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Generalized Kochen-Specker theorem
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A proof of the generalized Kochen-Specker theorem in two dimensions due to Cabello and Nakamura@A.
Cabello, Phys. Rev. Lett.90, 190401~2003!# is extended to all higher dimensions. A set of 18 states in four
dimensions is used to give closely related proofs of the generalized Kochen-Specker, Kochen-Specker, and
Bell theorems that shed some light on the relationship between these three theorems.
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Cabello and Nakamura@1# recently proved a generaliza
tion of the Kochen-Specker~KS! theorem@2# in two dimen-
sions suggested by a similar generalization of Gleaso
theorem@3#. The key element in the generalization of bo
theorems is the replacement of von Neumann~or projective!
measurements by more general measurements describe
positive operator valued measures~POVMs!. This shift leads
to two unexpected, but pleasing, effects: it causes the vali
of both theorems to extend down to dimension 2~rather than
3 as previously!, and it also makes the proofs of both the
rems much easier. The purpose of this paper is, first, to s
how the proofs of the generalized Kochen-Specker~GKS!
theorem due to Cabello and Nakamura can be extende
arbitrary finite dimensiond>2, and secondly, to exhibit a se
of closely related proofs of the GKS, KS, and Bell theore
that sheds some light on the mutual relationship of th
three theorems.

A POVM consists of a set of positive semidefinite ope
tors providing a resolution of the identity. The generaliz
measurement corresponding to a POVM can be realized
coupling the system to an ancillary system and carrying o
von Neumann measurement on the enlarged system;
measurement then appears in the space of the system
as a POVM. The GKS theorem states that in a Hilbert sp
of dimension 2 or greater it is always possible to find a fin
set of positive semidefinite operators~‘‘elements’’ @4#! that
cannot each be assigned the value 0 or 1 in such a way
any subset of elements constituting a POVM contains
actly one element with the value 1.

To prepare the way for the generalization in the next pa
graph, we first review Nakamura’s proof of the GKS theore
in dimension 2@1#. Consider the spin-up states of a spin1

2

particle along the six directions from the center of a regu
hexagon to its vertices. Choose as POVM elements the
projectors onto these states, each multiplied by a factor o1

2 .
The four elements associated with any two pairs of oppo
directions then constitute a POVM, there being three s
POVMs altogether. Suppose now that it is possible to ass
a 0 or 1 to every element in such a way that each POVM
exactly one element with the value 1 in it. Then we c
deduce the following contradiction: on the one hand, the
tal number of occurrences of elements with value 1 in
three POVMs is odd~because there is exactly one such e
ment per POVM! but, on the other hand, it is also eve
~because each element with value 1 occurs in two POV
and hence is counted twice!. This contradiction shows the
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impossibility of the desired assignment and hence proves
GKS theorem in dimension 2.

We now give a proof of the GKS theorem ind52 j 11
dimensions, of which Nakamura’s proof is a special ca
Consider n arbitrary directions in space and thed(52 j
11) spin states of a spin-j particle along each of these d
rections. For each spin state along each direction, introdu
POVM element that is the projector onto that state divid
by the positive integerr . All the elements associated wit
any r directions then constitute a POVM, and the total nu
ber of such POVMs isN5nCr[n!/ $r !(n2r )! %. The num-
ber of POVMs in which each element occurs isM5nCr
2n21Cr . If N is odd andM is even, the GKS theorem ca
be established by the samereductio ad absurdumargument
as in thed52 case for, on the one hand, the total number
occurrences of elements with value 1 in all the POVMs
required to be odd~since there must be exactly one su
element per POVM! while, on the other, it is also required t
be even~since each such element is repeated twice over
POVMs!. Nakamura’s proof is the simplest case of this pro
with j 5 1

2 , d52, n53, r 52, N53, andM52 and the three
arbitrary directions chosen~unnecessarily! along the diam-
eters of a regular hexagon.

