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Nonrelativistic variationally optimized exchange potentials for Ne-like atomic ions
having large atomic number
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In an earlier study, the exchange energy densityex(r ) has been calculated analytically for Ne-like atomic
ions in the nonrelativistic limit of large atomic numberZ. Here, though now by numerical methods based on
the optimized exchange potential approximation, corresponding results are obtained forVx(r ) for such ten-
electron ions at largeZ. The approach to the bare Coulomb limiting form of the 1/Z expansion is considered in
some detail, as are corrections to the Slater potentialVx

Sl(r ), given in terms of the exchange energy density and
ground-state densityr(r ) by 2ex(r )/r(r ).
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I. BACKGROUND AND OUTLINE

In recent work, Howardet al. @1# have calculated analyti
cally the nonrelativistic limiting form of the exchange ener
density for the Ne-like series of positive atomic ions in t
limit of large atomic number. These authors defined the
change energy densityex(r ) from the Dirac@2# result

Ex52
e2

4 E g2~r ,r 8!

ur2r 8u
dr dr 8, ~1.1!

whereEx is the total exchange energy andg(r ,r 8)/2 is the
idempotent form of the Dirac density matrix. It then see
natural, though not of course unique@3#, to define the ex-
change energy densityex(r ) as

ex~r !52
e2

4 E g2~r ,r 8!

ur2r 8u
dr 8. ~1.2!

Evidently, from Eqs.~1.1! and ~1.2!,

Ex5E ex~r !dr . ~1.3!

In Ref. @1#, the exchange energy densityex(r ) is given ana-
lytically for the ten-electron Ne-like series of positive atom
ions in the nonrelativistic limit of large atomic numberZ. In
particular, it was shown in Ref.@1# thatEx is the sum of three
terms

Ex5Ex
(1)1Ex

(2)1Ex
(3) , ~1.4!

but only one of these,Ex
(1) , is known explicitly in terms of

the electron densityr(r ). This has the form

Ex
(1)52

5p

3
e2E r 2r2~r !dr . ~1.5!

Both Ex
(2) andEx

(3) are, from the theorems of density fun
tional theory@4#, functionals of the ground-state densityr(r )
but contain the kinetic-energy densityt(r ). This presents
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problems when one attempts to construct the exchange
tential Vx(r ) as the functional derivative

Vx~r !5
dEx@r#

dr
. ~1.6!

Therefore, in Ref.@1#, thoughex(r ) is given explicitly,Vx(r )
is approximated by~i! the Slater@5# potentialVx

Sl(r ) and~ii !
the Harbola-Sahni@6# potentialVx

HS(r ). The former poten-
tial, following Slater, is given in terms ofex(r ) andr(r ) by

Vx
Sl~r !52

ex~r !

r~r !
, ~1.7!

and hence in this approximation the functional differentiati
in Eq. ~1.6! is bypassed. Giveng(r ,r 8), the Harbola-Sahni
@6# potential is known explicitly and again no functional di
ferentiation is involved. Using the limiting largeZ form of
Ref. @1# for g ~bare Coulomb form, without electron-electro
interaction ‘‘corrections’’! both the potentialsVx

Sl(r ) and
Vx

HS(r ) were plotted as functions ofr for Z592 in Ref.@1#.
One had no check on the errors of these two approximatio
nor on whether atZ592 the limiting form of largeZ was
already quantitative. These two aspects are now address
this Brief Report.

The outline of the present study is then as follows. In S
II, the investigations of Sharp and Horton@7# and Talman
and Shadwick@8# are first discussed. Then, using the s
called optimized exchange potential, the program of Talm
@9# is used to obtain a very accurate approximation toVx(r )
for the ten-electron atomic ions. The bare Coulomb limit
this variationally optimized method is also extracted, as w
as results forVx(r ) for such ions withZ550 andZ592.
Then in Sec. III, some consequences of these exchange
tentials are summarized, as well as the forces2]Vx /]r in
these cases and in the limiting largeZ form. In this section,
the virial-like relation of Levy and Perdew@10# is tested on
the optimized exchange potentials. Finally in Sec. IV, t
‘‘closed-shell’’ Ar-like atomic ions are discussed mo
briefly, and the range of validity of the largeZ limit is the
©2003 The American Physical Society02-1
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prime focus here. Section V constitutes a summary, p
some suggestions for future work.

