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Multiple quantum spin dynamics of entanglement
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The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum
(MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled
nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analyti-
cally the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction.
In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ
coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is
responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order.
Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part
of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-
Horne-ZeilingenGHZ) andW states is found. Different measures of the entanglement of this state are analyzed
for tripartite systems.

DOI: 10.1103/PhysRevA.68.052306 PACS nuntber03.67.Mn, 33.40+f

I. INTRODUCTION ment. In particular, it is significant that the entanglement and
intensity of MQ coherence of the second order are equal to
Solid state NMR is one of the most promising candidateszero at the moment of time=0. At the same time, the
for realization of a quantum computer and quantum-intensity of MQ coherence of the zeroth order is maximal at
information processingQIP). Several such schemes have 7=0. In the course of the time evolution an exchange be-
been suggesteld —8]. Possibilities for the experimental re- tween MQ coherences of the zeroth and second orders takes
alizations of quantum algorithms and theoretical investigaplace while their sum is a constant of moti@0]. When the
tions of QIP are connected with multiple quantuiMQ) intensity of MQ coherence of the zeroth order is decreasing
NMR. Contrary to the usual NMR, MQ NMR spectroscopy and becoming minimal, the entanglement achieves its maxi-
uses not only adjacent but all possible transitions betweefmum value and so does the intensity of MQ coherence of the
Zeeman levels of the system of interacting spins in an extersecond order. After that, the entanglement decreases, and so
nal magnetic field. This allows one to gain more detailedon. It has been showfi3] that the real part of the density
information on dynamical processes in solids. Furthefmatrix describing MQ dynamics in solids is responsible for
progress in the understanding of multiple-spin MQ dynamicdVIQ coherences of the zeroth order while its imaginary part
was achieved with experimental investigations of MQ NMR s responsible for the second order. It is possible to conclude
dynamics of quasi-one-dimensional distributions of clusterghat the dynamics of the entanglement is connected with the
of uniformly spaced proton spins in hydroxyapatite transitions between the real and imaginary parts of the den-
Ca,OH(PQ,); and related fluorine-containing apatites Sity matrix.
[9,10]. These materials represent a possible base for QIP de-
vices [6,7]. Thus, investigations of the quantum entangle- Il. MQ DYNAMICS
ment with MQ NMR methods are of current interest. The
existence of entanglement is a necessary condition for exp(]>_-_
nential speed-up during quantum computatiphs]. It has !
been investigated and discussed in the literature whether the dp
NMR scheme with pseudopure states is “true” quantum id_:[H’p(T)]’ (1)
computation/11,12. T
Numerical method$§13—15 and exactly solvable models . . o
; . . where the nonsecular average dipolar Hamiltoras given
[16—19 have been applied to the theoretical analysis of MQb
d ics. In this paper, we investigate the dynamics of en-Y [16]
ynamics paper, g Vi
tangled states on the basis of MQ NMR methods. The results
obtained show that the time evolution of MQ coherences of H=-
nuclear spins 1/2 coupled by dipole-dipole interactions
(DDI's) is directly connected with the dynamics of quantum . . . .
entanglement. Exact solutions are presented for two anandli s raising and_ lowering spin angular momentum
three spin-1/2 nuclei. For these systems the periodic dynanfPerators of spin. The dipolar coupling constari?j, be-
ics of quantum entanglement is uniquely determined by th&V€€n sping andk is given by
time evolution of the intensity of MQ coherences of the sec- Vh
ond order. We suppose that the intensity of MQ coherence of Dix=53(1-3 coL Ok (3)
the second order can be considered as a measure of entangle- 21

MQ spin dynamics in solids is described by the
ouville—von Neumann equation

N| =

R e
2 D1 T +1571) (2)
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wherer j, is the distance between spipandk, ¢;, the angle 1 0 O

between the internuclear vectqy and the external magnetic 000 0

field Hy, andy the gyromagnetic ratio. The angtg, is the p(0)= 9)
same for all spin pairs. In linear chains we assume that 0 00 O

=0. 000 -1

If the spin system is in thermal equilibrium with the lat-
tice at 7=0, then the solution of Eq(1) in the high-  The density matrixp(7) can be obtained from the analytical

temperature approximation is solution Eq.(4) [17,24:
p(r)=e""7p(0)e"'". (4) p(7)=po(7)+ p=a(7)
Here p(0) is the initial density matrix: cose(r) 0 O ising(r)
N 0 0 0 10
p(0)=2 1y, (5) 0 oo o f
' —ising(r) 0 0 —cose(7)

wherel,; is the projection of the spin angular momentum B _ B
on the directiorz of the external fieldH,. According to[16] where ¢(7) =D 17 and po(7) =Rep(7)], p=2(7)=p2(7)

