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Quantum approach to electromagnetic energy transfer between two dielectric bodies
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The problem of radiative heat transfer between two dielectric bodies is analyzed from the point of view of
elementary quantum electrodynamics. The dielectric properties of the bodies are assumed to be linear, but
dispersion and losses are allowed. Quantization of the electromagnetic field in inhomogeneous, dispersive, and
lossy dielectrics is performed with the help of the Huttner-Barnett procedure. The electromagnetic energy flux
is expressed through the expectation value of the Poynting vector. In order to compute the Poynting vector, two
techniques suitable for nonequilibrium processes are employed: the Heisenberg equations of motion and the
diagrammatic Keldysh procedure. They are shown to give identical final results. These quantum-mechanical
calculations provide a solid basis for the further, mainly numerical, development of the theory of thermal
scanning microscopy.
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[. INTRODUCTION the Matsubara technique, do not work; we shall, therefore,
employ both the Heisenberg equations of motion and the
In view of the impressive progress recently made in ex-nonequilibrium Keldysh diagrammatic formalisnfij) the
perimental techniques for near-zone thermal microscopyproblem of the electromagnetic field quantization in disper-
[1-8], the problem of a careful theoretical description of thesive and lossy dielectrics is far from trivial. Only fairly re-
behavior of thermal electromagnetic fields in the vicinity of cently several satisfactory methods to deal with such com-
surfaces of metals, semiconductors, and dielectrics has abined systemddielectrics plus quantized figlchave been
quired some importance. Indeed, in modern experimentproposed. Here, we shall use the Huttner-Barnett quantiza-
with a thermal scanning microscope performed under UHMion scheme as developed in Rgf5] and simplified in Refs.
conditions[8] one can practically exclude any gas-mediated 16,17); (iii) even in cases of simplest geometries, the elec-
heat transfer between the analyzed body and the tip of theomagnetic propagators are given by rather complicated
microscope, while keeping under control the transfer due td-ourier or Fourier-Bessel integrals with a lot of singularities
tunneling electrons. This enables one to concentrate on tha the integrands. This causes difficulties for their asymptotic
radiative heat transfer, that is, on the transfer of electromagevaluation, which is required for developing a clear physical
netic energy between bodies with different temperatures. Ipicture of the heat transfer.
the past, this problem has been investigated theoretically We stress that the theory of near-field heat transfer, which
[9,10] by means of the classical theory of thermal fluctua-underlies thermal scanning microscopy, forces one to take
tions of the electromagnetic fie[d1]. Let us, however, note into account dispersion and losses in metallic and dielectric
that the classical theory cannot really be consistent: it sufmedia. Hence, we are led to the interesting and difficult
fices to mention that the final formulas contain the Planckproblem of the electromagnetic field quantization in inhomo-
constant as an overall factor, as well as the Bose-Einsteigeneous dispersive media, which has a short but interesting
function of temperature, which also involves the Planck con-history. So far, the only way to deal with this problem is to
stant. In Ref.[12] a successful attempt has been made taeglect(either from the very beginning, or at a certain inter-
employ Agarwal's developmeifii3,14 of quantum electro- mediate stage of the analygithe grainlike nature of the
dynamics in the vicinity of dielectrics. That approach isdielectric or metallic material, and to restrict oneself to the
based on the linear-response theory, but, though successfsh-called macroscopic electrodynamical description, in
lacks the explicit quantization of the field. What is more, it which the properties of the media are represented in terms of
heavily relies on the fluctuation-dissipation theorem, whichaveraged quantities such as dielectric constants and magnetic
is taken for grantedi.e., no proof is provided In this paper permeabilities. This, however, does not preclude the possi-
we go beyond these previous approaches and study the trarslity of introducing useful phenomenological models such
fer of electromagnetic energy between two dielectric bodiess the Hopfield moddl18]. In the present paper we exploit
on the grounds of elementary quantum electrodynamics. Theuch a macroscopic electrodynamical description.
dielectric function is then obtained explicitly from the theory ~ To our knowledge, the problem of the quantization of the
of interacting fields. electromagnetic field in &aomogeneoubut dispersive di-
We assume that the dielectric properties of the bodies arelectric has been considered first by Watson and JpL&h

linear. This means that the coupling of matter fields to than a paper which followed their previous work20,21] on
electromagnetic field is bilinear in the field operators, so thathe field quantization in moving dielectrics. These authors
the equations of motion are linear as well. Still, for the fol- quantized the fields under the somewhat restrictive assump-
lowing reasons the solution is not easy to obtdin:the tion of a one-to-one correspondence between the angular fre-
system is definitely out of equilibrium. Thus, well-known quency and the wave vector in the medium. A similar ap-
methods of field theory and condensed-matter theory, such ggoach has been proposed more recently by Drumnh@a
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who was also able to take into account nonlinear effects. For In this paper, we resort to the approach worked out by
the case ofnhomogeneous nondispersidtelectrics an im-  Huttner and Barnetf15]. It is based on the observation,
portant theoretical breakthrough has been achieved in Refmade already by Fan@l9], that under rather general condi-
[23]. The authors of that work have canonically quantizedtions the Hamiltonian describing long-wavelength excita-
the electromagnetic field in a space half filled with the di-tions of matter is equivalent to that of a system of indepen-
electric material. This has been done in such a way that thdent harmonic oscillator¢from which the Hopfield model
electromagnetic mode functions included the boundary conresulty. Moreover, it exploits the independent-oscillator
ditions from the very beginning. These mode functions havenodel of the reservoif52], which has a surprisingly wide
been shown in Ref23] to be orthogonal; their completeness region of applicability. The reservoir is required to deal with
has then been proven in R¢R24]. An outline of a general the losses in the dielectric. Technical definitions are given in
scheme of the electromagnetic field quantization and quarthe following section; here we summarize some arguments in
tum optics in inhomogeneous nondispersive dielectrics cafavor of the Huttner-Barnett schent@hile keeping in mind
be found in Ref[25]. The canonical quantization procedure that the choice of the quantization scheme is, to a large ex-
developed by Carniglia and Mandg23] has served as a tent, a matter of personal understanding, taste, and conve-
guideline in several further studies of the behavior of quannience. First, this approach is very intuitive and simple, es-
tum electromagnetic fields in more complicated geometricapecially in its version developed in Refd6] and[17]; the
arrangements, see, e.g., Ref26,27), although the tough dielectric is represented by its own quantum field, and the
problem of the completeness of the required mode functionstochastic currents can be obtained by tracing out the vari-
has not been considered. ables representing the dielectric and the reservoir. Second, it
A new approach to the quantum electrodynamics in thes flexible: there is no problem to include magnetic properties
presence of metals and dielectrics has been initiated by Agaand nonlinearities by changing slightly the coupling between
wal in a remarkable series of papdrk3,14,28—32 This  the matter fields and the electromagnetic field. Third, within
author was able to include both inhomogeneity and disperthis framework one can, in principle, study excitations in the
sion of media from the very beginning. His approach ismedia (such as polaritons or plasmon& a natural way,
based on the properties of electromagnetic correlation funaising directly available matter-field correlation functions.
tions (Green’s functionps of various types. An impressive Fourth, it is aesthetically appealing: one can initially forget
amount of important features of radiation and of atom-about the existence of the medium, and consider only the
radiation interactions could be calculated with these methodmteracting quantum fields. The material appears later via
in a fairly elegant manner. Nonetheless, the approach advaome function which can be identifieal posteriori as the
cated by Agarwal still lacked the explicit quantization of the dielectric function. In addition, the coupling between the
electromagnetic field. Besides, some important quantumelectromagnetic and matter fields contains—in the case of
statistical theorems, such as the fluctuation-dissipation theanhomogeneous media—the coupling “constant” which de-
rem, have been postulated but not derived. This fact stimupends on the point in spa¢and possibly also in time This
lated further activity on the subject of quantum is very much in the spirit of an important fundamental de-
electrodynamics in the presence of dispersive and inhomoge&<€lopment in quantum-field theory which has resultedain
neous media and led to considerable theoretical achievenosh divergence-free QED53].
ments. In particular, in the works of the Jena gr¢8p—36, The goal of the present paper is to derive fairly general
which heavily rely on the properties of classical retardedworking formulas for the radiative heat transfer between di-
Green’s functions, the explicit quantization is achievedelectric bodies. That is, we derive expressions from which
through the introduction of stochastic currents into the Max-that heat transfer can be calculated, provided that the Green’s
well equations, while the canonical formalism follows from functions of the classical wave equation are known for the
an ingenious construction of a special Hamiltonian. An el-given geometry. There are only very few geometrical ar-
egant equivalent approad¢B7] has been developed by Tip rangements for which the electromagnetic Green’s functions
[38], who used auxiliary variables for obtaining a canonicalcan be written down analytically: one of them is the system
theory even in the presence of losses. Another quantizatioof two half-infinite dielectrics with planar surfaces and a
scheme in which théclassical Green’s functions play a de- vacuum “layer” between them, as considered in R¢®.
cisive role is the input-output formalism developed byand[10]. However, by now, numerical packages are avail-
Savasta and co-workef89]. A quantization formalism start- able which allow one to find the required propagators nu-
ing from the Maxwell equations with stochastic currents hagmerically. We are going to study examples of heat transfer in
also been worked out in Refg10,41], and the important case particular geometrical setups in forthcoming publications.
of amplifying media could be includej@2], but the proce- We have employed two very different techniques to derive
dure in these works is quite different from that in R3]. expressions for the radiative heat transfer. These(iaran
Finally, we mention that an intriguing technical novelty hasapproach based on the Heisenberg equations of motion, and
been introduced by Bechl¢t7], who was the first to quan- (i) the Keldysh closed-time-path formalism with its dia-
tize the field in dielectric media in terms of path integrals,grammatic expansion. As we show in this work, both proce-
rather than using the canonical quantization scheme. The adures finally yield the same formula for the heat transfer,
vantages of path integrals include, but are not reduced to, theven though their underlying philosophy is radically differ-
trivialization of all calculations on the initial stage. Further, ent. The equations-of-motion method is much faster and
relevant developments are contained in Rpf8—48,50,51. more straightforward, but would become very awkward if we
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were to include any nonlinearity. On the other hand, the diaWe will use Latin indiceg ,k, . .., toenumerate the dielec-
grammatic Keldysh formulation requires the introduction oftric bodies which exchange the thermal energy. The sums
many different Green’s functions, and the calculations arever j,k, ... will be written explicitly. On the other hand,
somewhat involved, but this formulation is also suitable forGreek indicesy,, ... \,u, ... are used to denote compo-
developments aiming beyond macroscropic electrodynamicsients of vector fields and Green'’s functions. The sums over
Our paper is organized as follows: in Sec. Il we write those indices are not written explicitly; the summation con-
down the Lagrangian of our system and state the resultingention is used instead.
Heisenberg equations of motion, obtained via the Schwinger
action principle. In Sec. Il we then use these equations of A. Lagrangian and commutation relations
motion to derive the expression for the electromagnetic en-
ergy transfer. In Sec. IV we take up the second approach an ) . ; .
prgzide the fundamental Green’spfunctions neegzd for th 9hW'”geT[54-55]- Thus, we s_t_art with a Lagrangian Wh'Ch.
application of the Schwinger-Keldysh formalism, and de_stnl contains both the ve,locmes and the momenta. AS.IS
velop an elementary diagrammatic technique. In Sec. vV w&nown below, Schwinger's procedure allows one to write

