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Decoherence in a driven three-level system
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Dissipation and decoherence, and the evolution from pure to mixed states in quantum physics, are handled
through master equations for the density matrix. Master equations such as the Lindblad equation preserve the
trace of this matrix. Viewing them as first-order time-dependent operator equations for the elements of the
density matrix, a unitary integration procedure can be adapted to solve for these elements. A simple model for
decoherence preserves the Hermiticity of the density matrix. A single, classical Riccati equation is the only one
requiring numerical handling to obtain a full solution of the quantum evolution. The procedure is general, valid
for any number of levels, but is illustrated here for a three-level system with two driving fields. For various
choices of the initial state, we study the evolution of the system as a function of the amplitudes, relative
frequencies, and phases of the driven fields and of the strength of the decoherence. The monotonic growth of
the entropy is followed as the system evolves from a pure to a mixed state. An example is providedbBthe
states of the hydrogen atom in a time-dependent electric field, such degenerate manifolds affording an analyti-
cal solution.
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I. UNITARY INTEGRATION PROCEDURE with
FOR MASTER EQUATIONS

o O

Master equations, such as the Lindblad equaltidncan A=
describe dissipation and decoherence in a quantum systems.
In recent work 2], one of us adapted a “unitary integration”
procedurg 3,4] for solving such equations while preserving
desirable properties such as the Hermiticity of the density
matrix even in the presence of dissipation and decoherence. A,=
This permits us to keep track of quantities such as the en-
tropy while the system evolves from a possibly initial pure
state to a final mixed one. The two-state illustration given inThe couplings indicated in Eq2) between states 1 and 2
that initial work is extended now to a three-level systemand between 2 and 3 of a three-state system are referred to as
through suitable combinations of density-matrix elements to\ andV depending on the relative energy positions of the
preserve the Hermiticity of the operators involved. three states, whether 2 lies above or below, respectively, rela-

Consider the master equation for the density magrix tive to levels 1 and 3. The three operators in ER).close
called the Liouville—von Neumann-Lindblad equat{dn2],  under commutation according to the standard relations satis-

fied by angular-momentum algebifa, ,A,]=iA,, and cy-
. 1 N N clic. Hioe and Eberly{6] considered such a Hamiltonian for
ip=[H,p]+ E'Ek ([Lkp,Lil+[Li.pLi]) the Liouville version of Eq(1), that is, without the dissipa-
tive term, along with solutions for certain forms efandJ.
1 N N N Population trapping and dispersion were also considered in
=[H,p]— EIEK (Llkp+pLil=2LkpLy), (1) Ref.[7] with a similar Hamiltonian and generaliz¢8] to
n-level systems. Our work presented here may be regarded as
) o ] _an extension of such studies to include also dissipation and
where an overdot denotes differentiation with respect to timeeconerence. An extension of this type has already been con-
and# has been set equal to unity.is a Hermitian Hamil-  gjgered for the so-called cascade system in which level 2 lies
tonian whileL, are operators in the system through whichj, petween 1 and £9]. This work has been built on that of
dissipation and decoherence are introduced. Even though thigas [6] where exact two-photon resonance and the use of the

can result in nonunitary evolution, the form of the equationrotating wave approximation simplifies the three-level prob-
preserves Ti§) and positivity of probabilities. A more math—. lem in terms of matrices of smaller dimensions thax &

ematical discussion of such “superoperators” and “dynami-oyr treatment is more general, allowing for arbitrary ampli-

cal semigroups” is given in Ref5]. tudes, frequencies, and relative phase of the two fields, al-

A commonly used form of is though there are points in common with REg]. The three-
level problem has also been considered through a many-

H(t) =e(t)A,+2J(1)A,, (2)  mode Floquet theory, including dissipatipt0].

In general, with each of the three states having distinct

energiesE, ,E,, andE; and the driving fields having finite

*Email address: arau@phys.Isu.edu detunings from resonance, entries along the diagonkll iof
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Eq. (2) complete the Hamiltonian for such systems. Full
treatment according to our formalism below then requires all
the elements of the §B) algebra, namely, five more linearly
independent &3 matrices to supplement those in Eg).

We expect to return to this later but, in this paper, we restrict
ourselves to the degenerate case of equal eigenvalues in B.=
which case the above three matrices suffice and the calcula-
tions reduce to solving a single equation just as in the two-
state system considered in R¢R2]. Applications include
three identical coupled pendula with nearest-neighbor time-
dependent couplings, driven systems on resonance, and the
degenerate states of time=3 manifold of hydrogen driven

by time-dependent electric fields.

