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Decoherence in a driven three-level system
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Dissipation and decoherence, and the evolution from pure to mixed states in quantum physics, are handled
through master equations for the density matrix. Master equations such as the Lindblad equation preserve the
trace of this matrix. Viewing them as first-order time-dependent operator equations for the elements of the
density matrix, a unitary integration procedure can be adapted to solve for these elements. A simple model for
decoherence preserves the Hermiticity of the density matrix. A single, classical Riccati equation is the only one
requiring numerical handling to obtain a full solution of the quantum evolution. The procedure is general, valid
for any number of levels, but is illustrated here for a three-level system with two driving fields. For various
choices of the initial state, we study the evolution of the system as a function of the amplitudes, relative
frequencies, and phases of the driven fields and of the strength of the decoherence. The monotonic growth of
the entropy is followed as the system evolves from a pure to a mixed state. An example is provided by then53
states of the hydrogen atom in a time-dependent electric field, such degenerate manifolds affording an analyti-
cal solution.
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I. UNITARY INTEGRATION PROCEDURE
FOR MASTER EQUATIONS

Master equations, such as the Lindblad equation@1#, can
describe dissipation and decoherence in a quantum syst
In recent work@2#, one of us adapted a ‘‘unitary integration
procedure@3,4# for solving such equations while preservin
desirable properties such as the Hermiticity of the den
matrix even in the presence of dissipation and decohere
This permits us to keep track of quantities such as the
tropy while the system evolves from a possibly initial pu
state to a final mixed one. The two-state illustration given
that initial work is extended now to a three-level syste
through suitable combinations of density-matrix elements
preserve the Hermiticity of the operators involved.

Consider the master equation for the density matrixr
called the Liouville–von Neumann–Lindblad equation@1,2#,

i ṙ5@H,r#1
1

2
i(

k
~@Lkr,Lk

†#1@Lk ,rLk
†# !

5@H,r#2
1

2
i(

k
~Lk

†Lkr1rLk
†Lk22LkrLk

†!, ~1!

where an overdot denotes differentiation with respect to t
and\ has been set equal to unity.H is a Hermitian Hamil-
tonian whileLk are operators in the system through whi
dissipation and decoherence are introduced. Even though
can result in nonunitary evolution, the form of the equati
preserves Tr(r) and positivity of probabilities. A more math
ematical discussion of such ‘‘superoperators’’ and ‘‘dynam
cal semigroups’’ is given in Ref.@5#.

A commonly used form ofH is

H~ t !5e~ t !Az12J~ t !Ax , ~2!
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Ax5S 0 0 0

0 0 1

0 1 0
D , Ay5S 0 0 2 i

0 0 0

i 0 0
D ,

Az5S 0 1 0

1 0 0

0 0 0
D . ~3!

The couplings indicated in Eq.~2! between states 1 and
and between 2 and 3 of a three-state system are referred
L and V depending on the relative energy positions of t
three states, whether 2 lies above or below, respectively, r
tive to levels 1 and 3. The three operators in Eq.~3! close
under commutation according to the standard relations s
fied by angular-momentum algebra:@Ax ,Ay#5 iAz , and cy-
clic. Hioe and Eberly@6# considered such a Hamiltonian fo
the Liouville version of Eq.~1!, that is, without the dissipa
tive term, along with solutions for certain forms ofe andJ.
Population trapping and dispersion were also considere
Ref. @7# with a similar Hamiltonian and generalized@8# to
n-level systems. Our work presented here may be regarde
an extension of such studies to include also dissipation
decoherence. An extension of this type has already been
sidered for the so-called cascade system in which level 2
in between 1 and 3@9#. This work has been built on that o
Ref. @6# where exact two-photon resonance and the use of
rotating wave approximation simplifies the three-level pro
lem in terms of matrices of smaller dimensions than 838.
Our treatment is more general, allowing for arbitrary amp
tudes, frequencies, and relative phase of the two fields,
though there are points in common with Ref.@9#. The three-
level problem has also been considered through a ma
mode Floquet theory, including dissipation@10#.

