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Synchronized pulse control of decoherence
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We present a strategy for multipulse control over decoherence. When a two-level system interacts with a
reservoir characterized by a specific frequency, we find that the decoherence is effectively suppressed by
synchronizing the pulse-train application with the dynamical motion of the reservoir. We discuss the applica-
bility of this strategy by studying the dependence of the decoherence suppression on the shape of the coupling
spectral density. We find that the effectiveness of this strategy arises from the non-Markovian nature of
dynamical motion of the reservoir.
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I. INTRODUCTION

Degradation of quantum superposed state by decoher
is an obstacle to quantum information processing. In orde
proactively prevent errors, a multipulse control method h
been proposed@1–3#. It is essential that the application ofp
pulses causes time reversal in order to suppress the dec
ence. The method has attracted considerable attention; i
been applied to suppress unwanted spontaneous emi
@4,5#, the magnetic-state decoherence by collisions in a va
@6,7#, and the damping of vibrational mode of a chain
trapped ions@8,9#. While the multipulse control method re
quires no ancillary bits and no accurate detection, its eff
tiveness has been shown when sufficiently short and str
pulses are periodically applied in a shorter interval than
characteristic time of the system-reservoir interact
@10,11#. The degree of suppression becomes larger as
pulse interval becomes shorter. Since these conditions ar
easy to execute, a new approach to use a continuous co
field instead of pulses has been proposed@12#. It is also
shown that the control pulses do not always have to be u
short for systems coupled to the reservoir with 1/f spectral
density@13#. In order to overcome the strict condition on th
pulse application, it is desirable to seek a possibility to u
the pulse trains with relatively long pulse interval.

In a previous paper@14#, we suggested a possibility t
relieve the condition on pulse interval by formulating
theory of pulse control on the pure dephasing phenom
that is caused by the interaction with a boson reservoir. S
the ordinary spin-boson model where a spin linearly intera
with the boson reservoir cannot describe the irreversibility
the long-time region except for the Ohmic dissipation ca
we have extended the model to include a nonlinear inte
tion. We have found that the multipulse control is effecti
for this model when the pulse interval is shorter than
reservoir correlation time. We also found that the effect
pure dephasing time shows a nonmonotonic dependenc
the pulse interval, that is, it has a peak when an applica
of p pulse train is synchronized with the oscillation of th
reservoir. This means that the pure dephasing phenomen
also effectively suppressed by paying attention to the dyn
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ics of the reservoir. However, in many cases, the syste
reservoir interaction is described with a strong linear int
action and a weak nonlinear interaction. In the time reg
where we want to discuss the effectiveness of suppressio
synchronizing the pulse application and the dynamics of
reservoir, the linear interaction plays an essential role in
decay.

In this paper, assuming that a two-level system linea
interacts with a boson reservoir that has a characteristic
quency, we discuss the effectiveness of the synchroniza
of a p pulse train with the oscillation of the reservoir. Fo
convenience, we name this strategy as synchronized p
control ~SPC! in the following discussion. As recognized i
Ref. @13#, SPC also depends on the type of coupling~bath!
spectral density. In order to make clear the applicability
SPC, we study the effectiveness of SPC on non-Lorentz
and Lorentzian coupling spectral density.

The outline of this paper is as follows. In Sec. II, w
introduce the model of the decoherence and derive the b
formula for multipulse control on the linear spin-boso
model. Next, we discuss the synchronized pulse contro
Sec. III. The application of the basic formula to no
Lorentzian~Lorentzian! coupling spectral density is written
in Sec. IIIA~B!. After discussing the effectiveness of the SP
in Sec. IV, we give concluding remarks in Sec. V.

II. FORMULATION

We consider a two-level system composed of an exc
state ue& and a ground stateug& with energy Ee . Let us
consider the decoherence of this two-level system, whic
caused by a linear interaction between the excited state a
boson reservoir. The system Hamiltonian reads,

HR5H01HSB5~HS1HB!1HSB, ~1!

HS[Eeue&^eu, ~2!

HB[\(
k

ekbk
†bk , ~3!
©2003 The American Physical Society02-1
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HSB[\ue&^eu(
k

hkek~bk1bk
†!. ~4!

In order to suppress the decoherence, we apply pulses
are sufficiently short and strong. This indicates that the in
action with the reservoir is neglected during pulse appli
tion,

HSP~ t !5HS1(
j 50

N

HP, j~ t !, ~5!

