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Nonrelativistic variationally optimized exchange potentials for Ne-like atomic ions
having large atomic number
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In an earlier study, the exchange energy densjty) has been calculated analytically for Ne-like atomic
ions in the nonrelativistic limit of large atomic numh2&r Here, though now by numerical methods based on
the optimized exchange potential approximation, corresponding results are obtainédrfpffor such ten-
electron ions at larg&. The approach to the bare Coulomb limiting form of th& &kpansion is considered in
some detail, as are corrections to the Slater pote\ﬂﬁ&r), given in terms of the exchange energy density and
ground-state density(r) by 2e,(r)/p(r).
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|. BACKGROUND AND OUTLINE problems when one attempts to construct the exchange po-

tential V,(r) as the functional derivative
In recent work, Howardet al.[1] have calculated analyti-

cally the nonrelativistic limiting form of the exchange energy SE,[ p]

density for the Ne-like series of positive atomic ions in the V()= Sp (1.9

limit of large atomic number. These authors defined the ex-

change energy density(r) from the Dirac[2] result Therefore, in Ref[1], thoughe,(r) is given explicitly,V,(r)
) o is approximated byi) the Slatef5] potentialVS!(r) and(ii)

E - e_J' yo(rr )dr dr’ (1.1  the Harbola-Sahrii6] potential VHS(r). The former poten-

4 [r—r’| tial, following Slater, is given in terms of,(r) andp(r) by

whereE, is the total exchange energy andr,r')/2 is the (1)

idempotent form of the Dirac density matrix. It then seems V3i(r)=2 ; (1.7

natural, though not of course uniqlig], to define the ex- p(r)

change energy density(r) as and hence in this approximation the functional differentiation

in Eq. (1.6) is bypassed. Given(r,r’), the Harbola-Sahni

2 2 ’
€(r)=— e_f L’r)drr' 1.2 [6] potential is known explicitly and again no functional dif-
4 [r—r’] ferentiation is involved. Using the limiting large form of
) Ref.[1] for y (bare Coulomb form, without electron-electron
Evidently, from Eqs(1.1) and(1.2), interaction “corrections) both the potentialsvS'(r) and
VHS(r) were plotted as functions affor Z=92 in Ref.[1].
E.= f e (r)dr. (1.3  One had no check on the errors of these two approximations,

nor on whether aZz=92 the limiting form of largeZ was
In Ref.[1], the exchange energy density(r) is given ana- already quantitative. These two aspects are now addressed in
lytically for the ten-electron Ne-like series of positive atomic this Brief Report.

ions in the nonrelativistic limit of large atomic numk&rin The outline of the present study is then as follows. In Sec.
particular, it was shown in Refi1] thatE, is the sum of three !l the investigations of Sharp and Hort¢#] and Talman
terms and ShadwicK8] are first discussed. Then, using the so-
called optimized exchange potential, the program of Talman
E,=EW+EP+ED®, (1.4)  [9]is used to obtain a very accurate approximatioV6r)

for the ten-electron atomic ions. The bare Coulomb limit of

but only one of thesﬁf(l), is known explicitly in terms of  this variationally optimized method is also extracted, as well
the electron density(r). This has the form as results forv,(r) for such ions withZ=50 andZ=92.
Then in Sec. Ill, some consequences of these exchange po-
tentials are summarized, as well as the foreedV,/dr in
these cases and in the limiting largdorm. In this section,
the virial-like relation of Levy and Perdeji 0] is tested on

BothE{ andE(® are, from the theorems of density func- the optimized exchange potentials. Finally in Sec. IV, the
tional theory[4], functionals of the ground-state densitfr) “closed-shell” Ar-like atomic ions are discussed more
but contain the kinetic-energy densityr). This presents briefly, and the range of validity of the largélimit is the

5
E§1)=—§92f r2p2(rdr. (1.5
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FIG. 1. Limiting form of the optimized exchange potential r(au)

V,(r) calculated from Eq(2.1) in the large atomic numbet limit. . . ) .
Curves in this figure are fo£=92 and 10 electrons. The result FIG. 2. lllustration of the way/,(r) is obtained by a numerical

obtained here is compared with the Slater approxima\i@f(r) iterf'itiye solution of Eq(2.1). The fully converggd.solutiqr.]s for the.

given in Eq.(L1.7) and with the Harbola-Sahni potentikil';s(r). _optlmlz_ed exchange potential for nonrelativistic positive atomic