Dissipation and decoherence are introduced through the
L, matrices in Eq{(1). Here again, as shown in Ré2], a
choice of all eight linearly independent matrices affords a
simplification because of a sum rule that inserts the decoher-
ence as a unit operator in such an eight-dimensional space. In B,=
this procedure, EqJ) is recast into a set of eight equations
for the elements of the density matrirecall that the trace
remains invariant An appropriate linear combination of the
elements such that the operators in E3). map onto three
Hermitian 8x<8 matrices obeying the same angular-
momentum commutators is given by the choice
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As per the unitary integration procedyg3], the solution
of Eq. (6) is written as a product of exponentials

1
n(t)= P11_0331ﬁ(l)11+1333_ 2p22),p12 P21.P21 p(t)y=exd —Ttlexd —ip.(t)B,lexd —iu_(t)B_]
xXexd —iu(t)B,]7(0), ®
~P12:P13T P31, P31 P13:P23T P32:P32 P23 with B. =B,*iB, . Because our procedure depends only on

the commutation relations which remain as in R&f, the
4 classical functiong in the exponents satisfy the same equa-
tions as before,
Our choice differs only slightly from that in Ref§6,8]
where this set is called a “coherence” vector. The resulting i tie(t) e —It)(1+u2)=0, (9a)
equation forz(t) takes the form

, p=203() s+ e(t), (9b)
in(t)=L(0) (1), (5) o
m-—ipp_=J3(t), ui(0)=0. (90
with
The first of these equations, involving, (t) alone in Riccati
L(t)= —iTT+ e()B,+2J(1)B,, ©) form, is the only nontrivial member of this set. Once solved,

m_ and u are obtained through simple integration of the
remaining two equations. For givesft) andJ(t), a MATH-
wherel" indexes the strength of the decoherence. The matriemarica program[11] solves the set of equations readily.
cesB take the forms Also, the subsequent algebra involved in evaluating the ex-
ponentials in Eq(8) and their product is easily carried out.
Thereby, for any initial density matrix and itg(0), we ob-
tain 7(t) and thusp(t) at any later time.

Since our model for decoherence introduces its effect
through the single real factor which is the first term on the
right-hand side of Eq(8), the density matrix remains Her-
mitian throughout. This is an advantage, permitting evalua-
tion of its eigenvalues and calculation of quantities such as
the entropy of the system. It is also clear that for any fifiite
all elements inzy(t) in Eq. (4) vanish asymptotically with
so that all off-diagonal elements of the density matrix vanish
while all diagonal elements become equal. With the trace
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P11 I Mp12 P11 I mPy2
! 0.4 1 0.4
t -0.4 t { 0.4 t
4w  8TTW 4w 8w 81w 16TTW 8w 16TTW
P22 | mpas P22 I mp23
! 0.4 1 0.4
0.5 OWV\/\/ 0.5 0 M\/\A‘/\ﬁ/\w’_
t -0.4 t t -0.4 t
4w  8TTW 4w 8TTW 8TMW 16 TTW 8w 16TTW

FIG. 1. Time evolution of the elements of the density matrix of  FIG. 3. Same as in Fig. 2 except that1, B=1/2, and
ann=23 system driven by the fields in EGLO) and Hamiltonianin  I'=0.08, and longer times are shown to illustrate asymptotic evo-
Eqg. (2), with =0, =1, §=0, A=0.05,B=0.5, andl'=0.02. lution.

Right-hand side panels show the off-diagonal elements, two of

which are imaginary and one real. The last is not displayed, as e(t)=AcosQt, J(t)= 1B coq wt+ 6) (10)
also ps3 which can be obtained as—p;;— pa,. ' z '

with & a relative phase difference. A representative sample of

invariant and chosen to be unity, the density matrix evolve . / ; . o
to that of the so-called chaotically mixed stadd. Corre- %he density matrix upon starting with al! populatlo_n in state 1
and all other elements zero is shown in Figs. 1-3. Note the

spondingly, the entropy reaches asymptotically the value ]
In3=1.0986. These are aspects of the general result valid f appearance of a complicated frequency spectrum beyond the