II. OPTIMIZED EXCHANGE POTENTIALS
FOR TEN-ELECTRON ATOMIC IONS FOR LARGE

VALUES OF Z

The purpose of this section is to obtain numerical res
for the optimized exchange potential for~i! the limit of large
Z, studied in Ref.@1#, and~ii ! two positive atomic ions with
ten electrons and atomic numberZ chosen as 50 and 92. T
achieve such results, we made use of the programATOMOPM

of Ref. @9#. The integral equation for the optimized exchan
potential Vx(r ) which we briefly set out below is solve

FIG. 1. Limiting form of the optimized exchange potenti
Vx(r ) calculated from Eq.~2.1! in the large atomic numberZ limit.
Curves in this figure are forZ592 and 10 electrons. The resu
obtained here is compared with the Slater approximationVx

Sl(r )
given in Eq. ~1.7! and with the Harbola-Sahni potentialVx

HS(r ).
These latter two potentials are taken from Ref.@1#.
04450
s
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iteratively, starting with bare Coulomb functions. The equ
tion has the form„Eq. ~10! of Ref. @9#…

E K~r ,r 8!Vx~r 8!dr 85Q~r !. ~2.1!

HereK involves the one-electron orbitalsf i , and the Green
function Gi(r ,r 8) for the single-particle Hamiltonian. Eac
side of Eq.~2.1! is orthogonal to a constant; therefore i
solution is arbitrary up to an additive constant, which is d
termined by the behavior ofVx(r ) at larger. The complete
definitions ofK(r ,r 8) andQ(r ) are given in Ref.@9#.

FIG. 2. Illustration of the wayVx(r ) is obtained by a numerica
iterative solution of Eq.~2.1!. The fully converged solutions for the
optimized exchange potential for nonrelativistic positive atom
ions with ten electrons are shown for bothZ550 andZ592. For
comparison, the lowest order iteration using the bare Coulomb
tential as the starting point is also plotted.
r
TABLE I. Data from the first step in the iteration of Eq.~2.1! compared with exact Coulomb data fo
Z592 and 50, ten-electron ions~in a.u.!.

Z592 Z550

First step, one-electron eigenvalues
E(1s)524232.004 E(1s)521250.001
E(2s)521058.003 E(2s)52312.496
E(2p)521058.001 E(2p)52312.499
First step, exchange energy
Ex52160.807 Ex5287.400
Fully converged values, one-electron eigenvalues
E(1s)523998.307 E(1s)521125.651
E(2s)52928.580 E(2s)52243.385
E(2p)52911.984 E(2p)52234.858
Fully converged values, exchange energy
Ex52155.643 Ex5282.230
Large-Z limit, one-electron eigenvalues
E(1s)524232 E(1s)521250
E(2s,2p)521058 E(2s,2p)52312.500
Large-Z limit, exchange energy
Ex52160.805 Ex5287.394
2-2
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In the iterative scheme of Ref.@9#, it is very convenient
that the first step can be taken with the bare Coulomb po
tial @1#. Of course, to display the result one must choos
specific atomic number. For the choiceZ592, we show the
result of the program in Ref.@9# for the optimized exchange
potential in Fig. 1. For comparison, the results forVx

Sl(r ) and
Vx

HS(r ) given in Ref.@1# are reproduced also in Fig. 1. Ad
ditionally, we include in Table I some facts pertaining to t
first step, to show the accuracy of the numerical progr
compared with exact Coulomb values.

We expect thatVx(r ) will be a very accurate numerica
approximation to the functional derivative result Eq.~1.6!
and thus the appropriate curve in Fig. 1 complements
analytic form of the exchange energyex(r ) given in Ref.@1#
in the limiting bare Coulomb form of the 1/Z expansion. But
also using theATOMOPM program, one can answer for th
ten-electron system how largeZ must be to validate the bar
Coulomb limiting form. This is illustrated in Fig. 2, wher
the large-Z limiting form shown in Fig. 1 is compared with
the fully converged iterative solution of Eq.~2.1! for two
values ofZ, namely, 50 and 92. It can be seen for the te
electron case thatZ592 is already well approximated by th
first step in the iteration of Eq.~2.1!, namely, the bare Cou
lomb limit.

FIG. 3. Limiting largeZ ~bare Coulomb! form of forceFx(r ) in
Eq. ~3.2! for ten electrons. Converged forms of solution of Eq.~2.1!
for ~a! Z550 and~b! Z592 are shown for comparison. Slater an
Harbola-Sahni curves@6# are also plotted.
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III. SOME OTHER EXCHANGE PROPERTIES: BOTH
INTEGRAL AND DIFFERENTIAL

Turning to other exchange properties, we begin with
virial-like relation of Levy and Perdew@10#, which reads

Ex52E r~r !r•“Vx~r !dr . ~3.1!