These latter two potentials are taken from Hai. ions with ten electrons are shown for batl=50 andZ=92. For
comparison, the lowest order iteration using the bare Coulomb po-

_ _ _ tential as the starting point is also plotted.
prime focus here. Section V constitutes a summary, plus

some suggestions for future work. iteratively, starting with bare Coulomb functions. The equa-

tion has the form(Eq. (10) of Ref.[9])

II. OPTIMIZED EXCHANGE POTENTIALS

FOR TEN-ELECTRON ATOMIC IONS FOR LARGE , , ,
VALUES OF 7 K(r,r")Vy(r")dr'=Q(r). (2.1

The purpose of this section is to obtain numerical results
for the optimized exchange potential f@y the limit of large  HereK involves the one-electron orbitals , and the Green
Z, studied in Ref[1], and(ii) two positive atomic ions with  function G;(r,r’) for the single-particle Hamiltonian. Each
ten electrons and atomic numhérchosen as 50 and 92. To side of Eq.(2.1) is orthogonal to a constant; therefore its
achieve such results, we made use of the progxemmoPM  solution is arbitrary up to an additive constant, which is de-
of Ref.[9]. The integral equation for the optimized exchangetermined by the behavior of,(r) at larger. The complete
potential V,(r) which we briefly set out below is solved definitions ofK(r,r’) andQ(r) are given in Ref[9].

TABLE I. Data from the first step in the iteration of E(R.1) compared with exact Coulomb data for
Z=92 and 50, ten-electron ior{; a.u,).

Z=92 Z=50

First step, one-electron eigenvalues

E(1s)=—4232.004 E(1s)=—1250.001
E(2s)=—1058.003 E(2s)=—312.496
E(2p)=—1058.001 E(2p)=—312.499
First step, exchange energy

E,=—160.807 E,=—87.400
Fully converged values, one-electron eigenvalues

E(1s)=—3998.307 E(1s)=—1125.651
E(2s)=—928.580 E(2s)=—243.385
E(2p)=—911.984 E(2p)=—234.858
Fully converged values, exchange energy

E,=—155.643 E,=—82.230
Large-Z limit, one-electron eigenvalues

E(1s)=—4232 E(1s)=-1250
E(2s,2p)=—1058 E(2s,2p)=—312.500
Large-Z limit, exchange energy

E,=—160.805 E,=—87.394
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the Ar-like series. This is compared with the first iteration using the

-500 bare Coulomb potential. Note that the=92 curves now differ
= appreciably, in contrast to the close agreement for the ten-electron
s ions shown in Fig. 2.
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g 20001 || Coulombic INTEGRAL AND DIFFERENTIAL
X osod b Optimized Turning to other exchange properties, we begin with the

/ virial-like relation of Levy and PerdeWl0], which reads
-3000
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FIG. 3. Limiting largeZ (bare Coulompform of forceF,(r) in This relation must be satisfied exactlyif, is the functional
Eq. (3.2 for ten electrons. Converged forms of solution of E2|1) derivative ofE, given in Eq.(1.6). Therefore a check of the
for (@) Z=50 and(b) Z=92 are shown for comparison. Slater and accuracy of Eq(3.1) is one way to establish the numerical
Harbola-Sahni curveis] are also plotted. utility of the optimized exchange potential satisfying Eq.

(2.1). Since Eq.(3.1) is virial-like, it involves the forceF,

In the iterative scheme of Reff9], it is very convenient —associated with the exchange potentigl, namely,
that the first step can be taken with the bare Coulomb poten-
tial [1]. Of course, to display the result one must choose a
specific atomic number. For the choige=92, we show the
result of the program in Ref9] for the optimized exchange

potential in Fig. 1. For comparison, the results‘f@’(r) and approximationst' and FTS obtained in Ref.[1] in the

HS : ; in Ei
V,X, (r) given !n Ref.['l] are reproduced also in F|g 1. Ad- present Fig. 3 foiz=50 and 92. We note that these three
ditionally, we include in Table | some facts pertaining to the¢,,ce approximations all represent zero “exchange force” at

first step, to show the accuracy of the numerical programpe nucleus. All three approximations have the correct large-
compared with exact Coulomb values. r asymptotic forms

