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Transient time-domain resonances and the time scale for tunneling
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Transienttime-domain resonancdsund recently in time-dependent solutions to Sclimger’s equation are
used to investigate the issue of the tunneling time in rectangular potential barriers. In general, a time-frequency
analysis shows that these transients have frequencies above the cutoff frequency associated with the barrier
height, and hence correspond to nontunneling processes. We find, however, a regime characterized by the
barrier opacity, where the peak maximupy,, of the time-domain resonance corresponds to under-the-barrier
tunneling. We argue that,,, represents the relevant tunneling time scale through the classically forbidden
region.
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Tunneling refers to the possibility that a particle traversedarrier tunneling. We argue that this time scale provides the
through a classically forbidden region. In the energy domairtunneling time through the classically forbidden region.
the solution to Schidinger’s equation at a fixed energyis Our approach to the tunneling time problem is based on a
a subject discussed in every quantum mechanics textbook. Inodel that deals with an explicit solutidi] to the time-
the time domain, however, there are still aspects open tdependent Schdinger’s equation
scrutiny. A problem that has remained controversial over the
years is the tunneling time problem that may be stated by the
guestion: How long does it take to a particle to traverse a
classically forbidden region? Different authors have pro-

posed and defended different views in answering the abovg), an arbitrary potentiaV/(x), defined in the region (&x

question[1—4]. _ _ <L), that vanishes outside that region. We consider the
In a recent work we have investigated the effect of the

transient solutions to the time-dependent Sdinger’s equa- problem of the time evolution of a cutoff plane wave
tion for cutoff wave initial conditiongquantum shuttgron glkx_gmikx  y<(

the tunneling proced$—7]. In particular we found that just \If(x,t=0)=( 2
across the tunneling barrier, the probability density as a func- 0, x>0,

tion of time may exhibit a transient structure that we havef
named time-domain resonance. The peak v of this - . . :
structure represents the largest probability ofa#rjﬁing the par§hutter ak=0. Along the tunneling region the solution reads
ticle at the barrier width.. More recently, in collaboration i ey B

with Delgado and Mug#8], we considered a time-frequency OGKGD = OOM(Yid = &k COM(Y 1)
analysis[9,10] to show the existence of under-the-barrier *

transients(forerunner$ in very broad barriers. However, - E ¢n(x)M(ykn) (0=x=<L), @3
these occur along a finite region of the potential, and hence n=-=

do not allow to characterize the time scale associated with , . .

the tunneling process through the full classically forbiddenVN€ré thed(x)'s refer to the stationary solutions of the
region. On the other hand, in collaboration with Yamétty ~ Problem and ¢,(x) = 2iku,(0)un(x)/(k“—ky).  Similarly,
we have recently established the equivalence of our formuthe solution¥€(x,k;t) for the external or transmitted region
lation with the notion of “passage time” in the real Feynman (X=L) is given by[6]

histories approach. The passage time yields the traversal time

9 h? &P

i~ o — —V(X)

ot om o Y(x,t)=0 1)

ollowing the instantaneous opening &t 0 of a quantum

through a barrier region though it does not distinguish be- VXK ) =T My, ) =T M(y )

tween processes from above or below the barrier height. The o

above considerations indicate that it is not clear under what —i X TaM(yk) (x=L), 4
conditions the time-domain resonances found at the barrier n=—

edgex=L correspond to genuine tunneling processes.

The aim of this work is to show the existence of a regime where theT .’s refer to the transmission amplitudes and the
characterized by the opacity of the system, where the timefactor T,= 2ikun(0)ua(L)exp(=ikaL)/(K*—K2). In Egs. (3)
domain resonance maximuty,,, corresponds to under-the- and(4) the coefficientsy, and T, are given in terms of the

resonant eigenfunctiorsi,(x)} with complex energy eigen-

values E,=#%2k2/2m, with k,=a,—ib, (a,,b,>0). The
*Electronic address: gaston@fisica.unam.mx resonant sums in Eq$3) and (4) run over the full set of
Electronic address: villavics@uabc.mx complex poledk,}. TheM’s are defined af5]
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FIG. 1. Time evolution Of‘I’ﬂ_z (solid ling) atx=L=4.0 nm. A FIG. 2. Maximum of the time-domain resonartgg,, (full dot)
full square indicates the position of the maximum of the time- a5 a function of the barrier width for an incidence energf
domain resonance &f,,=5.17 fs. =0.001 eV. In this case the barrier heightMs=0.3 eV. See text.
M(yq) = %eimXZ/thW(iyq), (5) manifest themselves in the time evolution of the probability

density. The frequency content of the time-domain resonance
wherew is the complex error functiofil2] defined asv(z)  can be investigated by performing a time-frequency analysis.
=exp(—zz)erfc(—iz) with arguments  yq(x,t) We do this by computing the local average frequengy,
=e ' (m/2kt) Y x— fqt/m], whereq= *Kk, k,. [9,10],
We shall begin exploring the issue of the tunneling time
scale by first considering specific examples of rectangular
potential barriergof heightV and thicknes4.) to go then to Way=—1M
results of a more general character. Let us recall the main
initial condition, given by Eq/(2), that initially there is no
particle along the tunneling region. Hence evaluating the ‘ e{ 1 d
o=

1d
——\Ifs}, (6)

probability density at the barrier width=L as time evolves ; (7)
from zero yields a distribution of characteristic times associ-
ate@ with the tur;nzehng. Process. n F'.g' 1 we plot the p.mb'where s=i and e refers, respectively, to the internal and
ability density| €| (solid line), normalized to the transmis- , . .

