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Transient time-domain resonances and the time scale for tunneling
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Transienttime-domain resonancesfound recently in time-dependent solutions to Schro¨dinger’s equation are
used to investigate the issue of the tunneling time in rectangular potential barriers. In general, a time-frequency
analysis shows that these transients have frequencies above the cutoff frequency associated with the barrier
height, and hence correspond to nontunneling processes. We find, however, a regime characterized by the
barrier opacity, where the peak maximumtmax of the time-domain resonance corresponds to under-the-barrier
tunneling. We argue thattmax represents the relevant tunneling time scale through the classically forbidden
region.
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Tunneling refers to the possibility that a particle travers
through a classically forbidden region. In the energy dom
the solution to Schro¨dinger’s equation at a fixed energyE is
a subject discussed in every quantum mechanics textboo
the time domain, however, there are still aspects open
scrutiny. A problem that has remained controversial over
years is the tunneling time problem that may be stated by
question: How long does it take to a particle to travers
classically forbidden region? Different authors have p
posed and defended different views in answering the ab
question@1–4#.

In a recent work we have investigated the effect of
transient solutions to the time-dependent Schro¨dinger’s equa-
tion for cutoff wave initial conditions~quantum shutter! on
the tunneling process@5–7#. In particular we found that jus
across the tunneling barrier, the probability density as a fu
tion of time may exhibit a transient structure that we ha
named time-domain resonance. The peak valuetmax of this
structure represents the largest probability of finding the p
ticle at the barrier widthL. More recently, in collaboration
with Delgado and Muga@8#, we considered a time-frequenc
analysis @9,10# to show the existence of under-the-barr
transients~forerunners! in very broad barriers. However
these occur along a finite region of the potential, and he
do not allow to characterize the time scale associated w
the tunneling process through the full classically forbidd
region. On the other hand, in collaboration with Yamada@11#
we have recently established the equivalence of our for
lation with the notion of ‘‘passage time’’ in the real Feynma
histories approach. The passage time yields the traversal
through a barrier region though it does not distinguish
tween processes from above or below the barrier height.
above considerations indicate that it is not clear under w
conditions the time-domain resonances found at the ba
edgex5L correspond to genuine tunneling processes.

The aim of this work is to show the existence of a regim
characterized by the opacity of the system, where the ti
domain resonance maximumtmax corresponds to under-the
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barrier tunneling. We argue that this time scale provides
tunneling time through the classically forbidden region.

Our approach to the tunneling time problem is based o
model that deals with an explicit solution@5# to the time-
dependent Schro¨dinger’s equation

F i\
]

]t
1

\2

2m

]2

]x2
2V~x!GC~x,t !50 ~1!

for an arbitrary potentialV(x), defined in the region (0<x
<L), that vanishes outside that region. We consider
problem of the time evolution of a cutoff plane wave

C~x,t50!5H eikx2e2 ikx, x<0

0, x.0,
~2!

following the instantaneous opening att50 of a quantum
shutter atx50. Along the tunneling region the solution read

C i~x,k;t !5fk~x!M ~yk!2f2k~x!M ~y2k!

2 (
n52`

`

fn~x!M ~ykn
! ~0<x<L !, ~3!

where thef6k(x)’s refer to the stationary solutions of th
problem and fn(x)52ikun(0)un(x)/(k22kn

2). Similarly,
the solutionCe(x,k;t) for the external or transmitted regio
(x>L) is given by@6#

Ce~x,k;t !5TkM ~yk!2T2kM ~y2k!

2 i (
n52`

`

TnM ~ykn
! ~x>L !, ~4!

where theT6k’s refer to the transmission amplitudes and t
factor Tn52ikun(0)un(L)exp(2iknL)/(k22kn

2). In Eqs. ~3!
and ~4! the coefficientsxn andTn are given in terms of the
resonant eigenfunctions$un(x)% with complex energy eigen
values En5\2kn

2/2m, with kn5an2 ibn (an ,bn.0). The
resonant sums in Eqs.~3! and ~4! run over the full set of
complex poles$kn%. The M ’s are defined as@5#
©2003 The American Physical Society07-1
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M ~yq!5 1
2 eimx2/2\tw~ iyq!, ~5!

wherew is the complex error function@12# defined asw(z)
5exp(2z2)erfc(2 iz) with arguments yq(x,t)
5e2 ip/4(m/2\t)1/2@x2\qt/m#, whereq56k, kn .