We expect thaw,(r) will be a very accurate numerical
approximation to the functional derivative result EG.6)
and thus the appropriate curve in Fig. 1 complements the Fy=——, r—w, (3.3
analytic form of the exchange energy(r) given in Ref.[1] r
in the limiting bare Coulomb form of the Z/expansion. But
also using theatomoPM program, one can answer for the Our numerical studies for ten electrons show that the Levy-
ten-electron system how largemust be to validate the bare Perdew relation Eq(3.1) is satisfied essentially exactly in
Coulomb limiting form. This is illustrated in Fig. 2, where both the first iteratior(i.e., Coulombi¢ and in the fully op-
the largeZ limiting form shown in Fig. 1 is compared with timized calculation. A related, but somewhat less accurate
the fully converged iterative solution of Eq2.1) for two  numerical check was also made in the earlier study of Wang
values ofZ, namely, 50 and 92. It can be seen for the ten-et al. [11].
electron case that=92 is already well approximated by the  In concluding this section, we note that the Harbola-Sahni
first step in the iteration of Eq2.1), namely, the bare Cou- potentialV}'S(r) discussed in Ref1] (see also Fig. lobeys
lomb limit. Eq. (3.1 exactly[6] even though, as demonstrated by Levy

Fy=—VV,(r). (3.2

The limiting bare Coulomb form of Eq3.2) obtained from
the first step in the iteration of EQR.1) is compared with the
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3004 exchange potential for=92 and 18 electrons, namely, its

Effective exchange Laplacian, related to a charge density(r).
charge density
200 Ar-like ion, Z = 92 V. SUMMARY AND FUTURE DIRECTIONS
initial

The main results of the present study are as follows.

(i) The limiting (Coulomb forms of the first iteration of
the optimized effective potential approximation to the ex-
change potential in the nonrelativistic theory for large atomic
numberZ for (a) the ten-electron Ne-like positive atomic
A ions and(b) the 18-electron Ar-like series.

-100 j V= N (i) The converged iterative solutions of E&.1) for the

N ten-electron atomic ions fa£=50 andZ=292. It would, we
0.00 0.02 0.04 0.06 0.08 0.10 believe, in the future, be of interest to attempt to use existing
r(a.u.) theory[13] on the 1Z expansion for homonuclear diatomic
molecules to calculate the limiting forms for some positive
molecular ions of the optimized exchange potentig(r).
Possibly the extension to almost spheri€land B cages
[14,19 might also prove practicable.

Finally, the referee has drawn our attention to the work of
Nagy[16]. She has kindly informed us that if one knows the
and March[12], “corrections” which are “kinetic” in char-  exact density(say from diffraction or quantum simulatipn
acter are required to convevt!>(r) to the exact exchange- one can calculate the exchange-correlation potential either
only potential. with the Zhao-Morrison-Paifrl7] method, or other methods,

such as her own. In this sense, as the referee pointed out to
us, the Zhao-Morrison-Parr approach can be said to be more
IV. Ar-LIKE SERIES: BRIEF SUMMARY accurate than the optimized effective potential method. How-

Though, in principle, the work of Refd] in the bare €VeT the optimized effe_ctive poten_tial can_be regarded_as the
Coulomb limit of largeZ could be extended analytically to €Xact exchange potential of density-functional theory in the
the 18-electron, Ar-like, series of positive atomic ions, the€*change-only approximatidi6, 18.
exchange energy density(r) would be the result, and not
V,(r) as explained above for the Ne-like series. Therefore,
here we confine ourselves to showing in Fig. 4 the limiting Research by J.D.T. was supported by the Natural Sciences
largeZ form, again from the first step in the iteration of Eq. and Engineering Research Council of Canada. |.A.H. ac-
(2.1, for Z=50 and 92. The finally converged curve for the knowledges support from the IWT—Flemish region. N.H.M.
sameZ is shown for comparison, again for 18 electrons, inwishes to acknowledge partial financial support from the Of-
Fig. 4. fice of Naval Research for work on density-functional theory.

Finally, again in response to a suggestion of the refereeSpecial thanks are due to Dr. P. Schmidt of that office for
we show in Fig 5 a somewhat different representation of themuch motivation and encouragement.

converged

FIG. 5. Radial distributionr?p,(r) of an effective exchange
charge densityp,(r)=—V?2V,(r) for the Ar-like ion with Z=92
and 18 electrons. Results for the initial iteration and for the fully
converged optimized exchange potential are compared.
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