: - Tp_2(7)=Im[p(7)].
the density matrixp(7) can be expanded as The normalized intensity of MQ coherences can be calcu-

lated from Eqs(7) and (10):

p(1)=2 pn(7), (6)
" Jo(7)=cog ¢(7), (11)

where p,(7) is the contribution top(7) due to MQ coher- _ —ci

ences of orden. If only the neargs)t neighbors interact, the I2(7) =12+ I =SirF (7). 12
profile of MQ coherences consists of zero and two quanturfpe density matrixp(7) of Eq. (10) can be expressed through
coherenceg17,15. At the same time, MQ NMR spectra ihe vector of the state

consist of MQ coherences of arbitrary even ordemns=0,

+2,+4,%6,...,|n|<N, whereN is the number of spinsas |W)=e"*cog o(7)/2]|00) + e~ " sin ¢(7)/2]|11).

the DDI’s of all spins are taken into account. While the in- (
tensities of MQ coherences of order 4k (0<4k<N) are

determined by the real part of the density mafix) only,  The projector is

the intensities of MQ coherences of order4k+2 (2

<4k+2<N) are determined by the imaginary part g o(7)=|w) (V|
[13]. o
Special experimental methofig1—23 are used to sepa- 1+cosp(r) 0 0 isine(r)
rate the signals from the MQ coherences of various orders. In 1 0 00
MQ NMR experiments the multiple quantum coherences are =3 0 0 0 0 - (14
transformed into longitudinal magnetization. As a result, the o
intensities of the MQ coherencel,(7) can be measured. —ising(r) 0 0 1-cose(7)
They can be expressed 5] .
Comparing Eqs(10) and (14), we have
J(T)=Trpa(T)p_n(7). 7
n(7) Pn(T)p—n(7) (7 p(7)=20(7)—E', (15)
It is worth noticing thatp _,(7)=p, (7).
The sum of the intensities of the multiple quantum coher—Where
ences does not depend on tip28]. Normalizing this sum to 100 0
unity, we have
0 0 0 O
. E=10 0 0 o0
Jo(1)+2> In(n=1. (8)
n=2 0 0 0 1
IIl. DYNAMICS OF ENTANGLEMENT BETWEEN TWO is independent of time. Thus, the MQ dynamics of the two-
SPIN NUCLEI spin systems can be described by the state vét®r

Let us consider the dynamics of the entanglement of the
A pair of spins has four possible basis productbipartite system in the state of E(.3). The measure of the
states: |00), |01), |10), |11). In this basis the initial density entanglement for a pure bipartite state can be defined as the
matrix from Eq.(5) is von Neumann entropy of any of its two paf&5]:
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1 1
Iel>=5(|00>+|11>), Iez>=51(|00>—|11>),

1 1
Ies>=5i(|01>+|10>), |e4>=5(|01>—|10>)- (23
Then the entanglement o) is [27,28

E(y)=H (29)

%(1+ W)},

where H is the binary entropy functiomd (x) = —x log,(x)

FIG. 1. Time dependence of the intensity of MQ coherences of—(1—xX)log,(1—X).

the zeroth ordedy(t) (long-dashed ling of the second ordet,(t)
[the square of the concurren@(t)] (short-dashed line and of
entanglemenE(t) (solid line) for two spins coupled by DDI’s with
the dipolar coupling constaim ;,= 272950 s 1.

E:_TrO'A|092 (TA:_TrU'Blogz og, (16)
whereo g =Trg(a)o is the reduced density matrix.
If the quantum state is given by
| V) ae=20)a®[0)g+b|1)a®|1)g, (17

then the operatos, can be written in the forngsee Chap.
2.3.1 in Ref.[26])
oa=[al?|0)a A0l +|b|?|1)a a(1]- (18

In our case|a|?=co[¢(n/2], |b|?=sir¢(7)/2], and we
obtain

cog{ ¢(7)/2] 0
AT 0 sif[o(7)/2])" (19
Thus, the entanglement resulting from Ef6) is
E(7)=—cog[ ¢(7)/2]log,{cosl ¢(7)/2]}
—sirf[ o(7)/2]logy{sir[ ¢(7)/2]}.  (20)

Comparing solutions of Eq$11), (12), and(20) (see Fig. 1

Equation(13) can be rewritten in the forn22) as

1 . 1
V)=~ (e "¢ M2 1je 1¢(7/2) —(]00)+ |11
)= 5 )~ (100 +[11)

1 . 1
+ 5 (el M2—jele(72) —j(]00)—[11)). (25
5 ( ) 5 (100 —[11)). (29

Thus Gfl:(llz)(e_i‘P(T)/z_l_ie_i(,D(T)/Z),
_ielzp(r)/Z)’ a3:a4:0, and

ay=(1/2)(e'¢(""?