We shall begin exploring the issue of the tunneling tim
scale by first considering specific examples of rectang
potential barriers~of heightV and thicknessL) to go then to
results of a more general character. Let us recall the m
features of a time-domain resonance@6#. It follows from the
initial condition, given by Eq.~2!, that initially there is no
particle along the tunneling region. Hence evaluating
probability density at the barrier widthx5L as time evolves
from zero yields a distribution of characteristic times asso
ated with the tunneling process. In Fig. 1 we plot the pro
ability densityuCeu2 ~solid line!, normalized to the transmis
sion coefficientuTku2, as a function of timet, corresponding
to a potential barrier system with typical parameters@13#:
V50.3 eV, incidence energyE5\2k2/2m50.001 eV, and
effective mass for the electronm50.067me , for a fixed
value of positionx5L54.0 nm. We can clearly appreciate
structure peaked at the valuetmax55.17 fs. This is the so-
called time-domain resonance.

In Fig. 2 we plottmax ~full dot! for the same parameters a
in Fig. 1 except for the barrier widthL that we vary. Here we
can clearly observe the existence of a basin along a rang
values of the barrier width. We can also appreciate that ifL is
further increased,tmax starts to grow linearly withL. Such a
linear regime occurs at large barrier widths. We have d
cussed elsewhere that this last situation refers to nontun
ing processes@6#. We have also pointed out in Ref.@6# that
for small values of the barrier widthL, the basin exhibited by
tmax is the result of a subtle interplay between tunneling a
~nontunneling! top-barrier resonant processes.

In what follows we shall investigate under what cond
tions the time scales associated with the basin, are in
related to a genuine tunneling process.

We use the fact that the initial cutoff wave possesse
distribution of momentum components ink space, and henc
also of frequency components. As time evolves and the w
interacts with the potential, these frequency compone

FIG. 1. Time evolution ofuCeu2 ~solid line! at x5L54.0 nm. A
full square indicates the position of the maximum of the tim
domain resonance attmax55.17 fs.
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manifest themselves in the time evolution of the probabi
density. The frequency content of the time-domain resona
can be investigated by performing a time-frequency analy
We do this by computing the local average frequencyvav
@9,10#,

vav52ImF 1

Cs

d

dt
CsG , ~6!

and the instantaneous bandwidths @10#

s5UReF 1

Cs

d

dt
CsGU , ~7!

where s5 i and e refers, respectively, to the internal an
external solutions. To exemplify this, we choose the casL
54.0 nm depicted in Fig. 2, which is located around t
minimum of the basin. In Fig. 3 we plot the relative avera
local frequency ~relative frequency for short! vav /vV ,

-
FIG. 2. Maximum of the time-domain resonancetmax ~full dot!

as a function of the barrier widthL for an incidence energyE
50.001 eV. In this case the barrier height isV50.3 eV. See text.

FIG. 3. Relative average local frequencyvav /vV ~solid line! for
the case depicted in Fig. 1. The cutoff frequencyvav /vV51
~dashed line! is included for comparison. In the inset we plot th
instantaneous bandwidths of the spectrogram depicted in the ma
graph. Notice that the frequency deviations attmax are exactly zero,
i.e., s(tmax)50. In all cases a full square indicates the position
tmax.
7-2
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wherevV5V/\ is the cutoff frequency, along the releva
time interval, discussed in Fig. 1. We can appreciate tha
the vicinity of the maximum of the time-domain resonan
tmax the probability density is composed entirely of unde
the-barrier frequency components, i.e.,vav /vV,1. This
also occurs at the exact valuetmax, also indicated in the
figure by a solid square. In the inset of Fig. 3 we plot t
instantaneous bandwidths of the spectrogram. Notice th
absence of a frequency dispersion around the maxim
tmax, i.e.,s(tmax)50. The above result indicates that in th
case the peak of the time-domain resonance and the va
close to it refer to a tunneling event. We have found, ho
ever, that this is not a general situation. For instance,
values ofL outside the basin, i.e., along the linear regime
Fig. 2, the average frequency related to the correspon
tmax is above the cutoff frequency and hence refers to n
tunneling processes. As we shall present below this is m
appropriately discussed by using the notion of the opacity
the system. In Fig. 4 we plot the relative frequencyvav /vV
associated with different values of the maximumtmax, mea-
sured at different positions along both the internal and ex
nal regions of a potential barrier with parameters:V
50.3 eV andL54.13 nm. In this case we choose the fo
lowing values of the incidence energy:E50.001 eV~solid
dot! andE50.01 eV~hollow dot!. In the inset of Fig. 4 we
show, for the particular case ofE50.01 eV, the values o
tmax ~solid square! at the different values of position consid
ered in the main graph. As can be clearly appreciated in
figure, the tunneling process along the whole internal reg
is governed by under-barrier-frequency components,
vav /vV,1. We can see in Fig. 4 that we can still obser
frequency components below the cutoff frequencyvV for
distances up tox.2L along the external region. Asx/L

FIG. 4. Relative frequencyvav /vV of the maximum of the
time-domain resonance as a function of position, measured in u
of the barrier widthL. The parameters are given in the text. Tw
incidence energies are considered:E50.001 eV~solid dot! and E
50.01 eV ~hollow dot!. In both cases, the relative frequenc
vav /vV along the internal region is below the cutoff frequen
vav /vV51 ~dashed line!. The behavior oftmax as a function of
position is illustrated in the inset for the case withE50.01 eV. The
position of the barrier edge,x5L, is indicated by a dotted line in
both figures.
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increases further,vav /vV.1. This behavior indicates the
prevalence of nontunneling components in the behavior
the probability density@7#.