X > 2 . ) : external solutions. To exemplify this, we choose the dase
sion coefficien{T,|4, as a function of time, corresponding

to a potential barrier system with typical parametgts]: =4.0 nm depicted in Fig. 2, which is located around the
V=03 eV, incidence energ=72k2/2m=0.001 eV, and minimum of the basin. In Fig. 3 we plot the relative average

effective mass for the electrom=0.067%n,, for a fixed local frequency (relative frequency for shortws, /wy,
value of positiorx=L=4.0 nm. We can clearly appreciate a

structure peaked at the valtg,,=5.17 fs. This is the so-
called time-domain resonance. 1.0 pmmmmpmmmmmes bbb

1.2

In Fig. 2 we plott,, .4 (full dot) for the same parameters as 0.8k
in Fig. 1 except for the barrier width that we vary. Here we o 08
can clearly observe the existence of a basin along a range of > 0.6 2 .
values of the barrier width. We can also appreciate thaisf §> 0.4+ E
further increased, .4 Starts to grow linearly with.. Such a s o 00

0.0 15.0 30.0
Time (fs)

linear regime occurs at large barrier widths. We have dis- 0.2f
cussed elsewhere that this last situation refers to nontunnel- 0.0k
ing processef6]. We have also pointed out in RgB] that J
for small values of the barrier width, the basin exhibited by 08 0 50 100 150 200 250 300
tmax IS the result of a subtle interplay between tunneling and )
(nontunneling top-barrier resonant processes. Time (fs)
~ In what follows we shall investigate under what condi- g\ 3 Relative average local frequeney, / wy (solid lin) for
tions the time scales associated with the basin, are in faghe case depicted in Fig. 1. The cutoff frequeney,/wy=1
related to a genuine tunneling process. (dashed lingis included for comparison. In the inset we plot the
We use the fact that the initial cutoff wave possesses sstantaneous bandwidth of the spectrogram depicted in the main
distribution of momentum componentskrspace, and hence graph. Notice that the frequency deviations,at, are exactly zero,
also of frequency components. As time evolves and the wavee., o(ty,,)=0. In all cases a full square indicates the position of
interacts with the potential, these frequency components,,,,.
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1.2 ; increases furtherw,, /wy>1. This behavior indicates the
f prevalence of nontunneling components in the behavior of
1.0 the probability density7].
08 We have found that the regime which corresponds to
. ' under-the-barrier time-domain resonances at the barrier edge
8 06 x=L may be described more generally by referring to the
=~ opacity « of the system, defined as
g 0.4
/ ; [Zm\/]l/Z
0.2r 489 05 T0 15 20 25 3.0 @ h L, (8)
: Distance (x/L)
000 05 10 15 20 25 3.0 and by the dimensionless parametethe ratio between the
Distance (x/L) potential barrier height and the incidence energy:
FIG. 4. Relative frequency,,/wy of the maximum of the U= ! 9)
time-domain resonance as a function of position, measured in units E’

of the barrier widthL. The parameters are given in the text. Two

incidence energies are consideréd:0.001 eV(solid do) andE  To characterize this tunneling regime, we use the fact that all
=0.01 eV (hollow dod. In both cases, the relative frequency systems sharing the same parameteendu yield the same
wa, /wy along the internal region is below the cutoff frequency relative frequencyw,,/w, . This regularity arises from a
wa, /wy=1 (dashed ling The behavior oft;,,, as a function of simple rescaling property of the time-dependent Sdhro
position is illustrated in the inset for the case witk-0.01 eV. The  jnger’s equation and the corresponding initial condition. By
positiqn of the barrier edgex=L, is indicated by a dotted line in feeding the dimensionless variabl¥s=x/L and T=wyt in

both figures. Egs.(1) and(2), we obtain

91 8P

—+=—-1

I aT a2 gx?

