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Generalized Kochen-Specker theorem
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A proof of the generalized Kochen-Specker theorem in two dimensions due to Cabello and Nakamura
Cabello, Phys. Rev. LetB0, 190401(2003] is extended to all higher dimensions. A set of 18 states in four
dimensions is used to give closely related proofs of the generalized Kochen-Specker, Kochen-Specker, and
Bell theorems that shed some light on the relationship between these three theorems.
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Cabello and NakamurglL] recently proved a generaliza- impossibility of the desired assignment and hence proves the
tion of the Kochen-SpeckdKS) theorem[2] in two dimen-  GKS theorem in dimension 2.
sions suggested by a similar generalization of Gleason’s We now give a proof of the GKS theorem h=2j+1
theorem[3]. The key element in the generalization of both dimensions, of which Nakamura’s proof is a special case.
theorems is the replacement of von Neumémnprojective ~ Considern arbitrary directions in space and th =2j
measurements by more general measurements described thyl) spin states of a spipparticle along each of these di-
positive operator valued measuf@®OVMs). This shift leads rections. For each spin state along each direction, introduce a
to two unexpected, but pleasing, effects: it causes the validitPOVM element that is the projector onto that state divided
of both theorems to extend down to dimensiofraéher than by the positive integer. All the elements associated with
3 as previously, and it also makes the proofs of both theo-anyr directions then constitute a POVM, and the total num-
rems much easier. The purpose of this paper is, first, to sholer of such POVMs isN="C,=n!/{r!(n—r)!}. The num-
how the proofs of the generalized Kochen-SpeckeKsS) ber of POVMs in which each element occursN&="C,
theorem due to Cabello and Nakamura can be extended to" 1C,. If N is odd andM is even, the GKS theorem can
arbitrary finite dimensio= 2, and secondly, to exhibit a set be established by the sameductio ad absurdunargument
of closely related proofs of the GKS, KS, and Bell theoremsas in thed=2 case for, on the one hand, the total number of
that sheds some light on the mutual relationship of theseccurrences of elements with value 1 in all the POVMs is
three theorems. required to be oddsince there must be exactly one such

A POVM consists of a set of positive semidefinite opera-element per POVMwhile, on the other, it is also required to
tors providing a resolution of the identity. The generalizedbe even(since each such element is repeated twice over the
measurement corresponding to a POVM can be realized bOVMs). Nakamura’s proof is the simplest case of this proof
coupling the system to an ancillary system and carrying out &ith j=3, d=2,n=3,r=2,N=3, andM =2 and the three
von Neumann measurement on the enlarged system; th&bitrary directions choseftunnecessarilyalong the diam-
measurement then appears in the space of the system aloeters of a regular hexagon.
as a POVM. The GKS theorem states that in a Hilbert space Cabello’s proof{1] can likewise be generalized by using
of dimension 2 or greater it is always possible to find a finiteten arbitrary directions in spadestead of the ten threefold
set of positive semidefinite operatof®lements” [4]) that  axes of a regular dodecahedy@md using ald=2j + 1 spin
cannot each be assigned the value 0 or 1 in such a way thatates of a spif-particle along each of these directions. Only
any subset of elements constituting a POVM contains exthe topology of a dodecahedrdand not any of its metrical
actly one element with the value 1. propertieg plays a role in this proof, since the POVMs con-

