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Quantum approach to electromagnetic energy transfer between two dielectric bodies
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The problem of radiative heat transfer between two dielectric bodies is analyzed from the point of view of
elementary quantum electrodynamics. The dielectric properties of the bodies are assumed to be linear, but
dispersion and losses are allowed. Quantization of the electromagnetic field in inhomogeneous, dispersive, and
lossy dielectrics is performed with the help of the Huttner-Barnett procedure. The electromagnetic energy flux
is expressed through the expectation value of the Poynting vector. In order to compute the Poynting vector, two
techniques suitable for nonequilibrium processes are employed: the Heisenberg equations of motion and the
diagrammatic Keldysh procedure. They are shown to give identical final results. These quantum-mechanical
calculations provide a solid basis for the further, mainly numerical, development of the theory of thermal
scanning microscopy.
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I. INTRODUCTION

In view of the impressive progress recently made in
perimental techniques for near-zone thermal microsc
@1–8#, the problem of a careful theoretical description of t
behavior of thermal electromagnetic fields in the vicinity
surfaces of metals, semiconductors, and dielectrics has
quired some importance. Indeed, in modern experime
with a thermal scanning microscope performed under U
conditions@8# one can practically exclude any gas-media
heat transfer between the analyzed body and the tip of
microscope, while keeping under control the transfer due
tunneling electrons. This enables one to concentrate on
radiative heat transfer, that is, on the transfer of electrom
netic energy between bodies with different temperatures
the past, this problem has been investigated theoretic
@9,10# by means of the classical theory of thermal fluctu
tions of the electromagnetic field@11#. Let us, however, note
that the classical theory cannot really be consistent: it s
fices to mention that the final formulas contain the Plan
constant as an overall factor, as well as the Bose-Eins
function of temperature, which also involves the Planck c
stant. In Ref.@12# a successful attempt has been made
employ Agarwal’s development@13,14# of quantum electro-
dynamics in the vicinity of dielectrics. That approach
based on the linear-response theory, but, though succes
lacks the explicit quantization of the field. What is more,
heavily relies on the fluctuation-dissipation theorem, wh
is taken for granted~i.e., no proof is provided!. In this paper
we go beyond these previous approaches and study the t
fer of electromagnetic energy between two dielectric bod
on the grounds of elementary quantum electrodynamics.
dielectric function is then obtained explicitly from the theo
of interacting fields.

We assume that the dielectric properties of the bodies
linear. This means that the coupling of matter fields to
electromagnetic field is bilinear in the field operators, so t
the equations of motion are linear as well. Still, for the fo
lowing reasons the solution is not easy to obtain:~i! the
system is definitely out of equilibrium. Thus, well-know
methods of field theory and condensed-matter theory, suc
1050-2947/2003/68~4!/043823~17!/$20.00 68 0438
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the Matsubara technique, do not work; we shall, therefo
employ both the Heisenberg equations of motion and
nonequilibrium Keldysh diagrammatic formalism;~ii ! the
problem of the electromagnetic field quantization in disp
sive and lossy dielectrics is far from trivial. Only fairly re
cently several satisfactory methods to deal with such co
bined systems~dielectrics plus quantized field! have been
proposed. Here, we shall use the Huttner-Barnett quant
tion scheme as developed in Ref.@15# and simplified in Refs.
@16,17#; ~iii ! even in cases of simplest geometries, the el
tromagnetic propagators are given by rather complica
Fourier or Fourier-Bessel integrals with a lot of singulariti
in the integrands. This causes difficulties for their asympto
evaluation, which is required for developing a clear physi
picture of the heat transfer.

We stress that the theory of near-field heat transfer, wh
underlies thermal scanning microscopy, forces one to t
into account dispersion and losses in metallic and dielec
media. Hence, we are led to the interesting and diffic
problem of the electromagnetic field quantization in inhom
geneous dispersive media, which has a short but interes
history. So far, the only way to deal with this problem is
neglect~either from the very beginning, or at a certain inte
mediate stage of the analysis! the grainlike nature of the
dielectric or metallic material, and to restrict oneself to t
so-called macroscopic electrodynamical description,
which the properties of the media are represented in term
averaged quantities such as dielectric constants and mag
permeabilities. This, however, does not preclude the po
bility of introducing useful phenomenological models su
as the Hopfield model@18#. In the present paper we explo
such a macroscopic electrodynamical description.

To our knowledge, the problem of the quantization of t
electromagnetic field in ahomogeneousbut dispersive di-
electric has been considered first by Watson and Jauch@19#,
in a paper which followed their previous works@20,21# on
the field quantization in moving dielectrics. These auth
quantized the fields under the somewhat restrictive assu
tion of a one-to-one correspondence between the angular
quency and the wave vector in the medium. A similar a
proach has been proposed more recently by Drummond@22#,
©2003 The American Physical Society23-1
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who was also able to take into account nonlinear effects.
the case ofinhomogeneous nondispersivedielectrics an im-
portant theoretical breakthrough has been achieved in
@23#. The authors of that work have canonically quantiz
the electromagnetic field in a space half filled with the
electric material. This has been done in such a way that
electromagnetic mode functions included the boundary c
ditions from the very beginning. These mode functions ha
been shown in Ref.@23# to be orthogonal; their completene
has then been proven in Ref.@24#. An outline of a general
scheme of the electromagnetic field quantization and qu
tum optics in inhomogeneous nondispersive dielectrics
be found in Ref.@25#. The canonical quantization procedu
developed by Carniglia and Mandel@23# has served as a
guideline in several further studies of the behavior of qu
tum electromagnetic fields in more complicated geometr
arrangements, see, e.g., Refs.@26,27#, although the tough
problem of the completeness of the required mode functi
has not been considered.

A new approach to the quantum electrodynamics in
presence of metals and dielectrics has been initiated by A
wal in a remarkable series of papers@13,14,28–32#. This
author was able to include both inhomogeneity and disp
sion of media from the very beginning. His approach
based on the properties of electromagnetic correlation fu
tions ~Green’s functions! of various types. An impressive
amount of important features of radiation and of ato
radiation interactions could be calculated with these meth
in a fairly elegant manner. Nonetheless, the approach a
cated by Agarwal still lacked the explicit quantization of t
electromagnetic field. Besides, some important quant
statistical theorems, such as the fluctuation-dissipation th
rem, have been postulated but not derived. This fact sti
lated further activity on the subject of quantu
electrodynamics in the presence of dispersive and inhom
neous media and led to considerable theoretical achi
ments. In particular, in the works of the Jena group@33–36#,
which heavily rely on the properties of classical retard
Green’s functions, the explicit quantization is achiev
through the introduction of stochastic currents into the M
well equations, while the canonical formalism follows fro
an ingenious construction of a special Hamiltonian. An
egant equivalent approach@37# has been developed by Ti
@38#, who used auxiliary variables for obtaining a canonic
theory even in the presence of losses. Another quantiza
scheme in which the~classical! Green’s functions play a de
cisive role is the input-output formalism developed
Savasta and co-workers@39#. A quantization formalism start
ing from the Maxwell equations with stochastic currents h
also been worked out in Refs.@40,41#, and the important cas
of amplifying media could be included@42#, but the proce-
dure in these works is quite different from that in Ref.@33#.
Finally, we mention that an intriguing technical novelty h
been introduced by Bechler@17#, who was the first to quan
tize the field in dielectric media in terms of path integra
rather than using the canonical quantization scheme. The
vantages of path integrals include, but are not reduced to
trivialization of all calculations on the initial stage. Furthe
relevant developments are contained in Refs.@43–48,50,51#.
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In this paper, we resort to the approach worked out
Huttner and Barnett@15#. It is based on the observation
made already by Fano@49#, that under rather general cond
tions the Hamiltonian describing long-wavelength exci
tions of matter is equivalent to that of a system of indep
dent harmonic oscillators~from which the Hopfield model
results!. Moreover, it exploits the independent-oscillat
model of the reservoir@52#, which has a surprisingly wide
region of applicability. The reservoir is required to deal wi
the losses in the dielectric. Technical definitions are given
the following section; here we summarize some argument
favor of the Huttner-Barnett scheme~while keeping in mind
that the choice of the quantization scheme is, to a large
tent, a matter of personal understanding, taste, and co
nience!. First, this approach is very intuitive and simple, e
pecially in its version developed in Refs.@16# and @17#; the
dielectric is represented by its own quantum field, and
stochastic currents can be obtained by tracing out the v
ables representing the dielectric and the reservoir. Secon
is flexible: there is no problem to include magnetic propert
and nonlinearities by changing slightly the coupling betwe
the matter fields and the electromagnetic field. Third, with
this framework one can, in principle, study excitations in t
media ~such as polaritons or plasmons! in a natural way,
using directly available matter-field correlation function
Fourth, it is aesthetically appealing: one can initially forg
about the existence of the medium, and consider only
interacting quantum fields. The material appears later
some function which can be identifieda posteriori as the
dielectric function. In addition, the coupling between t
electromagnetic and matter fields contains—in the case
inhomogeneous media—the coupling ‘‘constant’’ which d
pends on the point in space~and possibly also in time!. This
is very much in the spirit of an important fundamental d
velopment in quantum-field theory which has resulted in~al-
most! divergence-free QED@53#.

