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Scaling issues in ensemble implementations of the Deutsch-Jozsa algorithm
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We discuss the ensemble version of the Deutsch-J@23aalgorithm which attempts to provide a “scal-
able” implementation on an expectation-value NMR quantum computer. We show that this ensemble imple-
mentation of the DJ algorithm is at best as efficient as the classical random algorithm. As soon as any attempt
is made to classify all possible functions with certainty, the implementation requires an exponentially large
number of molecules. The discrepancies arise out of the interpretation of mixed state density matrices.
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Conventional NMR implementations of quantum comput-state NMR at room temperatures, which is the most success-
ing algorithms require the preparation of pseudopure statefsil implementation of quantum information processing to
[1-5]. There have been a few proposals to efficiently imple-date, the quantum states of the spins are far from pure.
ment the Deutsch-Joz$BRJ) algorithm on an NMR quantum Therefore, to emulate the standard version of the DJ algo-
information processor using highly mixed staf€s7]. The rithm, one has to prepare the system in a special
basic idea in these ensemble schemes is to avoid pseudoptpseudopure’ state where the ensemble is divided into two
state preparation which would require exponential resourcegarts: a small subset in a given pure state, and the rest acting
and instead work with highly mixed states close to thermaks a uniform background with no contribution to the signal.
equilibrium. These schemes need to be carefully examinetlowever, the present preparation schemes for such states
for their “quantum character” and their efficiencies com- lead to an exponential loss of signal because the subset of
pared to classical random algorithms. In this paper we showpins which can be prepared in a “pure” state decreases ex-
that for the DJ problem, a parallel can be drawn betweemonentially with the number of qubi{$,10].
these ensemble implementations and classical random algo- Recently, alternative schemes have been proposed to cir-
rithms. cumvent this difficulty[6,7]. These effectively use a com-

We begin with a brief recapitulation of the DJ problem. puter with n+1 qubits, where the firsh qubits are repre-
Consider the set of functions{0,1}"—{0,1}. If all 2" in-  sented by a density matrix (142)a fully mixed stat¢ and
puts map to the same output then the function is “constantthe last qubit is in the pure stat@). The initial state thus is
and if half the outputs map to O while the other half to 1 then
the function is “balanced.” Functions which are neither con- 1
stant nor balanced are not considered here. The task here is pin=—1®1®---12|0)(0| 2)
to determine the constant or balanced nature of a given func- 2"
tion. Given an oracle which evaluaté$x) at an inputx
€{0,1", no deterministic classical algorithm can carry outang rewriting it in the computational basigx)|0)|x=0
such a classification with certainty without using at least...x=2"—1} gives
2""1+1 invocations of the oracle. The quantum DJ algo-
rithm on the other hand accomplishes the classification task n

2"-1
by invoking the oracle only onde,9]. This it does by using 1
a quantum oracle defined through the unitary transformation pi”_E ZO X)(x|®]0)(0]. 3)
on ann qubit argumentx) and a one qubit targéy),
0y This preparation is followed by the standard quantum oracle
1X)|y)— )|y @ F(x)). (1) Query described in Eq1), yielding
If a query to the oracle is assumed to come at a unit cost then 2"-1
the quantum DJ algorithm provides an exponential speedup Pou= o XZO [X){x|®|f(x)){F(x)]. (4)

over its classical counterpart. The- 1 qubits need to be in
a pure guantum state for the algorithm to work. In liquid
Before we extract the constant or balanced nature of the
function we note that this is not an entangled state. The en-
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1 21 one of the computational basigpure states,{|x)|0)|x
P — > |FOONE(X)]. (59 =0...2"-1}, each of which occurs with probabilitp,
e on o =1/2". This corresponds to the input density operator of Eqg.

