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Multiple quantum spin dynamics of entanglement

Serge I. Doronin
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow Region, Rus

~Received 25 June 2003; published 4 November 2003!

The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum
~MQ! NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled
nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analyti-
cally the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction.
In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ
coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is
responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order.
Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part
of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-
Horne-Zeilinger~GHZ! andW states is found. Different measures of the entanglement of this state are analyzed
for tripartite systems.

DOI: 10.1103/PhysRevA.68.052306 PACS number~s!: 03.67.Mn, 33.40.1f
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I. INTRODUCTION

Solid state NMR is one of the most promising candida
for realization of a quantum computer and quantu
information processing~QIP!. Several such schemes ha
been suggested@1–8#. Possibilities for the experimental re
alizations of quantum algorithms and theoretical investi
tions of QIP are connected with multiple quantum~MQ!
NMR. Contrary to the usual NMR, MQ NMR spectroscop
uses not only adjacent but all possible transitions betw
Zeeman levels of the system of interacting spins in an ex
nal magnetic field. This allows one to gain more detai
information on dynamical processes in solids. Furth
progress in the understanding of multiple-spin MQ dynam
was achieved with experimental investigations of MQ NM
dynamics of quasi-one-dimensional distributions of clust
of uniformly spaced proton spins in hydroxyapat
Ca5OH(PO4)3 and related fluorine-containing apatite
@9,10#. These materials represent a possible base for QIP
vices @6,7#. Thus, investigations of the quantum entang
ment with MQ NMR methods are of current interest. T
existence of entanglement is a necessary condition for e
nential speed-up during quantum computations@11#. It has
been investigated and discussed in the literature whethe
NMR scheme with pseudopure states is ‘‘true’’ quantu
computation@11,12#.

Numerical methods@13–15# and exactly solvable model
@16–19# have been applied to the theoretical analysis of M
dynamics. In this paper, we investigate the dynamics of
tangled states on the basis of MQ NMR methods. The res
obtained show that the time evolution of MQ coherences
nuclear spins 1/2 coupled by dipole-dipole interactio
~DDI’s! is directly connected with the dynamics of quantu
entanglement. Exact solutions are presented for two
three spin-1/2 nuclei. For these systems the periodic dyn
ics of quantum entanglement is uniquely determined by
time evolution of the intensity of MQ coherences of the s
ond order. We suppose that the intensity of MQ coherenc
the second order can be considered as a measure of enta
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ment. In particular, it is significant that the entanglement a
intensity of MQ coherence of the second order are equa
zero at the moment of timet50. At the same time, the
intensity of MQ coherence of the zeroth order is maximal
t50. In the course of the time evolution an exchange
tween MQ coherences of the zeroth and second orders t
place while their sum is a constant of motion@20#. When the
intensity of MQ coherence of the zeroth order is decreas
and becoming minimal, the entanglement achieves its m
mum value and so does the intensity of MQ coherence of
second order. After that, the entanglement decreases, an
on. It has been shown@13# that the real part of the densit
matrix describing MQ dynamics in solids is responsible
MQ coherences of the zeroth order while its imaginary p
is responsible for the second order. It is possible to concl
that the dynamics of the entanglement is connected with
transitions between the real and imaginary parts of the d
sity matrix.

II. MQ DYNAMICS

MQ spin dynamics in solids is described by th
Liouville–von Neumann equation

i
dr

dt
5@H,r~t!#, ~1!

where the nonsecular average dipolar HamiltonianH is given
by @16#

H52
1

2 (
j ,k

D jk~ I j
1I k

11I j
2I k

2! ~2!

andI j
6 are the raising and lowering spin angular moment

operators of spinj. The dipolar coupling constantD jk be-
tween spinsj andk is given by

D jk5
g2\

2r jk
3 ~123 cos2 u jk!, ~3!
©2003 The American Physical Society06-1
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SERGE I. DORONIN PHYSICAL REVIEW A68, 052306 ~2003!
wherer jk is the distance between spinsj andk, u jk the angle
between the internuclear vectorrW jk and the external magneti
field H0 , andg the gyromagnetic ratio. The angleu jk is the
same for all spin pairs. In linear chains we assume thatu jk
50.