The goal of the present paper is to derive fairly gene
working formulas for the radiative heat transfer between
electric bodies. That is, we derive expressions from wh
that heat transfer can be calculated, provided that the Gre
functions of the classical wave equation are known for
given geometry. There are only very few geometrical
rangements for which the electromagnetic Green’s functi
can be written down analytically: one of them is the syst
of two half-infinite dielectrics with planar surfaces and
vacuum ‘‘layer’’ between them, as considered in Refs.@9#
and @10#. However, by now, numerical packages are ava
able which allow one to find the required propagators n
merically. We are going to study examples of heat transfe
particular geometrical setups in forthcoming publications

We have employed two very different techniques to der
expressions for the radiative heat transfer. These are~i! an
approach based on the Heisenberg equations of motion,
~ii ! the Keldysh closed-time-path formalism with its di
grammatic expansion. As we show in this work, both pro
dures finally yield the same formula for the heat transf
even though their underlying philosophy is radically diffe
ent. The equations-of-motion method is much faster a
more straightforward, but would become very awkward if w
3-2
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were to include any nonlinearity. On the other hand, the d
grammatic Keldysh formulation requires the introduction
many different Green’s functions, and the calculations
somewhat involved, but this formulation is also suitable
developments aiming beyond macroscropic electrodynam

Our paper is organized as follows: in Sec. II we wr
down the Lagrangian of our system and state the resul
Heisenberg equations of motion, obtained via the Schwin
action principle. In Sec. III we then use these equations
motion to derive the expression for the electromagnetic
ergy transfer. In Sec. IV we take up the second approach
provide the fundamental Green’s functions needed for
application of the Schwinger-Keldysh formalism, and d
velop an elementary diagrammatic technique. In Sec. V
exploit this technique for computing the expectation value
the Poynting vector. We close the paper with several c
cluding remarks in Sec. VI.

II. THE MODEL: LAGRANGIAN FORMALISM
AND EQUATIONS OF MOTION

For the sake of being at least a little bit unconvention
we start with the Schwinger quantum action princip
@54,55#, and follow the ideas of Huttner and Barnett@15# to
quantize the electromagnetic field in lossy and dispers
dielectrics. Our system comprises the following subsyste
~i! two dielectric bodies, described~in the Hopfield model
@18# as applied by Huttner and Barnett! with the help of the
polarization vector fieldsX j (r ), together with their conjugate
momentaPj (r ) and velocitiesV j (r ), where here and in the
following the indexj 51,2 refers to the bodies ‘‘1’’ and ‘‘2;’’
~ii ! the electromagnetic field, described by the scalar po
tial F(r ), the vector potentialA(r ), the electric fieldE(r ),
and the magnetic inductionB(r ), and ~iii ! the reservoir
fields, which are coupled to the polarization fields only. T
independent-oscillator model of the reservoir degrees of f
dom is employed@52#. The reservoirs are described with th
help of the following quantities: the ‘‘positions’’Y j n(r ) of
the reservoir oscillators, their momentaZ j n(r ), and their ve-
locities W j n(r ). The variablen carries the dimension of a
frequency and enumerates the reservoir oscillators couple
the polarization field at the pointr . Thus, there are two col
lections of reservoirs, corresponding to two dielectrics, a
every polarization oscillator has its own reservoir.

Two remarks seem to be appropriate at this point. Fi
one can model quite complicated dielectric functions of
media using just one polarization fieldX j (r ) for each body,
one ~per medium! collection of the reservoir oscillator
Y j n(r ), and one coupling functionr j n ~introduced below!. In
particular, one can model a dielectric function with mo
than one absorption line in this way@15#. On the other hand
it is also possible, and in many cases more convenien
introduce—for each dielectric body—several polarizati
fields ~and several different reservoir families! with many
absorption lines. Here, we develop our theoretical appro
employing just one polarization field for each dielectric. T
generalization to many such fields and reservoirs does
present, however, any difficulty. Before we start explicit c
culations, let us describe some of our notational conventio
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We will use Latin indicesj ,k, . . . , toenumerate the dielec
tric bodies which exchange the thermal energy. The su
over j ,k, . . . will be written explicitly. On the other hand
Greek indicesa,b, . . . ,l,m, . . . are used to denote compo
nents of vector fields and Green’s functions. The sums o
those indices are not written explicitly; the summation co
vention is used instead.

A. Lagrangian and commutation relations

Our formulation of the action principle closely follow
Schwinger@54,55#. Thus, we start with a Lagrangian whic
still contains both the velocities and the momenta. As
shown below, Schwinger’s procedure allows one to wr
down the dynamical equations and the constraint equat
on the same footing.

We assume that every product of noncommuting opera
is symmetrized. The total free LagrangianL0 reads

L05LD1LEM1LRD , ~1!

where the LagrangianLD describing the polarization field o
the dielectric is given by

LD5(
j 51

2 E d3r FPj~r !•S dX j~r !

dt
2V j~r ! D1

1

2
MjV j

2~r !

2
1

2
Mjv0 j

2 X j
2~r !G . ~2!

Within the Hopfield model, the mass parametersMj have to
be expressed in terms of the static polarizabilitiesbj @17,18#:

Mj5~e0v0 j
2 bj !

21. ~3!

The degrees of freedom of the electromagnetic field are
scribed with the help of the LagrangianLEM @54#:

LEM5E d3r F2e0E~r !•S ]A~r !

]t
1“F~r ! D

2
1

m0
B~r !•@“3A~r !#2

1

2
e0E2~r !1

1

2m0
B2~r !G .

~4!

Finally, the Lagrangian describing the coupling of the pol
ization field to the reservoir is postulated to have the form

LRD5(
j 51

2 E
0

`

dnE d3r FZ j n~r !•S dY j n~r !

dt
2W j n~r ! D

1
1

2
r j nW j n

2 ~r !2
1

2
r j nn2@Y j n~r !2X j~r !#2G . ~5!

The total Lagrangian is then given by the sumL5L01LI ,
with an interaction LagrangianLI reading

LI5(
j 51

2 E d3r $@“•gj~r !X j~r !#F~r !1gj~r !V j~r !•A~r !%.

~6!
3-3
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The indicator functiongj (r ) is equal to 1 in the region o
space occupied by thej th body, and equal to zero outside,
that the polarization field, while occupying the whole spa
is coupled to the electromagnetic field only in the regio
where the dielectrics are present. We need to impose ce
conditions on the coupling functionsr j n . They must be real
otherwise, both the Lagrangian and the correspond
Hamiltonian are not Hermitian. What is mor
eachr j n should be positive, as it plays the role of a ma
density—otherwise there is no stationarity principle for t
corresponding action~cf. Ref. @56#!. In addition, r j nn2

should have no singularities on the half axisn.0, for we
demand that the coupling of the polarization field with all t
reservoir oscillators be finite. Finally, we shall assume t
r j n has an even analytical continuation to real negative v
ues of the variablen.

Analyzing infinitesimal unitary transformations of the a
tion, one immediately obtains the following equal-time co
mutation relations for the dynamically independent va
ables:

@Xj ,a~r ,t !,Pk,b~r 8,t !#5 i\ d jkdabd~r2r 8!, ~7!

@Yj n,a~r ,t !,Zkn8,b~r 8,t !#5 i\d jkdabd~n2n8!d~r2r 8!,
~8!

@Aa~r ,t !,Eb~r 8,t !#52 i
\

e0
dabd~r2r 8!. ~9!

B. Equations of motion

We can, naturally, eliminate the momenta from the abo
Lagrangian. To do so, we apply the principle of stationa
action under the assumption that the infinitesimal variati
commute with the fields, and get

E~r !52Ȧ~r !2“F~r !, ~10!

Ė~r !5c2
“3B~r !2

1

e0
(
j 51

2

gj~r !V j~r !, ~11!

B~r !5“3A~r !, ~12!

“•E~r !52
1

e0
(
j 51

2

“•@gj~r !X j~r !#, ~13!

Ẋ j~r !5V j~r !, ~14!

Ṗj~r !52gj~r !“F~r !2E
0

`

dnn2@X j~r !2Y j n~r !#

2Mjv0 j
2 X j~r !, ~15!

Pj~r !5MjV j~r !2gj~r !A~r !, ~16!

Ẏ j n~r !5W j n~r !, ~17!

Ż j n~r !5r j nn2@X j~r !2Y j n~r !#, ~18!
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Let us notice that no particular gauge condition has b
imposed so far. From the above expressions we conclude
the Maxwell equations take the expected form:

Ė~r !5c2
“3B~r !2

1

e0
(
j 51

2

gj~r !V j~r !, ~20!