HP, j~ t !52 1
2 EW j~ t !•mW ~ ue&^gue2 ivt1ug&^eueivt!, ~6!

where EW j (t) is the j th applied pulse of external field. W
assume the pulse to be in resonance with the two-level
tem, which meansEe5\v.

When we applyN pulses with a pulse intervalts and
pulse durationDt, the time evolution of the density operato
r(t) of the total system is given by

r~ t !5e2 iL R[ t2(Nts1Dt)]T1FexpS 2 i E
Nts

Nts1Dt

dt8LP, j~ t8! D G
3H )

j 50

N21

e2 iL R(ts2Dt)

3T1FexpS 2 i E
j ts

j ts1Dt

dt8LP, j~ t8! D G J r~0!, ~7!

whereT1 is the time ordering symbol from right to left an
LP, j (LR) indicates the Liouville operator during thej th
pulse~the interaction with the reservoir! which is defined as

iL n•••[
i

\
@Hn , . . . #, ~n5$P, j % or $R%!. ~8!

We rewrite Eq.~7! by using the following relation for an
arbitrary operatorX,

e2 iL n(t2t0)X5e2( i /\)Hn(t2t0)Xe( i /\)Hn(t2t0), ~9!

which consists of the operators as

e2( i /\)HR(t2t0)5e2( i /\)H0(t2t0)

3T1FexpS 2~ i /\!E
0

t2t0
dt8H̃SB~ t8! D G

5@U1~ t2t0!ue&^eu1U2~ t2t0!ug&^gu#,

~10!
05230
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T1FexpS 2~ i /\!E
t0

t

dt8HP, j~ t8! D
5e2( i /\)H0(t2t0)e2( i /\)ĤP, j (t2t0)

5U2~ t2t0!cosS u j

2 D
3~e2 iv(t2t0)ue&^eu1ug&^gu!

2 i sinS u j

2 D ~ ue&^gu1ug&^eu!, ~11!

where

H̃SB~ t !5e2( i /\)H0tHSBe
( i /\)H0t

5(
k

hkek~bke
2 i ekt1bk

†ei ekt!, ~12!

H̃P, j~ t !5e2( i /\)H0tHP, je
( i /\)H0t

52 1
2 EW j•mW ~ ue&^gu1ug&^eu!

[ĤP, j . ~13!

Here we have assumed each applied pulse to be sq
whose strength is Ej , which gives pulse areau j

5(EW j•mW /\)(t2t0) for the j th pulse. In Eq.~11!, we used the
following definitions as

U1~ t !5expF2 i S v1(
k

ekbk
†bkD tG

3T1FexpS 2 i E
0

t

dt8(
k

hkek~bke
2 i ekt81bk

†ei ekt8! D G
5h~ t !expF2 i S v1(

k
ekbk

†bkD tG
3expS (

k
ek$bk

†jk~ t !2bkjk* ~ t !% D , ~14!

U2~ t !5expS 2 i(
k

ekbk
†bkt D , ~15!

where

h~ t !5expS i(
k

hk
2~ekt2sinekt ! D , jk~ t !5

hk

ek
~12ei ekt!.

~16!

Now we suppose the pulse areau j to bep except for the
first pulse whose pulse area isp/2 to generate a superpose
two-level state at an initial time (t50). Defining the inten-
sity of off-diagonal element of the density operatorr(t) as

I ~ t !5uTrR^eur~ t !ug&u2, ~17!

where TrR denotes the operation to trace over the reserv
variable, we obtain for evenN,
2-2
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I ~ t !5uTrR@U1~ t2Nts!„U2~ts!U1~ts!…
N/2r~0!„U2

†~ts!

3U1
†~ts!…

N/2U2
†~ t2Nts!#u2, ~18!

and for oddN,

I ~ t !5uTrR@U1~ t2Nts!„U2~ts!U1~ts!…
(N21)/2U2~ts!r~0!

3U1
†~ts!„U2

†~ts!U1
†~ts!…

(N21)/2U2
†~ t2Nts!#u2.

~19!