C=lai+aj|=[sing(7)|. (26)
Comparing Eqs(12) and(26), it is possible to conclude that
in the two-spin system the concurrence is connected with the
intensity of MQ coherences of the second order by the rela-
tion

C?(7)=Jp(7). (27)
Note that the entanglement determined by Eg6) and(24)
is the same.

IV. THREE-SPIN CASE

It is known [13] that the operatoe' ™z is an integral of
motion. Hence, the Hamiltonian {'x 2N) matrix is reduced
to two 2N 1x 2N~ submatrices which correspond to odd

it is possible to draw the conclusion that the dynamics ofynq even numbers of the spins which are directed opposite to
entanglement is directly correlated with the dynamics of thgpe applied magnetic field,. If the number of spins is odd

intensity of MQ coherences of the second order.

then both blocks give the same profiles of MQ coherences.

Let us consider the dynamics of the entanglement in termgyne should solve the problem using one block of the density

of the concurrence, which can be determined2¥%28§|

cw/):Z af|, (21)

matrix and double the intensities of MQ coherenfts]. If
the number of spins is even then the blocks give the different
profiles of MQ coherences, but they can be calculated inde-
pendently from one othdi 3].

For three-spin systems, there are eight possible product

whereq; are the coefficients of the expansion of some stat@tates: [000), |001), [010), |011), |100), [101), |110), |111).

|¢>=Ei aile;) (22)

in the following “magic basis” of completely entangled
states:

The density matrix is reduced to two blocks in the bases
|000), |011), |10D), |110 (for even number of individual spin
states|1)) and|001), |010), |100), |112) (for odd number of
such sping

The top block of the initial density matrix according to
Eq.(5) is
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_ 1
|W)=e'"*cod ¢(7)/2]|000) + ‘/—je*'”"‘sir[ @(7)/2]|012)

+ ie*“f"‘sin[ @(7)/2]]101)
V3

The time development of the density matrix can be expressed

analytically[24]:
p(7)=po(7)+ po(7)

3
A

iR
> 23

iR,B iR;,B

. 1

—IRyB — > R§3A —RigRoA  —RpRA
. 1,

—IR13B —R13RA — >~ RI:A —RRiA

. 1
—IRB —RpRyA —RpRiA — 5~ R2,A

(29)
where A=[c0sDgs7)—1], B=sinDe7), and Rj»
=D1p/Deff, Ri3=D13/Det, Rps=D23/Degr. Here, Deg
=(Dj,+ Di3+ D3

Let all three coupling constants be equ#ie triangle
ring) D=D;,=D3=Dy3. In this caseD=v3D, R=R;,
=R;3=R,3=1/#3, and the density matrix simplifies to

3 1 1 1
—+A i—B i—B i—B
2 V3 V3 V3
111 1 1
5B T33A 3 3
(T): b
' g LA Ll A
A 3 2 3 3
B A Ia LI
' 3 3 23

(30

whereA=[cos¢(7)—1], B=sing(7), and¢(7)=v3Dr.

Then the intensity of the normalized MQ coherences of

the second ordeffor both block$ can be calculated24]
from Eqgs.(7) and(30) as

2
Jz(r):§sin2 o(7). (31

The density matrixp(7) of Eq.(30) can be expressed through

the vector of the state

1 )
+—e 1T4gj 12]|110). 32
7 M ¢(7)/2]|110 (32
The projector is
1 1 1
2+A i—B i—B i—B
3 V3 3
1B 1A 1A 1A
Y - A T
o(r)=|V ¥ ==
(WX W[=5 E TN
'z 3% 73N T3
1B lA 1A A
'z 73" 73N T3
(33
Comparing Eqs(30) and(33), we have
1
p(T)=20(T)—§E, (34)

whereE is the unit matrix.

To find the connection between MQ dynamics and the
dynamics of entanglement for a three-spin system, we shall
analyze the entanglement properties of the pure $Ge
through the state

|®)=al000) +b|011) +c|101) +d|110), (35
where|a|?+|b|?+|c|?+|d|?=1.