Ḃ~r !52“3E~r !, ~21!

“•E~r !52
1

e0
“•(

j 51

2

@gj~r !X j~r !#, ~22!

“•B~r !50. ~23!

Moreover, we find the equations for the polarization degr
of freedom:

Ẋ j~r !5V j~r !, ~24!

V̇ j~r !52S v0 j
2 1

1

Mj
E

0

`

dnr j nn2DX j~r !1
1

Mj
gj~r !E~r !

1
1

Mj
E

0

`

dnr j nn2Y j n~r !. ~25!

In the last equation we encounter, in the first term on
right-hand side, the ‘‘frequency renormalization’’ of the p
larization oscillators caused by their coupling to the res
voir. Finally, the equations of motion for the reservoir d
grees of freedom reduce to

Ẏ j n~r !5W j n~r !, ~26!

Ẇ j n~r !5n2@X j~r !2Y j n~r !#. ~27!

Thus, within the Huttner-Barnett approach followed he
there are initially no dielectrics, but only interacting quantu
fields. The dielectrics with their dispersive properties w
emerge at a later stage of the development of the theory
a term which appears in the wave equations satisfied by
retarded electromagnetic propagators. Let us also notice
the factorgj (r ), which in our formalism appears only in th
interaction Lagrangian, can also be introduced to multi
the free polarization Lagrangian~see, e.g., Ref.@17#!. The
difference is that in our approach the polarization field, wh
uncoupled from the electromagnetic field, oscillates free
in the other approach, the uncoupled polarization field
‘‘static’’ or ‘‘frozen.’’ However, it seems meaningless to sta
that, e.g.,X j (r )50 in a certain region of space.

C. Application of the Laplace transformation

In this and the following section, we consider the proble
of computing the fields, and hence, the electromagnetic
ergy flux, as an initial-value~Cauchy! problem. That is, we
assume that we are given the correlation functions at the t
t50, and we seek them for later timest,t8, . . . in the dis-
3-4
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tant future. This is because we are not interested her
transient effects, but rather in sustained energy flow. O
efficient method to solve a linear Cauchy problem is to ap
the Laplace transformation; then we have the initial valu
appearing explicitly from the very beginning. Hence, for a
operatorf (t) we consider its Laplace transform

f̃ ~s!5E
0

`

dt f~ t !e2st, ~28!

and obtain from Eqs.~20!–~27! the following system of
algebraic-differential equations:

sẼ~r ,s!5c2
“3B̃~r ,s!2

1

e0
(

j
gj~r !Ṽ j~r ,s!1E~r ,0!,

~29!

sB̃~r ,s!52“3Ẽ~r ,s!1B~r ,0!, ~30!

sX̃ j~r ,s!5Ṽ j~r ,s!1X~r ,0!, ~31!

sṼ j~r ,s!52S v0 j
2 1

1

Mj
E

0

`

dnr j nn2D X̃ j~r ,s!

1
1

Mj
gj~r !Ẽ~r ,s!1

1

Mj
E

0

`

dnr j nn2Ỹ j n~r ,s!

1V j~r ,0!, ~32!

sỸ j n~r ,s!5W̃ j n~r ,s!1Y j n~r ,0!, ~33!

sW̃ j n~r ,s!52n2Ỹ j n~r ,s!1n2X̃ j~r ,s!1W j n~r ,0!.
~34!

We now adopt the following natural strategy: we first elim
nate the polarization and the reservoir variables to ob
inhomogeneous wave equations~in terms of the Laplace
variables) for the electric and magnetic fields, so that th
right-hand sides contain the initial values only. Then
solve these equations using Green’s functions, form the
pectation value of the Poynting vector, and invert t
Laplace transform. At the first stage of this procedure, we

Ỹ j n~r ,s!5
n2

s21n2
X̃ j~r ,s!1

1

s21n2
@sY j n~r ,0!1W j n~r ,0!#,

~35!

and, moreover,

Hj~s!Ṽ j~r ,s!52@Hj~s!2s2#X j~r ,0!1sV j~r ,0!

1
gj~r !

Mj
sẼ~r ,s!1

1

Mj
E

0

`

dnr j n

n2

s21n2

3@s2Y j n~r ,0!1sW j n~r ,0!#, ~36!

where the resolventsHj (s) are given by
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Hj~s!5s21v0 j
2 1s2E

0

`

dn
r j n

M j

n2

s21n2
. ~37!

There are three contributions to the dynamics of the v
ablesV j . First, there are the dynamics determined by
poles of the resolvent functionsHj (s) and the initial values
V j (r ,0) andX j (r ,0). Second, there is the contribution from
the electric fieldẼ(r,s), and, third, the contribution from the
reservoir, associated with the additional poles ats56 in.
But, as one can prove in a way fully analogous to that in R
@17# @p. 910, Eqs.~42!–~44!; cf. also the more detailed cal
culations by Eberlein in Ref.@57#, Appendix 2#, Hj (s) does
not have any zeros for non-negative values ofs. Thus, for
sufficiently long time~s!, the expectation value and any mu
tilinear correlation function involvingV j and X j will not
have any terms associated with the initial conditions
these operators, as these term are damped. In particular,
make the simplest choice

r j n5
4g jM j

pn2
, ~38!

so that the productr j nn2 becomes a constant, we find

Hj~s!5s21v0 j
2 12g j s, ~39!

with zeros at2g6 iAv0 j
2 2g j

2, which shows that the initial
oscillations~and correlations! of the operatorsX j andV j are
damped, whatever the relation betweenv0 j andg j might be.

For this reason we write symbolically

Ṽ j~r ,s!5H j
21~s!Fgj~r !

Mj
sẼ~r ,s!1

1

Mj
E

0

`

dnr j n

n2

s21n2

3$s2Y j n~r ,0!1sW j n~r ,0!%G , ~40!

leaving out the initial values of the polarization fields, wi
the understanding that the Cauchy data for the polariza
operators can be omitted only after the expectation val
have been formed, and all the time variables have beco
very large.

After eliminating first the polarization velocity operato
and then the magnetic induction operator, we find the follo
ing wave equation for the electric field:

“3“3Ẽ~r ,s!1 ẽ~r ,s!
s2

c2
Ẽ~r ,s!

5
s

c2
E~r ,0!1“3B~r ,0!2

s2

e0c2 (
j 51

2
gj~r !

MjHj~s!

3E
0

`

dn
r j nn2

s21n2
@sY j n~r ,0!1W j n~r ,0!#. ~41!

Here we have identified the expression
3-5
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ẽ~r ,s!511
1

e0
(
j 51

2 gj
2~r !

MjHj~s!
, ~42!

with the dielectric function, considered as a function of t
Laplace variable. Because of the location of the zeros of
resolvent functionsHj (s), this dielectric function has no
poles in the right half of thes plane. In view of the fact tha
the functionsgj (r ) are equal to 1 in the region of spac
occupied by thej th body, we conclude that the expression

ẽ j~s!511@e0MjHj~s!#21 ~43!

can be interpreted as the dielectric function of thej th body.
Here, the tilde symbol is used to distinguish the dielec
function as expressed in terms of the Laplace variable fr
the same function expressed in terms of frequency, which
shall denote ase j (v).

Taking once more the fast damping of the initial polariz
tion correlations into account, the wave equation for
magnetic inductions reads

“3“3B̃~r ,s!1 ẽ~r ,s!
s2

c2
B̃~r ,s!

5 ẽ~r ,s!
s

c2
B~r ,0!2

1

c2
“3E~r ,0!

1
s

e0c2 (
j 51

2
gj~r !

MjHj~s!
E

0

`

dn
r j nn2

s21n2

3@s“3Y j n~r ,0!1“3W j n~r ,0!#. ~44!

These Eqs.~41! and~44! can be solved formally with the
help of the Green’s functionsDE(r ,r 8;s) andDM(r ,r 8;s):

Ẽ~r ,s!5E d3r 1DE~r ,r1 ;s!@ J̃~r1 ,s!1CEM#,

B̃~r ,s!5E d3r 1DB~r ,r1 ;s!@ J̃~r1 ,s!1CEM#, ~45!

where theCEM denotes the terms depending on initial co
ditions for the electromagnetic fields only. The abo
Green’s functions themselves satisfy

“3“3DE~r ,r1 ;s!1 ẽ~r ,s!
s2

c2
DE~r ,r1 ;s!52sd~r2r1!,

“3“3DM~r ,r1 ;s!1 ẽ~r ,s!
s2

c2
DM~r ,r1 ;s!

5“31d~r2r1!, ~46!

where 1 is the unit dyadic. The ‘‘current’’ in Eq.~45! is,
naturally,
04382
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J̃~r ,s!5
s

e0c2 (
j 51

2
gj~r !

MjHj~s!
E

0

`

dn
r j nn2

s21n2

3@sY j n~r ,0!1W j n~r ,0!#. ~47!