Here we have assumed the pulse durationDt to be infinitely
small. In the case of the pulsed magnetic resonance or
transient nonlinear optics,I (t) indicates the signal intensity

Next, we focus on the time evolution of the boson res
voir, eliminating the two-level system that periodical
changes its state betweenue& and ug& by the p pulse train.
Denoting the displacement operator as

D~$ak%![expS (
k

~akbk
†2ak* bk! D , ~20!

where$•••% means a set of bosons in the reservoir, we
tain the off-diagonal element of the density operatorr(t) in
the form for evenN,

I ~ t !5uTrR^eu@~ uAN~ t !&ue&!~^BN~ t !u^gu!#ug&u2

5u^BN~ t !uAN~ t !&u2, ~21!

with

uAN~ t !&5D„$aN,k~ t !%…u0&5u$aN,k~ t !%&,

^BN~ t !u5^0uD„$bN,k~ t !%…u5^$bN,k~ t !%u. ~22!

Here we definedaN,k(t) andbN,k(t) as

aN,k~ t ![2hk1(
j 50

N

~21! j$hke
2 i ek(t2 j ts)%,

bN,k~ t ![(
j 51

N

~21! j 21$hke
2 i ek(t2 j ts)%. ~23!

For oddN, we obtain

I ~ t !5uTrR^eu@„uBN~ t !&ue&…„^AN~ t !u^gu…#ug&u2

5u^$aN,k~ t !%u$bN,k~ t !%&u2, ~24!

with

aN,k~ t ![(
j 50

N

~21! j$hke
2 i ek(t2 j ts)%,

bN,k~ t ![(
j 51

N

~21! j 21$hke
2 i ek(t2 j ts)2hk%. ~25!

In obtaining Eqs.~21!–~25!, we assume that the boso
reservoir is in the vacuum state and the two-level system
in the ground state at the initial time:
05230
he

-

-

is

r~0!5ug&^gu ^ u0&^0u. ~26!

Equations~21! and ~24! imply that the intensityI (t) is
described by the overlap between coherent statesuAN(t)&
and uBN(t)& of the reservoir. These coherent states are b
niquely associated toug& and ue&. For evenN, the state
uAN(t)& is associated toue&, whereasuBN(t)& is associated to
ug&. The p pulse application alternately exchange the as
ciation between the reservoir states and the two-level sys

An actual evaluation of Eqs.~21!–~25! requires us to re-
write the summation overk into the energy integral,

(
k

uhku2f ~vk!5(
k

uhku2f ~vk!E
0

`

ded~e2vk!

5E
0

`

deh~e! f ~e!, ~27!

where we have defined coupling spectral densityh(e) as

h~e![(
k

uhku2d~e2vk!. ~28!

III. NUMERICAL EVALUATION

Now we evaluate the time evolution of the intensityI (t),

I ~ t !5u^AN~ t !uBN~ t !&u25expS 2(
k

uaN,k~ t !2bN,k~ t !u2D .

~29!

In the following, we discuss the time dependence ofI (t) for
non-Lorentzian and Lorentzian coupling spectral dens
While the SPC can be effective for the former case, it
ineffective for the latter case.

A. Non-Lorentzian coupling spectral density

As the first example of the non-Lorentzian coupling spe
tral density, we consider a Gaussian distribution with t
mean frequencyvp and the variancegp ,

hG~e![
s

Apgp

expS 2
~e2vp!2

gp
2 D . ~30!

SettingN50 in Eq. ~21!, we evaluate time evolution o
I (t) after a singlep/2 pulse att50, which is shown in Fig.
1. Here and henceforth, we have used a scaled time vari
as t̃[vpt and set the parameters asg̃p[gp /vp50.15 and
s53, which means that the decay time of the interact
mode is relatively long, the average number of boson wh
interact with the spin is three. We see a damped oscilla
whose period is 2p.

The dynamical decoupling method@1,10,11# shows us
that an application ofp pulse train is sufficiently effective
when the pulses are applied in a sufficiently ‘‘small’’ inte
val. When the spectral density has a cutoff frequency atvc
as assumed in Refs.@10# and @11#, the pulse intervalts is
required to be much smaller thantc[vc

21 in order to control
2-3
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C. UCHIYAMA AND M. AIHARA PHYSICAL REVIEW A 68, 052302 ~2003!
the decoherence. In the case of the Gaussian distributio
Eq. ~30! with relatively small variance, we suppose that t
pulse interval is required to be much smaller thanvp

21

[tp/2p for decoherence control. In Fig. 2, we can see t
the decay ofI ( t̃ ) is well suppressed forts5tp/20p.

However, when the pulse interval becomes longer,
find that the pulse application makes things even worse t
the damped oscillation in Fig. 1. This is shown in Fig.
where the pulse interval ists5tp/2.

