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Synchronized pulse control of decoherence
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We present a strategy for multipulse control over decoherence. When a two-level system interacts with a
reservoir characterized by a specific frequency, we find that the decoherence is effectively suppressed by
synchronizing the pulse-train application with the dynamical motion of the reservoir. We discuss the applica-
bility of this strategy by studying the dependence of the decoherence suppression on the shape of the coupling
spectral density. We find that the effectiveness of this strategy arises from the non-Markovian nature of
dynamical motion of the reservoir.
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[. INTRODUCTION ics of the reservoir. However, in many cases, the system-
reservoir interaction is described with a strong linear inter-
Degradation of quantum superposed state by decohereneetion and a weak nonlinear interaction. In the time region
is an obstacle to quantum information processing. In order tavhere we want to discuss the effectiveness of suppression by
proactively prevent errors, a multipulse control method hagynchronizing the pulse application and the dynamics of the
been proposefiL—3]. It is essential that the application of ~ re€servoir, the linear interaction plays an essential role in the
pulses causes time reversal in order to suppress the decoh8fCay. . .
ence. The method has attracted considerable attention; it has In this paper, assuming that a two-level system linearly
been applied to suppress unwanted spontaneous emissiHeracts with a boson reservoir that has a characterlspc f_re-
[4,5], the magnetic-state decoherence by collisions in a vapdiuency, we discuss the effectiveness of the synchronization
[6’7], and the damp|ng of vibrational mode of a chain of of am pulse train with the oscillation of the reservoir. For
trapped iong8,9]. While the multipulse control method re- convenience, we name this strategy as synchronized pulse
quires no ancillary bits and no accurate detection, its effeccontrol (SPQ in the following discussion. As recognized in
tiveness has been shown when sufficiently short and strongef. [13], SPC also depends on the type of couplibgth
pulses are periodically applied in a shorter interval than théPectral density. In order to make clear the applicability of
characteristic time of the system-reservoir interactionSPC, we study the effectiveness of SPC on non-Lorentzian
[10,11]. The degree of suppression becomes larger as thand Lorentzian coupling spectral density.
pulse interval becomes shorter. Since these conditions are not The outline of this paper is as follows. In Sec. II, we
easy to execute, a new approach to use a continuous contigtroduce the model of the decoherence and derive the basic
field instead of pulses has been propo$éd]. It is also formula for multipylse control on the. linear spin—boson_
shown that the control pulses do not always have to be ultrgtodel. Next, we discuss the synchronized pulse control in
short for systems coupled to the reservoir witlh $pectral Sec. lll. The application of the basic formula to non-
density[13]. In order to overcome the strict condition on the Lorentzian(Lorentziar) coupling spectral density is written
pulse application, it is desirable to seek a possibility to usdn Sec. IIIA(B). After discussing the effectiveness of the SPC

the pulse trains with relatively long pulse interval. in Sec. IV, we give concluding remarks in Sec. V.
In a previous papefl14], we suggested a possibility to
relieve the condition on pulse interval by formulating a Il. FEORMULATION

theory of pulse control on the pure dephasing phenomena

that is caused by the interaction with a boson reservoir. Since We consider a two-level system composed of an excited
the ordinary spin-boson model where a spin linearly interact§tate [€) and a ground statég) with energyE.. Let us

with the boson reservoir cannot describe the irreversibility inconsider the decoherence of this two-level system, which is
the long-time region except for the Ohmic dissipation casecaused by a linear interaction between the excited state and a
we have extended the model to include a nonlinear interad20son reservoir. The system Hamiltonian reads,

tion. We have found that the multipulse control is effective

for this model when the pulse interval is shorter than the Hr=Ho+ Hsg=(Hst+ Hg) + Hsg, (1)
reservoir correlation time. We also found that the effective
pure dephasing time shows a nonmonotonic dependence on He=Ee)(e| ()

the pulse interval, that is, it has a peak when an application

of 7 pulse train is synchronized with the oscillation of the

reservoir. Th|s means that the pure dephasmg phenomenon is HBEﬁE fkblbk: 3)
also effectively suppressed by paying attention to the dynam- K
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t
ex;{ —(i/ﬁ)f dt,Hp’j(t,))
to

— o~ (/W) Ho(t—to) o= (Ih)Hp j(t-to)

T

In order to suppress the decoherence, we apply pulses that

are sufficiently short and strong. This indicates that the inter-
action with the reservoir is neglected during pulse applica-

tion,
N
Hsp<t>=Hs+j§0 Hp (1), (5
Hp,;()=—3E;(1)- u(|e)(gle"“'+|g)(ele'), (6)

where Ej(t) is the jth applied pulse of external field. We

assume the pulse to be in resonance with the two-level sys-

tem, which meang& =% w.