III. CALCULATION OF THE POYNTING VECTOR BY
MEANS OF THE EQUATIONS OF MOTION

Now we are almost ready to write down the express
for the expectation value of the Poynting vector. The ve
definition of this quantity is, however, a somewhat sub
matter. To begin with, we must not define the Poynting v
tor simply as

S~r ,t !5E~r ,t !3H~r ,t !,

because this operator is not Hermitian, while the expecta
value of the Poynting vector must be real. One way out co
be to use a symmetrized form of the above product. Ho
ever, we are better guided by the standard quantum fi
theoretical definition of the energy-momentum tens
Namely, taking into account the fact that the electromagn
vacuum state vector should be invariant with respect to P
caré transformations, it is necessary to define the total m
mentum of the electromagnetic field as a normally orde
operator. This definition also guarantees that the momen
~and energy! of the vacuum vanishes. If we now make th
natural requirement that the Poynting vector should be
spatial density of the total momentum of the electromagn
field, we arrive at the definition

S~r ,t !5:E~r ,t !3H~r ,t !:, ~48!

where :Ô: denotes the normally ordered form of the opera

Ô. It should be noticed that this definition cuts off any po
sible vacuum contribution.

In order to obtain the expectation value^S(r ,t)&, we need
to invert a double Laplace transformation with respect to
two variabless1 ands2. This is achieved by means the fo
mula

f ~ t,t8!u t85t5
1

~2p i !2EC1

ds1es1tE
C2

ds2es2t f̃ ~s1 ,s2!,

~49!

where the contoursC1 andC2 run parallel to the imaginary
axes in the complexs1 ands2 planes, leaving all singularities
of f̃ (s1 ,s2) on their left-hand side. This leads to the expre
sion
3-6
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^S~r ,t !&5
1

~2p i !2

1

m0
E

C1

ds1es1t

3E
C2

ds2 es2t^:E~r ,s1!3B~r ,s2!:&. ~50!

Now we can get rid of all the terms containing the initi
correlations of the electric and magnetic fields, since we
sume that the electromagnetic field is initially in the vacuu
state. What remains gives the following contribution to t
expectation value of the Poynting vector:

^Sa~r ,t !&5
1

~2p i !2

1

m0
eabgE

C1

ds1es1tE
C2

ds2es2tE d3r 1

3E d3r 2E
0

`

dn1E
0

`

dn2Dbl
E ~r ,r1 ,s1!

3Dgm
M ~r ,r2 ,s2!Rlm~r1 ,r2 ,s1 ,s2!, ~51!

where the correlation functionRlm contains only the contri-
butions from the reservoir fields:

Rlm~r1 ,r2 ,s1 ,s2!5
s1s2

e0
2c4 (

j ,k

gj~r1!gk~r2!

MjMkHj~s1!Hk~s2!

3
r j n1

rkn2
n1

2n2
2

~s1
21n1

2!~s2
21n2

2!
^:@s1Yj n1 ,l~r1 ,0!

1Wj n1 ,l~r1 ,0!#@s2Ykn2 ,m~r2 ,0!

1Wkn2 ,m~r2 ,0!#:&. ~52!

To compute the correlation matrixRlm we need the initial
states of the reservoir. Naturally, we choose this initial st
G to be the tensor product of density matricesG1 and G2,
with

G j5

expS 2b j\E d3r E
0

`

dnnAj n,a
† ~r !Aj n,a~r ! D

TrFexpS 2b j\E d3r E
0

`

dnnAj n,a
† ~r !Aj n,a~r ! D G .

~53!

The annihilation and creation operatorsA j n andA j n
† appear-

ing here are defined in terms of the reservoir operatorsY and
Z,

A j n~r !5Ar j nn

2\ S Y j n~r ,0!1
i

r j nn
Z j n~r ,0! D , ~54!

A j n
† ~r !5Ar j nn

2\ S Y j n~r ,0!2
i

r j nn
Z j n~r ,0! D , ~55!

while b j denotes the inverse temperature of thej th reservoir.
The above choice of the initial state then leads to the follo
ing formulas for the initial correlations:
04382
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^:Yj n1 ,l~r1 ,0!Ykn2 ,m~r2 ,0!:&

5
\

r j n1
n1

@exp~b j\n1!21#21d jkdlmd~n12n2!

3d~r12r2!, ~56!

^:Yj n1 ,l~r1 ,0!Wkn2 ,m~r2 ,0!:&50, ~57!

^:Wj n1 ,l~r1 ,0!Ykn2 ,m~r2 ,0!:&50, ~58!

^:Wj n1 ,l~r1 ,0!Wkn2 ,m~r2 ,0!:&

5
\n1

r j n1

@exp~b j\n1!21#21d jkdlmd~n12n2!d~r12r2!.

~59!

Taking everything together, we find that thea component of
the Poynting vector can be written in the form

^Sa~r ,t !&5
1

~2p i !2

\

e0c2
eabgE

C1

ds1es1tE
C2

ds2es2t

3E d3r 1E
0

`

dnDbl
E ~r ,r1 ,s1!Dgl

M ~r ,r1 ,s2!

3R8~r1 ,s1 ,s2!, ~60!

where we have performed integration by parts, and wher

R8~r1 ,s1 ,s2!5s1s2(
j

gj
2~r1!

M j
2Hj~s1!Hj~s2!

3
r j nn3

~s1
21n2!~s2

21n2!
~s1s21n2!

3@exp~b j\n!21#21. ~61!

We are now ready to perform the integration over t
contoursC1 andC2, taking into account that only the pole
at s1,256 in contribute, since all the singularities of Green
functions have real parts smaller than zero. The latter st
ment follows from the fact that the integration variabler1
effectively runs only over the regions of space filled with
~lossy! dielectric. Consecutive integration overs1 and s2
eventually yields

^Sa~r ,t !&5
\

2e0c2
eabg(

j
E d3r 1E

0

`

dn
gj

2~r1!

M j
2

3
r j nn5

Hj~ in!Hj~2 in!
@exp~b j\n!21#21

3$Dbl
E ~r ,r1 ,in!Dgl

M ~r ,r1 ,2 in!

1Dbl
E ~r ,r1 ,2 in!Dgl

M ~r ,r1 ,in!%. ~62!

Finally, we consider the dielectric function of thej th body,
3-7
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e j~v!5 ẽ j~s52 iv1h!511
1

e0MjHj~2 iv1h!
,

~63!

where the infinitesimal positive frequencyh guarantees
causal behavior, and utilize the identities

E
0

`

dn
r j nn2

v22n26 ihv
56

p

2i
vr j v2

1

2v
PE

2`

`

dn
r j nn2

n2v
~64!

to write its imaginary part in the form

Im@e j~v!#5
p

2e0

1

M j
2

r j vv3

Hj~2 iv1h!Hj~ iv1h!
. ~65!

This expression~65! then allows us to eliminate the auxiliar
function r j n from the expression~62! for the Poynting vec-
tor, in favor of the observable quantity Im@e j (v)#. In this
way, we obtain the principal result

^Sa~r !&5
\

pc2
eabg(

j
E d3r 1E

0

`

dnn2gj
2~r1!

3@exp~b j\n!21#21Im@e j~n!#

3$Dbl
E ~r ,r1 ,in!Dgl

M ~r ,r1 ,2 in!

1Dbl
E ~r ,r1 ,2 in!Dgl

M ~r ,r1 ,in!%. ~66!

Let us notice that an infinitesimalh ~of any sign! has to be
added to the argument6 in of the Green’s functionsDE and
DM, since these functions also depend one(v), so that they
contain the singular integral overn; a way to get round the
pole on the positiven axis should therefore be specifie
Regardless of the sign ofh, in both terms in the curly
bracket of Eq.~66!, one of the Green’s functions is retarde
and the other one advanced. This characteristic feature is
again, and clarified further, in the following sections, in t
framework of the Keldysh formalism.

Up to the chosen system of units, the above result~66!
equals a formula already used by Polder and van Hove@9#
@cf. the expression between their Eqs.~5! and ~6!#; let us
notice, however, that their Green’s functions have not b
defined explicitly.

IV. KELDYSH FORMALISM

In this section we abandon the equations-of-motion
proach developed above and employ the closed-time-con
Schwinger-Keldysh technique, which allows one to ap
diagrammatic time-dependent perturbation theory to n
equilibrium phenomena. The value of the closed-contour
malism has first been recognized by Schwinger@58#, but here
we prefer to exploit the diagrammatic version due to Keldy
@59#. Very useful presentations of the Schwinger-Keldy
theory are given in Refs.@60–63#. Although the full strength
of the diagrammatic approach becomes apparent only w
there is multilinear coupling of the fields~so that perturba-
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tion theory is indispensable!, it is also quite instructive for
the linear model considered in the present paper. In cont
to the general case, here the perturbation series can
summed up exactly, in the sense that the solution reduce
a single linear integral equation of the Wiener-Hopf type,
simpler yet, to a partial differential equation with nontrivi
continuity conditions.

