if form

k
> xb< 121 y} )

=1

U:(A1® Bl)ei(ﬁxX®X+ OyY@Y+ 0ZZ®Z)(A2® BZ)i (4)

where A;, A,, By, B, are single-qubit unitaries, and the
for k=1,..D—1, and the inequality holds with equality three parameters,, 6,, and 6, characterize the nonlocal
whenk=D. properties ofU.* Without loss of generality, we may choose
To connect majorization to Hamiltonian simulation, we the local unitaries to ensure that
use a result of Thompson relating a product of two unitary
operators to the individual unitary operators. Recall that an
arbitrary pair of unitary operators can be written in the form
e'l ande'¥, for some HermitiarH andK. Thompson'’s theo- o
rem provides a representation for the procelee’ in terms and we refer to the set of parameters chosen in this way as

= 60,=60,=0,], (5)

INJF

of H andK. thecanonical parameterfor U. We will see below that these
Theorem 1 (Thompson [18])et H, K be Hermitian ma- parameters are unique. We define tia@onical formof U to
trices. Then there exist unitary matricds V such that be
eiH giK = @i (UHUT+VKV) 2) Ug=(AleBhu(AleB)), (6)

The proof of Thompson’s theorem in R€fl8] depends up to local unitariesU, is equivalent tdJ. It will be conve-
on a result conjectured earlier by HAri®O]. A proof of this  nient to assume through the remainder of this sectionlhat
conjecture had been announced and outlined by Lid&Kil  has unit determinant. This is equivalent to requiring #hat
at the time of Thompson’s paper. However, remarks in RefA,, B, B, can all be chosen to have unit determinant.
[18] suggest that Ref.20] did not contain enough detail to The canonical parameters turn out to be crucial to results
be considered a fully rigorous proof. Fortunately, a proof ofabout simulation of two-qubit gates. If
Horn's conjecture has recently been fully completed and

published. See, for example, Reff21], [22] for reviews and U = el (BXEXT O YRY+0,202) (7)
references.

Thompson'’s theorem may be related to majorization using———
the following theorem of Ky Fan. Prior to Ref.[9], Makhlin [26] gave a proof that the nonlocal

Theorem 2 (Ky Fan [15,23])Let H, K be Hermitian ma-  properties ol are completely characterized By, 6,, andé,, but
trices. Then\(H+K)<X(H)+\(K), where\(A) denotes did not write down the canonical decomposition explicitly.
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is the canonical form obJ, then we define thaonlocal con-
tent (U) of U by ¢(U):=\(H), where

PHYSICAL REVIEW A 68, 052311 (2003

Using the fact thalY ® Y commutes withX@ X, Y®Y, and
Z®Z, we see that¥ ® Y commutes withU., and thus

Hy=0XOX+ 6, YRY+ 0,Z0Z. (8 UU=(A®B)U3(YRY)(Al@Bl)(Y®Y). (18
Explicitly, the components o$(U) are Finally, applying Eq.(15) again gives
$1= Ox+ Oy—0;, €) uU=(A,®B;)U3(AleBI). (19
$ho=0x—0y+0,, (100 Equation(19) suggests a procedure to determine the canoni-
cal parameters fod, based on the observation that
3= — 0+ Oyt 6;, (11
MUU) =N (U2) = (e¥1,e?' %2, 6793 e21%1),  (20)
$a=—bx—6,= 6,. (12) ¢

) ) ) where theg; are related to the canonical parameteys 6, ,
We I”OW outline a ?lmple prog_edur_e to determine the cayng g, by Egs.(9)—(12). It is tempting to conclude that one
nonical parameters of a two-qubit unitary operator. Our &X<an determind,, 6,, 6, from the eigenvalues a0 sim-

planation initially follows Refs[11] and[27]. However, as ply by taking logarithms and inverting the resulting linear

explained below, there is an ambiguity in the procedure det g LS :
scribed in those papers, related to the fact that the Iogarithrﬁquaﬂons' Indeed, such a conclusion is reached in REfs.