Now we plot the case wherep pulses are applied with th
interval ts5tp in Fig. 4, where we find that the phase c
herence recovers at the pulse application time. The p
value asymptotically tends to be constant, which reflects
the dephasing in long-time region cannot be described by
linear interaction. When we obtain a recovery of the intens
by synchronizing the pulse application with the characteri
periodtp , we call this strategy for suppression of decoh
ence as synchronized pulse control. In this paper, we c
sider only the linear interaction between the spin and
original boson reservoir. While it is necessary to take in
account the nonlinear interaction, which causes the p
dephasing phenomena~irreversible processes in the long
time region! in many systems@14#, the effect of the pure
dephasing is not significant in the time region shown in F
4, since the nonlinear interaction is often much weaker t
the linear one.

The synchronized pulse application has been discusse
the context of transient optical nonlinear spectroscopy, ca
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FIG. 1. Time evolution ofI ( t̃ ) without pulse control forg̃p

[gp /vp50.15 ands53.
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FIG. 2. Time evolution of I ( t̃ ) for the pulse intervalts

5tp/20p. Other parameters are the same as in Fig. 1.
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synchronized quantum-beat echoes~SQBE! by Tanigawa
et al. @15#. They used two light pulse trains in order to cau
an optical transition between a ground-state sublevel p
The repetition frequency of the pulse trains is equal to
separation of the sublevel pair, which is superficially simi
to our approach. However, the role of the pulse train in t
paper is essentially different from SQBE, because each p
area in SQBE is much smaller thanp. In the pulse-train
control of decoherence in the present work, it is essential
the pulse area of each pulse isp, because the physical origi
of the coherence recovery is the time reversal opera
caused byeachp pulse. In Tanigawa’s work, the maximum
signal is generated when the total pulse area of the sec
pulse train isp, and the pulse train is used to achieve t
sublevel resonance.

Next, we assume the coupling spectral density to h
semielliptic distribution,

hS~e![s
1

p
A2~e2vp!21p, ~31!

definingp as

p[
4gp

2

3
~32!

1.0
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0.4

0.2

0.0

I (
 t~

 )
 

2π 4π
t
~
 

FIG. 3. Time evolution ofI ( t̃ ) for the pulse intervalts5tp/2.
Other parameters are the same as in Fig. 1.
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FIG. 4. Time evolution ofI ( t̃ ) for the pulse intervalts5tp .
Other parameters are the same as in Fig. 1.
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FIG. 5. Time evolution ofI ( t̃ ) for semiellip-
tic coupling spectral density withr 51, s53,

and g̃p50.15; ~a! without pulse application,~b!
pulse intervalts5tp/20p, ~c! pulse intervalts

5tp/2, and~d! for pulse intervalts5tp .
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to have half widthgp . The coupling function has been use
to describe the coupling strength between phonons an
localized electron in a solid@16#.

We show the time evolution ofI (t) for the same param
eters in Figure 4. Figure 5 shows similar behavior as in F
4 except the fact that the degree of the suppression for s
elliptic coupling spectral density is larger than the one for
Gaussian spectral density.

Defining the asymptotic peak value ofI ( t̃ ) for a pulse
interval t̃s asP( t̃s), we show the pulse-interval dependen
of P( t̃s) in Fig. 6. The solid~dotted! line in Fig. 6 plots the
P( t̃s) for semielliptic ~Gaussian! coupling spectral density
We find that P( t̃s) has a local maximum when the puls
interval t̃s is close to 2p. SinceP(2p) is nearly equal to
P(1) as shown in Fig. 6, we find that the same degree
decoherence suppression is obtained for much longer p
interval by paying attention to the dynamical motion of t
reservoir. However, the effectiveness of the SPC decre
with increase of the widthgp of the coupling spectral den
sity.

1.0

0.8

0.6

0.4

0.2

0.0

 P
 (

 τ∼  s
) 

2π 4π
τ
∼
 s

Gauss

Semi ellipse

FIG. 6. Pulse-interval dependence of the asymptotic peak v

P( t̃s) for the same parameters as in Figs. 4 and 5. The solid~dot-

ted! line shows theP( t̃s) for semielliptic~Gaussian! coupling spec-
tral density.
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B. Lorentzian coupling spectral density

Now we assume the coupling spectral density to have
Lorentzian distribution as,

hL~e![
s

p

gp

~e2vp!21gp
2

. ~33!