This relation must be satisfied exactly ifVx is the functional
derivative ofEx given in Eq.~1.6!. Therefore a check of the
accuracy of Eq.~3.1! is one way to establish the numeric
utility of the optimized exchange potential satisfying E
~2.1!. Since Eq.~3.1! is virial-like, it involves the forceFx
associated with the exchange potentialVx , namely,

Fx52“Vx~r !. ~3.2!

The limiting bare Coulomb form of Eq.~3.2! obtained from
the first step in the iteration of Eq.~2.1! is compared with the
approximationsFx

Sl and Fx
HS obtained in Ref.@1# in the

present Fig. 3 forZ550 and 92. We note that these thre
force approximations all represent zero ‘‘exchange force’
the nucleus. All three approximations have the correct lar
r asymptotic forms

Fx52
e2

r 2
, r→`. ~3.3!

Our numerical studies for ten electrons show that the Le
Perdew relation Eq.~3.1! is satisfied essentially exactly i
both the first iteration~i.e., Coulombic! and in the fully op-
timized calculation. A related, but somewhat less accur
numerical check was also made in the earlier study of W
et al. @11#.

In concluding this section, we note that the Harbola-Sa
potentialVx

HS(r ) discussed in Ref.@1# ~see also Fig. 1! obeys
Eq. ~3.1! exactly @6# even though, as demonstrated by Le

FIG. 4. Fully converged optimized exchange potentialVx(r ) for
the Ar-like series. This is compared with the first iteration using
bare Coulomb potential. Note that theZ592 curves now differ
appreciably, in contrast to the close agreement for the ten-elec
ions shown in Fig. 2.
2-3
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and March@12#, ‘‘corrections’’ which are ‘‘kinetic’’ in char-
acter are required to convertVx

HS(r ) to the exact exchange
only potential.

IV. Ar-LIKE SERIES: BRIEF SUMMARY

Though, in principle, the work of Ref.@1# in the bare
Coulomb limit of largeZ could be extended analytically t
the 18-electron, Ar-like, series of positive atomic ions, t
exchange energy densityex(r ) would be the result, and no
Vx(r ) as explained above for the Ne-like series. Therefo
here we confine ourselves to showing in Fig. 4 the limiti
large-Z form, again from the first step in the iteration of E
~2.1!, for Z550 and 92. The finally converged curve for th
sameZ is shown for comparison, again for 18 electrons,
Fig. 4.

Finally, again in response to a suggestion of the refe
we show in Fig. 5 a somewhat different representation of t

FIG. 5. Radial distributionr 2rx(r ) of an effective exchange
charge densityrx(r )52¹2Vx(r ) for the Ar-like ion with Z592
and 18 electrons. Results for the initial iteration and for the fu
converged optimized exchange potential are compared.
ys

J

nd
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exchange potential forZ592 and 18 electrons, namely, it
Laplacian, related to a charge densityrex(r ).

V. SUMMARY AND FUTURE DIRECTIONS

The main results of the present study are as follows.
~i! The limiting ~Coulomb! forms of the first iteration of

the optimized effective potential approximation to the e
change potential in the nonrelativistic theory for large atom
number Z for ~a! the ten-electron Ne-like positive atomi
ions and~b! the 18-electron Ar-like series.

~ii ! The converged iterative solutions of Eq.~2.1! for the
ten-electron atomic ions forZ550 andZ592. It would, we
believe, in the future, be of interest to attempt to use exist
theory @13# on the 1/Z expansion for homonuclear diatom
molecules to calculate the limiting forms for some positi
molecular ions of the optimized exchange potentialVx(r ).
Possibly the extension to almost sphericalC and B cages
@14,15# might also prove practicable.

Finally, the referee has drawn our attention to the work
Nagy @16#. She has kindly informed us that if one knows th
exact density~say from diffraction or quantum simulation!,
one can calculate the exchange-correlation potential ei
with the Zhao-Morrison-Parr@17# method, or other methods
such as her own. In this sense, as the referee pointed o
us, the Zhao-Morrison-Parr approach can be said to be m
accurate than the optimized effective potential method. Ho
ever, the optimized effective potential can be regarded as
exact exchange potential of density-functional theory in
exchange-only approximation@16,18#.
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