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Scaling issues in ensemble implementations of the Deutsch-Jozsa algorithm

Arvind* and David Collins†

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
~Received 24 July 2003; published 3 November 2003!

We discuss the ensemble version of the Deutsch-Jozsa~DJ! algorithm which attempts to provide a ‘‘scal-
able’’ implementation on an expectation-value NMR quantum computer. We show that this ensemble imple-
mentation of the DJ algorithm is at best as efficient as the classical random algorithm. As soon as any attempt
is made to classify all possible functions with certainty, the implementation requires an exponentially large
number of molecules. The discrepancies arise out of the interpretation of mixed state density matrices.
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Conventional NMR implementations of quantum comp
ing algorithms require the preparation of pseudopure st
@1–5#. There have been a few proposals to efficiently imp
ment the Deutsch-Jozsa~DJ! algorithm on an NMR quantum
information processor using highly mixed states@6,7#. The
basic idea in these ensemble schemes is to avoid pseudo
state preparation which would require exponential resou
and instead work with highly mixed states close to therm
equilibrium. These schemes need to be carefully exami
for their ‘‘quantum character’’ and their efficiencies com
pared to classical random algorithms. In this paper we sh
that for the DJ problem, a parallel can be drawn betwe
these ensemble implementations and classical random a
rithms.

We begin with a brief recapitulation of the DJ problem
Consider the set of functionsf :$0,1%n→$0,1%. If all 2n in-
puts map to the same output then the function is ‘‘consta
and if half the outputs map to 0 while the other half to 1 th
the function is ‘‘balanced.’’ Functions which are neither co
stant nor balanced are not considered here. The task he
to determine the constant or balanced nature of a given fu
tion. Given an oracle which evaluatesf (x) at an inputx
P$0,1%n, no deterministic classical algorithm can carry o
such a classification with certainty without using at le
2n2111 invocations of the oracle. The quantum DJ alg
rithm on the other hand accomplishes the classification
by invoking the oracle only once@8,9#. This it does by using
a quantum oracle defined through the unitary transforma
on ann qubit argumentux& and a one qubit targetuy&,

ux&uy&→
Û f

ux&uy% f ~x!&. ~1!

If a query to the oracle is assumed to come at a unit cost
the quantum DJ algorithm provides an exponential spee
over its classical counterpart. Then11 qubits need to be in
a pure quantum state for the algorithm to work. In liqu
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state NMR at room temperatures, which is the most succ
ful implementation of quantum information processing
date, the quantum states of the spins are far from p
Therefore, to emulate the standard version of the DJ a
rithm, one has to prepare the system in a spe
‘pseudopure’ state where the ensemble is divided into
parts: a small subset in a given pure state, and the rest a
as a uniform background with no contribution to the sign
However, the present preparation schemes for such s
lead to an exponential loss of signal because the subse
spins which can be prepared in a ‘‘pure’’ state decreases
ponentially with the number of qubits@5,10#.

Recently, alternative schemes have been proposed to
cumvent this difficulty@6,7#. These effectively use a com
puter with n11 qubits, where the firstn qubits are repre-
sented by a density matrix (1/2)I ~a fully mixed state! and
the last qubit is in the pure stateu0&. The initial state thus is

r in5
1

2n
I ^ I ^ •••I ^ u0&^0u ~2!

and rewriting it in the computational basis$ux&u0&ux50
•••x52n21% gives

r in5
1

2n (
x50

2n21

ux&^xu ^ u0&^0u. ~3!

This preparation is followed by the standard quantum ora
query described in Eq.~1!, yielding

rout5
1

2n (
x50

2n21

ux&^xu ^ u f ~x!&^ f ~x!u. ~4!

Before we extract the constant or balanced nature of
function we note that this is not an entangled state. The
tanglement is missing because of the special choice of
initial state. As a matter of fact the oracle is capable of g
erating entanglement and the standard pure state versio
the quantum algorithm relies on entanglement@8,9#.

The information about the function is contained entire
in the target qubit whose reduced density matrix is
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r target5
1

2n (
x50

2n21

u f ~x!&^ f ~x!u. ~5!