(3). Now view the scheme as it is applied on each member of
The expectation value af, in this state will immediately the ensemble, which means that each member of the en-
reveal the constant or balanced nature of the fundtiovith  semble independently computes the function on the input
the result state of that member and the output appears onnhkel()th
qubit of each member molecule. The measurement of the
©6) average ofo, then ostensibly reveals the constant or bal-
anced nature of the function as described in &g.
Now imagine that one chooses to work with a fixed num-
By actually carrying out such a measurement the functiorber of moleculesM. As the number of qubits increases,
can be classified with a single invocation of the quantumsoon one will reach a stage whish<<2"/2. In this case more
oracle without the associated problems of preparing pure athan half the computational basis states cannot find represen-
pseudopure states. This scheme is particularly suitable faation in the ensemble because there are simply not enough
implementation on a NMR quantum information processormolecules! Therefore there are always balanced functions
where the thermal equilibrium state can be easily transwhich will have the same value over thedestates and will
formed into the maximally mixed state of E@) and expec- get classified as constant, despite assuming the best situation,
tation value measurements are natural. where all the molecules are assumed to be in different states.
For comparison we describe a classical scenario which ifVe will see later that the actual scheme is even more ineffi-
essence mimics the “quantum” scheme described above. Ircient because all the molecules cannot be in different com-
stead of the NMR qubits, consider classical bit strings ofputational basis states. Thus, for the scheme to work for all
lengthn+1. Further, assume that we have Quch strings  functions one needs at least/2 molecules in the ensemble,
and each string is in a different state for the firsbits, = a number which grows exponentially with In other words,
thereby providing representation to all possible states of thevhen the number of molecules is smaller thdn there is no
first n bits. The g+ 1)th bit in each string is set to 0 and acts way one can prepare the input density matrix of E). We
as the target bit. Now the application of the classical oraclewill return to this point later.
[x—f(x) with f(x) appearing on the tardeto all the copies How many balanced functions escape classification for a
will yield the function values at all the2input points and givenM? AssumeN=2" is the input set size. The number of
this value will be stored in the target bit in each copy. Theconstant functions is 2 which is independentnofvhile the
constant or balanced nature of the function can then be omumber of balanced function i8Cy,. If the scheme is used
tained by adding these values by appropriate gates. The valith a number of moleculestM <N/2, the balanced func-
ues add to 2 or O for a constant function and td'/2 for a  tions which escape classification are the ones which have
balanced function. This is analogous to the case of the exsame value (0 or 1) for the firddl inputs. The number of
pectation value quantum algorithm using maximally mixedfunctions which have the value 1 (0) for the fiMtinputs is
states. In our view this scheme is thus fully classical, usinghe same as the number of ways one can distribute the re-
separable states at all stages and camouflaged in the languageainingN/2—M 1’s (0’s) on N—M inputs, giving:
of quantum mechanics. The exponential resource is explicit
in the classical situation while it is hidden in the definition of Number of Balanced Functiohs N—M
the input density matrix of Eq2) for the ensemble quantum T— ( N/2— M
case. The deceptively simple fact that one has effectively

prepared the state of the firstqubits in the density matrix . . . : :
(U2)(1®1®l ...o1) requires that we have at least iol- Dividing this by the total number of balanced functions gives
ecules! the fraction of balanced functions for which the schemes

Every density operator can be viewed as an ensemble Jpils
pure states occurring with certain probabilities. The existence

iti N—M N
of a decomposition . .
(Failure Fraction 2( N/2— ) / (N/Z)' 9

+1 constant f

{02)= 0 balanced f.

Classified as Constant

). tS)]

pz}i: il i)uil - with - pi=0, 2 pi=1 (@ This fraction diminishes quite fast @4 increases from 0

toward N/2, increasing the efficiency of the algorithm. The
implies an ensemblép;, )} for p, where the statéy;)  fact that for most cases the scheme will work with a rela-
occurs with probabilityp; . It is to be noted that the states tively small number of molecules has nothing to do with
|) need not be orthogonal and the decomposition givemuantum mechanics. The classical randomized algorithm too
above is not unique for mixed states. However, whatever cawill work to the same extent. In fact the above counting is
be determined fronp can be consistently thought of as de- valid for the classical algorithm as well. It is well known that
riving from any one of the ensembles. The ensemble schenthere is an efficient randomized classical algorithm for the
that culminates in Eq(6) is illustrated by considering the DJ problem and we conclude that the expectation value en-
situation in which each ensemble member is taken to be isemble scheme in the best case is equivalent [tblit
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Even if we use a molecule numbr>2" how safely can which can be expressed in terms of outcomes of function
we say that the initial maximally mixed state has been realfegister measurements on individual ensemble members.
ized and we are able to classify all functions with certainty?Suppose that it is possible to distinguish two ensemble aver-
It is possible that, in a given experimental implementation ofages only when they differ iR (out of M) or more indi-
the algorithm, all ensemble members are in the same initiatidual measurement outcomes. Then we regard two en-

state[x')[0). In this event, the algorithm only evaluates semble averages as distinct provided thatz'|=R/M.
f(x’) and the measurement outcome will be that for a con-This motivates the following protocol for deciding the algo-
stant function regardless of the naturefoThus, in contrast rithm outcome:

to the conventional DJ algorithm, there can be no way of

determining the function type with certainty. In this sense, Pt _

this ensemble algorithm for solving the DJ problem is not z=1-RIM=1=0, (143
deterministic and must be compared to probabilistic classical

algorithms. We shall consider the probability with which z=-1+RIM=f=1, (14b)
each correctly determines the function type and show that,

regardless of the ensemble size, the standard probabilistic 1-RIM>z>—1+R/M=f balanced. (140
classical algorithm is superior to this ensemble quantum al-

gorithm. The issue is to determine the probability with which this

Suppose that the ensemble consistsvoidentical, inde-  yrat0c0 will correctly identify the function type. Constant
pendentn+1 qubit molecules. Each member of the en-fnctions will always be identified correctly and we need
semble will be subject to the unitary of Ed), which canbe o1y 16 find the probability that a balanced function will give
re-expressed as 7z=1-RI/M or z=—1+R/M. These are the probabilities
£ A that a balanced function will returs;=—1 orz=+1 at
Po(hel+Pi(h® oy, (10 most R—1 times, respectively. Fo]r a balanc]:ed function
where Prob(z;=+1)=Prob@z;=—1)=1/2. The probability that

we incorrectly declare a balanced function to be constant is

Po(f)e= 2 DX,

R-1 k M —k R—-1
M\ [1\¢1 1 M
pfailzzgo ( k)(f > —ow1 kZO ( k)' (15)
Pi(f)= > X)X, (12)
xf9=1 In the best conceivable cage=1, giving pg;=1/2""1.