where wy=V/# is the cutoff frequency, along the relevant
time interval, discussed in Fig. 1. We can appreciate that in
the vicinity of the maximum of the time-domain resonance
tmax the probability density is composed entirely of under-with the initial condition

the-barrier frequency components, i.@g,/wy<1l. This

also occurs at the exact valug,y, also indicated in the , X=<0

figure by a solid square. In the inset of Fig. 3 we plot the X(X,T=0)=[O X>0 (12)
instantaneous bandwidtth of the spectrogram. Notice the ’ '

absence of a frequency dispersion around the maximumynerey(X,T) is the rescaled time-dependent solution. From
tmax I-€.,0(tma) =0. The above result indicates that in this Eqs. Eqgs.(10) and (1), it is clear that the time-dependent
case the peak of the time-domain resonance and the valuggjution must depend only on the parametersndu that is,
close to it refer to a tunneling event. We have found, how-or a fixed value ofa, all the systems with the same param-
ever, that this is not a general situation. For instance, foeteru yield the samey(X,T). As a consequence of the above
values ofL outside the basin, i.e., along the linear regime inconsiderations we can write the relative frequency as

Fig. 2, the average frequency related to the corresponding

tmax IS above the cutoff frequency and hence refers to non- Way
tunneling processes. As we shall present below this is more wy
appropriately discussed by using the notion of the opacity of

the system. In Fig. 4 we plot the relative frequengy, /oy  and use it to characterize the regime associated with under-
associated with different values of the maximtypa,, mea- the-barrier frequency components. In particular, we are inter-
sured at different positions along both the internal and exterested in defining the range of values@fwhere the relative

nal regions of a potential barrier with parameteld: frequencies associated with the time-domain resonance are
=0.3 eV andL=4.13 nm. In this case we choose the fol- below the cutoff frequencw, . In Ref.[7] it is found that
lowing values of the incidence energlf:=0.001 eV(solid  for opacities less than a critical value no time domain reso-
dot) andE=0.01 eV (hollow do?. In the inset of Fig. 4 we nances occur. We denote it hy,,;, and it has the value
show, for the particular case &=0.01 eV, the values of «,;;=2.065. In Fig. 5 we plot the relative frequency
tmax (Solid squargat the different values of position consid- w,,/wy as a function of the opacity for three different
ered in the main graph. As can be clearly appreciated in thatalues of the parametar u=5 (solid doy, u=10 (solid
figure, the tunneling process along the whole internal regionriangle), and u=300 (solid squarg In this case we have

is governed by under-barrier-frequency components, i.eghosen a value d¥=0.3 eV in the calculation. Although in
w,, lwy<1l. We can see in Fig. 4 that we can still observeFig. 5 we have considered values of the paramatsuch
frequency components below the cutoff frequensy for  that 5<u=<300, the cases corresponding to very large values
distances up tx=2L along the external region. As/L of u (u—) (not shown herealmost overlap with the case

x(X,T)=0, (10

ei aX/\u__ e*iaX/\e‘U

1d
x

=—Im . (12
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FIG. 5. Relative frequency,, / oy measured at the barrier edge
x=L, as a function of the opacity. Here we considered a barrier
heightV=0.3 eV, and the parameters=300 (solid do), u=10
(solid trianglg, andu=5 (solid squarg Note that for values of the
opacity smaller thamv=3.3, the relative frequencies for all values
of u are below the cutoff frequencw,,/w,=1 (dashed ling
See text.

u=2300. Thus, for very large values afwe find a maximum

value for the opacityy,,,x~ 3.3. Consequently one may de-
fine an opacity “window,” in the range of values 2.08%
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the time scale given by the peak maximuiy,, differs in a
essential way from both the semiclassicaltiker-Landauer
and Bittiker traversal times, which in addition to exhibit
always a linear dependence with refer to over-the-barrier
processe$9,6]. Also t.,.x represents a completely different
notion than the phase time, which corresponds to a long-time
asymptotic notion representing a global effect of the poten-
tial on the Schrdinger’s solution, as discussed in Rd#,7].

To conclude we remark that the analytical solution to the
time-dependent Schdinger’s equation with quantum shutter
initial conditions applies in general to arbitrary potentials,
provided they vanish beyond a distance, and can also be
extended to deal with finite cutoff pulses as discussed in Ref.
[7]. The quantum shutter setup provides a consistent proce-
dure to obtain the tunneling time: initially there is no particle
along the tunneling region and as time evolves the transient
peaked structure exhibited by the probability density at the
barrier width provides the relevant time scale for tunneling.
This occurs within a range of values of the opacity of the
system and is independent of the incidence energy. It is
worth noticing that the values @i within the opacity “win-
dow” may be obtained using typical parameters of semicon-
ductor heterostructurgd 3]. Also one should stress that at
the peak maximum, the time-domain resonance is governed
by a single frequency, that is, the system acts as a frequency

=3.3, where the relative frequencies are always below thgjter To test our results experimentally would require to con-

cutoff frequencyw,, /wy= 1, irrespective of the value of the

sider the detection of tunneling particles in time domain at

parametemu, namely, of the value of the incidence energy. gistances close to the interaction region.
Note that the above numerical values refer to the effective

massm=0.067m, and clearly will be modified for other val-
ues of the effective mass.
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