The expectation value ofsz in this state will immediately
reveal the constant or balanced nature of the functionf, with
the result

^sz&5H 61 constant f

0 balanced f .
~6!

By actually carrying out such a measurement the funct
can be classified with a single invocation of the quant
oracle without the associated problems of preparing pur
pseudopure states. This scheme is particularly suitable
implementation on a NMR quantum information process
where the thermal equilibrium state can be easily tra
formed into the maximally mixed state of Eq.~2! and expec-
tation value measurements are natural.

For comparison we describe a classical scenario whic
essence mimics the ‘‘quantum’’ scheme described above
stead of the NMR qubits, consider classical bit strings
length n11. Further, assume that we have 2n such strings
and each string is in a different state for the firstn bits,
thereby providing representation to all possible states of
first n bits. The (n11)th bit in each string is set to 0 and ac
as the target bit. Now the application of the classical ora
@x→ f (x) with f (x) appearing on the target# to all the copies
will yield the function values at all the 2n input points and
this value will be stored in the target bit in each copy. T
constant or balanced nature of the function can then be
tained by adding these values by appropriate gates. The
ues add to 2n or 0 for a constant function and to 2n/2 for a
balanced function. This is analogous to the case of the
pectation value quantum algorithm using maximally mix
states. In our view this scheme is thus fully classical, us
separable states at all stages and camouflaged in the lang
of quantum mechanics. The exponential resource is exp
in the classical situation while it is hidden in the definition
the input density matrix of Eq.~2! for the ensemble quantum
case. The deceptively simple fact that one has effectiv
prepared the state of the firstn qubits in the density matrix
(1/2n)(I ^ I ^ I . . . ^ I ) requires that we have at least 2n mol-
ecules!

Every density operator can be viewed as an ensembl
pure states occurring with certain probabilities. The existe
of a decomposition

r5(
i

pi uc i&^c i u with pi>0, ( pi51 ~7!

implies an ensemble$pi , uc i&% for r, where the stateuc i&
occurs with probabilitypi . It is to be noted that the state
uc i& need not be orthogonal and the decomposition gi
above is not unique for mixed states. However, whatever
be determined fromr can be consistently thought of as d
riving from any one of the ensembles. The ensemble sch
that culminates in Eq.~6! is illustrated by considering the
situation in which each ensemble member is taken to b
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one of the computational basis~pure! states, $ux&u0&ux
50 . . . 2n21%, each of which occurs with probabilitypx
51/2n. This corresponds to the input density operator of E
~3!. Now view the scheme as it is applied on each membe
the ensemble, which means that each member of the
semble independently computes the function on the in
state of that member and the output appears on the (n11)th
qubit of each member molecule. The measurement of
average ofsz then ostensibly reveals the constant or b
anced nature of the function as described in Eq.~6!.

Now imagine that one chooses to work with a fixed nu
ber of moleculesM. As the number of qubitsn increases,
soon one will reach a stage whenM,2n/2. In this case more
than half the computational basis states cannot find repre
tation in the ensemble because there are simply not eno
molecules! Therefore there are always balanced functi
which will have the same value over theseM states and will
get classified as constant, despite assuming the best situa
where all the molecules are assumed to be in different sta
We will see later that the actual scheme is even more ine
cient because all the molecules cannot be in different co
putational basis states. Thus, for the scheme to work for
functions one needs at least 2n/2 molecules in the ensemble
a number which grows exponentially withn. In other words,
when the number of molecules is smaller than 2n, there is no
way one can prepare the input density matrix of Eq.~2!. We
will return to this point later.

How many balanced functions escape classification fo
givenM? AssumeN52n is the input set size. The number o
constant functions is 2 which is independent ofn while the
number of balanced function isNCN/2 . If the scheme is used
with a number of molecules 1<M<N/2, the balanced func-
tions which escape classification are the ones which h
same value (0 or 1) for the firstM inputs. The number of
functions which have the value 1 (0) for the firstM inputs is
the same as the number of ways one can distribute the
mainingN/22M 1’s (0’s! on N2M inputs, giving:

S Number of Balanced Functions

Classified as Constant D 52S N2M

N/22M D . ~8!