When we applyN pulses with a pulse intervat, and
pulse duratiomit, the time evolution of the density operator
p(t) of the total system is given by

N7g+ At

exp( i

p(t) — e—iLR[t—(NTs+At)]T+

dt’Lp,j(t’)H

N—1
><| H e iLR(7s—AD)

0
jTgt At
exp(—ifj dt'Lp,,(t')” p(0), (D

whereT, is the time ordering symbol from right to left and
Lp; (Lg) indicates the Liouville operator during thgh
pulse(the interaction with the reservoiwhich is defined as

i

L, =2[H,, ..., (»={P.j} or {Rh. (®

We rewrite Eq.(7) by using the following relation for an
arbitrary operatoiX,

oL u(t=to)y — = (IA)H,(t=to)x gi/)H (t—to)

€)
which consists of the operators as
e (IIM)HR(t—tg) — o= (I/A)Ho(t—tg)

t=tp
ex;{—(i/h)f dt'HSB(t/)”
0

=[Uy(t—to)|e)(e|+ U (t—to)|g)(all,
(10

i
2

X (e~ '“(t=t)|e)(e|+]g)(gl)

=U2(t—to)cos<

s
—i sm(;’)(lexglﬂgxel), (11)
where
’F'SB(t):e—(i/h)HOtHSBe(i/ﬁ)Hot
:Ek hkék(bkeiiekt'i' bleiekt)v (12)
“HPj(t):e—(i/ﬁ)HOtHPje(i/ﬁ)Hot
=—3E;- u(le)(gl +]g)(el)

Here we have assumed each applied pulse to be square
whose strength isE;, which gives pulse aread,

Z(Ejﬁ/ﬁ)(t—to) for thejth pulse. In Eq(11), we used the
following definitions as

o+ 2 ekblbk) t}
k

Uﬂt)zex;{—i

t i ! i ’
ex;{ —ifdt’z hee(bge ™o’ +bleled )”
0 k

= n(t)ex;{ —i

X exp{ Ek edblé(t) —be&r (t)}) ,

w+ zk 6kblbk) t}
(14

uz(t):exp( —i ; ekb;bkt) , (15)

where

he .
E—E(l—e'fk‘).
(16)

Now we suppose the pulse aréato be 7 except for the
first pulse whose pulse area92 to generate a superposed
two-level state at an initial timet&0). Defining the inten-
sity of off-diagonal element of the density operatdt) as

1(t)=|Tra(e|p(t)|g)|%, (17)

where Tk denotes the operation to trace over the reservoir
variable, we obtain for eveN,

n(t)zexp( i §k‘, hﬁ(ekt—sinekt)), £(1)
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1(t)=|Tra[ U4(t—N7g) (Uo(79) U 1(75))V2p(0) (UL( 7o) p(0)=[g){g|®[0)(0|. (26)
XUI(r)N2U (1= N79) I3, (18 Equations(21) and (24) imply that the intensityl (t) is
described by the overlap between coherent stpdggt))

and for oddN, and |By(t)) of the reservoir. These coherent states are biu-

_ B (N=-1)/2 niquely associated tdg) and |e). For evenN, the state
|0 =|TrR{Ua(t=N79) (Uz(75)Us(75) Ua(75)p(0) |An(t)) is associated tfe), whereagBy(t)) is associated to
X UT(79) (U(r9UT(7g)N-D2yJ(t—N7g)]|2. |g). The  pulse application alternately exchange the asso-
ciation between the reservoir states and the two-level system.
(19) An actual evaluation of Eq$21)—(25) requires us to re-