exploit this technique for computing the expectation value Opown the dynamical equations and the constraint equations

the Poynting vector. We close the paper with several con®" the same footing. .
cluding remarks in Sec. V. We assume that every product of noncommuting operators

is symmetrized. The total free Lagrangibp reads

Our formulation of the action principle closely follows

Il. THE MODEL: LAGRANGIAN FORMALISM Lo=Lp+Lem*Lrp, 1)

AND EQUATIONS OF MOTION . - . .
Q where the Lagrangiahp describing the polarization field of

For the sake of being at least a little bit unconventionalthe dielectric is given by
we start with the Schwinger quantum action principle )
[54,59, and follow the ideas of Huttner and Barngt6] to B 3 dX;(r)
guantize the electromagnetic field in lossy and dispersive LD_JZI jd ri Py(r)- dt
dielectrics. Our system comprises the following subsystems:
(i) two dielectric bodies, describe@h the Hopfield model 1 2 w2
[18] as applied by Huttner and Barnettith the help of the _EMJ'“’OJ'XJ (0] @
polarization vector fieldX;(r), together with their conjugate
momentaP;(r) and velocitiesV;(r), where here and in the Within the Hopfield model, the mass parametérs have to
following the indexj = 1,2 refers to the bodies “1”and “2;"  be expressed in terms of the static polarizabilibe$17,18:
(i) the electromagnetic field, described by the scalar poten- 2 1
tial ®(r), the vector potentiah(r), the electric fieldE(r), M;j=(eowpb)) )

and the magnetic inductioB(r), and (iii) the reservoir g
: : o o The degrees of freedom of the electromagnetic field are de-
fields, which are coupled to the polarization fields only. TheScribed with the help of the Lagrangir,, [54];

independent-oscillator model of the reservoir degrees of free-
dom is employed52]. The reservoirs are described with the OA(r)
LEM: f d3r ot

1 2
Vi(r) +§M]-Vj(r)

help of the following quantities: the “positionsY;,(r) of
the reservoir oscillators, their momerda,(r), and their ve-
locities Wj,(r). The variablev carries the dimension of a 1 1 1
frequency and enumerates the reservoir oscillators coupled to ——B(r)-[VXA(r)]— EfoEz(f)ﬁLz—Bz(f)}-
the polarization field at the poimt Thus, there are two col- o o

lections of reservoirs, corresponding to two dielectrics, and (4)

every polarization oscillator has its own reservaoir. . . - .
y P Finally, the Lagrangian describing the coupling of the polar-

Two remarks seem to be appropriate at this point. First, "¢ field h o lated 1o h he f
one can model quite complicated dielectric functions of theZation field to the reservoir is postulated to have the form

media using just one polarization fieki(r) for each body, 2

one (per medium collection of the reservoir oscillators Lro= > dl,f d3r
Y;,(r), and one coupling functiop;, (introduced below In i=1Jo
particular, one can model a dielectric function with more 1 1
thn one absorptlon I|nel|n this wag5]. On the other ha}nd, + _ijszv(r) _ _PjVVZ[YjV(r)_Xj(r)]Z} (5)
it is also possible, and in many cases more convenient, to 2 2

introduce—for each dielectric body—several polarization o )

fields (and several different reservoir familiewith many  1he total Lagrangian is then given by the s Lo+L,,
absorption lines. Here, we develop our theoretical approacith an interaction Lagrangiah, reading

—eOE(r)-( +V<I>(r))

dy;,
Zjv(r)-( (th(r) —ij(r))

employing just one polarization field for each dielectric. The 2

generalization to many such fields and reservoirs does noj _ fd3r V.a.(NX (D1D(H) +a. (Vi (r)- Alr
present, however, any difficulty. Before we start explicit cal- ' 121 (V- gi(NX; (NP M) +0;(NVi(r)- AN}
culations, let us describe some of our notational conventions. (6)
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The indicator functiong;(r) is equal to 1 in the region of Z;i,(r)=pj,W;,(r). (19
space occupied by theh body, and equal to zero outside, so
that the polarization field, while occupying the whole spacelet us notice that no particular gauge condition has been
is coupled to the electromagnetic field only in the regionsmposed so far. From the above expressions we conclude that
where the dielectrics are present. We need to impose certathe Maxwell equations take the expected form:
conditions on the coupling functions, . They must be real,
otherwise, both the Lagrangian and the corresponding
Hamiltonian are not Hermitian. What is more,
eachp;, should be positive, as it plays the role of a mass
density—otherwise there is no stationarity principle for the B(r)=—VXE(r), (21)
corresponding actioncf. Ref. [56]). In addition, pj,,vz
should have no singularities on the half axiz 0, for we 1 2
demand that the coupling of the polarization field with all the V-E(r)=——V_. E [g;(r)X;(r)], (22
reservoir oscillators be finite. Finally, we shall assume that € =1
pj» has an even analytical continuation to real negative val-
ues of the variable.