Dividing this by the total number of balanced functions giv
the fraction of balanced functions for which the schem
fails

~Failure Fraction!52S N2M

N/22M D Y S N

N/2D . ~9!

This fraction diminishes quite fast asM increases from 0
toward N/2, increasing the efficiency of the algorithm. Th
fact that for most cases the scheme will work with a re
tively small number of molecules has nothing to do w
quantum mechanics. The classical randomized algorithm
will work to the same extent. In fact the above counting
valid for the classical algorithm as well. It is well known th
there is an efficient randomized classical algorithm for
DJ problem and we conclude that the expectation value
semble scheme in the best case is equivalent to it@11#.
1-2
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Even if we use a molecule numberM.2n how safely can
we say that the initial maximally mixed state has been re
ized and we are able to classify all functions with certain
It is possible that, in a given experimental implementation
the algorithm, all ensemble members are in the same in
state ux8&u0&. In this event, the algorithm only evaluate
f (x8) and the measurement outcome will be that for a c
stant function regardless of the nature off. Thus, in contrast
to the conventional DJ algorithm, there can be no way
determining the function type with certainty. In this sen
this ensemble algorithm for solving the DJ problem is n
deterministic and must be compared to probabilistic class
algorithms. We shall consider the probability with whic
each correctly determines the function type and show t
regardless of the ensemble size, the standard probabi
classical algorithm is superior to this ensemble quantum
gorithm.

Suppose that the ensemble consists ofM identical, inde-
pendentn11 qubit molecules. Each member of the e
semble will be subject to the unitary of Eq.~1!, which can be
re-expressed as

Û f5 P̂0~ f ! ^ I 1 P̂1~ f ! ^ sx , ~10!

where

P̂0~ f !ª (
x: f (x)50

ux&^xu,

P̂1~ f !ª (
x: f (x)51

ux&^xu, ~11!

project onto subspaces ofn qubit argument whileI and sx
act on the target qubit. For the target qubit,^sz& is approxi-
mated by

z̄ª
1

M (
j 51

M

zj , ~12!

wherezj561 are the outcomes of projective measurem
(zj51 corresponding tou0&^0u and zj521 to u1&^1u) on
the target qubit for individual ensemble members.

The only assumption that we make about the ensem
members’ initial states is that they occur with probabiliti
described by the density operator of Eq.~3!. Then, for any
ensemble memberj,

Prob~zj511u f !5Trarg~ P̂0~ f !r in!, ~13a!

Prob~zj521u f !5Trarg~ P̂1~ f !r in!, ~13b!

where measurements are performed immediately after a
rithm unitaries and the traces are taken over the argum
register only. Note that each constant function yields o
measurement outcome with certainty:zj511 for f 50 and
zj521 for f 51. Thus z̄511 for f 50 and z̄521 for f

50. Wheneverz̄ departs from61 it is clear thatf is bal-
anced. However, the extent to which such a departure is
ticeable depends on the available measurement resolu
05230
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which can be expressed in terms of outcomes of funct
register measurements on individual ensemble memb
Suppose that it is possible to distinguish two ensemble a
ages only when they differ inR ~out of M ) or more indi-
vidual measurement outcomes. Then we regard two
semble averages as distinct provided thatuz̄2 z̄8u>R/M .
This motivates the following protocol for deciding the alg
rithm outcome:

z̄>12R/M⇒ f 50, ~14a!

z̄<211R/M⇒ f 51, ~14b!

12R/M. z̄.211R/M⇒ f balanced. ~14c!

The issue is to determine the probability with which th
protocol will correctly identify the function type. Constan
functions will always be identified correctly and we ne
only to find the probability that a balanced function will giv
z̄>12R/M or z̄<211R/M . These are the probabilitie
that a balanced function will returnzj521 or zj511 at
most R21 times, respectively. For a balanced functi
Prob(zj511)5Prob(zj521)51/2. The probability that
we incorrectly declare a balanced function to be constan

pfail52 (
k50

R21 S M
k D S 1

2D kS 1

2D M2k

5
1

2M21 (
k50

R21 S M
k D . ~15!