T O ) .
all n-level systemg2]. We note again that other models qutwo introduced driving frequencies. The analytically solvable

o X roblem presented in the following section provides an un-
decoherence and dissipation through other choices for th ; - .
) o erstanding of the origin of these other frequencies. As
operatord , in Eqg. (1) than the one we made will, in general, shown in Fig. 2, bothp,, and can vanish over certain
lead to a larger set of exponential factors in ), making . 9. 2 11 P22

for more complicated algebra therein and in the coupled S‘?%T/S I{]tt%nl/:\l/sél t3hUS transferring the entire population from

ic:]f egll; ?)t':)nii 'E E?g)'tﬁeﬁvivsevaezclzdﬁﬁlog|:; ?)éfv:/rgelrr:\;(e)llve-ls Specializing to equal driving frequencies with a fixed am-
1gand 3 ycausgé n’o additional d[i)ffic?Jlt since it does no litude ratio, results for various phase differences between
' y he two fields are shown in Figs. 4 and 5. Clearly, the

enlarge the number ok or B matrices in our procedure. density-matrix elements depend on the relative phase. To
contrast with a different initial state, Figs. 6 and 7 show
Il. TWO DIFFERENT DRIVING FIELDS BETWEEN results when all population is in state 2tat0. These, and
NEIGHBORING STATES subsequent figures with both driving fields having the same
frequency and phase, show a more symmetric and periodic
We present results for three degenerate states, such aspdttern than the earlier results for arbitrary fields. Earlier
three identical pendula, with different nearest-neighbor coustudies[9,10] have also been restricted to these more sym-
plings between 1-2 and 2-3, that is, wiglit) and J(t) dif- metric patterns.
fering in amplitude and frequency,

p11 | mplz
Pqq I mPqy 1 0.4
1 0.4
0.5 0
0.5 0 t 0.4 t
t 0.4 . 2w 4TTW 2w ATTW
2w 41w 2w 4TTW D22 | mp23
P22 I mp23 0.4
0.4
0.5 0
0.5 0
t 0.4 ¢
t 04 + 2w 4TTW 21w 4TTW
21w 4TTW 2w 4TTW

FIG. 4. Elements of the density matrix with driving fields
FIG. 2. Same as in Fig. 1, except that=0.5,B=1, (1=0.1, of same frequencyl=w=1, amplitudesA=1, B=1/\/§, and
andw=1. I'=0.02, 6= —m/6.
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P11 I mP1o P11 I mPq,
1 0.4 1 0.4
0.5 0 0.5 0
{ -0.4 t ¢ 04
2w 4TTW 2w 4TTW 2w 4TTW 2w 4TMW
P22 I mp23 P22 I mp2s3
0.4 1 0.4
v ’ \M\/ " ’
{ 0.4 ¢ ¢ 0.4 .
2w 4TV 2w 41w 2w 4170 2w  4TW

FIG. 5. Same as in Fig. 4 except tha /2. FIG. 7. Same as in Fig. 6 except that 10,B=52. Note the

appearance of more rapid oscillations with the harder driving fields.
Figure 8 presents the evolution of the entrofe
—Tr(p In p), showing a monotonic rise independent of am- S r=0.02

plitudes, frequencies, and phases of the driving fields, and of
the initial pure state. Indeed, the eigenvalues of the density 1
matrix are 3(1—e ™), }(1—e '), and i(1+2e ), 0.5
from which the entropy easily follows. As is clear from these t
eigenvalues, the entropy for the case we have considered 2w AT
rises monotonically and we do not see any superposed oscil- S
lations as in Ref[9]. r=0.08
1
lll. n=3 STATES OF THE HYDROGEN ATOM 0.5
IN AN OSCILLATING ELECTRIC FIELD t
2w 4Tw
An example of a three-state degenerate system is provided S r=1.2
by then=3, m=0 states of the hydrogen atom. An oscillat-
ing electric field such as that of incident radiation couples 1
3s-3p and 3-3d states, the dipole matrix elements being in 0.5
the ratio/2:1. Ourresults in this paper apply to this situa-
tion with the two frequencies in Eq10) equal andA/B 2o A1io t
=4/2. This was the choice made in Fig. 3. We present in
Figs. 9—11 a sample of results for initial population mf8r FIG. 8. Evolution of the entropy to accompany the results
different amplitudes of the driving field. shown in previous figures. The rise is monotonic from 0O to In 3, the

rate of rise depending only on the valuelof

Py I mP12 P11 I mPy,
1 0.4 1 0.4
¢ -0.4 t ¢ 0.4
2w 4TTW 2w 4TTW 2w 4TTW 2w 4TTW
P22 I mp23 P22 I mp23
! 0.4 ! 0.4
t 0.4 ¢ t 04 ¢
2w 4T7W 2w 4TTW 21w 4TTW 2w 4TTW