Analyzing infinitesimal unitary transformations of the ac-
tion, one immediately obtains the following equal-time com-
mutation relations for the dynamically independent vari-

ables: X;(r)=V;(r), (24)
[X]"a(r,t),Pk’lB(r,,t)]:iﬁ 6jk6a'35(r—r’), (7)

. 12
E(N=c?VXB(N—-— 2 g(nNVj(r, (20

0j=1

V-B(r)=0. (23

Moreover, we find the equations for the polarization degrees
of freedom:

Vi(r)=—

1 (= 1
2+—| dup, 2)X-r+— (N E(r
[Y 0T Zior (1 D)1= 58,80 p0(v—v") (1 —1"), 0 MJo vin” X0 g G (NED)

® L e

N YAV
) +MJJO dvp;,voYj,(r). (25
[Aa(r D). Ep(r' )] = =i —8,p8(r—r"). €)
0 In the last equation we encounter, in the first term on the
right-hand side, the “frequency renormalization” of the po-
larization oscillators caused by their coupling to the reser-
We can, naturally, eliminate the momenta from the abovevoir. Finally, the equations of motion for the reservoir de-

Lagrangian. To do so, we apply the principle of stationarygrees of freedom reduce to
action under the assumption that the infinitesimal variations

B. Equations of motion

commute with the fields, and get Y (N=W,,(1), (26)
E(r)=—A(n-Vo(n), (10 Wi, (1) =2 X;(1) =Y, ()], 27
. 5 1 2 Thus, within the Huttner-Barnett approach followed here
E(r)=cVXB(r)—— 21 g;(r)V;(r), (1D there are initially no dielectrics, but only interacting quantum
0= fields. The dielectrics with their dispersive properties will
B(r)=VXA(r), (12) emerge at a later stage of the development of the theory, via

a term which appears in the wave equations satisfied by the
2 retarded electromagnetic propagators. Let us also notice that
1 2 : .
V.E(r)=—— 2 V-[g;(NX;(n)], (13 f[he fact_org]-(r), Wh|qh in our formallsm appears only in the
€0 j=1 interaction Lagrangian, can also be introduced to multiply
the free polarization Lagrangiafsee, e.g., Refl17]). The
)'(j(r)zvj(r), (14) difference is that in our approach the polarization field, when
uncoupled from the electromagnetic field, oscillates freely;
) o in the other approach, the uncoupled polarization field is
Pi(r)= —gj(f)VCD(f)—j dvr[ X;(1)—Y;,(1)] “static” or “frozen.” However, it seems meaningless to state
0 that, e.g.X;(r)=0in a certain region of space.

— MjwhX;(r), (15)
C. Application of the Laplace transformation
P(r)=M;Vj(r)—gj(NA(r), (16) In this and the following section, we consider the problem
: of computing the fields, and hence, the electromagnetic en-
Yiu(r)=Wj,(r), (17 ergy flux, as an initial-valu¢Cauchy problem. That is, we
_ assume that we are given the correlation functions at the time
Zj,,(r)=pjvv2[xl-(r)—Yj,,(r)], (18 t=0, and we seek them for later timeg’, . .. in the dis-
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tant future. This is because we are not interested here in
transient effects, but rather in sustained energy flow. One
efficient method to solve a linear Cauchy problem is to apply
the Laplace transformation; then we have the initial values

2

Pjv V¥

] s+ V2.

Hj(s)= s+woj+sf dv (37)

appearing explicitly from the very beginning. Hence, for any

operatorf (t) we consider its Laplace transform
f(s)= f dtf(t)e st (28
0

and obtain from Egs(20)—(27) the following system of
algebraic-differential equations:

~ ~ 1 ~
sE(r,s)=c2V xB(r,s) - Py 2 g;(nV;(r,s)+E(r,0),

(29
sB(r,s)=—V xE(r,s)+B(r,0), (30
sX;(r,8)=V;(r,5)+X(r,0), (31)

sVj(r,s)=—

wz--i-i ocdvp- v? |Xi(r,s)
0 M, ) SR

1 ~ 1 (= ~
+ ngj(r)E(r,s)+ HJO dyijV2YjV(r,s)

+V;(r,0), (32)
sY;,(r,5)=W,,(r,8)+Y,(r,0), (33

SWj,(r,8)=—v2Y;,(r,5)+12X;(r,5)+ W, (r,0).
(34)

We now adopt the following natural strategy: we first elimi-

nate the polarization and the reservoir variables to obtain

inhomogeneous wave equatiofis terms of the Laplace
variables) for the electric and magnetic fields, so that their

right-hand sides contain the initial values only. Then we

solve these equations using Green'’s functions, form the ex
pectation value of the Poynting vector,

2

YJV(r s)= X i(r, s)+ [sYly(r 0)+W,,(r,0)],
(39
and, moreover,
H;i(s)V(r,s)= —[H;(s)—s*]X;(r,0)+sV,(r,0)
L 90 s
S
X[$%Y,(r,0)+sW,,(r,0)], (36)

where the resolvents(;(s) are given by

and invert the
Laplace transform. At the first stage of this procedure, we get

There are three contributions to the dynamics of the vari-
ablesV;. First, there are the dynamics determined by the
poles of the resolvent functiorig;(s) and the initial values
Vj(r,0) andX;(r,0). Second, there is the contribution from

the electric fieldE(r,s), and, third, the contribution from the
reservoir, associated with the additional polessat*iv.
But, as one can prove in a way fully analogous to that in Ref.
[17] [p. 910, Eqs(42)—(44); cf. also the more detailed cal-
culations by Eberlein in Ref57], Appendix 2, 7;(s) does
not have any zeros for non-negative valuessofhus, for
sufficiently long timés), the expectation value and any mul-
tilinear correlation function involvingv; and X; will not
have any terms associated with the initial conditions for
these operators, as these term are damped. In particular, if we
make the simplest choice

_ArM;

jv= ’
771/2

(38

so that the produquyv2 becomes a constant, we find

H;(s) =52+ wh; +27;s, (39

with zeros at—y*i+wg; — yj, which shows that the initial

oscillations(and correlationsof the operator; andV; are

damped, whatever the relation betweeg) and y; might be.
For this reason we write symbolically

V2

Vi(r.s)=H; X(s)

g;(r)
_sE(rs MJ dvaVS 27

X{s?Y;,(r,0)+SW,,(r,0)}|, (40)

leaving out the initial values of the polarization fields, with
the understanding that the Cauchy data for the polarization
operators can be omitted only after the expectation values
have been formed, and all the time variables have become
very large.