In the best conceivable caseR51, giving pfail51/2M21.
To account for the spatial resources offered by the

semble we consider the application ofÛ f to the ensemble
containingM members as equivalent toM oracle calls. We
must then compare this ensemble algorithm to a class
random algorithm that usesM oracle calls. In the classica
random algorithm one begins by choosingx1 randomly and
evaluatingf (x1). The next step is to choosex2Þx1, evaluate
f (x2) and compare the result tof (x1). If the two differ then
f is balanced. If not, pickx3 which differs from bothx1 and
x2 , and comparef (x3) to f (x2) and f (x1), etc. The algo-
rithm terminates whenf returns different outcomes or ha
been evaluated on 2n/211 different inputs. The classica
random algorithm never misidentifies a constant function a
identifies a balanced functionf as constant only when
f (x1)5 f (x2)5•••5 f (xM). The probability of failure is the
probability with which this occurs. The outcomef (x1)50
occurs with probability (N/2)/N. Given f (x1)50, f (x2)
50 occurs with probability (N/221)/(N21). Continuing,
the probability thatx1 , . . . ,xM are all such thatf (xk)50 is

pclassical
0 5

N/2

N

N/221

N21
. . .

N/22M11

N2M11
5S N/2

M D Y S N
M D .

~16!

Similarly the probabilitypclassical
1 thatx1 , . . . ,xM are all such

that f (xk)51 can be computed and it turns out to be same
pclassical

0 . Thus the probability of failure is
1-3
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pfail
classical52S N/2

M D Y S N
M D . ~17!

As expected, this turns out to be same as the failure frac
given in Eq.~9! for the quantum ensemble version with th
unrealistic assumption that every molecule is in a differ
computational basis state. However, note that forN/2.k
.0, (N/22k)/(N2k),1/2, which implies that

pfail
classical,2S 1

2D M

<pfail . ~18!

Thus the probability of failure for the classical random alg
rithm is strictly less than that of the ensemble quantum v
sion discussed here.

The central issue is therefore one of interpreting den
matrices. What is relevant here are the inferences that ca
drawn from measurement outcomes on quantum syst
whose states are described by density matrices. In all c
the density matrix merely provides the probability distrib
tion for outcomes of various measurements. The accur
with which such a distribution is realized improves with
increasingly large ensemble. Imagine a single quantum
tem which is handed over to us with no information about
What quantum state or density matrix will we be able
assign to it? To express our complete lack of informat
about this system we have to assign equal weightage to
possible outcomes in all bases and therefore a density m
proportional to identity is the best choice. In this extrem
case, measurement yields one of all possible outcomes
one cannot reliably infer anything from this. The dens
g
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operator merely reflects our lack of knowledge in the state
the system. It is only when measurements are performed
many copies described by the same density operator that
comes or more precisely, the average outcome, carry
meaningful information. This is no more than standard s
tistical sampling and for ann qubit density matrix propor-
tional to the identity, the variance scales as 22n, indicating
that one typically needsO(2n) samples~measurement out
comes! to make sensible inferences from measurements.
cordingly the ensemble size would have to scale asO(2n)
before we can consider this density operator to have b
realized accurately, at least in terms of measurement
come averages. Here the ensemble begins to appear
collection of quantum systems with states described acc
ing to the density matrix. It should be noted that, for th
version of the DJ algorithm, the situation is less dire sin
inferences are made from measurements on the target q
alone. Hencen does not appear in the failure probability
Eq. ~15!. However, as clear from Eq.~18! a classical random
algorithm does the task better.

These ensemble computing ideas might work for ot
algorithms and give a genuine speed up over classica
classical random algorithms. One possibility is efficie
simulation of quantum systems@12# and our result does no
pertain to this. It is worthwhile to explore the exact implic
tions of this model which will be taken up elsewhere.
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