Cabello’s proof@1# can likewise be generalized by usin
ten arbitrary directions in space~instead of the ten threefold
axes of a regular dodecahedron! and using alld52 j 11 spin
states of a spin-j particle along each of these directions. On
the topology of a dodecahedron~and not any of its metrica
properties! plays a role in this proof, since the POVMs co
tinue to retain all their essential properties as the dodeca
dron is deformed arbitrarily.

While the Cabello and Nakamura constructions ind>3
prove the GKS theorem, they are not rich enough to yi
proofs of the KS theorem, and there is no obvious way
altering them to achieve this goal. It is therefore interest
to look for other GKS proofs ind>3 that can be extende
into proofs of the KS theorem. We now present one su
proof in d54.

Consider the three tesseracts~i.e., four-dimensional hy-
percubes! that can be inscribed in a 24-cell. A 24-cell is
four-dimensional regular polytope with 24 vertices who
coordinates, relative to its center, can be taken as~2,0,0,0!,
~0,2,0,0!, ~0,0,2,0!, ~0,0,0,2!, ~1,1,1,1!, (1,21,1,21),
(1,1,21,21), (1,21,21,1), (1,1,1,21), (21,1,1,1),
(1,21,1,1), and (1,1,21,1), together with the negatives o
these vectors. The first four vectors listed, together with th
©2003 The American Physical Society04-1
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TABLE I. The nine tetrads,T1 throughT9, formed by the 18 rays described in the text. No
that each ray occurs in exactly two tetrads.

T1 2 3 21 23 T2 2 4 13 15 T3 3 4 17
T4 6 7 21 22 T5 6 8 17 19 T6 7 8 13
T7 9 11 14 15 T8 9 12 18 19 T9 11 12 22
ur
w

e

om
ra
s
a

o
ce
p

of

nt

e

se

fa
2
e
r

po
el
h
te
an

no
o
na
o
th

ua
s
ve
f

in
th

di

om

it-
20,
the

oc-
m-
nce

to
fore
o-
18

s.
rem

of
ell
24,

t it
o-

se.
c-

ry.
e,

on
of

t-
to
i-

in

by
ng
ilar
in

be
at
n-

er
negatives, constitute the vertices of a cross polytope~or hy-
peroctahedron!, as do the next four vectors, and the last fo
By taking the vertices of these cross polytopes in pairs,
obtain the vertices of the three tesseracts that can be
scribed in the 24-cell. Note that two inscribed tesseracts m
at each vertex of the 24-cell. We now introduce 12 states~or
rays! of a four-state quantum system that are derived fr
the vertices of a 24-cell. We take the components of each
in the standard basis, to be proportional to the coordinate
one of the vertices of a 24-cell, with each pair of antipod
vertices counted only once. We further number the rays fr
1 to 12 so that they correspond to the vertices of the 24-
in the order given above. The rays divide into three grou
~or ‘‘tetrads’’! of mutually orthogonal rays—~1,2,3,4!,
~5,6,7,8!, and ~9,10,11,12!—that each correspond to one
the cross polytopes inscribed in the 24-cell.

We next introduce as POVM elements the projectors o
the above 12 rays, each multiplied by1

2 , and note that~a! the
elements belonging to any two tetrads, and hence to on
the inscribed tesseracts, constitute a POVM,~b! there are
three such POVMs in all, corresponding to the three tes
acts that can be inscribed in the 24-cell, and~c! each element
belongs to exactly two POVMs, as a consequence of the
that two inscribed tesseracts meet at each vertex of the
cell. The proof of the GKS theorem then follows from th
same sort of parity argument as before, which can be
phrased here as the geometrical statement that it is im
sible to color each antipodal pair of vertices of a 24-c
white or black in such a way that each inscribed tesseract
exactly one antipodal pair of vertices colored white. No
however, that the present GKS proof, unlike the Cabello
Nakamura proofs, is a metrical~and not a topological! one,
since any flexing of the 24-cell causes the POVMs~and
hence the proof! to fall apart.