. . and[27], using arguments similar to those just described.
function has many branches. Our procedure resolves this aer- f v d . h ical .
biguity. nfortunately, determining the canonical parameters is not

To explain the procedure, we need to introduce a piece o(i]u'te as simple as this, because-e” is not a uniquely

P i i iz__ Ai(z+27m) i
notation, and explain a simple observation about single—qubfgr:/erig?ele eftrmsc(t)lcmélg E;a;tcl)ﬁleafmbieuit ab(;u\;vairiirr? llas;anch
unitary matrices. Thepin flipoperation on an arbitrary two- y ger, gutty

qubit operator is defined as of the logarithm function to use in calculating the canonical

parameters. In fact, we prove later that no one branch of the
logarithm function can be used. However, these consider-
ations do allow us to reach the following conclusion.

whereY is the Pauli sigma/ matrix, and the transpose op- Lemr_n_a 4l et U be a two-qubit unitary. Then there exists
eration is taken with respect to the computational basis. Not@ HermitianH such that

that the spin flip operation may also be writtenis=MT, UU=e?", \(H)=a(U)
where the transpose is taken with respect to a different basis, ' '
the magic basiq 28],

M:=(YRY)MT(Y®Y), (13

(21)

Moreover, if H is any Hermitian matrix such that(UU)
=\(e?") then it follows that\ (H) = ¢(U) + 7, wherem
is some vector of integers.

Although this lemma is sufficient to prove our later re-
sults, there is in fact a simple method for exactly calculating
the canonical parameters. Because there are many applica-
tions of the canonical decomposition, we describe this
method in the appendix. The method will not be needed else-
é(vhere in the paper.

|00) +|11) i |00)—|11)

V2 V2

i|01>+|10>, |01>—|10>. (14
V2 V2

The observation about single-qubit unitary matrices that w
need is the following. LeU be any single-qubit unitary ma- . . o
trix with unit determinant. Then C. The canonical form of a two-qubit Hamiltonian

Finally, we introduce one additional concept, tenoni-

cal form of a two-qubit HamiltoniarH [3]. Any two-qubit

where the transpose is taken in the computational basis. ThI—slamntomanH can be expanded as
simple identity is easily verified. 3

uyu'=vy, (15)

Now supposéJ is an arbitrary two-qubit unitary with unit H= 2 hiko|® oy (22)
determinant. By definition of the spin flip, and substituting j.k=0
the canonical decomposition, we have
Then let
UU=(A,©B;)U(A,®B,)(Y®Y) H ]
X (Al®B)U(AT@B])(YaY). (16) HY=— :%0 hjkoj@ 0. (23
By the identity Eq.(15) we see that Thatis,H’ is just the Hamiltonian that results when the local
- T 7T terms inH are removed. It is not difficult to show thetand
UU=(A;©B)U(YRY)U(A®B1)(Y®Y). (17  H’ are interchangeable resources for simulation in the sense

052311-3



CHILDS, HASELGROVE, AND NIELSEN PHYSICAL REVIEW A68, 052311 (2003

that, given fast local unitaries, evolution accordindgtéor a By the inductive hypothesis there exist Hermitily such
time t can be simulated by evolution accordingHiQ for a thatHJ-~Kj’ and

time t, and vice versa. Furthermore, by doing appropriate

local unitaries, it can be showi3] that simulatingH’ (and )\(UN-~~U101---DN)=)\(e2‘(Ki+"'+Kﬁl)). (29
thusH) is equivalent to simulating the canonical formtef

Therefore,Uy:--U, U, --Up=e2 (K1t KR for someK;

Hc=hXeX+hYoY+h,ZeZ, (24 ~H;. Observe also that

whereh,=h,=|h,|. Once againH andH, are interchange- ~ ~ i
y 4 - i Cc — — 2IHN 1
able resources for simulation. Un+aUnsr=UneUng =7, (29

Note that the three parametdrs, hy, h, are completely
characterized by the three degrees of freedom\ (i)
=N\(H+H)/2, just as the three canonical parametgrs Oy,
0, are completely cflaracterized by the three degrees of free- A(Upsq-Uyp) :)\(eziKK‘Jrlezi(K'l#m-%—KK‘))_ (30)
dom in\(U2)=\(UD).