In general, with each of the three states having disti
energiesE1 ,E2, andE3 and the driving fields having finite
detunings from resonance, entries along the diagonal ofH in
©2003 The American Physical Society02-1
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Eq. ~2! complete the Hamiltonian for such systems. F
treatment according to our formalism below then requires
the elements of the su~3! algebra, namely, five more linearl
independent 333 matrices to supplement those in Eq.~3!.
We expect to return to this later but, in this paper, we rest
ourselves to the degenerate case of equal eigenvalue
which case the above three matrices suffice and the calc
tions reduce to solving a single equation just as in the tw
state system considered in Ref.@2#. Applications include
three identical coupled pendula with nearest-neighbor tim
dependent couplings, driven systems on resonance, an
degenerate states of then53 manifold of hydrogen driven
by time-dependent electric fields.

Dissipation and decoherence are introduced through
Lk matrices in Eq.~1!. Here again, as shown in Ref.@2#, a
choice of all eight linearly independent matrices affords
simplification because of a sum rule that inserts the deco
ence as a unit operator in such an eight-dimensional spac
this procedure, Eq.~1! is recast into a set of eight equation
for the elements of the density matrix~recall that the trace
remains invariant!. An appropriate linear combination of th
elements such that the operators in Eq.~3! map onto three
Hermitian 838 matrices obeying the same angula
momentum commutators is given by the choice

h~ t !5Fr112r33,
1

A3
~r111r3322r22!,r121r21,r21

2r12,r131r31,r312r13,r231r32,r322r23G .

~4!

Our choice differs only slightly from that in Refs.@6,8#
where this set is called a ‘‘coherence’’ vector. The result
equation forh(t) takes the form

i ḣ~ t !5L~ t !h~ t !, ~5!

with

L~ t !52 iGI1e~ t !Bz12J~ t !Bx , ~6!

whereG indexes the strength of the decoherence. The ma
cesB take the forms

Bx51
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2A3

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 2A3 0 0 0 0 0 0

2 ,
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By51
0 0 0 0 22i 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 i 0

0 0 0 0 0 0 0 i

2i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 2 i 0 0 0 0

2 ,

Bz51
0 0 0 1 0 0 0 0

0 0 0 A3 0 0 0 0

0 0 0 0 0 0 0 0

1 A3 0 0 0 0 0 0

0 0 0 0 0 0 0 21

0 0 0 0 0 0 21 0

0 0 0 0 0 21 0 0

0 0 0 0 21 0 0 0

2 . ~7!

As per the unitary integration procedure@2,3#, the solution
of Eq. ~6! is written as a product of exponentials

h~ t !5exp@2Gt#exp@2 im1~ t !B1#exp@2 im2~ t !B2#

3exp@2 im~ t !Bz#h~0!, ~8!

with B6[Bx6 iBy . Because our procedure depends only
the commutation relations which remain as in Ref.@2#, the
classical functionsm in the exponents satisfy the same equ
tions as before,

ṁ11 i e~ t !m12J~ t !~11m1
2 !50, ~9a!

ṁ52iJ~ t !m11e~ t !, ~9b!

ṁ22 i ṁm25J~ t !, m i~0!50. ~9c!

The first of these equations, involvingm1(t) alone in Riccati
form, is the only nontrivial member of this set. Once solve
m2 and m are obtained through simple integration of th
remaining two equations. For givene(t) andJ(t), a MATH-

EMATICA program @11# solves the set of equations readil
Also, the subsequent algebra involved in evaluating the
ponentials in Eq.~8! and their product is easily carried ou
Thereby, for any initial density matrix and itsh(0), we ob-
tain h(t) and thusr(t) at any later time.

Since our model for decoherence introduces its eff
through the single real factor which is the first term on t
right-hand side of Eq.~8!, the density matrix remains Her
mitian throughout. This is an advantage, permitting eval
tion of its eigenvalues and calculation of quantities such
the entropy of the system. It is also clear that for any finiteG
all elements inh(t) in Eq. ~4! vanish asymptotically witht
so that all off-diagonal elements of the density matrix van
while all diagonal elements become equal. With the tra
2-2
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DECOHERENCE IN A DRIVEN THREE-LEVEL SYSTEM PHYSICAL REVIEW A68, 052102 ~2003!
invariant and chosen to be unity, the density matrix evol
to that of the so-called chaotically mixed state,1

3 I. Corre-
spondingly, the entropy reaches asymptotically the va
ln 351.0986. These are aspects of the general result valid
all n-level systems@2#. We note again that other models
decoherence and dissipation through other choices for
operatorsLk in Eq. ~1! than the one we made will, in genera
lead to a larger set of exponential factors in Eq.~8!, making
for more complicated algebra therein and in the coupled
of equations in Eq.~9!. However, inclusion of a term involv
ing alsoAy in Eq. ~2!, that is, a coupling also between leve
1 and 3, causes no additional difficulty since it does
enlarge the number ofA or B matrices in our procedure.