The density matrix of three particled,B,C is oagc

=|®(ABC))(P(ABC)|. The two-particle and one-particle
reduced density matrices are given by

ogc=TrA0agC,
(36)

oa=Trgcopgc-

All other reduced density matrices are obtained analogously.
For the stat€35) we have

la> 0 0 ab*
0 ¢l cd* 0O
9BCT1 0 de* [d2 0 |
ba* 0 0 |bl?
|a)?+[b|? 0
70 o) 37
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The matricesoac,05, andoag,oc are obtained from Eq. where the three-tanglf29] 7agc is the measure of three-

(37) by the changes<b andc<d performed one after the particle entanglement.

other. Apparently, the pure state for the second block for an odd
For analysis of the entanglement we use the approachumber of spins

advanced in Ref.29]. We introduce the “spin-flipped” den-

sity matrix Ggc=(0,® 0,) 0pc(oy® 0y), whereog is the |®)=d|001)+c|010) +b|100) + a|112) (44)

complex-conjugate matrix ofgc and oy is the standarg/

component Pauli matrix. As bottigc and g are positive has analogous measures of the entanglement.

operators, it follows that the produotycogc, though non- It is interesting to compare measures of entanglement of
Hermitian, also has only real and non-negative egenvaluee state given by Eq35) or Eq. (44) with those for other
[29]. classes of pure states. One can see that these expressions
Then generalize the states known as the Greenberger-Horne-
Zeilinger (GHZ) [30] and W states[31]. Depending on the
2|al?|b|? 0 0 2lal?ab* value of the coefficients they have measures of entanglement
2] 4|2 20 4% relevant for either the GHZ oW state.
TacTan= 0 2lcl*|d[* 2lc|*ed 0 For example, under the condition thp|?=|b|?>=|c|?
BeecTl 0 2dfder 2c2d? 0 ~|d)?=1/4, all pai 2., C2 2
=|d|*=1/4, all pair concurrence€gc, Cac, andCig are
2|b|?ba* 0 0 2|al?|b|? equal to zero andCj gc)=Ch (ac)=Ca (ap)= TaBc=1

(3g)  similar to the GHZ stat¢29]. In this case we have the maxi-
) ) ) mal three-spin entanglement. However, the spins of each pair
and the two nonzero eigenvalues of this matrix product aregre classically correlated but not entangled. It also implies
that when one of th ins is tr t then the remainin
MC=alalZbl2 ASS=AICPIAE (39 o mre wnentanglet | e e femaning
If only one of the coefficients,b,c,dis zero we have a
ate analogous to thé/ state. This is obvious whea=0
but it is nontrivial in the remaining cases. In all these cases
the three-tangleragc is equal to zero; the condition
cz (BC)ZCiB+ Cic is also satisfiedanalogously forB-AC
and C-AB). This means that this case corresponds to\ihe
state[29].

The concurrence between two particles is defined in this case in _th_e general case the stag5) or (44) has all the char-
asC=|\h;— V| [28] and the square of it is acteristics of the entanglement not equal to zero simulta-
1 2 neously. This property distinguishes these states from other
2 _ _ 2 2 _ _ 2 known pure states.
Cac=4([allbl—[clld])*,  Cac=4(lallc|—[bl|d])* Returning to the vector state of E(32) we have time-
periodic coefficients. Then miscellaneous states will be real-
ized, including the completely separable state when
sin¢(7)/2]=0.
Three-spin states of Eq&5) and(44) can be generalized
for an arbitrary number of spins. For example, the
(41) well-known Bell basis for the two-spin systens/™)
=(172)(|00y=|1D)), |H™)=(1NV2)(|OL)=|10)) is also a
special case of these states with an even and odd number of
|1) single-spin states, respectively. The case when the total
number of spins is even is different from the one with an odd
c2 8 =4(1al?[c|2+al?(d|?+[b]?c[2+[b]?d]?), Rumber of spins. Two states transfer one to the other with a
ip of all spins when their number is odd. The analogous
procedure does not change these states for an even number of
spins.
For our problem we have from Eq&2) and(39)

Having executed the above-mentioned replacement, we olg—t
tain

NC=4lal?c?, A3C=4lb|?d]%,

N1P=4lal?|d[?, A3P=4]b|%c|.