The 12 rays on which the above proof is based do
suffice for a KS proof, which requires that each ray be c
ored white or black in such a way that every orthogo
tetrad has exactly one white ray in it. However, a KS pro
can be generated by adding 12 further rays derived from
dual of the 24-cell considered, with the vertices of the d
having coordinates (61,61,0,0) and all permutation
thereof. The KS proof based on this set of 24 rays was gi
by Peres@5#. The author@6# pointed out that Peres’ KS proo
could be promoted into a proof of Bell’s theorem@7# by
using the correlations in a singlet state of two spin-3

2 par-
ticles to justify the assumption of noncontextuality made
the KS proof. Thus, this set of 24 rays suffices to prove
GKS, KS, and Bell theorems. However this demonstration
not totally satisfying because some of the rays can be
pensed with in each of the individual proofs.

A more economical set of 18 rays can be obtained fr
the above set as follows@8#. First number from 13 to 24 the
05210
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rays associated with the vertices~1,0,1,0!, ~0,1,0,1!,
(1,0,21,0), (0,1,0,21), ~1,1,0,0!, (1,21,0,0,), ~0,0,1,1!,
(0,0,1,21), ~1,0,0,1!, ~0,1,1,0!, (1,0,0,21), and (0,1,
21,0) of the dual 24-cell. The 18 rays then result on om
ting rays 1, 5, and 10 from the first set of 12 and rays 16,
and 24 from the second set of 12. These 18 rays form
nine orthogonal tetrads shown in Table I, with each ray
curring in exactly two tetrads. The oddness of the total nu
ber of tetrads, together with the evenness of the occurre
of each ray among the tetrads, then allows the KS theorem
be proved using the same sort of parity argument as be
@8#. A proof of the GKS theorem can be obtained by intr
ducing POVM elements that are the projectors onto these
rays, each multiplied by a factor of1

3 . Then it is seen that the
elements in tetradsT1, T5, andT7 form a POVM, as do the
elements inT2, T4, andT8 and the elements inT3, T6, and
T9. Further, each element occurs in exactly two POVM
The two preceding facts suffice to establish the GKS theo
via the usual parity argument. It has been demonstrated@9#
that the 18-ray KS proof can be converted into a Bell pro
by making use of the entanglement afforded by a pair of B
states. Thus this set of 18 rays, like the previous set of
also suffices for a proof of all three theorems.

But what makes this 18-ray set more interesting is tha
appears to be a ‘‘critical’’ set for the proofs of all three the
rems in the sense that deleting even a single ray~or POVM
element! from it causes each of the three proofs to collap
The criticality of the KS proof was demonstrated in the se
ond paper of Ref.@8#, and the criticality of the Bell proof,
which rests directly on the KS proof, follows as a corolla
The criticality of the GKS proof appears highly plausibl
although we do not have an ironclad proof of it yet.

Several other KS-Bell proofs, such as the ones based
the 40 rays of the ‘‘Penrose dodecahedron’’ or the 60 rays
the 600-cell@6#, can be made to yield GKS proofs by sui
ably regrouping the projectors involved in the KS proof in
POVMs @11#. However, none of these proofs is as econom
cal as the 18-ray proof given here, and none is ‘‘critical’’
the sense defined above.

It has been demonstrated@6,10,12# that any proof of the
KS theorem can be turned into a proof of Bell’s theorem
making use of the right kind of entanglement. This stro
KS-Bell connection leads one to ask whether a sim
KS-GKS connection exists as well. The example given
this paper, along with a few others@10#, would seem to sug-
gest that the projectors occurring in any KS proof can
turned, with sufficient ingenuity, into POVM elements th
furnish a GKS proof. A proof of this conjecture, or a cou
terexample to it, would be interesting.

I thank A. Cabello for his helpful comments on an earli
draft of this paper.
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