After eliminating first the polarization velocity operator
and then the magnetic induction operator, we find the follow-
ing wave equation for the electric field:

2

~ ~ S

VXV XE(r,s)+e(r,s) —2E(r,s)
c

2

P 2

=1

2

g;(r)
MjH;(s)

S
—ZE(r,0)+V><B(r,0)
c

L

Here we have identified the expression

GoC

[SYJV (r,0)0+W;,(r,00]. (41
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2 2 2
1 gj(r) ~ S g;(r) Pijz
rs)=1+ /. 42 3,
( )= GOJElMH(S) 42 (r.s)= eOC 1./\/17'( (s)Jo S+v2
with the dielectric function, considered as a function of the X[sY;,(r,00+Wj,(r,0)]. (47)

Laplace variable. Because of the location of the zeros of the
resolvent functionsH;(s), this dielectric function has no
poles in the right half of the plane. In view of the fact that . CALCULATION OF THE POYNTING VECTOR BY

the functionsg;(r) are equal to 1 in the region of space MEANS OF THE EQUATIONS OF MOTION

occupied by thgth body, we conclude that the expression ) )
Now we are almost ready to write down the expression

~ - for the expectation value of the Poynting vector. The very
(s)=1+ H(s)]7t 43 o : .

i(S) [eoM;H;(s)] “3 definition of this quantity is, however, a somewhat subtle

matter. To begin with, we must not define the Poynting vec-

can be interpreted as the dielectric function of ilte body. )
tor simply as

Here, the tilde symbol is used to distinguish the dielectric

function as expressed in terms of the Laplace variable from

the same function expressed in terms of frequency, which we

shall denote ag;(w). S(r,O)=E(r,t) xXH(r,1),
Taking once more the fast damping of the initial polariza-

tion correlations into account, the wave equation for the

magnetic inductions reads because this operator is not Hermitian, while the expectation
value of the Poynting vector must be real. One way out could

2 be to use a symmetrized form of the above product. How-

VXV XB(r,s)+e(r, s) B(r S) ever, we are better guided by the standard quantum field-

theoretical definition of the energy-momentum tensor.
Namely, taking into account the fact that the electromagnetic

:;(r's)iz B(r,0)— izv X E(r,0) vacuum state ve_ctor s_hc_)uld be invariant With respect to Poin-
caretransformations, it is necessary to define the total mo-
2 ) mentum of the electromagnetic field as a normally ordered
S g;i(r) [~ SRy operator. This definition also guarantees that the momentum
eoc? T1 MK (S)Jo  s2+ 42 (and energy of the vacuum vanishes. If we now make the

natural requirement that the Poynting vector should be the
spatial density of the total momentum of the electromagnetic
field, we arrive at the definition

X[SVXY,,(r,00+ VXW,,(r,0)]. (44)

These Eqgs(41) and(44) can be solved formally with the
help of the Green’s function®5(r,r’";s) andDM(r,r’;s):

S(r,t)=:E(r,t) XH(r,t):, (48)
E(r,s)= f d3r;DE(r,r1;9)[J(r1,8)+ Ceul,

where O: denotes the normally ordered form of the operator
E(r,s):f d3r,DB(r,ry:9)[J(ry,8)+Cey], (45  O. It should be noticed that this definition cuts off any pos-
sible vacuum contribution.
In order to obtain the expectation val(®&(r,t)), we need
to invert a double Laplace transformation with respect to its
two variabless; ands,. This is achieved by means the for-
mula

where theCg), denotes the terms depending on initial con-
ditions for the electromagnetic fields only. The above
Green'’s functions themselves satisfy

2
- S
VXVXDE(r,ry;s)+e(r,s)—5DE(r,ry;8)=—s8(r—ry), L
c .
f(t,t")]p =—f dsesltf ds,e%tf(s,,s,),
(4| =t (2mi)2) e, 1 c S (S1,S2)
y ~ 5 (49)
VXVXD (r,rl;s)+e(r,s)—2D (r,rqe;s)
c

=VX18(r—ry), (46)  where the contour€; andC, run parallel to the imaginary
axes in the compleg; ands, planes, leaving all singularities

where 1 is the unit dyadic. The “current” in Eq(45) is, of T(s;,s,) on their left-hand side. This leads to the expres-
naturally, sion
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d sleslt
C1

(S(r.0))= (2mi)?

XJC ds, e%2'(:E(r,s;) X B(r,s,):).  (50)

Now we can get rid of all the terms containing the initial

correlations of the electric and magnetic fields, since we as-

sume that the electromagnetic field is initially in the vacuum
state. What remains gives the following contribution to the
expectation value of the Poynting vector:

(Su(r, )= t 1 j dslesltJ dszes2tj d3ry
« (2mi)2 fo <7 c,

xfd3r2f dV1J dv D, (r,r1,S1)
0 0

M
XDy, (r,r2,52)Ry 4(r1,r2,51,S0),

(59)

where the correlation functioR, ,, contains only the contri-
butions from the reservoir fields:

S152 9(r1)gu(ra)

Tk MiMH;(s1)H(S2)

Ryu(r1,r2,81,8)=

2.2

pjvlkaZV]_VZ
(Si+v)(s5+ v3)
+ijl,)\(r1!O)J[SZkaz,,u(rZ!o)

+Wk1/2,,u,(r210)]:>'

<:[SleV1,)\(rllO)

(52

To compute the correlation matri?,, we need the initial

states of the reservoir. Naturally, we choose this initial state

I' to be the tensor product of density matridés and I',,

with
ex;( Bih fd rf dva]M(r)AjV’a(r)>

exp{ Bjh fd3 f de]”(r)AJM(r)”

(53

The annihilation and creation operatds, andAjTV appear-
ing here are defined in terms of the reservoir operatoasd

Z,
Ajy<r>=\/p;;( Yilr0
ALN= 2 ( Y},(1,0)~

while g denotes the inverse temperature of jtiereservoir.

ST, 0)) (54)

—— 2T 0)) (59

PHYSICAL REVIEW &8, 043823 (2003

<:Yle,)\(r110)YkV2,;L(r210):>

[exp(Bjfivy) — 1] 151k5AM5( —v5)
pjvl 1
X o(ry=rp), (56)
Yy, a (11,00 Wy, ,(r2,0):)=0, (57)
(W, (11,00 Yy, u(r2,0):)=0, (58)

<:W]'V1,)\(r1!O)kaz,u(rZ!O):>

P L expt Bt v1) — 1] 2838y, 8(v1— 1) 81 1—T5).

jV]_

(59

Taking everything together, we find that thecomponent of
the Poynting vector can be written in the form

(Sa(r,t)>— 2 wﬁy,f dslesltf dSZeszt

(271)? €

Xf d?’rlfo dVDE’)\(r,rl,Sl)D'\yAx(r,rl,Sz)

XR'(r,51,S,), (60)

where we have performed integration by parts, and where

gjz(rl)
MEH;(s1)H;(s)

R,(rlyslySZ)zslsZE
]

ijV3

(sE+17)(s5+17)
X[expBifiv)—1]"L

We are now ready to perform the integration over the
contoursC, andC,, taking into account that only the poles
ats; ;= *iv contribute, since all the singularities of Green’s
functions have real parts smaller than zero. The latter state-
ment follows from the fact that the integration varialle
effectively runs only over the regions of space filled with a

(lossy dielectric. Consecutive integration ovef and s,
eventually yields

(5152t %)

(61)

(Sal1,1) WZ fd3 fd g’( 1)
pjvv _
X—Hj(iv)Hj(—iv)[EXp(’thv)_l] 1

X{DG\(r,r1, i) (r,ry,—iv)

+DG\(r,ry,—iw)D(r,ry,iv)}. (62)

The above choice of the initial state then leads to the follow-

ing formulas for the initial correlations:

Finally, we consider the dielectric function of thigh body,
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tion theory is indispensableit is also quite instructive for

the linear model considered in the present paper. In contrast
(63) to the general case, here the perturbation series can be

summed up exactly, in the sense that the solution reduces to

where the infinitesimal positive frequency guarantees @ single linear integral equation of the Wiener-Hopf type, or,

€j(w)=¢j(s=—iw+n)=1+ oM (— ot )’

causal behavior, and utilize the identities simpler yet, to a partial differential equation with nontrivial
continuity conditions.
w P, - 1 = oy, v Because of the excellent reviews mentioned above, we
f dyv————= iz—ijw PJ dv shall not provide any general description of the Keldysh for-
0 w—r*igw i 20 ) v v-ow . . : S
64 malism, but restrict ourselves to a few basic definitions.