Cis=4(|al[d|—|b]|c])2. (40)

The concurrence between the partiéleand the paiBC can
be calculated29] as

Ca (Bo)= oA AR+ TToACOACc=4 detoy,

and is similar in the remaining cases.
We obtain

Ch (ac)=4(|al?b|*+]al?d|*+ [b|?|c|*+ |c]?d]?),

ce <AB>=4(|a|2|b|2+|a|2|0|2+|b|2|d|2+|0|2|d|2)-( )
42

1
A =ABC=NC=\1B=Zsir o(7),
One can easily verify that 1ZATTEATTEAT = g SIn o

2 (2 2 2 _~2 A2
Ca (BC) Cas—Cac=Cg (AC) Cas—Cac )\ZZA?C:)\S\C: )\ZAB=fsin4[<p(T)/2] (45
:Cé (AB)_CE\C_ Céc 9

=16lal|b||c||d|=Tagc, (43)  and from Eqs(40)—(43) we obtain
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FlG-22- Time dependence of the square of the pairwise concur-  FIG. 4. Time dependence of the intensity of MQ coherence of
rence Cgc(t) (short-dashed line the square of the concurrence the second orded,(t) for three spins coupled by DDI's with the

Ci(BC)(t) (long-dashed ling and the three-tanglegc(t) (solid
line) for three spins coupled by DDI's with the dipolar coupling

constantD 12— D 23~ D 13— 272950 s l.

C3c=Cac=Cig=(VA1—\1,)?

2 2 2
Ca (BC):CB (AC):CC (AB):2(7\1+)\2)

8
TABC=4\ )\1)\22%|S|n(,0(7)|s|nz[(,0(7)/2] (46)

If we have the conditiolh=c=d+a as in our case, then it is
enough to know only one eigenvalig for the full solution
of the problem of entanglement. Another eigenvalyecan

“[Lsi 2 in? 12 2
= ‘@|Sln¢>(7)| zsifle(n2]]

=2(%Siﬁ2 o(7)+ gsin4[<p(7)/2]>,

be obtained from the expression

A=2No—3\,.

FIG. 3. Time dependence of the pairwise entanglenigi(t)
(short-dashed ling the entanglemeri g c)(t) (long-dashed ling
and the three-tangle entangleméhi,g(t) (solid line) for three
spins coupled by DDI's with the dipolar coupling constdnt,
= D23: D13:2772950 §l.

dipolar coupling constarD ;,=Dy3=D3=272950 s 1.

Comparing Eq(31) with Eq. (45), we conclude that the in-
tensity of MQ coherences of the second order coincides with
the eigenvalue\; (for both blocks with double\ ;)

J2(T)22)\1. (48)

The same result was obtained before for a two-spin system in
the previous section. Then we had one block i other
block was zerp and J,(7)=C?(7)=\ (the matrix oo had
one nonzero eigenvaluerhus, it is possible to conclude that
the intensity of MQ coherences of the second order is a gen-
eralized measure of entanglement for two- and three-spin
systems. Many-spin systems demand further investigation.
Figure 2 shows the evolution of concurrences and the
three-tangle for the three-spin ring. The evolution of the cor-
responding entanglementgq. (24)] has similar forms and
they are represented in Fig. 3. All these curves can be ob-
tained from the time evolution of the intensity of MQ coher-
ences of the second ordéFig. 4) according to Eqs(48),
(47), (46), and(24).
From Figs. 2 and 3 we can see that completely separable
stateg(all measures of the entanglement equal to zeozur
at times7=0.1957, 0.3914 ms, etc., when [sii7)/2]=0.

V. CONCLUSION

The dynamics of entanglement in solids where nuclei are
coupled by DDI's can be investigated using the time evolu-
tion of MQ coherences. This is the main result of this paper.
The intensities of MQ NMR coherences can be measured in
macroscopic systems. Since experimental methods for the
observation of these coherences have been developed, one
can apply our results for the investigation of different
schemes of quantum computers on the basis of MQ NMR in
solids.

We proved that the dynamics of entanglement in two- and
three-spin systems is determined by the time evolution of the
MQ coherence of the second order, which can be described
with the imaginary part of the density matrix. For systems
with a larger number of spins, the situation is more compli-
cated. The MQ dynamics of such systems includes the MQ
coherences of higher orders. It is possible to assume that the
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dynamics of entanglement in this case is determined by thBifferent measures of the entanglement of this state are ana-

intensities of MQ coherences of orders 2, 6, 10N, lyzed for tripartite systems.
which can be described by the imaginary p@lr8] of the
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