II. TWO DIFFERENT DRIVING FIELDS BETWEEN
NEIGHBORING STATES

We present results for three degenerate states, such
three identical pendula, with different nearest-neighbor c
plings between 1-2 and 2-3, that is, withe(t) andJ(t) dif-
fering in amplitude and frequency,
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FIG. 1. Time evolution of the elements of the density matrix
ann53 system driven by the fields in Eq.~10! and Hamiltonian in
Eq. ~2!, with V50, v51, d50, A50.05, B50.5, andG50.02.
Right-hand side panels show the off-diagonal elements, two
which are imaginary and one real. The lastr13 is not displayed, as
alsor33 which can be obtained as 12r112r22.

2 4
t

0.5

1
11

2 4
t

0.5

1
22

2 4
t

0

0.4

-0.4

Im 12

2 4
t

0

0.4

-0.4

Im 23

ρ

ρρ

ρ

π/ω π/ω

π/ω π/ω

π/ω π/ω

π/ω π/ω

FIG. 2. Same as in Fig. 1, except thatA50.5, B51, V50.1,
andv51.
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e~ t !5A cosVt, J~ t !5 1
2 B cos~vt1d!, ~10!

with d a relative phase difference. A representative sampl
the density matrix upon starting with all population in state
and all other elements zero is shown in Figs. 1–3. Note
appearance of a complicated frequency spectrum beyond
two introduced driving frequencies. The analytically solvab
problem presented in the following section provides an
derstanding of the origin of these other frequencies.
shown in Fig. 2, bothr11 and r22 can vanish over certain
time intervals, thus transferring the entire population fro
level 1 to level 3.

Specializing to equal driving frequencies with a fixed a
plitude ratio, results for various phase differences betw
the two fields are shown in Figs. 4 and 5. Clearly, t
density-matrix elements depend on the relative phase.
contrast with a different initial state, Figs. 6 and 7 sho
results when all population is in state 2 att50. These, and
subsequent figures with both driving fields having the sa
frequency and phase, show a more symmetric and peri
pattern than the earlier results for arbitrary fields. Earl
studies@9,10# have also been restricted to these more sy
metric patterns.
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FIG. 3. Same as in Fig. 2 except thatA51, B51/A2, and
G50.08, and longer times are shown to illustrate asymptotic e
lution.
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FIG. 4. Elements of the density matrix with driving field
of same frequencyV5v51, amplitudesA51, B51/A2, and
G50.02,d52p/6.
2-3



m
d
s

se
er
sc

id
t-
le
in
-

i

an

lds.

lts
the

A. R. P. RAU AND W. ZHAO PHYSICAL REVIEW A68, 052102 ~2003!
Figure 8 presents the evolution of the entropyS5
2Tr(r ln r), showing a monotonic rise independent of a
plitudes, frequencies, and phases of the driving fields, an
the initial pure state. Indeed, the eigenvalues of the den

matrix are 1
3 (12e2Gt), 1

3 (12e2Gt), and 1
3 (112e2Gt),

from which the entropy easily follows. As is clear from the
eigenvalues, the entropy for the case we have consid
rises monotonically and we do not see any superposed o
lations as in Ref.@9#.