If the spin system is in thermal equilibrium with the la
tice at t50, then the solution of Eq.~1! in the high-
temperature approximation is

r~t!5e2 iH tr~0!eiH t. ~4!

Herer~0! is the initial density matrix:

r~0!5(
j

N

I z j , ~5!

whereI z j is the projection of the spinj angular momentum
on the directionz of the external fieldH0 . According to@16#
the density matrixr~t! can be expanded as

r~t!5(
n

rn~t!, ~6!

where rn(t) is the contribution tor~t! due to MQ coher-
ences of ordern. If only the nearest neighbors interact, th
profile of MQ coherences consists of zero and two quan
coherences@17,15#. At the same time, MQ NMR spectr
consist of MQ coherences of arbitrary even orders (n50,
62,64,66,..., unu<N, whereN is the number of spins! as
the DDI’s of all spins are taken into account. While the i
tensities of MQ coherences of ordern54k (0<4k<N) are
determined by the real part of the density matrixr~t! only,
the intensities of MQ coherences of ordern54k12 (2
<4k12<N) are determined by the imaginary part ofr~t!
@13#.

Special experimental methods@21–23# are used to sepa
rate the signals from the MQ coherences of various orders
MQ NMR experiments the multiple quantum coherences
transformed into longitudinal magnetization. As a result,
intensities of the MQ coherencesJn(t) can be measured
They can be expressed as@16#

Jn~t!5Trrn~t!r2n~t!. ~7!

It is worth noticing thatr2n(t)5rn
1(t).

The sum of the intensities of the multiple quantum coh
ences does not depend on time@20#. Normalizing this sum to
unity, we have

J0~t!12(
n52

N

Jn~t!51. ~8!

III. DYNAMICS OF ENTANGLEMENT BETWEEN TWO
SPIN NUCLEI

A pair of spins has four possible basis produ
states: u00&, u01&, u10&, u11&. In this basis the initial density
matrix from Eq.~5! is
05230
m
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r~0!5S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D . ~9!

The density matrixr~t! can be obtained from the analytica
solution Eq.~4! @17,24#:

r~t!5r0~t!1r62~t!

5S cosw~t! 0 0 i sinw~t!

0 0 0 0

0 0 0 0

2 i sinw~t! 0 0 2cosw~t!

D , ~10!

where w(t)5D12t and r0(t)5Re@r(t)#, r62(t)5r12(t)
1r22(t)5Im@r(t)#.

The normalized intensity of MQ coherences can be cal
lated from Eqs.~7! and ~10!:

J0~t!5cos2 w~t!, ~11!

J2~t!5J12~t!1J22~t!5sin2 w~t!. ~12!

The density matrixr~t! of Eq. ~10! can be expressed throug
the vector of the state

uC&5eip/4 cos@w~t!/2#u00&1e2 ip/4 sin@w~t!/2#u11&.
~13!

The projector is

s~t!5uC&^Cu

5
1

2 S 11cosw~t! 0 0 i sinw~t!

0 0 0 0

0 0 0 0

2 i sinw~t! 0 0 12cosw~t!

D . ~14!

Comparing Eqs.~10! and ~14!, we have

r~t!52s~t!2E8, ~15!

where

E85S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

D
is independent of time. Thus, the MQ dynamics of the tw
spin systems can be described by the state vector~13!.

Let us consider the dynamics of the entanglement of
bipartite system in the state of Eq.~13!. The measure of the
entanglement for a pure bipartite state can be defined as
von Neumann entropy of any of its two parts@25#:
6-2
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MULTIPLE QUANTUM SPIN DYNAMICS OF ENTANGLEMENT PHYSICAL REVIEW A68, 052306 ~2003!
E52TrsA log2 sA52TrsB log2 sB , ~16!

wheresA(B)5TrB(A)s is the reduced density matrix.
If the quantum state is given by

uC&AB5au0&A^ u0&B1bu1&A^ u1&B , ~17!

then the operatorsA can be written in the form~see Chap.
2.3.1 in Ref.@26#!

sA5uau2u0&A A^0u1ubu2u1&A A^1u. ~18!