FIG. 6. Evolution of density-matrix elements, starting with an  FIG. 9. Evolution of the density of states of the-3 Stark field
initial nonzero value only fop,,=1. Contrast with Figs. 1-3. The with initial population in the 3 state. The amplitude of the driving
parameters ar@ =w=1, A=2, B=2, ['=0.02, ands=0. field is A=1 andI"=0.02.
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Pyy I mPy; Py Rep,,
L 0.4 L 0.4
0.5 0 0.5 0
¢ 0.4 t t 0.4
2w 4w 2w 417w 2w 4w 2w 4TTW
P22 I mp2s P22 Re p23
1 0.4 0.4
0.5 0 0.5 0
t -0.4 t t -0.4 t
2w 4TT® 21w 4TTW . 2w 410w 21 41w
FIG. 10. Same as in Fig. 9 except that 10. FIG. 12. Evolution of then=3 states of hydrogen, starting with

a Stark eigenstate, and=0. Such eigenstates remain frozen in
their time dependence, in contrast to other initial states as shown in
This problem is, of course, exactly solvable in terms ofthe previous figures.
the parabolic eigenstates of hydrogen. WHft) in Eq. (2)

containing a single time dependence, the resulting Schro V2 3 )

dinger equation d(t): ?( CO{ \/;(A/(U)S”W ot|— 1) . (12C)
s(t) 0 —A 0 s(t) Together with the exponential decrease of the elements of
. 7(t), the density matrix can be constructed to reproduce the

il pt) | =| A 0 ~AN2 || p(t) | coswt results in Figs. 9—11. It is also clear that when one of the
dt) 0 —A/L2 0 d(t) parabolic states is used as a starting point, the density matrix

(11) will remain frozen forI'=0 and decay monotonically for
finite I' as shown in Figs. 12 and 13.

. - . A recent paper has presented results similar to the above
can be solved after diagonalizing the matrix of constant co-

. . ) i in Egs.(12) for n=2,3[12]. The results can be readily ex-
efficients to obtain the parabolic eigenstaté6l/\3)s  (ended to anyn since the expansion of parabolic states in

*+(1N2)p+(1/\6)d, (1/\3)(s—y2d)} and corresponding terms of spherical states of hydrogen is well known and
eigenvalues- A{+3/2,0. The independent time evolution given by 3 coefficients[13]. The occurrence of the “Flo-
of each eigenstate is then easily followed. quet form” in Egs.(12), with trigonometric functions whose
Thus, for initial population in the state, we have arguments are themselves a trigonometric function scaled by
Al w, accounts for the appearance of higher frequencies than
3 o in Figs. 1-5 for stronger driving fields.
142 cos{ \/:(A/w)sinwt ) ’ (123 We note that such studies of Rydberg atoms imamani-
2 fold under microwave ionization, sometimes with an addi-
tional static field, have been of considerable experimental
and theoretical intere$ii4,15.

1
S(t) = §

2 3
p(t)= \[§i sin \[E(A/w)sina)t , (12b)
P11 ReP1>
1 0.4
p 1 | mplz \
1 0.4 0.5 0
0 ¢ 0.4
0.5 2w 417w 2w 4TTW
0.4
2w 41w t 2w 4w 0%2 ORZ‘\ P23
P22 I mp23 I~
1 0.4 0.5 0
-0.4
0-5 0 2w 4TTW t 21w 4TTW t
-0.4
2w 417w t 2w 4TIW t FIG. 13. Same as in Fig. 12 except tfhat 0.2. Note the mono-
tonic evolution from the initial Stark state to the mixed state de-
FIG. 11. Same as in Fig. 9 except that2 andI"=0.08. scribed by the density matri%I.
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V. SUMMARY orderings. Results have been presented for three-state sys-

The method of unitary integration extended to problemstems with exgmples 'of'coupled pendula andke3 states
f hydrogen in a radiation field.

involving dissipation and decoherence affords a convenient
and powerful way of treatingn-state systems in time-
dependent fields. Through the solution of a single, classical,
Riccati equatiortfirst order in time and quadratically nonlin-
ean, we can follow the evolution of the density matrix in ~ This work has been supported by the U.S. Department of
time without any restrictions to infinitesimal steps or time Energy under Grant No. DE-FG02-02ER46018.
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