Let us consider a general time-ordered correlation func-
tion of two operatord_(t) andM(t), denoted as

(TILOME) D),

where the average is taken over an arbitrary state, equilib-

rium or nonequilibrium. This product can be written [&9)]
This expressiori65) then allows us to eliminate the auxiliary ,
function p;, from the expressioi62) for the Poynting vec- Tr{po Tel SclLo(HMo(t)1},
tor, in favor of the observable quantity Ire;(w)]. In this  \yhere p, is the density matrix corresponding to the initial
way, we obtain the principal result state L(t) andM(t) are the interaction-picture representa-
tions of the operatork(t) andM(t), andT is the chrono-

to write its imaginary part in the form

3
Pjo®

T
260 M2 Hy(—Tt mH(iwtn)

Im[€j(w)]= (65)

h o0 I . I . . _
_ 3 2.2 ogical operator, which arranges the operators it acts on ac
(Su(1)) I G“BVEJ-: J d rljo dvr7gi(ra) cording to the sequence of their arguments on the cor@our
) The latter is led along the realaxis from —« to +«, and
X[exp(Bijfiv)—1] “Im[€(v)] then back from+ to —o. The arguments, t’ lie on the

E . M r positive branch of this contoufrom —« to +). Finally,
XD (1. i) Do (1 ry, —iv) the S matrix S is given by

+DG, (1,1, —iv)DY(r,ry,iv)}. (66) i
=Tex —J dtLin(t) |- (67)

Let us notice that an infinitesimaj (of any sign has to be S r{ﬁ c el ))
added to the argumenti v of the Green’s function®F and
DM, since these functions also dependefm), so that they
contain the singular integral ovet, a way to get round the
pole on the positiver axis should therefore be specified. N /
Regardless of the sign of, in both terms in the curly (LAOME))=Tr{poTc[ScbLo(t-)Mo(t1) ]}
bracket of Eq(66), one of the Green’s functions is retarded, , this way. The subscript4” is assigned to all points lying
and the other one advanced. This characteristic feature is mgh, ihe positive branch of the contour, and the ™sign to
again, and clarified further, in the following sections, in thepoints lying on the negative branom'lr’om +oo to —x).

framework of the Keldysh formalism. Similarly, one can express a correlation function containing

Up to the chosen system of units, the above rei8l 5, antichronological product with the help of such a contour
equals a formula already used by Polder and van Héye

The important point to observe is that one can also repre-
sent an ordinary correlation function

[cf. the expression between their EqS) and (6)]; let us Employing a closed-time contour, one can formulate
not!ce, howe_-v_er, that their Green’s functions have not beerl’ﬁeynman rules for a nonequilibrium quantum-field theory
defined explicitly. [59,60,62. What is very important, one can also write down
the Dyson equation resulting from the resummation of

IV. KELDYSH FORMALISM graphs. It is convenient to write the Dyson equation in matrix

In this section we abandon the equations-of-motion apl‘orm, rather than in a form employing closed contours. We

. will need two such matrix forms: First, we consider the ma-
proach developed above and employ the closed—tlme—contoq "

Schwinger-Keldysh technique, which allows one to apply

diagrammatic time-dependent perturbation theory to non- G (r,r'tt)) G t(r,r tt)
equilibrium phenomena. The value of the closed-contour for- Gt/ tt)=| ct—(r ¢/ 1 ¢ PR

malism has first been recognized by Schwin@, but here v G (rritt) GT(r L)

we prefer to exploit the diagrammatic version due to Keldysh (68)
[59]. Very useful presentations of the Schwinger-Keldysh

theory are given in Ref$60—63. Although the full strength the elements of which are Feynman, anti-Feynman, and “or-
of the diagrammatic approach becomes apparent only whedlinary” correlation functions. These functions are defined as
there is multilinear coupling of the fieldso that perturba- follows:
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[ 1 for >0,
G__(r,r,,t,t’):_%<T[¢(r,t)l//1-(r,,t,)]>, (69) 0(7’):

0 for 7<0.

whereys(r,t) is a boson field operatdwe shall not have to  ysing these functions, we construct the following ma@ik
deal with fermion operators in this paper

0 GA(r,r' t,t")
GR(r,r',t,t")  F(rr'tt’) |

G++(r,r/,t,t,):;i_<7r[lﬂ(r,t)lﬂ1.(r,,t,)]>; (70) G,(r’r,’t’t’):

~ (78
whereT is the antichronological operator; and
and define a self-energy matrk’ [59] as

Ory,rot,t)  BR(ry oty ty)
. 2(rr2 ) = SAr Lt t) 0

[

Gt == (' ). (72 (79

G T (rr'tt)=— ;i—(w(r,t)zf(r’,t’)), (71

We remark that our notation follows the convention em-Then one finds ?gain aDysonI equation of the f¢rd, with
ployed by Lifshitz and co-worker60]. In most other refer- G replaced byG’, andX by X".

ences the usage Of the SuperscriMs”“and w__n adheres to Th|S matriX I’epresentatioﬁ’ Of the Green'’s funCtionS iS
the opposite convention, i.eG~~ there denotes Green's More convenient for practical calculations. From the Dyson
function involving the antichronological operator, etc. equation forG’ one infers that the equations f&~ andG*

In a similar manner, we introduce a matrix containing fourseparate from those for the functién leading to

self-energies:
g GRA(rr" t,t)=GORA(r r' t,t")
+f d3rlf d3r2J dtlj dt,

27TT(rg ) 2+(r1,r2,t1,t2))

E(rl,l’g,tl,tz):(2+—(r1'r2't1,t2) 3(ryr,t,t)

(73
Then we have XGORA(r, 1yt ty) - ZRA(r 1 t,t)
G(r,r' t,t") XGRA(r,, I 1, 1), (80)
=G°(r,r’,t,t’)+f dtlf dsrlf dtzf o, F(r,r’,t,t’)zjdsrlj d3r2f dtlf dt,
X GO ry 1) S (11, Taity 1) G(Far o), (74) XGOR(r,ry,tt) - [Q(ry,raty,to)

A ’ ’ R
where GO(r,r’ t,t’) denotes the free Green's function ma- XGA(2, M 1, 1) F 25y, 2,0, )
trix. XFE(ry,r',ty,t")]. (81
Second, and alongside this matrix form of the Dyson
equation, we shall make use of another form written in terms\aturally, there exists a connection between Green’s func-
of the retarded, advanced, and symmetrized correlation fungions and the self-energies entering the matri@esnd G’ :
tions. Let
GR:G**_Gf+:G+f_G++

RO L) = = 2 (0 DU )+ 07 )t 1) e G g g

(75)
— ++_t— -+
be the symmetrized Green’s function, and®t andG* be F=G +G GG (82)
the retarded and advanced Green’s function, defined in thgnd
standard way with the help of commutators:
i SR=3""4+377,
GR(r,rst,t') == ([y(r, ), ' (r ) Det—t"),
(76) EAZE__+E+_,
Q=3""+3"". (83

i
GA(r st t) = (Lp(r,t), ¢l (r ) e’ —1), (77)
Our strategy in this section is first to list all relevant
where 6( ) is the Heaviside function, Green’s functions of the reservoir, and then to draw some
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simple Feynman graphs to write down their Dyson equation 1 1
and get corresponding “dressed” Green’s functions of the H’iﬁjj,(rl,rz,v,v’,w): —
polarization field. Finally, we draw a further family of graphs ’ Piv 0= v —inw

(using these dressed polarization lings formulate the
Dyson equation for the electromagnetic propagators. In order
to perform the computations in this last stage, we need to (87)
choose a particular gauge. This is because the interacti
Lagrangian which enters th® matrix, and hence the self-
energy, is expressed in terms of potentials. It is most conv
nient to work in the temporalPauli-Heisenbenggauge, in

X 85855 8(v—1") (11— 12).