In our caseuau25cos2@w(t)/2#, ubu25sin2@w(t)/2#, and we
obtain

sA5S cos2@w~t!/2# 0

0 sin2@w~t!/2#
D . ~19!

Thus, the entanglement resulting from Eq.~16! is

E~t!52cos2@w~t!/2# log2$cos2@w~t!/2#%

2sin2@w~t!/2# log2$sin2@w~t!/2#%. ~20!

Comparing solutions of Eqs.~11!, ~12!, and~20! ~see Fig. 1!
it is possible to draw the conclusion that the dynamics
entanglement is directly correlated with the dynamics of
intensity of MQ coherences of the second order.

Let us consider the dynamics of the entanglement in te
of the concurrence, which can be determined as@27,28#

C~c!5U(
i

a i
2U, ~21!

wherea i are the coefficients of the expansion of some st

uc&5(
i

4

a i uei& ~22!

in the following ‘‘magic basis’’ of completely entangle
states:

FIG. 1. Time dependence of the intensity of MQ coherences
the zeroth orderJ0(t) ~long-dashed line!, of the second orderJ2(t)
@the square of the concurrenceC2(t)] ~short-dashed line!, and of
entanglementE(t) ~solid line! for two spins coupled by DDI’s with
the dipolar coupling constantD1252p2950 s21.
05230
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ue1&5
1

&
~ u00&1u11&), ue2&5

1

&
i ~ u00&2u11&),

ue3&5
1

&
i ~ u01&1u10&), ue4&5

1

&
~ u01&2u10&). ~23!

Then the entanglement ofuc& is @27,28#

E~c!5HF1

2
~11A12C2!G , ~24!

where H is the binary entropy functionH(x)52x log2(x)
2(12x)log2(12x).

Equation~13! can be rewritten in the form~22! as

uC&5
1

2
~e2 iw~t!/21 ie2 iw~t!/2!

1

&
~ u00&1u11&)

1
1

2
~eiw~t!/22 ieiw~t!/2!

1

&
i ~ u00&2u11&). ~25!

Thus a15(1/2)(e2 iw(t)/21 ie2 iw(t)/2), a25(1/2)(eiw(t)/2

2 ieiw(t)/2), a35a450, and

C5ua1
21a2

2u5usinw~t!u. ~26!

Comparing Eqs.~12! and~26!, it is possible to conclude tha
in the two-spin system the concurrence is connected with
intensity of MQ coherences of the second order by the re
tion

C2~t!5J2~t!. ~27!

Note that the entanglement determined by Eqs.~20! and~24!
is the same.

IV. THREE-SPIN CASE

It is known @13# that the operatoreipI z is an integral of
motion. Hence, the Hamiltonian (2N32N) matrix is reduced
to two 2N2132N21 submatrices which correspond to od
and even numbers of the spins which are directed opposi
the applied magnetic fieldH0 . If the number of spins is odd
then both blocks give the same profiles of MQ coherenc
One should solve the problem using one block of the den
matrix and double the intensities of MQ coherences@13#. If
the number of spins is even then the blocks give the differ
profiles of MQ coherences, but they can be calculated in
pendently from one other@13#.

For three-spin systems, there are eight possible prod
states: u000&, u001&, u010&, u011&, u100&, u101&, u110&, u111&.
The density matrix is reduced to two blocks in the bas
u000&, u011&, u101&, u110& ~for even number of individual spin
statesu1&! and u001&, u010&, u100&, u111& ~for odd number of
such spins!.

The top block of the initial density matrix according t
Eq. ~5! is

f

6-3
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r~0!5S 3

2
0 0 0

0 2
1

2
0 0

0 0 2
1

2
0

0 0 0 2
1

2

D . ~28!

The time development of the density matrix can be expres
analytically @24#:

r~t!5r0~t!1r62~t!