Because of the excellent reviews mentioned above,
shall not provide any general description of the Keldysh f
malism, but restrict ourselves to a few basic definitions.

Let us consider a general time-ordered correlation fu
tion of two operatorsL(t) andM (t), denoted as

^T@L~ t !M ~ t8!#&,

where the average is taken over an arbitrary state, equ
rium or nonequilibrium. This product can be written as@59#

Tr$r0 TC@SCL0~ t !M0~ t8!#%,

wherer0 is the density matrix corresponding to the initi
state,L0(t) andM0(t) are the interaction-picture represent
tions of the operatorsL(t) andM (t), andTC is the chrono-
logical operator, which arranges the operators it acts on
cording to the sequence of their arguments on the contouC.
The latter is led along the realt axis from2` to 1`, and
then back from1` to 2`. The argumentst, t8 lie on the
positive branch of this contour~from 2` to 1`). Finally,
the S matrix SC is given by

SC5TexpS i

\EC
dtLint~ t ! D . ~67!

The important point to observe is that one can also rep
sent an ordinary correlation function

^L~ t !M ~ t8!&5Tr$r0TC@SCL0~ t2!M0~ t18 !#%

in this way. The subscript ‘‘1 ’’ is assigned to all points lying
on the positive branch of the contour, and the ‘‘2 ’’ sign to
points lying on the negative branch~from 1` to 2`).
Similarly, one can express a correlation function contain
an antichronological product with the help of such a conto
C.

Employing a closed-time contour, one can formula
Feynman rules for a nonequilibrium quantum-field theo
@59,60,62#. What is very important, one can also write dow
the Dyson equation resulting from the resummation
graphs. It is convenient to write the Dyson equation in mat
form, rather than in a form employing closed contours. W
will need two such matrix forms: First, we consider the m
trix

G~r ,r 8,t,t8!5S G22~r ,r 8,t,t8! G21~r ,r 8,t,t8!

G12~r ,r 8,t,t8! G11~r ,r 8,t,t8!D ,

~68!

the elements of which are Feynman, anti-Feynman, and
dinary’’ correlation functions. These functions are defined
follows:
3-8
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G22~r ,r 8,t,t8!52
i

\
^T@c~r ,t !c†~r 8,t8!#&, ~69!

wherec(r ,t) is a boson field operator~we shall not have to
deal with fermion operators in this paper!;

G11~r ,r 8,t,t8!5
i

\
^T̃@c~r ,t !c†~r 8,t8!#&; ~70!

whereT̃ is the antichronological operator; and

G21~r ,r 8,t,t8!52
i

\
^c~r ,t !c†~r 8,t8!&, ~71!

G12~r ,r 8,t,t8!52
i

\
^c†~r 8,t8!c~r ,t !&. ~72!

We remark that our notation follows the convention e
ployed by Lifshitz and co-workers@60#. In most other refer-
ences the usage of the superscripts ‘‘1 ’’ and ‘‘ 2 ’’ adheres to
the opposite convention, i.e.,G22 there denotes Green’
function involving the antichronological operator, etc.

In a similar manner, we introduce a matrix containing fo
self-energies:

S~r1 ,r2 ,t1 ,t2!5S S22~r1 ,r2 ,t1 ,t2! S21~r1 ,r2 ,t1 ,t2!

S12~r1 ,r2 ,t1 ,t2! S11~r1 ,r2 ,t1 ,t2!
D .

~73!

Then we have

G~r ,r 8,t,t8!

5G0~r ,r 8,t,t8!1E dt1E d3r 1E dt2E d3r 2

3G0~r ,r1 ,t,t1!•S~r1 ,r2 ,t1 ,t2!G~r2 ,r 8,t2 ,t8!, ~74!

whereG0(r ,r 8,t,t8) denotes the free Green’s function m
trix.

Second, and alongside this matrix form of the Dys
equation, we shall make use of another form written in ter
of the retarded, advanced, and symmetrized correlation fu
tions. Let

F~r ,r 8,t,t8!52
i

\
^c~r ,t !c†~r 8,t8!1c†~r 8,t8!c~r ,t !&

~75!

be the symmetrized Green’s function, and letGR andGA be
the retarded and advanced Green’s function, defined in
standard way with the help of commutators:

GR~r ,r 8;t,t8!52
i

\
^@c~r ,t !,c†~r 8,t8!#&u~ t2t8!,

~76!

GA~r ,r 8;t,t8!5
i

\
^@c~r ,t !,c†~r 8,t8!#&u~ t82t !, ~77!

whereu(t) is the Heaviside function,
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u~t!5H 1 for t.0,

0 for t,0.

Using these functions, we construct the following matrixG8:

G8~r ,r 8,t,t8!5S 0 GA~r ,r 8,t,t8!

GR~r ,r 8,t,t8! F~r ,r 8,t,t8! D ,

~78!

and define a self-energy matrixS8 @59# as

S8~r1 ,r2 ,t1 ,t2!5S V~r1 ,r2 ,t1 ,t2! SR~r1 ,r2 ,t1 ,t2!

SA~r1 ,r2 ,t1 ,t2! 0 D .

~79!

Then one finds again a Dyson equation of the form~74!, with
G replaced byG8, andS by S8.

This matrix representationG8 of the Green’s functions is
more convenient for practical calculations. From the Dys
equation forG8 one infers that the equations forGR andGA

separate from those for the functionF, leading to

GR,A~r ,r 8,t,t8!5G0;R,A~r ,r 8,t,t8!

1E d3r 1E d3r 2E dt1E dt2

3G0;R,A~r ,r1 ,t,t1!•SR,A~r1 ,r2 ,t1 ,t2!

3GR,A~r2 ,r 8,t2 ,t8!, ~80!

F~r ,r 8,t,t8!5E d3r 1E d3r 2E dt1E dt2

3G0;R~r ,r1 ,t,t1!•@V~r1 ,r2 ,t1 ,t2!

3GA~r2 ,r 8,t2 ,t8!1SR~r1 ,r2 ,t1 ,t2!

3F~r2 ,r 8,t2 ,t8!#. ~81!

Naturally, there exists a connection between Green’s fu
tions and the self-energies entering the matricesG andG8:

GR5G222G215G122G11,

GA5G222G125G212G11,

F5G221G115G121G21, ~82!

and

SR5S221S21,

SA5S221S12,

V5S221S11. ~83!

Our strategy in this section is first to list all releva
Green’s functions of the reservoir, and then to draw so
3-9



io
th
s

rd

ti
-
v

ha
ur

u
an

tly

e
on

he
d-
f the

for
tion

oir

an-

JANOWICZ, REDDIG, AND HOLTHAUS PHYSICAL REVIEW A68, 043823 ~2003!
simple Feynman graphs to write down their Dyson equat
and get corresponding ‘‘dressed’’ Green’s functions of
polarization field. Finally, we draw a further family of graph
~using these dressed polarization lines! to formulate the
Dyson equation for the electromagnetic propagators. In o
to perform the computations in this last stage, we need
choose a particular gauge. This is because the interac
Lagrangian which enters theS matrix, and hence the self
energy, is expressed in terms of potentials. It is most con
nient to work in the temporal~Pauli-Heisenberg! gauge, in
which

F~r ,t !50. ~84!

Then, after eliminating the momenta and theE andB fields,
we obtain the Lagrangian in the following form:

L5(
j 51

2 E d3r F1

2
MjV j

2~r !2
1

2
Mjv0 j

2 X j
2~r !G

1
1

2E d3r Fe0Ȧ2~r !2
1

m0
~“3A!2~r !G

1(
j 51

2 E
0

`

dnE d3r F1

2
r j nW j n

2 ~r !2
1

2
r j nn2~Y j n~r !

2X j~r !!2G1(
j 51

2 E d3rg j~r !Vj~r !•A~r !, ~85!

where the last term is the interaction Lagrangian.

A. Green’s functions of the reservoir fields

Below we provide a summary of thefree Green’s func-
tions of the reservoir fields, valid under the assumption t
the reservoirs are in thermal states with inverse temperat
b j , which are taken to be independent ofr . ~This latter
assumption can, in principle, be relaxed, so that we co
also take into account temperature differences within one
the same body.!

Green’s functions written below are obtained direc
from the definitions~69!–~77! of the preceding section, with
the general field operatorsc and c† replaced by the~Her-
mitian! operatorYj n,a . It is convenient to work with Green’s
functions which are Fourier transformed with respect to tim
so that they are functions of two spatial variables and
frequency variable. Thus, we have the following list:

~a! The retarded Green’s function

Hab, j j 8
R

~r1 ,r2 ,n,n8,v!5
1

r j n

1

v22n21 ihv

3dabd j j 8d~n2n8! d~r12r2!.

~86!