Rs usual,7 is an infinitesimal number added to indicate the
location of poles inw space. Naturally, the retarded and ad-
&anced Green’s function must not depend on the states of the

! reservoirs.
which (c) The causalFeynman Green’s function
o(1,1)=0. (84) Hopjir(rorz. v’ ,o)
] : Bitv
Then, after eliminating the momenta and thendB fields, " 2p;, Sapdijjr6(v—v")8(r1—rp)-| mcoth —
we obtain the Lagrangian in the following form: L

2 1 1 wo—v oty
L=JZ1 f d%[zijf(r)—EMjw%jX,?(r)} (89)
(d) The Wightman-type Green'’s function

X[(w—v)+d(w+v)]+iP

+1J d3r| e A2(r)—i(v><A)2(r) b ,
2 0 ,LLO Haﬂyjj/(rl,rz,V,V ,w)
S (v [ @l Lo Lop02 53y =) (11 1) t%ﬁiﬁv)
o W2 (r) = = . , =— 08,30 0(v—v")8(r;—r,)-| coth ——
+J§l fo dvfd r[szVWJ,,(I‘) 5 P2 (Y1) 2p;, 2B 172 5
2
X[(w—v)+ (w+v)]+(w—v)—w+v)]|.
7|+ 3, [ drgmvio-an. @ A A
(89
where the last term is the interaction Lagrangian. (e) The anti-Wightman-type Green'’s function
H;g”,(rl,rz,v,v',w)
A. Green'’s functions of the reservoir fields ’ )
Below we provide a summary of thieee Green’s func- =— '_Tr(saﬁgjj,g(,,_ p')S(ri—r5)- cot){ 'Bl_hv)
tions of the reservoir fields, valid under the assumption that 2pjy 2
the reservoirs are in thermal states with inverse temperatures
Bj, which are taken to be independent of (This latter X[(w—v)+S(w+v)]—8(w—v)+w+v)|.
assumption can, in principle, be relaxed, so that we could
also take into account temperature differences within one and (90)
the same body. . , .
Green's functions written below are obtained directly () The symmetrized Green's function
from the definitiong69)—(77) of the preceding section, with plres) (RN AN
the general field operatorg and ¢ replaced by theéHer- apjj’ L2
mitian) operatorYj, , . Itis convenient to work with Green’s i Bihv
functions which are Fourier transformed with respect to time, =~ —— agdjj: 8(v— ") &(r,—r5) - coth ——
so that they are functions of two spatial variables and one v
frequency variable. Thus, we have the following list: X[S(w—v)+ S(w+v)]. (91

(a) The retarded Green’s function ) . . . .
These functions will be used in the following subsection for

1 1 obtaining the self-energies and the dressed polarization

Hzﬁjj,(rl,rz,v,v’,w)z—# Green’s functions.
' Piv w*— v +inw

X 8058551 B(v—1") 8(F1—15). B Th-e dressed polarization-field Green's Tunc-tions -
Taking into account the form of the polarization-reservoir
(86) interaction, as specified by the Lagrangi@d), we formu-
late the following Feynman rules to get diagrammatic expan-
(b) The advanced Green’s function sions of Green’s functions.
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(1) Any free polarization propagator, i.e., a correlation From the above matrix equation it follows that the expres-
function of the polarization fieldX;(r), is represented by a sions for the self-energies needed to compute the retarded,

dashed line. advanced, and symmetrized polarization propagators read
(2) Free reservoir correlations are represented by dotted
lines. Q=Q"S=H "+H"",

(3) Since the interaction is bilinear, all graphs have a
chainlike shape: the vertices connect only two lines.
(4) Each vertex is associated with an indeand a factor
2
ijV .
(5) To obtain a diagram, we integrate oveandr for all
internal lines, and sum over all internal vectorial indices.

~ Forinstance, the Feynman propagator~ of the polar-  Thys, we obtain the following Dyson equation for the re-
ization field is represented, to second order, by the graph tarded Green’s function:

ER:ER,res:H——_H—+,

EA:EA,I‘QS:H**_H+*. (93)

T - - —— 4+
- N - - B - - - KSB,jk(rler;tlth)
+ = = e - —— - " ”
- + * - =K3§,jk(rl,r2;tl,t2)+% J_wdt3f_xdt4f dr,
ST T ST . .
de3r4J dV3P|V3V§f dV4PmV4V421
L L e - — —— 4 .. 0 0
—_ — + —_—

XK(c)v’s,jl(rlrrS;t11t3)H5)\,Im(r31r4;V3aV4;t31t4)
Here the bold dashed line denotes the dressed polarization
propagator. With each vertex we have to associate one of the
two signs, “+” or “ —" [60]; each “+" vertex yields a
factor “— 1" to multiply the corresponding expression with. where K°R denotes the free retarded polarization propaga-
Therefore, in fourth order we obtain 16 similar linear graphsitors, and we have used the identiy ~—H ™ *=HR. In
each one containing three dashed lines and two dotted lineprinciple, the above Green’s functions depend on two times

XK)'?ﬂ,mk(r4ir2;t4it2), (94)

They all share the elements

In addition, to each of the four vertices eithet“ or “ —"
has to be assigned, resulting in 16 different graphs.
All graphs can be summed up exactly: They all are ob

t, andt, separately. However, as bo#°R and the self-
energy> R depend only on time differences, we find that the
twofold Fourier transform oKR, being a function of the two
frequenciesw; and w,, contains the overall factob(w;

+ w,). This implies thatkR actually is a function ot;—t,
only, and the above Dyson equation can be solved by just
one Fourier transformation with respect te=t;—t,. We
obtain, therefore, a linear equation #6F which, because of

tained by graphical iteration of the diagrammatic Dysoni,e simple structure of botk®R and HR, leads to the fol-

equation,

lowing solution:

- e = = - — — — 4 — — — —#--e-ee-eee- o= o= = - |
- - - - - - - - KR g ik(T1.12:0)= 8k 8,50(r1— 1)K (@),  (95)
4 = = = —#eemeeneenes R )
- + + - with
Bt . PR
PjyV
KR(w)=| M(w?— w? —wZJ dv ,
L geean. - = = — J( ) [ J( 0) 0 wz—vz—l—inw
- - + - (96)

We conclude that the self-energies required for dressing thg e the infinitesimal imaginary term in the denominator of

polarization-field Green’s functions are easily expressed i
terms of the reservoir Green'’s functions, namely,

s 5| )

-+

H++

s
S

H--

. 92

he integrand stems from the retarded charactet f

This result can be compared with that is provided by the
equations of motion. The retarded and advanced propagators
do not depend on the initial states; they are given by certain
inhomogeneous solutions @htegrojdifferential equations.
From the equations of motion for the polarization field

where we have omitted indices and arguments for simplicitycoupled to the reservoir field we find that the retarded polar-

of notation.

ization propagators satisfy
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1 o]
_H]fo dejVVZfa,j(rlyr21Vytyt’)y (97)

R '
Keagjj(T1r2,tt")

where the functiorf, ; is defined as
i
fai(rer2,mtt')=——6(t-t)

X(LY0,a(r1,0), X g(r2,t") 1),

and

1 oo
2 _ 2 2
=+ —1 dvo:
W7j = Wo; MjJO vpj,V
Now the equation of motion fof , ; reads

2
E—i_ Vz) fa,j(rler'lVatyt,): VZKZHVJVJI(rlyertyt,)y

(98)

so that after taking the Fourier transform and solvingk&y

Eq. (96) is recovered. The infinitesimal imaginary term in the
denominator of the integrand appears becdyseitself is a

retarded correlation function.

Similar to Eq. (96), the advanced Green’s function is

given by
Kgﬁ,jk(rlyrz;w):5jk5a,35(r1—l’2)Kf\(w), (99
with
2 -1
ijV
K (w)= /\/l(w —wo) wjdv >
w’— 1’ —igw

(100

The third important Green’s function,

| .
FoBik(r1,raity to)

:2 dtgf dt4f d3r3J' d3r4f dV3pjy V%
I,m — —o0 0 8

” 2, 0R .
Xfo dvapj,, vaKay i (r1.r3its,ta)

X[ (r3, a5 v3, vaits t) K g i Fa F 2t t)

FHE (13,1451, 045t L) FRY (Ta .ot 1) ]
(101)

the symmetrized
Green’s function, satisfies the following Dyson equation:

PHYSICAL REVIEW A68, 043823 (2003

where

FPo(w)=— miK{(w)pj,o COt%Bg )KA( s
(103

The above correlation functions can now be used to obtain
the dressed Green’s functioks —, K™=, K™%, andK™*,
More importantly, they will be employed in the following
section to derive the Green’s functions of the electromag-
netic field.