Here we have assumed the pulse durafidrto be infinitely ~ Writé the summation ovek into the energy integral,

small. In the case of the pulsed magnetic resonance or the -
transient nonlinear optic$(t) indicates the signal intensity. > () =2, |hk|2f(wk)f ded(e— wy)
Next, we focus on the time evolution of the boson reser- k k 0
voir, eliminating the two-level system that periodically "
changes its state betweés) and|g) by the = pulse train. :f deh(e)f(e), 27
Denoting the displacement operator as 0

. where we have defined coupling spectral denkity) as
D({ak})zex;{; (aby—ag by |, (20
h(e)=2 [h*s(e—wy). (28)
where{- - -} means a set of bosons in the reservoir, we ob- S “
tain the off-diagonal element of the density operaift) in
the form for ever, IIl. NUMERICAL EVALUATION
L(t)=|Tre(e|[(JAn())]e)) ((Bn(D)[{a])1a)|? Now we evaluate the time evolution of the intendify),
=|(Bn(D[AN(), (21)
, I(t>=|<AN(t>|BN(t>>|2=exp(—E |an (1) = Bu(D?]
with K
|AN(D) =D ({an  (ODI0)=[{an k(D}) 29
N(0)=DRanODIO)=lean D), In the following, we discuss the time dependencé(of for
Bn(t)|=(0|D{ By k(OD={ B k(DY (220 non-Lorentzian and Lorentzian coupling spectral density.
(B < {BuidODI= A} While the SPC can be effective for the former case, it is
Here we definedyy ((t) and By k(t) as ineffective for the latter case.
N
o (D)= —hy+ 2 (—1)j{hke_ifk(t_“s)}, A. Non-Lorentzian coupling spectral density
1=0 As the first example of the non-Lorentzian coupling spec-
N tral density, we consider a Gaussian distribution with the
Bruk)= (1) Yhe i s-im), (23) mean frequency, and the variance,,
, =
s (e~ wp)?
For oddN, we obtain he(e)= In exp ———5—|- (30)
m™Yp Yo
1(t)=|Tra(e|[ (|Bn(t))|e))((An(t 2
(O=ITr(ell(Bu(tleN(ANDKDIIG)] SettingN=0 in Eqg. (21), we evaluate time evolution of
=[({anO{BuOHI%, (24)  I(t) after a singler/2 pulse at=0, which is shown in Fig.
ith 1. Here and henceforth, we have used a scaled time variable
Wi

ast=w,t and set the parameters gs=y,/w,=0.15 and
N s=3, which means that the decay time of the interaction
aN‘k(t)EE (— 1)i{hke—ifk(t—ifs)}, mode is relatively long, the average number of boson which
=0 interact with the spin is three. We see a damped oscillation
N whose period is .
. ieteir The dynamical decoupling methdd,10,11 shows us
'BN,k(t)EJZl (—1)) e I —hy) (29 that an application ofr pulse train is sufficiently effective
when the pulses are applied in a sufficiently “small” inter-
In obtaining Egs.(21)—(25), we assume that the boson val. When the spectral density has a cutoff frequency at
reservoir is in the vacuum state and the two-level system igs assumed in Ref§10] and[11], the pulse intervalrs is
in the ground state at the initial time: required to be much smaller thag=w_ * in order to control
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FIG. 1. Time evolution ofl (t) without pulse control fory, FIG. 3. Time evolution of (t) for the pulse intervatrs= 7,/2.
=vy,/w,=0.15 ands=3. Other parameters are the same as in Fig. 1.

the decoherence. In the case of the Gaussian distribution as . .
Eq. (30) with relatively small variance, we suppose that thesynchronlzed quantum-beat echoeSQBB by Tanigawa

lse int i ied to b h ler then® et al.[15]. They used two light pulse trains in order to cause
pulse interval 1S required 1o be much smaller thap an optical transition between a ground-state sublevel pair.