The Lorentzian coupling function has been often used
quantum optics. A relaxation process of an atomic system
quantum dots in high-Q cavities have been described with
structured reservoir. The structure is determined by a dis
bution of coupling constants and often described by
Lorentzian function@17–19#.

We show the time evolution ofI (t) for s53 and g̃p
50.15 in Fig. 7. Withoutp pulse application,I (t) shows the
damped oscillation as in Fig. 7~a!. Contrary to the preceding
two cases of Gaussian and semielliptic distribution, Fig. 7~b!
shows that we cannot obtain the sufficient decoherence
pression for short pulse intervalts5tp/20p. Increasing the
pulse interval tots5tp/2, we find that the degree of suppre
sion becomes worse@Fig. 7~c!#. The time dependence unde
SPC is shown in Fig. 7~d!. We find almost the same tim
evolution as the one without pulse control.

It should be noted that the ineffectiveness of the SPC d
not come from the fact that the decay occurs faster for
Lorentzian coupling spectral density than the non-Lorentz
one. In order to make the point clear, we show the ti
dependence for smallerg̃p (50.04), where we find the
larger amplitude of oscillation in the time evolution witho
pulse application in Fig. 8. The SPC makes the situation e
worse, and is ineffective for the system with Lorentzian co
pling spectral density. We will discuss the physical bac
ground of the ineffectiveness of the SPC in the followi
section.

IV. DISCUSSION

Let us consider the reason why the SPC is ineffective
the case of Lorentzian coupling spectral density. Here we

e

2-5
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FIG. 7. Time evolution ofI ( t̃ ) for Lorentzian

coupling spectral density withg̃p50.15; ~a!
without pulse application,~b! pulse intervalts

5tp/20p, ~c! pulse intervalts5tp/2, and ~d!
pulse intervalts5tp .
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a picture which provides us a qualitative understanding
the physical process of the SPC. The picture is obtained
replacing the original boson reservoir by a two-step str
tured reservoir where a single harmonic oscillator is coup
to a new ‘‘reservoir’’ with a coupling function which is dif
ferent from the original one.~The ‘‘reservoir’’ means the
newly introduced reservoir that causes the decay of
single harmonic oscillator.! The single harmonic oscillator i
called as a quasimode for atom-cavity system@20–24# or an
interaction mode for electron-phonon system@25#. In the fol-
lowing, we call the harmonic oscillator as the interacti
mode~Fig. 9!. The motion of the interaction mode, which
determined by the coupling to the ‘‘reservoir,’’ is characte
ized by the original coupling spectral density. The frequen
~decay constant! of the motion of the interaction mode co
responds to the center frequency~width! of the original cou-
pling spectral density.

The application of ap pulse causes time reversal to th
two-level system. Since the two-level system is coupled
the interaction mode, the degree of time reversal depend
the reversibility of the interaction mode. In the SPC, w
equalize the pulse interval to the oscillation period of t
interaction mode. If the reversibility of the interaction mo
partially remains at the pulse application times, the SPC
effective for suppression of decoherence.

When the original spin-boson interaction is characteriz
by the Lorentzian coupling spectral density, it has be
shown that the interaction mode is coupled to the ‘‘res
voir’’ with a flat ~white! coupling spectral density@16,24#.
The interaction mode shows the Markovian nature, wh
indicates the irreversibility of the motion of the interactio
mode~see Appendix!. The SPC is ineffective for the Lorent
zian spectral density.

For the case of the non-Lorentzian coupling spectral d
sity, we can also use the two-step structured reservoir wh
the interaction between the interaction mode and the ‘‘re
voir’’ is characterized by a nonwhite coupling spectral de
sity. This implies that the time evolution of the interactio
05230
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mode is non-Markovian, and partially reversible at the pu
application time. One should note that the non-Lorentz
coupling spectral density may not always guarantee the
fectiveness of pulse control when the coupling spectral d
sity has a slow power-law tail at high frequencies as a rec
study indicates@13#. However, in many systems, such a
localized-electron phonon systems, the shape of the coup
spectral density has clear maximum and minimum cutoff f
quencies. The detailed characteristics of the spectral den
for an effective pulse control deserve further research.

We should remark that in the limit of short pulse interva
the pulse control is effective even for the Lorenzian coupl
function. In this case, the interaction mode does not oscill
and the result is consistent with the ordinary dynamical
coupling @1,10,11#.