~b! The advanced Green’s function
04382
n
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Hab, j j 8
A

~r1 ,r2 ,n,n8,v!5
1

r j n

1

v22n22 ihv

3dabd j j 8d~n2n8!d~r12r2!.

~87!

As usual,h is an infinitesimal number added to indicate t
location of poles inv space. Naturally, the retarded and a
vanced Green’s function must not depend on the states o
reservoirs.

~c! The causal~Feynman! Green’s function

Hab, j j 8
22

~r1 ,r2 ,n,n8,v!

52
i

2r j n
dabd j j 8d~n2n8!d~r12r2!•Fp cothS b j\n

2 D
3@d~v2n!1d~v1n!#1 iPS 1

v2n
2

1

v1n D G .
~88!

~d! The Wightman-type Green’s function

Hab, j j 8
12

~r1 ,r2 ,n,n8,v!

52
ip

2r j n
dabd j j 8d~n2n8!d~r12r2!•FcothS b j\n

2 D
3@d~v2n!1d~v1n!#1d~v2n!2d~v1n!G .

~89!

~e! The anti-Wightman-type Green’s function

Hab, j j 8
21

~r1 ,r2 ,n,n8,v!

52
ip

2r j n
dabd j j 8d~n2n8!d~r12r2!•FcothS b j\n

2 D
3@d~v2n!1d~v1n!#2d~v2n!1d~v1n!G .

~90!

~f! The symmetrized Green’s function

Fab, j j 8
(res)

~r1 ,r2 ,n,n8,v!

52
ip

r j n
dabd j j 8d~n2n8!d~r12r2!•cothS b j\n

2 D
3@d~v2n!1d~v1n!#. ~91!

These functions will be used in the following subsection
obtaining the self-energies and the dressed polariza
Green’s functions.

B. The dressed polarization-field Green’s functions

Taking into account the form of the polarization-reserv
interaction, as specified by the Lagrangian~85!, we formu-
late the following Feynman rules to get diagrammatic exp
sions of Green’s functions.
3-10
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~1! Any free polarization propagator, i.e., a correlati
function of the polarization fieldsX j (r ), is represented by a
dashed line.

~2! Free reservoir correlations are represented by do
lines.

~3! Since the interaction is bilinear, all graphs have
chainlike shape: the vertices connect only two lines.

~4! Each vertex is associated with an indexj and a factor
r j nn2.

~5! To obtain a diagram, we integrate overn andr for all
internal lines, and sum over all internal vectorial indices.

For instance, the Feynman propagatorK22 of the polar-
ization field is represented, to second order, by the grap

Here the bold dashed line denotes the dressed polariza
propagator. With each vertex we have to associate one o
two signs, ‘‘1 ’’ or ‘‘ 2 ’’ @60#; each ‘‘1 ’’ vertex yields a
factor ‘‘21’’ to multiply the corresponding expression with
Therefore, in fourth order we obtain 16 similar linear grap
each one containing three dashed lines and two dotted li
They all share the elements

In addition, to each of the four vertices either ‘‘1 ’’ or ‘‘ 2 ’’
has to be assigned, resulting in 16 different graphs.

All graphs can be summed up exactly: They all are o
tained by graphical iteration of the diagrammatic Dys
equation,

We conclude that the self-energies required for dressing
polarization-field Green’s functions are easily expressed
terms of the reservoir Green’s functions, namely,

S S22 S21

S12 S11D 5S H22 2H21

2H12 H11 D , ~92!

where we have omitted indices and arguments for simpli
of notation.
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From the above matrix equation it follows that the expre
sions for the self-energies needed to compute the retar
advanced, and symmetrized polarization propagators rea

V5V res5H221H11,

SR5SR,res5H222H21,

SA5SA,res5H222H12. ~93!

Thus, we obtain the following Dyson equation for the r
tarded Green’s function:

Kab, jk
R ~r1 ,r2 ;t1 ,t2!

5Kab, jk
0,R ~r1 ,r2 ;t1 ,t2!1(

l ,m
E

2`

`

dt3E
2`

`

dt4E d3r 3

3E d3r 4E
0

`

dn3r ln3
n3

2E
0

`

dn4rmn4
n4

2

3Kag, j l
0,R ~r1 ,r3 ;t1 ,t3!Hgl,lm

R ~r3 ,r4 ;n3 ,n4 ;t3 ,t4!

3Klb,mk
R ~r4 ,r2 ;t4 ,t2!, ~94!

where K0,R denotes the free retarded polarization propa
tors, and we have used the identityH222H215HR. In
principle, the above Green’s functions depend on two tim
t1 and t2 separately. However, as bothK0,R and the self-
energySR depend only on time differences, we find that t
twofold Fourier transform ofKR, being a function of the two
frequenciesv1 and v2, contains the overall factord(v1
1v2). This implies thatKR actually is a function oft12t2
only, and the above Dyson equation can be solved by
one Fourier transformation with respect tot5t12t2. We
obtain, therefore, a linear equation forKR which, because of
the simple structure of bothK0,R and HR, leads to the fol-
lowing solution:

Kab, jk
R ~r1 ,r2 ;v!5d jkdabd~r12r2!K j

R~v!, ~95!

with

K j
R~v!5FMj~v22v0

2!2v2E
0

`

dn
r j nn2

v22n21 ihv
G21

,

~96!

where the infinitesimal imaginary term in the denominator
the integrand stems from the retarded character ofHR.

This result can be compared with that is provided by
equations of motion. The retarded and advanced propaga
do not depend on the initial states; they are given by cer
inhomogeneous solutions of~integro-!differential equations.
From the equations of motion for the polarization fie
coupled to the reservoir field we find that the retarded po
ization propagators satisfy
3-11
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S d2

dt2
1v1 j

2 D Kab, j j 8
R

~r1 ,r2 ,t,t8!

5
1

Mj
E

0

`

dnr j nn2f a, j~r1 ,r2 ,n,t,t8!, ~97!

where the functionf a, j is defined as

f a, j~r1 ,r2 ,n,t,t8!52
i

\
u~ t2t8!

3^@Yj n,a~r1 ,t !,Xj ,b~r2 ,t8!#&,

and

v1 j
2 5v0 j

2 1
1

Mj
E

0

`

dnr j nn2.

Now the equation of motion forf a, j reads

S d2

dt2
1n2D f a, j~r1 ,r2 ,n,t,t8!5n2Kab, j , j 8

R
~r1 ,r2 ,t,t8!,

~98!

so that after taking the Fourier transform and solving forKR,
Eq. ~96! is recovered. The infinitesimal imaginary term in th
denominator of the integrand appears becausef a, j itself is a
retarded correlation function.

Similar to Eq. ~96!, the advanced Green’s function
given by

Kab, jk
A ~r1 ,r2 ;v!5d jkdabd~r12r2!K j

A~v!, ~99!

with

K j
A~v!5FMj~v22v0

2!2v2E
0

`

dn
r j nn2

v22n22 ihv
G21

.

~100!

The third important Green’s function, the symmetriz
Green’s function, satisfies the following Dyson equation:

Fab, jk
pol ~r1 ,r2 ;t1 ,t2!

5(
l ,m

E
2`

`

dt3E
2`

`

dt4E d3r 3E d3r 4E
0

`

dn3r j n3
n3

2

3E
0

`

dn4r j n4
n4

2Kag, j l
0,R ~r1 ,r3 ;t1 ,t3!

3@Vgl,lm
pol ~r3 ,r4 ;n3 ,n4 ;t3 ,t4!Klb,mk

A ~r4 ,r2 ,t4 ,t2!

1Hgl,lm
R ~r3 ,r4 ;n3 ,n4 ;t3 ,t4!Flb,mk

pol ~r4 ,r2 ;t4 ,t2!#.

~101!

Once again, we realize that these Green’s functions dep
only on the differencet5t12t2. On taking the Fourier
transform, we find the solution in the form

Fab, jk
pol ~r1 ,r2 ;v!5d jk dabd~r12r2!F j

pol~v!, ~102!
04382
nd

where

F j
pol~v!52p iK j

R~v!r j vv3cothS b j\v

2 DK j
A~v!.

~103!

The above correlation functions can now be used to ob
the dressed Green’s functionsK22, K12, K21, andK11.
More importantly, they will be employed in the following
section to derive the Green’s functions of the electrom
netic field.

C. The correlation functions of the electromagnetic field

The correlation functions of the electromagnetic field a
again obtained from the general formulas~69!–~77!, with the
electromagnetic potential operatorAa replacing the genera
field operatorc. The correlation functions of the free elec
tromagnetic field which are most important for our purpos
namely, the retarded, the advanced, and the symmetrized
relation function, satisfy the following wave equations@64#:

“3“3D̂R,A~r ,r 8;v!2
v2

c2
D̂R,A~r ,r 8;v!52m0d~r2r 8!,

~104!

“3“3F̂EM~r ,r 8;v!2
v2

c2
F̂EM~r ,r 8;v!50. ~105!