= 7p/2m for decoherence control. In Fig. 2, we can see thakryg repetition frequency of the pulse trains is equal to the
the decay of (t) is well suppressed fors= 7,/207. separation of the sublevel pair, which is superficially similar
However, when the pulse interval becomes longer, wao our approach. However, the role of the pulse train in this
find that the pulse application makes things even worse thagaper is essentially different from SQBE, because each pulse
the damped oscillation in Flg 1. This is shown in Flg 3area in SQBE is much smaller than. In the pu|se_train
where the pulse interval is;= 7,/2. control of decoherence in the present work, it is essential that
Now we plot the case where pulses are applied with the ' the pulse area of each pulsers because the physical origin
interval 7= 7, in Fig. 4, where we find that the phase co- of the coherence recovery is the time reversal operation
herence recovers at the pulse application time. The peakaused byeach pulse. In Tanigawa’s work, the maximum
value asymptotically tends to be constant, which reflects thadignal is generated when the total pulse area of the second
the dephasing in long-time region cannot be described by thgulse train is7, and the pulse train is used to achieve the
linear interaction. When we obtain a recovery of the intensitysyplevel resonance.
by synchronizing the pulse application with the characteristic Next, we assume the coupling spectral density to have
period 7,, we call this strategy for suppression of decoher-semielliptic distribution,
ence as synchronized pulse control. In this paper, we con-
sider only the linear interaction between the spin and the 1
original boson reservoir. While it is necessary to take into — _\/Tz—
account the nonlinear interaction, which causes the pure hs(e) Sp (e~ wp)™tp, S
dephasing phenomen@reversible processes in the long-
time region in many systemg14], the effect of the pure
dephasing is not significant in the time region shown in Fig.
4, since the nonlinear interaction is often much weaker than

definingp as

the linear one. 4y7
The synchronized pulse application has been discussed in p= 3 (32
the context of transient optical nonlinear spectroscopy, called
1.00 ; ; 1.0
0.99 0.8
_ 0.98 Tt 111111 — e __06
= 0.97 = 0.4
i
0.95 0.0
2n _ 4n 2n 4n 6 8mn 10m 12n
t t
FIG. 2. Time evolution ofl(t) for the pulse intervalr, FIG. 4. Time evolution ofi (t) for the pulse intervalrg= Tp -
= 7,/207. Other parameters are the same as in Fig. 1. Other parameters are the same as in Fig. 1.
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to have half widthy, . The coupling function has been used B. Lorentzian coupling spectral density

to describe the coupling strength between phonons and a now we assume the coupling spectral density to have the
localized electron in a solifiL6]. Lorentzian distribution as,
We show the time evolution df(t) for the same param-

eters in Figure 4. Figure 5 shows similar behavior as in Fig. s Yo
4 except the fact that the degree of the suppression for semi h.(e)= A 2.2
elliptic coupling spectral density is larger than the one for the (e—wp)™+7p

Gaussian spectral density. 5 The Lorentzian coupling function has been often used in
Defining the asymptotic peak value oft) for a pulse  quantum optics. A relaxation process of an atomic system or

interval?-S as P(?S), we show the pulse-interval dependencequantum dots in higl@y cavities have been described with a

of PG'S) in Fig. 6. The solid(dotted line in Fig. 6 plots the structured reservoir. The structure is determined by a distri-

P(7y) for semielliptic (Gaussian coupling spectral density. Eg?g:tzgn ?S#Etlilgr%lgciqsé[ants and often described by a

We find thatP(7s) has a local maximum when the pulse We show the time evolution of(t) for s=3 and ;p

interval 7 is close to 2r. SinceP(2) is nearly equal to  _g 15 jn Fig. 7. Withoutr pulse application}(t) shows the
P(1) as shown in Fig. 6, we find that the same degree ofjamped oscillation as in Fig(ad. Contrary to the preceding
decoherence suppression is obtained for much longer pulsg cases of Gaussian and semielliptic distribution, Fig) 7
interval by paying attention to the dynamical motion of the ghqs that we cannot obtain the sufficient decoherence sup-
reservoir. However, the effectiveness of the SPC decreas‘fﬁ’ession for short pulse interval=r,/20m. Increasing the
with increase of the widthy,, of the coupling spectral den- ise interval tor.= 7p/2, we find that the degree of suppres-