We have found that the regime which corresponds
under-the-barrier time-domain resonances at the barrier e
x5L may be described more generally by referring to t
opacitya of the system, defined as

a5
@2mV#1/2

\
L, ~8!

and by the dimensionless parameteru, the ratio between the
potential barrier height and the incidence energy:

u5
V

E
. ~9!

To characterize this tunneling regime, we use the fact tha
systems sharing the same parametersa andu yield the same
relative frequencyvav /vV . This regularity arises from a
simple rescaling property of the time-dependent Schr¨d-
inger’s equation and the corresponding initial condition.
feeding the dimensionless variablesX5x/L and T5vVt in
Eqs.~1! and ~2!, we obtain

F i
]

]T
1

1

a2

]2

]X2
21Gx~X,T!50, ~10!

with the initial condition

x~X,T50!5H eiaX/Au2e2 iaX/Au, X<0

0, X.0,
~11!

wherex(X,T) is the rescaled time-dependent solution. Fro
Eqs. Eqs.~10! and ~11!, it is clear that the time-dependen
solution must depend only on the parametersa andu that is,
for a fixed value ofa, all the systems with the same param
eteru yield the samex(X,T). As a consequence of the abov
considerations we can write the relative frequency as

vav

vV
52ImF1

x

d

dT
xG . ~12!

and use it to characterize the regime associated with un
the-barrier frequency components. In particular, we are in
ested in defining the range of values ofa where the relative
frequencies associated with the time-domain resonance
below the cutoff frequencyvV . In Ref. @7# it is found that
for opacities less than a critical value no time domain re
nances occur. We denote it byamin and it has the value
amin52.065. In Fig. 5 we plot the relative frequenc
vav /vV as a function of the opacitya for three different
values of the parameteru: u55 ~solid dot!, u510 ~solid
triangle!, and u5300 ~solid square!. In this case we have
chosen a value ofV50.3 eV in the calculation. Although in
Fig. 5 we have considered values of the parameteru such
that 5<u<300, the cases corresponding to very large val
of u (u→`) ~not shown here! almost overlap with the cas

its
7-3
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u5300. Thus, for very large values ofu we find a maximum
value for the opacityamax;3.3. Consequently one may de
fine an opacity ‘‘window,’’ in the range of values 2.065<a
<3.3, where the relative frequencies are always below
cutoff frequencyvav /vV51, irrespective of the value of th
parameteru, namely, of the value of the incidence energ
Note that the above numerical values refer to the effec
massm50.067me and clearly will be modified for other val
ues of the effective mass.

It is of relevance to point out that along the basin reg

FIG. 5. Relative frequencyvav /vV measured at the barrier edg
x5L, as a function of the opacitya. Here we considered a barrie
height V50.3 eV, and the parameters:u5300 ~solid dot!, u510
~solid triangle!, andu55 ~solid square!. Note that for values of the
opacity smaller thana.3.3, the relative frequencies for all value
of u are below the cutoff frequencyvav /vV51 ~dashed line!.
See text.
,

.
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the time scale given by the peak maximumtmax differs in a
essential way from both the semiclassical Bu¨ttiker-Landauer
and Büttiker traversal times, which in addition to exhib
always a linear dependence withL, refer to over-the-barrier
processes@9,6#. Also tmax represents a completely differen
notion than the phase time, which corresponds to a long-t
asymptotic notion representing a global effect of the pot
tial on the Schro¨dinger’s solution, as discussed in Refs.@6,7#.

To conclude we remark that the analytical solution to t
time-dependent Schro¨dinger’s equation with quantum shutte
initial conditions applies in general to arbitrary potentia
provided they vanish beyond a distance, and can also
extended to deal with finite cutoff pulses as discussed in R
@7#. The quantum shutter setup provides a consistent pro
dure to obtain the tunneling time: initially there is no partic
along the tunneling region and as time evolves the trans
peaked structure exhibited by the probability density at
barrier width provides the relevant time scale for tunnelin
This occurs within a range of values of the opacity of t
system and is independent of the incidence energy. I
worth noticing that the values ofa within the opacity ‘‘win-
dow’’ may be obtained using typical parameters of semic
ductor heterostructures@13#. Also one should stress that a
the peak maximum, the time-domain resonance is gover
by a single frequency, that is, the system acts as a freque
filter. To test our results experimentally would require to co
sider the detection of tunneling particles in time domain
distances close to the interaction region.
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