C. The correlation functions of the electromagnetic field

The correlation functions of the electromagnetic field are
again obtained from the general formul&9)—(77), with the
electromagnetic potential operatag, replacing the general
field operatoriy. The correlation functions of the free elec-
tromagnetic field which are most important for our purposes,
namely, the retarded, the advanced, and the symmetrized cor-
relation function, satisfy the following wave equatidi@&l]:

—pmod(r—r’),
(104)

2
~ w4
VXVXDRA(r I o) = DA )=
c

2

A w A
VXVXFEM(r,r’;w)—?FEM(r,r’;w)zo. (105

In the latter equation the superscript “EM” indicates that the

symmetrized propagatét=™ pertains to the electromagnetic
field. The retarded and the advanced Green's functiass
well as the Feynman and anti-Feynman Green’s functions
satisfy one and the same equation and differ only in the
boundary conditions. We will now construct the dressed cor-
relation functions with the help of the diagrammatic tech-
nique.

Since the interaction Lagrangian has the form

2
Lint= >, f d3rg;(r)V;(r)-A(r),
=1

we infer that in the graphical expansion every vertex will
join two lines only, and the only connected graphs are linear
ones. The perturbation expansion involves the correlations
functions of the velocitie¥; , but not those of the “displace-
ments” X;. However, all the two-point Green’s functions
defined in terms of velocities can be obtained from those
defined in terms of displacements simply by differentiation
with respect to the two time variables involved:

az

Kyw(ty,ta)= (106

Lo, ——Kyx(t1,t5),

Once again, we realize that these Green’s functions depenghere Ky, denotes any of the dressed “velocity” Green’s

only on the differencer=t,—t,.
transform, we find the solution in the form

aﬁjk(rl M2;0)= 6ji 0,56(r1 —fz)FpOI( ), (102

On taking the Fourier

functions of the polarization fiel¢that is,K~~, K~ *, etc),
andKyy is the corresponding “displacement” Green'’s func-
tion. In the language of the Fourier transform, this means
that
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K =0’K : 10
)= el ) 1 FEraraio)=3 | @ragtua 5007

Thus, when building the graphs to obtain the electromagnetic

Green'’s function, we must only remember that every dressed X [Ffo'(w)D%(r3,r2;w)
polarization line should be multiplied hy? when taking the R EM
Fourier transform. TK(@)FXg(r3.rz;o)]. (112

Drawing the graphs for the electromagnetic correlation

functions is fully analogous to that same procedure for thi‘e);]t' %pplyl?gEthelfllﬁeregt?ll operat(ﬁ X.VX w*/c” 10
polarization Green’s functions: we have four graphs in the?th sides of Eqs11]) and(112), we obtain
second order, 16 graphs in fourth order, etc. Moreover, one

2
has to associate with every vertex the fagg(r), and one VXV X Y DRA(F, 1y w)
of the two signs. To compute the graphs, there is no need to c?

integrate over thev variables, as the lines are already

independent, but now there is an additional summation over = — (=) — taw? 200 YKRA( @
j. It is easy to realize that all the graphs can be obtained by Hod(l1=T2) = Mo 2 gi(ruK™ (@)
iteration of the following graphical Dyson equation:

XDRA(r, 155 0) (113
ANV = ANV ANV N = = = ANV +
- - - - - - - - and
+ 'vvvv\r—--ovvw» - w2
- - (VXVX——Z)FEM(rl,rZ;w)
C

=—uow2§ gZ(r)[FP(w)DA(ry, 15 0)

+KR(@)FEM(ry, 1o 0)]. (114
The undresseddressell photon propagators are denoted
here by thin(bold) wavy lines. We then find that the self- From Eq.(113) we then recover the refreshingly well-known

energies, considered as functionswgf are given by differential equations for the dressed retarded and advanced
Green'’s functions, namely,
AL )
+- I L I 1 . w? .
DA K K VXVXDR(1 ) = elr, @)D w) = od(r —1"),

where everK is to be understood a6y . (We use the same (115
symbols here to denote the self-energies as in our Dyson .
equation for polarization propagators, hoping that this willtogether with

not lead to any misunderstanding-his equation also im- )

plies V><V><I5A(r,r’,w)—w—z:(r,cu)lﬁA(r,r’,w)=,LL05(r—r’),
c
ES'ﬂA,jk(rl,rz;w):wZKF'A(w)5aﬁ5jk5(r1_r2), (119
(109
where
Qoap(r1.F2i0) = 2F P () 8,50 8(r1—15). .
(110 e(rw)=1- — X gf(NKf(w) (117
0]

The Dyson equation for the retarded and advanced Green’s _ o
functions becomes quite simple after Fourier transformatiodas no singularities in the upper half plane, whereas
with respect to time:
r —1—i2 (KA 118
W)= 0 < g (NK;j(w) (118
DE'ﬁA(rl.rz;w):Dg;gR'A(rl,fziw)"'wzz J dgrsgjz(rs)
! has no singularities in the lowes half plane. Similarly, Eq.
XDYFA(r L 13;0)K[A(w) (114 leads to
XDEA(r3,1p;0). 11
v (T:7250) (1) FE;}A(HJZW):&)Z; f d3r3gj2(r3)D5y(r1!r2;w)

On the other hand, the Dyson equation for the symmetrized ol A
electromagnetic propagator reads XFP?(0)Dys(r3,r2;0). (119

043823-13



JANOWICZ, REDDIG, AND HOLTHAUS PHYSICAL REVIEW A68, 043823 (2003

Exploiting the fact that the Wightman-type Green’s function

i 1o
~ R ’. — E,R .
D*~ is related to these propagators through the formula DR(r.rw)=——=D""(r,r";w),

L1
D* =5 (FEM+DR-D%), (120

i
2 DA(r,r’;w)=—%DE'R(r,r’;w),

; ; S5+ —.
Egs.(111) and(112) yield the wave equation fdD ™ ~: VXDR(r, 1 0) = — D" R(r 1': ),

2
~ W A
VXVXDT(r1"0)— =D (1 o) VXDA(r,r";)=— puoDMA(r,r';w) (125
C

between the various Green’s functions. It is also obvious that
= — pow?Y, G2(r)IKR(@)D (11,133 0) there are trivial relations betwedd®R, DEA DMR and
i DM-A on the one hand, and the Green’s functi@fsandD"
depending on the Laplace variable as introduced in the sec-

+=( \AA
K (0)D(ry,rz,0)], (12D tion on the othefwe omit spatial arguments

where, in analogy to Eq120), DER(w)=DE(s=—iw+ 7),

1
K" (0)= 5[|:J-F’°'(w)+KjR(w)—Kj*(w)]. (122 DEA(w)=DE(s=iw+7),
This wave equatioril121) can be solved with the help of the DMR(w)=DM(s=—iw+17),
retarded Green'’s function, so that we finally obtain
DMA(w)=DM(s=iw+ 7), (126)
A+ — _ 2 3, 2 AR .
D" (rure=w EJ: f d°r30;(rs)D7(r.r350) where 7 is an infinitesimal positive constant which guaran-
tees the correct treatment of the poles in the compbex

XK (0)DA(r3,r;; ). (123  plane.

For the sake of comparison, we shall also employ addi- \; cALCULATION OF THE POYNTING VECTOR BY
tional auxiliary electric @E) and magnetic Ii)’v') Green'’s MEANS OF THE DIAGRAMMATIC EXPANSION
functions of the retarded and advanced type which corre- . .
spond directly to the Green’s functions used in the pioneer- _1N€ “a” component of the Poynting vector can be ob-

ing work by Polder and van Hov@]. They satisfy the fol- tained from the above symmetrized and retarded propaga-
lowing differential equations: tors, if we manage to express the normally ordered correla-

tion function in terms of them. This is by no means trivial.
2 Let us start with the definition
w
VXVXDER(rr,0)— — e(r,0)DER(rr,w)
c (Sa(r 1)) =€npy lim lim (Eg(r,t)H (r',t"):).