III. nÄ3 STATES OF THE HYDROGEN ATOM
IN AN OSCILLATING ELECTRIC FIELD

An example of a three-state degenerate system is prov
by then53, m50 states of the hydrogen atom. An oscilla
ing electric field such as that of incident radiation coup
3s-3p and 3p-3d states, the dipole matrix elements being
the ratioA2:1. Ourresults in this paper apply to this situa
tion with the two frequencies in Eq.~10! equal andA/B
5A2. This was the choice made in Fig. 3. We present
Figs. 9–11 a sample of results for initial population in 3s for
different amplitudes of the driving field.
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FIG. 5. Same as in Fig. 4 except thatd5p/2.
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FIG. 6. Evolution of density-matrix elements, starting with
initial nonzero value only forr2251. Contrast with Figs. 1–3. The
parameters areV5v51, A52, B5A2, G50.02, andd50.
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FIG. 7. Same as in Fig. 6 except thatA510, B55A2. Note the
appearance of more rapid oscillations with the harder driving fie
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FIG. 8. Evolution of the entropy to accompany the resu
shown in previous figures. The rise is monotonic from 0 to ln 3,
rate of rise depending only on the value ofG.
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FIG. 9. Evolution of the density of states of then53 Stark field
with initial population in the 3s state. The amplitude of the driving
field is A51 andG50.02.
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This problem is, of course, exactly solvable in terms
the parabolic eigenstates of hydrogen. WithH(t) in Eq. ~2!
containing a single time dependence, the resulting Sc¨-
dinger equation

iS ṡ~ t !

ṗ~ t !

ḋ~ t !
D 5S 0 2A 0

2A 0 2A/A2

0 2A/A2 0
D S s~ t !

p~ t !

d~ t !
D cosvt

~11!

can be solved after diagonalizing the matrix of constant
efficients to obtain the parabolic eigenstates$(1/A3)s
6(1/A2)p1(1/A6)d, (1/A3)(s2A2d)% and corresponding
eigenvalues2A$6A3/2,0%. The independent time evolutio
of each eigenstate is then easily followed.

Thus, for initial population in thes state, we have

s~ t !5
1

3 S 112 cosFA3

2
~A/v!sinv tG D , ~12a!

p~ t !5A2

3
i sinFA3

2
~A/v!sinvtG , ~12b!

2 4
t

0.5

1
11

2 4
t

0.5

1
22

2 4
t

0

0.4

-0.4

Im 12

2 4
t

0

0.4

-0.4

Im 23

ρ

ρρ

ρ

π/ω π/ω

π/ω π/ω

π/ω π/ω

π/ω π/ω

FIG. 10. Same as in Fig. 9 except thatA510.
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FIG. 11. Same as in Fig. 9 except thatA52 andG50.08.
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d~ t !5
A2

3 S cosFA3

2
~A/v!sinvtG21D . ~12c!

Together with the exponential decrease of the element
h(t), the density matrix can be constructed to reproduce
results in Figs. 9–11. It is also clear that when one of
parabolic states is used as a starting point, the density m
will remain frozen forG50 and decay monotonically fo
finite G as shown in Figs. 12 and 13.

A recent paper has presented results similar to the ab
in Eqs. ~12! for n52,3 @12#. The results can be readily ex
tended to anyn since the expansion of parabolic states
terms of spherical states of hydrogen is well known a
given by 3j coefficients@13#. The occurrence of the ‘‘Flo-
quet form’’ in Eqs.~12!, with trigonometric functions whose
arguments are themselves a trigonometric function scaled
A/v, accounts for the appearance of higher frequencies t
v in Figs. 1–5 for stronger driving fields.

We note that such studies of Rydberg atoms in ann mani-
fold under microwave ionization, sometimes with an ad
tional static field, have been of considerable experimen
and theoretical interest@14,15#.
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FIG. 12. Evolution of then53 states of hydrogen, starting wit
a Stark eigenstate, andG50. Such eigenstates remain frozen
their time dependence, in contrast to other initial states as show
the previous figures.
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FIG. 13. Same as in Fig. 12 except thatG50.2. Note the mono-
tonic evolution from the initial Stark state to the mixed state d
scribed by the density matrix13 I.
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IV. SUMMARY

The method of unitary integration extended to proble
involving dissipation and decoherence affords a conven
and powerful way of treatingn-state systems in time
dependent fields. Through the solution of a single, classi
Riccati equation~first order in time and quadratically nonlin
ear!, we can follow the evolution of the density matrix i
time without any restrictions to infinitesimal steps or tim
-
e

ry

05210
s
nt

l,

orderings. Results have been presented for three-state
tems with examples of coupled pendula and then53 states
of hydrogen in a radiation field.
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