To prepare the way for the generalization in the next paratinue to retain all their essential properties as the dodecahe-
graph, we first review Nakamura’s proof of the GKS theoremdron is deformed arbitrarily.
in dimension 2[1]. Consider the spin-up states of a spin- While the Cabello and Nakamura constructionsdii 3
particle along the six directions from the center of a regulaprove the GKS theorem, they are not rich enough to yield
hexagon to its vertices. Choose as POVM elements the sigroofs of the KS theorem, and there is no obvious way of
projectors onto these states, each multiplied by a factér of altering them to achieve this goal. It is therefore interesting
The four elements associated with any two pairs of oppositéo look for other GKS proofs id=3 that can be extended
directions then constitute a POVM, there being three suclnto proofs of the KS theorem. We now present one such
POVMs altogether. Suppose now that it is possible to assigproof in d=4.
a 0 or 1 to every element in such a way that each POVM has Consider the three tesseradi®., four-dimensional hy-
exactly one element with the value 1 in it. Then we canpercubeythat can be inscribed in a 24-cell. A 24-cell is a
deduce the following contradiction: on the one hand, the tofour-dimensional regular polytope with 24 vertices whose
tal number of occurrences of elements with value 1 in allcoordinates, relative to its center, can be takeri2s3,0,0,
three POVMs is oddbecause there is exactly one such ele-(0,2,0,0, (0,0,2,0, (0,0,0,2, (1,1,1,2, (1-1,1-1),
ment per POVM but, on the other hand, it is also even (1,1-1,-1), (1-1,-1,1), (1,1,1-1), (-1,1,1,1),
(because each element with value 1 occurs in two POVM$1,—1,1,1), and (1,%1,1), together with the negatives of
and hence is counted twiceThis contradiction shows the these vectors. The first four vectors listed, together with their
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TABLE I. The nine tetradsT1 throughT9, formed by the 18 rays described in the text. Note
that each ray occurs in exactly two tetrads.

T1 2 3 21 23 T2 2 4 13 15 T3 3 4 17 18
T4 6 7 21 22 T5 6 8 17 19 T6 7 8 13 14
T7 9 11 14 15 T8 9 12 18 19 719 11 12 22 23

negatives, constitute the vertices of a cross polyt@peny- rays associated with the verticetl,0,1,0, (0,1,0,2,
peroctahedron as do the next four vectors, and the last four.(1,0-1,0), (0,1,0--1), (1,1,0,0, (1,—1,0,0,), (0,0,1,,

By taking the vertices of these cross polytopes in pairs, wg0,0,1-1), (1,0,0,3, (0,1,1,0, (1,0,0-1), and (0,1,
obtain the vertices of the three tesseracts that can be in-1 0) of the dual 24-cell. The 18 rays then result on omit-
scribed in the 24-cell. Note that two inscribed tesseracts megfng rays 1, 5, and 10 from the first set of 12 and rays 16, 20,
at each vertex of the 24-cell. We now introduce 12 st&tes and 24 from the second set of 12. These 18 rays form the

rays of a four-state quantum system that are derived fronhine orthogonal tetrads shown in Table I, with each ray oc-

the vertices of a 24-cell. We take the components of €ach rayring in exactly two tetrads. The oddness of the total num-

in the standard.basis, to be propor.tional to the. coordiqates ‘B‘er of tetrads, together with the evenness of the occurrence
one of the vertices of a 24-cell, with each pair of antipodal

. d onl We furth ber th ¢ of each ray among the tetrads, then allows the KS theorem to
vertices counted only once. We further number the rays ro'Ee proved using the same sort of parity argument as before

1 to 12 so that they correspond to the vertices of the 24-ce 8]. A proof of the GKS theorem can be obtained by intro-
n th? ord((ejr "g|verf1 above. ”The raﬁ/s d'v'?e into thrge:;’group ucing POVM elements that are the projectors onto these 18
(or “tetrads”) of mutually orthogonal rays<%,2,34, rays, each multiplied by a factor §f Then it is seen that the
(56,79, and (9’10’1.1’12fthat. each correspond to one of elements in tetrad$1, T5, andT7 form a POVM, as do the
the cross pplytopes inscribed in the 24-cell. . elements inT2, T4, andT8 and the elements i3, T6, and

We next introduce as POVM elements the projectors ONtGrg Further, each element occurs in exactly two POVMs.

terllgrﬁggéeblezlorg;isr;ge?c?grrglulevpcll?gtr%a):jznirqgtﬁézitea)téhgne Q‘I}he two preceding facts suffice to establish the GKS theorem
, : : ' ia th I i .lth
the inscribed tesseracts, constitute a PO\WYW), there are la the usual parity argument. It has been demonstredid