5S 3

2
1A iR23 iR13B iR12B

2 iR23B 2
1

2
2R23

2 A 2R13R23A 2R12R23A

2 iR13B 2R13R23A 2
1

2
2R13

2 A 2R12R13A

2 iR12B 2R12R23A 2R12R13A 2
1

2
2R12

2 A

D ,

~29!

where A5@cos(Deff t)21#, B5sin(Deff t), and R12
5D12/Deff , R135D13/Deff , R235D23/Deff . Here, Deff

5(D12
2 1D13

2 1D23
2 )1/2.

Let all three coupling constants be equal~the triangle
ring! D5D125D135D23. In this case,Deff5)D, R5R12
5R135R2351/), and the density matrix simplifies to

r~t!51
3

2
1A i

1

)
B i

1

)
B i

1

)
B

2 i
1

)
B 2

1

2
2

1

3
A 2

1

3
A 2

1

3
A

2 i
1

)
B 2

1

3
A 2

1

2
2

1

3
A 2

1

3
A

2 i
1

)
B 2

1

3
A 2

1

3
A 2

1

2
2

1

3
A

2 ,

~30!

whereA5@cosw(t)21#, B5sinw(t), andw(t)5)Dt.
Then the intensity of the normalized MQ coherences

the second order~for both blocks! can be calculated@24#
from Eqs.~7! and ~30! as

J2~t!5
2

3
sin2 w~t!. ~31!

The density matrixr~t! of Eq. ~30! can be expressed throug
the vector of the state
05230
ed

f

uC&5eip/4 cos@w~t!/2#u000&1
1

)
e2 ip/4 sin@w~t!/2#u011&

1
1

)
e2 ip/4 sin@w~t!/2#u101&

1
1

)
e2 ip/4 sin@w~t!/2#u110&. ~32!

The projector is

s~t!5uC&^Cu5
1

2 1
21A i

1

)
B i

1

)
B i

1

)
B

2 i
1

)
B 2

1

3
A 2

1

3
A 2

1

3
A

2 i
1

)
B 2

1

3
A 2

1

3
A 2

1

3
A

2 i
1

)
B 2

1

3
A 2

1

3
A 2

1

3
A

2 .

~33!

Comparing Eqs.~30! and ~33!, we have

r~t!52s~t!2
1

2
E, ~34!

whereE is the unit matrix.
To find the connection between MQ dynamics and

dynamics of entanglement for a three-spin system, we s
analyze the entanglement properties of the pure state~32!
through the state

uF&5au000&1bu011&1cu101&1du110&, ~35!

whereuau21ubu21ucu21udu251.
The density matrix of three particlesA,B,C is sABC

5uF(ABC)&^F(ABC)u. The two-particle and one-particl
reduced density matrices are given by

sBC5TrAsABC ,

sA5TrBCsABC . ~36!

All other reduced density matrices are obtained analogou
For the state~35! we have

sBC5S uau2 0 0 ab*

0 ucu2 cd* 0

0 dc* udu2 0

ba* 0 0 ubu2
D ,

sA5S uau21ubu2 0

0 ucu21udu2D . ~37!
6-4
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MULTIPLE QUANTUM SPIN DYNAMICS OF ENTANGLEMENT PHYSICAL REVIEW A68, 052306 ~2003!
The matricessAC ,sB , andsAB ,sC are obtained from Eq
~37! by the changesc⇔b andc⇔d performed one after the
other.

For analysis of the entanglement we use the appro
advanced in Ref.@29#. We introduce the ‘‘spin-flipped’’ den-
sity matrix s̃BC5(sy^ sy)sBC* (sy^ sy), wheresBC* is the
complex-conjugate matrix ofsBC and sy is the standardy
component Pauli matrix. As bothsBC and s̃BC are positive
operators, it follows that the productsBCs̃BC , though non-
Hermitian, also has only real and non-negative egenva
@29#.

Then

sBCs̃BC5S 2uau2ubu2 0 0 2uau2ab*

0 2ucu2udu2 2ucu2cd* 0

0 2udu2dc* 2ucu2udu2 0

2ubu2ba* 0 0 2uau2ubu2

D
~38!

and the two nonzero eigenvalues of this matrix product a

l1
BC54uau2ubu2, l2

BC54ucu2udu2. ~39!