In the latter equation the superscript ‘‘EM’’ indicates that t
symmetrized propagatorF̂EM pertains to the electromagnet
field. The retarded and the advanced Green’s functions~as
well as the Feynman and anti-Feynman Green’s functio!
satisfy one and the same equation and differ only in
boundary conditions. We will now construct the dressed c
relation functions with the help of the diagrammatic tec
nique.

Since the interaction Lagrangian has the form

Lint5(
j 51

2 E d3rg j~r !V j~r !•A~r !,

we infer that in the graphical expansion every vertex w
join two lines only, and the only connected graphs are lin
ones. The perturbation expansion involves the correlati
functions of the velocitiesV j , but not those of the ‘‘displace
ments’’ X j . However, all the two-point Green’s function
defined in terms of velocities can be obtained from tho
defined in terms of displacements simply by differentiati
with respect to the two time variables involved:

KVV~ t1 ,t2!5
]2

]t1]t2
KXX~ t1 ,t2!, ~106!

where KVV denotes any of the dressed ‘‘velocity’’ Green
functions of the polarization field~that is,K22, K21, etc.!,
andKXX is the corresponding ‘‘displacement’’ Green’s fun
tion. In the language of the Fourier transform, this mea
that
3-12
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KVV~v!5v2KXX~v!. ~107!

Thus, when building the graphs to obtain the electromagn
Green’s function, we must only remember that every dres
polarization line should be multiplied byv2 when taking the
Fourier transform.

Drawing the graphs for the electromagnetic correlat
functions is fully analogous to that same procedure for
polarization Green’s functions: we have four graphs in
second order, 16 graphs in fourth order, etc. Moreover,
has to associate with every vertex the factorgj (r ), and one
of the two signs. To compute the graphs, there is no nee
integrate over then variables, as the lines are alreadyn
independent, but now there is an additional summation o
j. It is easy to realize that all the graphs can be obtained
iteration of the following graphical Dyson equation:

The undressed~dressed! photon propagators are denote
here by thin~bold! wavy lines. We then find that the sel
energies, considered as functions ofv, are given by

S S22 S21

S12 S11D 5v2S K22 2K21

2K12 K11 D , ~108!

where everyK is to be understood asKXX . ~We use the same
symbols here to denote the self-energies as in our Dy
equation for polarization propagators, hoping that this w
not lead to any misunderstanding.! This equation also im-
plies

Sab, jk
R,A ~r1 ,r2 ;v!5v2K j

R,A~v!dabd jkd~r12r2!,
~109!

Vab, jk~r1 ,r2 ;v!5v2F j
pol~v!dabd jkd~r12r2!.

~110!

The Dyson equation for the retarded and advanced Gre
functions becomes quite simple after Fourier transforma
with respect to time:

Dab
R,A~r1 ,r2 ;v!5Dab

0;R,A~r1 ,r2 ;v!1v2(
j
E d3r 3gj

2~r3!

3Dag
0;R,A~r1 ,r3 ;v!K j

R,A~v!

3Dgb
R,A~r3 ,r2 ;v!. ~111!

On the other hand, the Dyson equation for the symmetri
electromagnetic propagator reads
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Fab
EM~r1 ,r2 ;v!5(

j
E d3r 3gj

2~r3!Dag
0,R~r1 ,r3 ;v!•v2

3@F j
pol~v!Dgb

A ~r3 ,r2 ;v!

1K j
R~v!Flb

EM~r3 ,r2 ;v!#. ~112!

Next, applying the differential operator“3“32v2/c2 to
both sides of Eqs.~111! and ~112!, we obtain

S“3“32
v2

c2 D D̂R,A~r1 ,r2 ;v!

52m0d~r12r2!2m0v2(
j

gj
2~r1!K j

R,A~v!

3D̂R,A~r1 ,r2 ;v! ~113!

and

S“3“32
v2

c2 D F̂EM~r1 ,r2 ;v!

52m0v2(
j

gj
2~r1!@F j

pol~v!D̂A~r1 ,r2 ;v!

1K j
R~v!F̂EM~r1 ,r2 ;v!#. ~114!

From Eq.~113! we then recover the refreshingly well-know
differential equations for the dressed retarded and advan
Green’s functions, namely,

“3“3D̂R~r ,r 8,v!2
v2

c2
e~r ,v!D̂R~r ,r 8,v!5m0d~r2r 8!,

~115!

together with

“3“3D̂A~r ,r 8,v!2
v2

c2
ē~r ,v!D̂A~r ,r 8,v!5m0d~r2r 8!,

~116!

where

e~r ,v!512
1

e0
(

j
gj

2~r !K j
R~v! ~117!

has no singularities in the upperv half plane, whereas

ē~r ,v!512
1

e0
(

j
gj

2~r !K j
A~v! ~118!

has no singularities in the lowerv half plane. Similarly, Eq.
~114! leads to

Fab
EM~r1 ,r2 ;v!5v2(

j
E d3r 3gj

2~r3!Dag
R ~r1 ,r2 ;v!

3F j
pol~v!Dgb

A ~r3 ,r2 ;v!. ~119!
3-13
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Exploiting the fact that the Wightman-type Green’s functi
D̂12 is related to these propagators through the formula

D̂125
1

2
~FEM1DR2DA!, ~120!

Eqs.~111! and ~112! yield the wave equation forD̂12:

“3“3D̂12~r ,r 8;v!2
v2

c2
D̂12~r ,r 8;v!

52m0v2(
j

gj
2~r1!@K j

R~v!D̂12~r1 ,r2 ;v!

1K j
12~v!D̂A~r1 ,r2 ,v!#, ~121!

where, in analogy to Eq.~120!,

K j
12~v!5

1

2
@F j

pol~v!1K j
R~v!2K j

A~v!#. ~122!

This wave equation~121! can be solved with the help of th
retarded Green’s function, so that we finally obtain

D̂12~r1 ,r2 ,v!5v2(
j
E d3r 3gj

2~r3!D̂R~r1 ,r3 ;v!

3K j
12~v!D̂A~r3 ,r2 ;v!. ~123!

For the sake of comparison, we shall also employ ad
tional auxiliary electric (D̂E) and magnetic (D̂M) Green’s
functions of the retarded and advanced type which co
spond directly to the Green’s functions used in the pione
ing work by Polder and van Hove@9#. They satisfy the fol-
lowing differential equations:

“3“3DE,R~r ,r 8,v!2
v2

c2
e~r ,v!DE,R~r ,r 8,v!

5 ivd~r2r 8!,

“3“3DE,A~r ,r 8,v!2
v2

c2
ē~r ,v!DE,A~r ,r 8,v!

52 ivd~r2r 8!,

“3“3DM ,R~r ,r 8,v!2
v2

c2
e~r ,v!DM ,R~r ,r 8,v!

5“31d~r2r 8!,

“3“3DM ,A~r ,r 8,v!2
v2

c2
ē~r ,v!DM ,A~r ,r 8,v!

5“31d~r2r 8!. ~124!

From Eqs.~115! and ~116! we then have the relations
04382
i-

-
r-

DR~r ,r 8;v!5
im0

v
DE,R~r ,r 8;v!,

DA~r ,r 8;v!52
im0

v
DE,R~r ,r 8;v!,

“3DR~r ,r 8;v!52m0DM ,R~r ,r 8;v!,

“3DA~r ,r 8;v!52m0DM ,A~r ,r 8;v! ~125!

between the various Green’s functions. It is also obvious t
there are trivial relations betweenDE,R, DE,A, DM ,R, and
DM ,A on the one hand, and the Green’s functionsDE andDM

depending on the Laplace variable as introduced in the
tion on the other~we omit spatial arguments!:

DE,R~v!5DE~s52 iv1h!,

DE,A~v!5DE~s5 iv1h!,

DM ,R~v!5DM~s52 iv1h!,

DM ,A~v!5DM~s5 iv1h!, ~126!

whereh is an infinitesimal positive constant which guara
tees the correct treatment of the poles in the complexv
plane.

V. CALCULATION OF THE POYNTING VECTOR BY
MEANS OF THE DIAGRAMMATIC EXPANSION

The ‘‘a ’’ component of the Poynting vector can be o
tained from the above symmetrized and retarded propa
tors, if we manage to express the normally ordered corr
tion function in terms of them. This is by no means trivia
Let us start with the definition

^Sa~r ,t !&5eabg lim
r8→r

lim
t8→t

^:Eb~r ,t !Hg~r 8,t8!:&.

~127!