and thusUy, ;U1 =62KN+1 for someKY, ;~Hysr. It
follows by substitution that

Applying Thompson’s theorem gives

I1l. SIMULATION OF TWO-QUBIT GATES A(UN+1°"U1)=7\(82i(K1+'"+KN*1)) (31)
We now return to the main purpose of the paper, proving , . ] )
results about the time to simulate a unitary gate using entarfor someK;~Kj~H;, which completes the inductive step

gling Hamiltonians and fast local gates. We aim to prove theof the proof. - _ [ |

following result. Given this result, it is straightforward to complete the
Theorem 5 (Vidal, Hammerer, Cirac [10,11], cf. Khaneja, Proof of Eq.(25).

Brockett, and Glaser [9])Let U be a two-qubit unitary op- Proof. Write U in the form

erator, and letH be a two-qubit entangling Hamiltonian.
Then the minimal time required to simulaté usingH and
fast local unitaries is the minimal value bkuch that there
exists a vector of integen® satisfying

U=e iy, e Htay, v, e Hik, (32)

wheret,,... t, are times of evolutiont=t;+---+t, is the

total time for simulation, and; are local unitaries. Without

~ loss of generality, we may assurkkis in canonical form.

H(U)+ mri< )\(H2+H) t (25) Applying lemma 6, we obtain
A(U):)\(eZi(Hltl+"'+Hktk))’ (33)

Note further that only two vectors of integers need to be ) )

checked,m=(0,0,0,0) andm=(1,1—1,—1), since all the WhereH;~H for eachj. Here we have used the observation

other possibilities give rise to weaker constraints on theV;V;=1, so all the contributions from local unitaries vanish.

minimal time t [10,11]. The difficult part of the proof of It follows from lemma 4 that

theorem 5 is the proof that ER5) is a lower bound on the .

simulation timet and it is this part of the proof that we focus H(U)+mm=N(Hyty+- - +Hptp), (34

on simplifying. The proof that this lower bound may be

. ST nd using Ky Fan’s theorem giv
achieved follows from standard results on majorization, and d gry © gives

we refer the interested reader to RdfR0], [11] for details. H(U)+ <\ (H)(ty+- - +1t,), (35)
To prove that Eq(25) constrains the minimal time for
simulation, we begin by characterizing the canonical decomwhich is Eq.(25), as desired. |
position of a product of unitary matrices. Lek(U)
:=\(UU), and define the equivalence relatian-B for Her- IV. DISCUSSION
mitian matricesA andB if A(A)=\(B). Then we have the . . S
following. In this paper, we have provided a simplified proof of a

lower bound on the time required to simulate a two-qubit
unitary gate using a given two-qubit interaction Hamiltonian
and local unitaries. The bound follows easily from standard
results on majorization together with Thompson’s theorem
on products of unitary operators.

Although we have described canonical decompositions of
two-qubit gates in some detail, we note that our proof does
pot actually require properties of the decomposition unique

Lemma 6Let U; be unitary matrices, and Iét; be Her-

mitian matrices such thzhjjUj =e?Mj. Then there exist Her-

mitian matricesK; such thatH;~K;, and
A(UN...Ul):)\(eZi(Kﬁ'“*KN))_ (26)

Proof. We induct onN. The result is trivial forN=1, so
we need only consider the inductive step. Using the fac

_ to two qubits. In fact, it is straightforward to prove an analog
MAB)=\(BA), we have of Eq. (25) for ann-qubit system. For an-qubit operatoM,
A(Ups1 U =A(Ops1Uns Uy U104 --0y). suppose we define a generalized spin Mp—~M as some

(270 antihomomorphismi,M,=M,M,) on the group ofixn
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unitary matrices, such tha M =1 whenevem is local. For discussion in Sec. I B. The key is to take logarithms in just

example, the generalized spin flip could be the transposE‘-,he right way. From Eqs(S) and (9)—(12), we see that
operation in a basis such that, wheneWéris local, M is