(33

sity. sion becomes wordé-ig. 7(c)]. The time dependence under
SPC is shown in Fig. (d). We find almost the same time
Lo evolution as the one without pulse control.
s It should be noted that the ineffectiveness of the SPC does
' not come from the fact that the decay occurs faster for the

. Lorentzian coupling spectral density than the non-Lorentzian
one. In order to make the point clear, we show the time
Gauss dependence for smalle}p (=0.04), where we find the
T larger amplitude of oscillation in the time evolution without
T O

Q04

0.6 \
Lol
o
ol \

pulse application in Fig. 8. The SPC makes the situation even

worse, and is ineffective for the system with Lorentzian cou-
pling spectral density. We will discuss the physical back-

T, n ground of the ineffectiveness of the SPC in the following
section.

FIG. 6. Pulse-interval dependence of the asymptotic peak value
P(7,) for the same parameters as in Figs. 4 and 5. The $dtt

ted) line shows theP(7,) for semielliptic(Gaussiancoupling spec- Let us consider the reason why the SPC is ineffective for
tral density. the case of Lorentzian coupling spectral density. Here we use

2

IV. DISCUSSION
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FIG. 7. Time evolution of (t) for Lorentzian
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t t coupling spectral density withy,=0.15; (a)
© (@ without pulse application(b) pulse intervalr,
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a picture which provides us a qualitative understanding ofnode is non-Markovian, and partially reversible at the pulse
the physical process of the SPC. The picture is obtained bgpplication time. One should note that the non-Lorentzian
replacing the original boson reservoir by a two-step struccoupling spectral density may not always guarantee the ef-
tured reservoir where a single harmonic oscillator is coupledectiveness of pulse control when the coupling spectral den-
to a new “reservoir” with a coupling function which is dif- sity has a slow power-law tail at high frequencies as a recent
ferent from the original one(The “reservoir” means the study indicateg13]. However, in many systems, such as
newly introduced reservoir that causes the decay of théocalized-electron phonon systems, the shape of the coupling
single harmonic oscillatorThe single harmonic oscillator is spectral density has clear maximum and minimum cutoff fre-
called as a quasimode for atom-cavity sys{@®—24 or an  quencies. The detailed characteristics of the spectral density
interaction mode for electron-phonon systg?B]. In the fol-  for an effective pulse control deserve further research.
lowing, we call the harmonic oscillator as the interaction We should remark that in the limit of short pulse interval,
mode(Fig. 9. The motion of the interaction mode, which is the pulse control is effective even for the Lorenzian coupling
determined by the coupling to the “reservoir,” is character-function. In this case, the interaction mode does not oscillate,
ized by the original coupling spectral density. The frequencyand the result is consistent with the ordinary dynamical de-
(decay constaintof the motion of the interaction mode cor- coupling[1,10,11.
responds to the center frequeneyidth) of the original cou-
pling spectral density. V. CONCLUDING REMARKS

The application of ar pulse causes time reversal to the
two-level system. Since the two-level system is coupled to We have proposed a new strategy to suppress decoherence
the interaction mode, the degree of time reversal depends dsy multipulse control, which is done by synchronizingra
the reversibility of the interaction mode. In the SPC, wepulse train with the dynamical motion of reservoir. We have
equalize the pulse interval to the oscillation period of the
interaction mode. If the reversibility of the interaction mode 10

partially remains at the pulse application times, the SPC is

effective for suppression of decoherence. 0.8
When the original spin-boson interaction is characterized

by the Lorentzian coupling spectral density, it has been —~ °6 without pulse

shown that the interaction mode is coupled to the “reser- 'S f

voir” with a flat (white) coupling spectral densit}16,24. 04 | Synchronized pulse control|

The interaction mode shows the Markovian nature, which 0.2 A

indicates the irreversibility of the motion of the interaction ' j\ Y

mode(see Appendix The SPC is ineffective for the Lorent- 00 /

zian spectral density. o - P 8 10m
For the case of the non-Lorentzian coupling spectral den- t

sity, we can also use the two-step structured reservoir where

the interaction between the interaction mode and the “reser- FIG. 8. Time evolution of (t) for Lorentzian coupling spectral
voir” is characterized by a nonwhite coupling spectral den-density with}p:0.04. The evolution with the SPC is compared to
sity. This implies that the time evolution of the interaction the one without pulse application.
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(a)