Having executed the above-mentioned replacement, we
tain

l1
AC54uau2ucu2, l2

AC54ubu2udu2,

l1
AB54uau2udu2, l2

AB54ubu2ucu2.

The concurrence between two particles is defined in this c
asC5uAl12Al2u @28# and the square of it is

CBC
2 54~ uauubu2ucuudu!2, CAC

2 54~ uauucu2ubuudu!2,

CAB
2 54~ uauudu2ubuucu!2. ~40!

The concurrence between the particleA and the pairBC can
be calculated@29# as

CA ~BC!
2 5TrsABs̃AB1TrsACs̃AC54 detsA , ~41!

and is similar in the remaining cases.
We obtain

CA ~BC!
2 54~ uau2ucu21uau2udu21ubu2ucu21ubu2udu2!,

CB ~AC!
2 54~ uau2ubu21uau2udu21ubu2ucu21ucu2udu2!,

CC ~AB!
2 54~ uau2ubu21uau2ucu21ubu2udu21ucu2udu2!.

~42!

One can easily verify that

CA ~BC!
2 2CAB

2 2CAC
2 5CB ~AC!

2 2CAB
2 2CBC

2

5CC ~AB!
2 2CAC

2 2CBC
2

516uauubuucuudu5tABC , ~43!
05230
ch
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where the three-tangle@29# tABC is the measure of three
particle entanglement.

Apparently, the pure state for the second block for an o
number of spins

uF&5du001&1cu010&1bu100&1au111& ~44!

has analogous measures of the entanglement.
It is interesting to compare measures of entanglemen

the state given by Eq.~35! or Eq. ~44! with those for other
classes of pure states. One can see that these expres
generalize the states known as the Greenberger-Ho
Zeilinger ~GHZ! @30# and W states@31#. Depending on the
value of the coefficients they have measures of entanglem
relevant for either the GHZ orW state.

For example, under the condition thatuau25ubu25ucu2

5udu251/4, all pair concurrencesCBC
2 , CAC

2 , and CAB
2 are

equal to zero andCA (BC)
2 5CB (AC)

2 5CC (AB)
2 5tABC51

similar to the GHZ state@29#. In this case we have the max
mal three-spin entanglement. However, the spins of each
are classically correlated but not entangled. It also imp
that when one of the spins is traced out then the remain
two are unentangled.

If only one of the coefficientsa,b,c,d is zero we have a
state analogous to theW state. This is obvious whena50
but it is nontrivial in the remaining cases. In all these ca
the three-tangletABC is equal to zero; the condition
CA (BC)

2 5CAB
2 1CAC

2 is also satisfied~analogously forB-AC
and C-AB!. This means that this case corresponds to theW
state@29#.

In the general case the state~35! or ~44! has all the char-
acteristics of the entanglement not equal to zero simu
neously. This property distinguishes these states from o
known pure states.

Returning to the vector state of Eq.~32! we have time-
periodic coefficients. Then miscellaneous states will be re
ized, including the completely separable state wh
sin@w(t)/2#50.

Three-spin states of Eqs.~35! and~44! can be generalized
for an arbitrary number of spins. For example, t
well-known Bell basis for the two-spin systemsuc6&
5(1/&)(u00&6u11&), uf6&5(1/&)(u01&6u10&) is also a
special case of these states with an even and odd numb
u1& single-spin states, respectively. The case when the t
number of spins is even is different from the one with an o
number of spins. Two states transfer one to the other wit
flip of all spins when their number is odd. The analogo
procedure does not change these states for an even numb
spins.

For our problem we have from Eqs.~32! and ~39!

l15l1
BC5l1

AC5l1
AB5

1

3
sin2 w~t!,

l25l2
BC5l2

AC5l2
AB5

4

9
sin4@w~t!/2# ~45!

and from Eqs.~40!–~43! we obtain
6-5
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SERGE I. DORONIN PHYSICAL REVIEW A68, 052306 ~2003!
CBC
2 5CAC

2 5CAB
2 5~Al12Al2!2

5S 1

)
usinw~t!u2

2

3
sin2@w~t!/2# D 2

,

CA ~BC!
2 5CB ~AC!