3 3

orthogonal, i.e.MM=1. It is not difficult to construct ex- 5 Z2$1=2¢2=2¢3=2¢4=— . (A1)
amples of such bases, at least winea even. An example is
the basis obtained by rotating the computational basis using is not difficult to find examples where the first or last
the transformation I(~iY“")/v2, for n even. This basis inequality is saturated, so no single fixed branch of the loga-
change gived =Y®"MTY®" where the transpose is taken rithm function can be used to determine e. One might
in the computational basis, and thus this operation generahope instead that there exists a method for choosing a differ-
izes the transpose in the magic basis. ent branch for each particul&f, so that the corresponding

In this general setting the following lower bound on the 2¢; lie within that branch. However, even this is not possible
time required to implement am-qubit gate holds. in general. To understand this, note that

Corollary 7. Let U be ann-qubit unitary operator, and let
H be ann-qubit Hamiltonian. Then the time required to 21— 2¢4=4( 0+ 0y). (A2)

simulateU usingH and fast local unitaries satisfies _
In cases wheré),= 0,=w/4, we have 2,—2¢,=2m, in

ANH+H) which case the values¢ do not lie inany one branch.

— (36) We now show how to compute thg . The idea is that we
can first take the argument of the eigenvalues in Q)

for some vector of integens. over some fixed branch. Then we can systematically deter-

The proof follows simply by taking the arguments of both mine which of the resulting ve}lues have been shifted by 2
sides of Eq.(33) and applying Ky Fan’s theorem. All steps from the value 2, (dye to an incorrect brangland correct
leading up to Eq(33) remain valid fom-qubit systems using these values accordingly.
the above definition of the generalized spin flip. LetS;, j=1....,4 be defined as

Unfortunately, we have not found any interesting ex- _ 2ig
amples withn>2 for which Eq.(36) provides a nontrivial 25 =arge™®). (A3)
lower bound on the time required to implement some quans . . ~
tum gate. It would be interesting to construct cases wher-srv rr]lztrels\,/vis{ai:eetrggea?r%lr{::\?tgvgfr mg g'rg%ml;egﬂ]’
Eq. (36) (or some similar conditiondoes give a nontrivial 9 ' '

constraint on multipartite gate simulation. One might imag_E?)rzgi?jtewfgsjthir?a?\%r:ipSgll:gstrt]ﬁa,-ltnrfagdt:kqgﬁrc?:nﬂgd

1 ~
Earg)\(UU)+wrﬁ<

ine that such techniques could be used to prove circuit lowe 1), and the particular branch we are using, it is clear that
bounds on certain quantum computations, although it doe ' P 9

not seem likely that such bounds would be especially strong, ) T
given the well-known difficulty of this problem. 5= bt ¢ i d=—7, (Ad)
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APPENDIX: A METHOD FOR COMPUTING THE
CANONICAL PARAMETERS OF A TWO-QUBIT and 4—n “nonshifted” values of¢j

UNITARY GATE
. . _ _ b1, Pa—n- (A8)
In this appendix, we describe a method for computing the
canonical parameters of a two-qubit unitary, based on th&urthermore, all of the shifted values in E&\7) are no less
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than any of the nonshifted values in E48). This is shown In summary, the nonlocal parameteks, 6,, and6, may

by combining Eq.(5) with Eq. (A2), giving ¢1— ¢p,<r, be computed as follows. Find the arguments of the eigenval-
which when combined with EqiA1) implies that¢;<d¢,  ues ofUU over the brancli—/2, 3x/2]. Call these values
+ar for all j, k, as required. Therefore, the largestalues of ~ 2S;. Calculaten=(S;+ S+ S;+S,)/ 7. Replace the larg-

Sj are guaranteed to be the values in &J). Thus subtract-  est values of5; by those values minus. The resulting val-

ing 7 from the largestn values of S;, gives us ues, when placed in nonincreasing order, are equal to
$4,--,Pa—n+1, and the remaining 4 n values ofS; give us (1,5, ¢3,¢4). The parameters,, 6,, and 6, are then
D1yeesPa_n. found by inverting Eqs(9)—(12).
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