: : that the 18-ray KS proof can be converted into a Bell proof

three such POVMs in all, corresponding to the three tesset: . ;

acts that can be inscribed in the g4-cell gfﬁo)deach element by making use -Of the entanglemen_t afforded by a pair of Bel
' states. Thus this set of 18 rays, like the previous set of 24,

belongs to exactly two POVMs, as a consequence of the fa Iso suffices for a proof of all three theorems

that two inscribed tesseracts meet at each vertex of the 24-"g "\ b0 o Sinis 18-ray set more interésting is that it

cell. The proof of the GKS theorem then follows from the appears to be a “critical’ set for the proofs of all three theo-

same sort of parity argument as before, which can be re- - ; :
. ’ SO rems in the sense that deleting even a single(cayPOVM
phrased here as the geometrical statement that it is impo g gle(oaypP

ible t | h antipodal pair of " fa o4 Ilﬁ]emenl from it causes each of the three proofs to collapse.
sible 1o color each antipodal pair of VErtices ot a 2a-Ceéllryq criticality of the KS proof was demonstrated in the sec-
white or black in such a way that each inscribed tesseract h

. | ; > d paper of Ref[8], and the criticality of the Bell proof,
thaxactly Onﬁ anrtllpodal pair of vertu:?s C?Ereﬁ Wh'tS' ”Note, hich rests directly on the KS proof, follows as a corollary.
owever, that the present GKS proof, unlike the Cabello an e 1 ' : e
Nakamura proofs, is a metricénd not a topologicalone, he criticality of the GKS proof appears highly plausible,

. ; although we do not have an ironclad proof of it yet.
since any flexing of the 24-cell causes the POViasd Several other KS-Bell proofs, such as the ones based on
hence the proogfto fall apart. E

The 12 hich the ab fis based d he 40 rays of the “Penrose dodecahedron” or the 60 rays of

ne rays on which the above proot 1S based do No,, 600-cell[6], can be made to yield GKS proofs by suit-
suffice fc_>r akKs proof_, which requires that each ray be COI'ably regrouping the projectors involved in the KS proof into
ored white or black in su_ch a way that every OrthogonalPOVMs[ll]. However, none of these proofs is as economi-
tetrad has exactly one white ray in it. However, a KS proof

can be generated by adding 12 further rays derived from thcaé 22;22 ézﬁr: gdp;%%fvgwen here, and none is “critical” in
dual of the 24-cell considered, with the vertices of the dual It has been demonstrétéd,lo,la that any proof of the
having - coordinates %1,-1,0,0) _and all permutations g iheqrem can be turned into a proof of Bell’s theorem by
thereof. The KS proof based.on this set of 24 ra¥s was g'Veﬂwaking use of the right kind of entanglement. This strong
by Pereg5]. The auth_0|[6] pointed out tha,t Peres’KS proof KS-Bell connection leads one to ask whether a similar
co_uld be promote_d mt_o a p_roof of Bell's theore[r?_i] by KS-GKS connection exists as well. The example given in
using the correlations in a singlet state of two spipar- this paper, along with a few othef$0], would seem to sug-
ticles to justify the ass_umption of nonconte.xtuality made in est that ,the projectors occurring ir,1 any KS proof can be
the KS proof. Thus, this set of 24 rays sqﬁlces to prove th_ urned, with sufficient ingenuity, into POVM elements that
GKS, KS, and Bell theorems. However this demonstration i, .nich 2 GKS proof. A proof of this conjecture, or a coun-
not totally satisfying because some of the rays can be dist'erexample to it, would be interesting '
pensed with in each of the individual proofs. ' '

A more economical set of 18 rays can be obtained from | thank A. Cabello for his helpful comments on an earlier
the above set as follow$]. First number from 13 to 24 the draft of this paper.
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