V. CONCLUDING REMARKS

We have proposed a new strategy to suppress decoher
by multipulse control, which is done by synchronizing ap
pulse train with the dynamical motion of reservoir. We ha

1.0

0.8

0.6

0.4

0.2

0.0

I (
 t~

 )
 

2π 4π 6π 8π 10π
t
~
 

without pulse

Synchronized pulse control

FIG. 8. Time evolution ofI ( t̃ ) for Lorentzian coupling spectra

density withg̃p50.04. The evolution with the SPC is compared
the one without pulse application.
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SYNCHRONIZED PULSE CONTROL OF DECOHERENCE PHYSICAL REVIEW A68, 052302 ~2003!
discussed the effectiveness of SPC for the non-Lorent
and the Lorentzian coupling spectral density. For the form
case, we find a periodic recovery of a quantum superposi
at the pulse application times, whereas we cannot obtain
recovery for the latter case.

Our scheme is somewhat similar to the SQBE@15# in the
sense that pulses are applied synchronously with the dyn
cal feature of reservoir. However, the SQBE is obtained
accumulating the response to each pulse whose area is m
smaller thanp. This means that the sufficient time revers
does not occur in the SQBE scheme and that the obta
echo is different from ours, where time reversibility caus
by the eachp pulse application is essential.

The SPC provides us another kind of method to supp
the decoherence by paying attention to the dynamical mo
of the reservoir. We hope that the synchronized pulse con
might extend the possibility of the pulse control of decoh
ence. Especially, the drastic alteration in the feature of
quantum superposition by changing the pulse interval m
indicate that the pulse application plays both roles to k
and erase a quantum memory.
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APPENDIX: INTRODUCTION OF THE TWO-STEP MODEL

In this appendix, we briefly review how to introduce th
two-step model by using the interaction mode~or the quasi-
mode!. The interaction mode is the single harmonic oscil
tor, and the two-level system couples only to this oscilla
The annihilation operator of the interaction mode is defin
by the linear combination of those for the original norm
modes as

(a)

(b)

Two-level

System
Reservoir

Two-level

System

Interaction

Mode
''Reservoir''

FIG. 9. Schematic representation of the two pictures for
boson system:~a! the normal mode picture and~b! the interaction
mode picture.
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B[g21(
k

hk«kbk , ~A1!

where

g[S (
k

uhk«ku2D 1/2

. ~A2!

Then, Eq.~4! can be rewritten as

HSB5\ue&^eu(
k

hkek~bk1bk
†!5\gue&^eu~B1B†!.

~A3!

The new ‘‘reservoir’’ modes are determined to be orthogo
to the interaction mode, and the many ‘‘reservoir’’ modes a
orthogonal with each other. These boson systems other
the interaction mode do not couple to the spin system,
are called the ‘‘reservoir’’ modes. We should note that t
‘‘reservoir’’ here implies the environmental degrees of fre
dom for the interaction mode and not for the spin syste
The interaction mode and the ‘‘reservoir’’ are coupled
each other as

HBR5\S B( gjRj
†1B†( gj* Rj D , ~A4!

whereRj (Rj
†) is the annihilation~creation! operator of the

oscillator for ‘‘reservoir’’ modes. The transformation from
the original normal modes to the interaction and ‘‘reservo
modes provides a different picture where a two-level syst
interacts with a single harmonic oscillator having conta
with a ‘‘reservoir.’’

When we consider a subsystem which consists of the
teraction mode and the ‘‘reservoir’’ withT50, the Markov-
ian master equation which describes time evolution of
interaction mode is solved to give the exponential decay
the coherent state amplitudes@26#, whose decay constant i
determined by the coupling spectral densitygj . The center
frequency of the coupling spectral density in the origin
normal modes corresponds to the frequency of the inte
tion mode, and the width of the coupling spectral density
associated with the decay of the interaction mode aris
from the coupling between the interaction mode and
‘‘reservoir.’’ The Lorentzian coupling spectral density e
pressed by Eq.~33! implies a Markovian time evolution o
the interaction mode, which indicates the irreversibility
the motion of the interaction mode.

The quasimode in the quantum optics has been obta
by an analogous procedure@20–23#. We have another ex
ample to show that the two-step model with the white ‘‘re
ervoir’’ is equivalent to the normal mode picture with th
Lorentzian coupling function@27#. Other than these ex
amples, the two-step model has also been used to describ
effect of coupling between the nuclear reaction coordin
and the other coordinates on electron transfer in biom
ecules@28,29#.
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