project onto subspaces ofqubit argument whild and o To account for the spatial resources offered by the en-

act on the target qubit. For the target qubit,) is approxi- semb!e_ we consider the applipation Of to the ensemble
mated by containingM members as equivalent #d oracle calls. We

must then compare this ensemble algorithm to a classical

_ 1 M random algorithm that use¥ oracle calls. In the classical
Z::M 2 zZj, 12 random algorithm one begins by choosxgrandomly and
=1 evaluatingf(x,). The next step is to choosg+ X, evaluate
wherez;= =1 are the outcomes of projective measurement (Xz) @nd compare the result fgx,). If the two differ then
(/=1 corresponding t90)(0| and z=-1to 11)(1]) on f is balanced. If not, picks; which differs from bothx; and
the target qubit for individual ensemble members. Xz, and compard (x3) to f(xz) andf(x,), etc. The algo-

The only assumption that we make about the ensembldthm terminates wherf returns different outcomes or has

members’ initial states is that they occur with probabiliiesP@en evaluated on "2+1_ different inputs. The classical
described by the density operator of E8). Then, for any random algorithm never misidentifies a constant function and

ensemble membeér identifies a balanced functiom as constant only when
f(x)=f(xy)="---=f(xy). The probability of failure is the

Prol(zj=+1|f)=Tr Po(f)pin). (133  Pprobability with which this occurs. The outconfg¢x;)=0

occurs with probability N/2)/N. Given f(x;)=0, f(x,)

Prol(z;= —1|f):Trarg( ﬁl(f)pin)' (13b) =0 occurs with probability i/2—1)/(N—1). Continuing,

the probability thaix,, ... Xy are all such that(x,)=0 is
where measurements are performed immediately after algo-
N
s

rithm unitaries and the traces are taken over the argument

N/2 N/2—1 N/2—M+1 _(N/Z

register only. Note that each constant function yields one Pclassica N~ N=1 """ N—M+1 | M
measurement outcome with certaingy=+1 for f=0 and (16)
zj=—1 for f=1. Thusz=+1 for f=0 andz=—1 for f

=0. Wheneverz departs from*1 it is clear thatf is bal-  Similarly the probabilitypg,ssicath@txs , . . . Xy are all such

anced. However, the extent to which such a departure is ndhatf(x,) =1 can be computed and it turns out to be same as
ticeable depends on the available measurement resolutiopd.«.o+ Thus the probability of failure is
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A N/2 N operator merely reflects our lack of knowledge in the state of
classical_ ;
Prail —2( M ) / M)' 17 the system. It is only when measurements are performed on
many copies described by the same density operator that out-
As expected, this turns out to be same as the failure fractionomes or more precisely, the average outcome, carry any
given in Eq.(9) for the quantum ensemble version with the meaningful information. This is no more than standard sta-
unrealistic assumption that every molecule is in a differentjstical sampling and for am qubit density matrix propor-
computational basis state. However, note that X8>k  tjonal to the identity, the variance scales &8,2indicating

>0, (N/2=k)/(N—k)<1/2, which implies that that one typically need®(2") samples(measurement out-
1AM comes to make sensible inferences from measurements. Ac-
pilassical - 5) <Prai - (18  cordingly the ensemble size would have to scalégg")

before we can consider this density operator to have been

Thus the probability of failure for the classical random algo-T€@lized accurately, at least in terms of measurement out-
rithm is strictly less than that of the ensemble quantum vercOMe averages. Here the ensemble begins to appear as a
sion discussed here. collection of quantum systems with states described accord-
The central issue is therefore one of interpreting densitynd to the density matrix. It should be noted that, for this
matrices. What is relevant here are the inferences that can b@rsion of the DJ algorithm, the situation is less dire since
drawn from measurement outcomes on quantum systenigferences are made from measurements on the target qubit
whose states are described by density matrices. In all casé@éone. Hencen does not appear in the failure probability in
the density matrix merely provides the probability distribu- Eq. (15). However, as clear from E@18) a classical random
tion for outcomes of various measurements. The accuracglgorithm does the task better.
with which such a distribution is realized improves with an  These ensemble computing ideas might work for other
increasingly large ensemble. Imagine a single quantum sysgorithms and give a genuine speed up over classical or
tem which is handed over to us with no information about it.classical random algorithms. One possibility is efficient
What quantum state or density matrix will we be able tosimulation of quantum systeni2] and our result does not
assign to it? To express our complete lack of informationpertain to this. It is worthwhile to explore the exact implica-

about this system we have to assign equal weightage to aliyns of this model which will be taken up elsewhere.
possible outcomes in all bases and therefore a density matrix

proportional to identity is the best choice. In this extreme Numerous stimulating discussions with R.B. Griffiths and
case, measurement yields one of all possible outcomes arnchvita Dorai are acknowledged. The research effort is
one cannot reliably infer anything from this. The densityfunded by the NSF Grant No. 0139974,
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