B=g > hyeyby, (A1)
K
Two-level .
System Reservoir where
1/2
QE(EK |hk8k|2) : (A2)
(b) Then, Eq.(4) can be rewritten as

Interaction
Mode

Two-level
System

Hsg=1i|e)(e| Ek hex(b+bl)=7igle)(e[(B+B).
(A3)

The new “reservoir” modes are determined to be orthogonal

FIG. 9. Schematic representation of the two pictures for thetg the interaction mode, and the many “reservoir” modes are
boson system(a) the normal mode picture an#h) the interaction  orthogonal with each other. These boson systems other than
mode picture. the interaction mode do not couple to the spin system, and

are called the “reservoir” modes. We should note that the

discussed the effectiveness of SPC for the non-Lorentziarveservoir” here implies the environmental degrees of free-

and the Lorentzian coupling spectral density. For the formetlom for the interaction mode and not for the spin system.

case, we find a periodic recovery of a quantum superpositiolfhe interaction mode and the “reservoir” are coupled to
at the pulse application times, whereas we cannot obtain theach other as
recovery for the latter case.

Our scheme is somewhat similar to the SQBE] in the
sense that pulses are applied synchronously with the dynami-
cal feature of reservoir. However, the SQBE is obtained b . T .
accumulating the response to each pulse whose area is ma/%]e_re R (RiT)“'S the a_n:uhnatlon(creatlor) operator of the
smaller thansr. This means that the sufficient time reversal oscnla_to_r for “reservoir" modes. _The tra_nsforma“tmn fror_n”
does not occur in the SQBE scheme and that the obtaine@e original normal modes to the interaction and “reservoir

echo is different from ours, where time reversibility caused.rnOdes provides a different picture where a two-level system

by the eachr pulse application is essential. |n'teracEs with a f,ingle harmonic oscillator having contacts
The SPC provides us another kind of method to suppres‘é"th a reservorr.” . . .
the decoherence by paying attention to the dynamical motion Wh_en we consider a beSySte.T V\.'h'Ch consists of ihe in-
of the reservoir. We hope that the synchronized pulse contrdfraction mode and the reservoir wmﬁ.:o, the Markov—
might extend the possibility of the pulse control of decoher-a" mag,ter equatl'on which despnbes time evolgnon of the
ence. Especially, the drastic alteration in the feature of thdteraction mode is solv_ed to give the exponential deca)_/ of
quantum superposition by changing the pulse interval might€ coherent state amplitudg25], whose decay constant is

indicate that the pulse application plays both roles to kee‘?etermined by the coupling spectral dens'gr,-y'The cenFe.r
and erase a quantum memory. requency of the coupling spectral density in the original

normal modes corresponds to the frequency of the interac-
tion mode, and the width of the coupling spectral density is
associated with the decay of the interaction mode arising
This study is supported by a Grant in Aid for Scientific from the coupling between the interaction mode and the
Research from the Ministry of Education, Science, Sportsreservoir.” The Lorentzian coupling spectral density ex-
and Culture of Japan. The authors are deeply thankful to DRressed by Eq(33) implies a Markovian time evolution of

"Reservoir"

Her=h| B> g;R/+B'X grR;|, (A4)
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L. Viola for thoughtful comments and suggestions. the interaction mode, which indicates the irreversibility of
the motion of the interaction mode.
APPENDIX: INTRODUCTION OF THE TWO-STEP MODEL The quasimode in the quantum optics has been obtained

by an analogous proceduf@0-23. We have another ex-

In this appendix, we briefly review how to introduce the ample to show that the two-step model with the white “res-
two-step model by using the interaction maae the quasi- ervoir” is equivalent to the normal mode picture with the
mode. The interaction mode is the single harmonic oscilla-Lorentzian coupling function27]. Other than these ex-
tor, and the two-level system couples only to this oscillatoramples, the two-step model has also been used to describe an
The annihilation operator of the interaction mode is definedeffect of coupling between the nuclear reaction coordinate
by the linear combination of those for the original normaland the other coordinates on electron transfer in biomol-
modes as ecules[28,29.
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