If we decompose the electric and magnetic fields into th
positive and negative frequency parts,

c5c (p)1c (n),

wherec is any of the operatorsEb andHg , and the super-
scripts ~n! and ~p! denote the negative- and positive
frequency parts of an operator@instead of ‘‘(2)’’ and
‘‘( 1)’’ superscripts, in order to avoid confusion with ‘‘12 ’’
and ‘‘21 ’’ superscripts labeling particular Green’s func
tions#, we find

^:Eb~r ,t !Hg~r 8,t8!:&

5^Eb~r ,t !Hg~r 8,t8!&1^Hg
(n)~r 8,t8!Eb

(p)~r ,t !&

2^Eb
(p)~r ,t !H (n)~r 8,t8!&. ~128!
3-14
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As our diagrammatic expansion involves the electromagn
vector potential, but not the fields themselves, we cast
expression for the normally ordered product of fields into
form

^:Eb~r ,t !Hg~r 8,t8!:&52
i\

m0
eglm

]

]t
¹l8$Dbm

12~r ,r 8;t,t8!

1Dmb
(N)~r 8,r ;t8,t !2Dbm

(A)~r ,r 8;t,t8!%,

~129!

where

Dmb
(N)~r 8,r ;t8,t !52

i

\
^Am

(n)~r 8,t8!Ab
(p)~r ,t !&,

Dbm
(A)~r ,r 8;t,t8!52

i

\
^Am

(p)~r ,t !Ab
(n)~r 8,t8!. ~130!

We already know that our Green’s functions depend
the differencet2t8 only. This means that the above Green
functions allow for a Fourier representation containing j
one frequency. Taking care of the fact that inD (N) the se-
quence of its time arguments is inverted, we can express
above normally ordered product of the electric- a
magnetic-field operators as

^:Eb~r ,t !Hg~r 8,t !:&

52
\

2pm0
eglm¹l8E

2`

`

dvv@Dbm
12~r ,r 8;v!

2Dmb
(N)~r 8,r ;v!2Dbm

(A)~r ,r 8;v!#, ~131!

where the time differentiation has already been perform
and the limitt8→t has been taken.

The way to extract the positive- and negative-frequen
parts of an electromagnetic field operator without employ
a mode decomposition has already been shown
Schwinger@65#. With the help of Schwinger’s method, Aga
wal @13# has expressedD̂ (N)(v) and D̂ (A)(v) in terms of
D12(v):

D̂ (N)~r ,r 8;v!5u~2v!D̂12~r ,r 8;v!,

D̂ (A)~r ,r 8;v!5u~v!D̂12~r ,r 8;v!. ~132!

Inserting these expressions into our solution
D12(r ,r 8;v), we arrive at

^:Eb~r ,t !Hg~r 8,t !:&

52
\

2pm0
eglm(

j
E d3r 1gj

2~r1!E
2`

`

dvv3

3u~2v!K12~v!•@Dbr
R ~r ,r1 ;v!Drm

A ~r1 ,r 8;v!

2Dmr
R ~r 8,r1 ;v!Drb

A ~r1 ,r ;v!#. ~133!
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The presence of the Heaviside function now allows us
restrict the integration to positive~or negative! frequencies.
Let us note that this restriction to positive frequencies in
integration overv has not been justified in either Ref.@9# or
Ref. @10#; though physically plausible, it is rather difficult t
understand from the mathematical viewpoint in these pap
Here this restriction is a result, rather than an assumpt
and it is a direct consequence of the fact that the Poyn
vector is defined in terms of the normally ordered product
operators.

Now we change the integration variable fromv to 2v,
and use the fact thatDA(v)5DR(2v) and DR(v)
5DA(2v). Then relations~125! and ~126! allow us to ex-
press the expectation value of the Poynting vector in term
the auxiliary electric and magnetic functions introduced
Eq. ~124!:

^Sa~r ,t !&5
i\

2p
eabg(

j
E d3r 1E

0

`

dvv2gj
2~r1! K j

12~2v!

3@Dbr
E,A~r ,r1 ;v!Dgr

M ,R~r ,r1 ;v!

1Dgr
M ,A~r ,r1 ;v!Dbr

E,R~r ,r1 ;v!#. ~134!

Here we have used the reciprocity relationsDmn(r ,r 8;v)
5Dnm(r 8,r ;v), which hold for the electromagnetic Green
functions satisfying the wave equations of the preceding s
tion, and have taken the limitr 8→r .

Finally, we make a simple calculation to express t
imaginary part of the dielectric function of thej th body in
terms ofK12(v) ~in a manner fully analogous to the proc
dure in Sec. III! and obtain, with the help of Eqs.~96!, ~99!,
and ~102!,

K12~2v!522i e0Im@e j~v!#@exp~b j\v!21#21.
~135!

Using this, our final solution for the Poynting vector, i.e.,

^Sa~r ,t !&5
\

pc2
eabg(

j
E d3r 1E

0

`

dvv2gj
2~r1!Im@e j~v!#

3@exp~b j\v!21#21@Dbr
E,A~r ,r1 ;v!

3Dgr
M ,R~r ,r1 ;v!1Dgr

M ,A~r ,r1 ;v!

3Dbr
E,R~r ,r1 ;v!#, ~136!

is, in view of Eq. ~126!, identical to the expression~66!
provided by the equations-of-motion approach.

It is obvious by now that for the present linear model t
equations-of-motion approach is more straightforward, a
by far simpler than the Keldysh formalism. The algebra
volved in the latter, while not complicated, turns out to
somewhat tiring. However, as soon as the physics forces
to introduce any nonlinearity into the model, it is th
Keldysh formalism which provides a fairly natural fram
work for the perturbation expansion. In that case the oper
equations of motion lose much of their value, as physica
reasonable approximations are, in general, difficult to imp
ment, and the Laplace transformation ceases to work.
3-15
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VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have developed a quantum approac
the problem of electromagnetic energy transfer between
persive and absorptive dielectric bodies. Using
Schwinger quantum action principle, we have derived
equations of motion for the electromagnetic field operato
and for two auxiliary kinds of quantum fields: the polariz
tion field and the reservoir field. We have then performed
Laplace transformation and expressed the Poynting ve
which measures the electromagnetic energy flux between
bodies, in terms of the correlation functions of the init
values of the fields involved. For sufficiently large times t
initial correlations of the polarization field have died out, a
the remaining contribution stems from fluctuating currents
the media caused by the stochastic forces associated wit
presence of reservoirs. It does depend on both their diele
properties and their temperatures.

As an alternative to this approach based on the equat
of motion, we have also demonstrated that the nonequ
rium diagrammatic technique due to Keldysh can be e
ployed to solve the problem of the radiative heat transfer.
have calculated a large number of Green’s functions for
reservoir and for the polarization fields and shown that
electromagnetic correlation functions can be found alm
exactly, in the sense that the calculation of these quant
can be reduced—via a set of Dyson equations—to the s
tion of a partial differential equation with suitable continui
~and, possibly, boundary! conditions. This partial differentia
equation allows one to find the retarded and advan
Green’s functions of the electromagnetic field.Both these
Green’s functions are necessary~and sufficient! to obtain the
required expectation value of the Poynting vector. This la
result follows from both the equations of motions and t
diagrammatic Keldysh approach.

We have shown that both quantum approaches lead to
same result for the Poynting vector, as expressed by
~66! and~136!. This result coincides with a well-known for
mula provided by the classical theory of electromagne
fluctuations@11#, which has been taken for granted in th
earlier works@9,10#. Nonetheless, what we have done in t
present study amounts to more than a mere, quite ardu
quantum-mechanical rederivation of the classical formu
Our treatment not only proves that previous classical
proaches have been free of internal inconsistencies, b
a-
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also specifies the conditions under which the ‘‘classical’’
sult holds. Formulas~66! and~136! assume normal ordering
of the field operators entering the Poynting vector, and
quire reservoir fields coupled to the polarization fields
each point of the dielectric bodies. If these propositions
satisfied in an actual experimental setup, the heat flux
guaranteed to be described by the theory developed in
paper. If, therefore, serious discrepancies between meas
data and Eq.~66! or ~136! should be found, this could not b
ascribed to an intrinsically inconsistent theory, but wou
inevitably point to an imperfect realization of the underlyin
model. For instance, one might well ask whether the sm
tip of a typical scanning thermal microscope really serves
a reservoir in the sense assumed here. Comparison of ex
mental data with what follows from Eq.~66! or ~136! for
microscope geometries will therefore be of crucial impo
tance for the further development of a quantitative theory

More generally speaking, the above considerations fit i
the framework of macroscopic quantum electrodynam
Our model of the dielectric is not a ‘‘realistic’’ one; its pur
pose is to quantize the electromagnetic field inside lossy
dispersive dielectrics. It does, however, allow for modific
tion in several directions. On the one hand, one could, e
include a higher-order polynomial polarization Lagrangian
simulate nonlinear properties of the dielectric. On the ot
hand, it is, in principle, also possible to use realistic rath
than phenomenological models to describe atoms which c
stitute the dielectric surfaces—the perturbative treatm
based on the Keldysh diagrams will then again provide
convenient route to obtaining good approximations. Fina
one might also change the strategy and calculate the cu
correlation functions in the dielectric, instead of the Poynti
vector.

In a forthcoming paper we are going to apply the resu
of this work to several geometrical arrangements of inter
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