2 5CC ~AB!
2 52~l11l2!

52S 1

3
sin2 w~t!1

4

9
sin4@w~t!/2# D ,

tABC54Al1l25
8

3)
usinw~t!usin2@w~t!/2#. ~46!

If we have the conditionb5c5dÞa as in our case, then it is
enough to know only one eigenvaluel1 for the full solution
of the problem of entanglement. Another eigenvaluel2 can
be obtained from the expression

l152Al223l2 . ~47!

FIG. 2. Time dependence of the square of the pairwise con
rence CBC

2 (t) ~short-dashed line!, the square of the concurrenc
CA(BC)

2 (t) ~long-dashed line!, and the three-tangletABC(t) ~solid
line! for three spins coupled by DDI’s with the dipolar couplin
constantD125D235D1352p2950 s21.

FIG. 3. Time dependence of the pairwise entanglementEBC(t)
~short-dashed line!, the entanglementEA(BC)(t) ~long-dashed line!,
and the three-tangle entanglementEtABC(t) ~solid line! for three
spins coupled by DDI’s with the dipolar coupling constantD12

5D235D1352p2950 s21.
05230
Comparing Eq.~31! with Eq. ~45!, we conclude that the in-
tensity of MQ coherences of the second order coincides w
the eigenvaluel1 ~for both blocks with doublel1)

J2~t!52l1 . ~48!

The same result was obtained before for a two-spin system
the previous section. Then we had one block only~the other
block was zero! and J2(t)5C2(t)5l ~the matrixss̃ had
one nonzero eigenvalue!. Thus, it is possible to conclude tha
the intensity of MQ coherences of the second order is a g
eralized measure of entanglement for two- and three-s
systems. Many-spin systems demand further investigatio

Figure 2 shows the evolution of concurrences and
three-tangle for the three-spin ring. The evolution of the c
responding entanglements@Eq. ~24!# has similar forms and
they are represented in Fig. 3. All these curves can be
tained from the time evolution of the intensity of MQ cohe
ences of the second order~Fig. 4! according to Eqs.~48!,
~47!, ~46!, and~24!.

From Figs. 2 and 3 we can see that completely separ
states~all measures of the entanglement equal to zero! occur
at timest50.1957, 0.3914 ms, etc., when sin@w(t)/2#50.

V. CONCLUSION

The dynamics of entanglement in solids where nuclei
coupled by DDI’s can be investigated using the time evo
tion of MQ coherences. This is the main result of this pap
The intensities of MQ NMR coherences can be measure
macroscopic systems. Since experimental methods for
observation of these coherences have been developed
can apply our results for the investigation of differe
schemes of quantum computers on the basis of MQ NMR
solids.

We proved that the dynamics of entanglement in two- a
three-spin systems is determined by the time evolution of
MQ coherence of the second order, which can be descr
with the imaginary part of the density matrix. For system
with a larger number of spins, the situation is more comp
cated. The MQ dynamics of such systems includes the
coherences of higher orders. It is possible to assume tha

r- FIG. 4. Time dependence of the intensity of MQ coherence
the second orderJ2(t) for three spins coupled by DDI’s with the
dipolar coupling constantD125D235D1352p2950 s21.
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dynamics of entanglement in this case is determined by
intensities of MQ coherences of orders 2, 6, 10,...,<N,
which can be described by the imaginary part@13# of the
density matrix.

It is also worth noticing that we found a pure state whi
generalizes the well-known classes of pure states GHZ
W. The algorithm for construction of such states for an ar
trary number of spins is suggested. The difference betw
the cases of odd and even numbers of spins is elucida
ci.

I.

-

ys

p.

05230
e

nd
i-
en
d.

Different measures of the entanglement of this state are
lyzed for tripartite systems.
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