=lwo(r—r’), o (127)
EA L, w’— EA L If we decompose the electric and magnetic fields into their
VXVXD=A(r,r 'w)_ge(r*‘”)D A, ) positive and negative frequency parts,
=—iwd(r—r'), =P+ g,
w2 where s is any of the operatorg; andH,,, and the super-
VXVXDMR(rr', 0)— — e(r,0)DMR(rr", o) scripts (n) and (p) denote the negative- and positive-
c frequency parts of an operatdinstead of “(—)" and
—VX18(r—r1") “( +)" superscripts, in order to avoid confusion witht+*—"

and “—+" superscripts labeling particular Green’s func-

’ tions], we find

MA . o N 9 — MA/, 1
VXVXDYA(r,r' w) Cze(r,w)D (r,r',w) (:EB(r,t)HY(I”,t')»

=VX18(r—r’). (124 =(Eg(r,0H(r ') +(HD @ tHEP(r,1))
From Egs.(115 and(116) we then have the relations —(EL(r,pHO(17 1), (128

043823-14
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As our diagrammatic expansion involves the electromagneti@he presence of the Heaviside function now allows us to
vector potential, but not the fields themselves, we cast theestrict the integration to positiveor negative frequencies.
expression for the normally ordered product of fields into thel et us note that this restriction to positive frequencies in the

form integration overw has not been justified in either R¢®] or
Ref.[10]; though physically plausible, it is rather difficult to
o i% o, understand from the mathematical viewpoint in these papers.
(Ep(rH,(r' t ):>:_M_fvwﬁvx{DBu (rritt’) Here this restriction is a result, rather than an assumption,

and it is a direct consequence of the fact that the Poynting
+DM(r st . )=DY)(rr';t,t)},  vector is defined in terms of the normally ordered product of
(129 operators.
Now we change the integration variable framto — w,
Where and use the fact thaD”(w)=DR(—w) and DR(w)
=D”(—w). Then relationg125 and(126) allow us to ex-
press the expectation value of the Poynting vector in terms of

(N)(r it )= ——(A(”)(r 7 )A(p)(r t)), the auxiliary electric and magnetic functions introduced in
Eq. (124):
i
DNt ) == (AP(LDAR( ). (130 (S,(r.)=5 WE AR ISR E
We already know that our Green’s functions depend on X[DE’A(f,rl;w)D';A,;R(r,rl;w)

the difference—t’ only. This means that the above Green'’s
functions allow for a Fourier representation c%naining just
O e e e LD e we have used th reciprociy relaioDs, (11 "o)
above normally ordered product of the electric- and, wu(r",1; @), which hold for the electromagnetic Green's
o functions satisfying the wave equations of the preceding sec-
magnetic-field operators as
tion, and have taken the limit —r.

Finally, we make a simple calculation to express the

imaginary part of the dielectric function of theh body in

+DMA(r ;)DL )], (134

(:Eg(r,)H (", 1):)

A ) L terms ofK ™ ~(w) (in @ manner fully analogous to the proce-
= 2w fywvxf_wdww[D,gﬂ (rr';o) dure in Sec. Ill and obtain, with the help of Eq§96), (99),
and (102,
—DN(r'r;0)=DYP(r,r";w)], (131)

KF (—w)=-2i eolm[ej(w)][exp(ﬁjﬁw)—1]71.
where the time differentiation has already been performed, (139

and the limitt’—t has been taken. Using this, our final solution for the Poynting vector, i.e.,
The way to extract the positive- and negative-frequency

parts of an electromagnetic field operator without employing s
a mode decomposition has already been shown by Sa(r, t))- aﬁyE Jd flf dww’g f1)|m[61(w)]
Schwingel{65]. With the help of Schwinger’s method, Agar-
W"il,[l?’] has expresse®™(w) and D®(w) in terms of ><[exp(,8jhw)—1]‘1[D5;JA(r,r1;w)
D" (w): M,R M,A
XDy, (r,r;0)+ DA w)
DM(r,r"w)=60(-0)D*(rr';0), XDER(r,r1;0)], (136)
DA(r 1" w)=0w)D* (11" o). (132 is, in view of Eq. (126), identical to the expressio(66)

provided by the equations-of-motion approach.

DY (r,r';w), we arrive at equations-of-motion approach is more straightforward, and
by far simpler than the Keldysh formalism. The algebra in-
GEg(r,HH (1)) volved in the latter, while not complicated, turns out to be
p ’ somewhat tiring. However, as soon as the physics forces one
_ 3 2 o 3 to introduce any nonlinearity into the model, it is the
- 2mu '5yw2 d>rygj(ry) dow Keldysh formalism which provides a fairly natural frame-

work for the perturbation expansion. In that case the operator

X 0(—w)K+*(a))-[sz(r,rl;w)DﬁM(rl,r’;w) equations of motion lose much of their value, as physically

R A reasonable approximations are, in general, difficult to imple-
=D, (1" ri;0)Dg(ry,rw)]. (133 ment, and the Laplace transformation ceases to work.
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VI. SUMMARY AND CONCLUDING REMARKS also specifies the conditions under which the “classical” re-

In this paper we have developed a guantum approach t§ult holds. Formulag66) and(136) assume normal ordering

. . of the field operators entering the Poynting vector, and re-
:)heerSFi)\l;Zbleamn dOf gsggr%rt?vaegnzt;;:gﬁ:;gy g:orlliz]:’r bsg\%en tﬂ'gduire reservoir fields coupled to the polarization fields at

Schwinger quantum action principle, we have derived theeach point of the dielectric bodies. If these propositions are

equations of motion for the electromagnetic field 0|oeratorsSatiSﬁed In an actual experimental setup, the heat flux is
and for two auxiliary kinds of quantum fields: the polariza- guaranteed to be described by the theory developed in this

L o aper. If, therefore, serious discrepancies between measured
e e e e e el Ut and Eq or (130 should b fourd, s coul not e

P pres ynting dscribed to an intrinsically inconsistent theory, but would
which measures the electromagnetic energy flux between th

bodies, in terms of the correlation functions of the initial |ﬁeV|tany point to an imperfect realization of the underlying

values of the fields involved. For sufficiently large times themOdel' For instance, one might well ask whether the small
initial correlations of the polarization field have died out, andtIp of a typical scanning thermal microscope really serves as

the remaining contribution stems from fluctuating currents inc reservoir in the sense assumed here. Comparison of experi-
9 9 mental data with what follows from Eq66) or (136) for

e e e e etoscope geometries wil therefore be of crucal mpor-
P : S P fance for the further development of a quantitative theory.
properties and their temperatures.

As an alternative to this approach based on the equatio More generally speaking, the above considerations fit into
i PP quUalioNR e framework of macroscopic quantum electrodynamics.
of motion, we have also demonstrated that the nonequilib-

Our model of the dielectric is not a “realistic” one; its pur-

rium diagrammatic technique due to Keldysh can be em- . ) A
ployed to solve the problem of the radiative heat transfer. WEOS€ 1S to quantize the electromagnetic field inside lossy and

have calculated a large number of Green’s functions for th dispersive dielectrics. It does, however, allow for modifica-

reservoir and for the polarization fields and shown that thezOn in several directions. On the one hand, one could, e.g.,

electromagnetic correlation functions can be found almos nclude a higher-order polynomial polarization Lagrangian to
ag . ..._simulate nonlinear properties of the dielectric. On the other
exactly, in the sense that the calculation of these quantities

can be reduced—uvia a set of Dvson equations—to the sol 1and, it is, in principle, also possible to use realistic rather
y 9 Yhan phenomenological models to describe atoms which con-

E';): dOf isps?;'alSéﬁi?ar}t'aéfcﬂﬁgﬂgnTvﬁg S:r':gtl)lgif?gg::;:ry stitute the dielectric surfaces—the perturbative treatment
e ua'ti%n allg\;vs one tycf find thé retar%ed and advance@ased on the Keldysh diagrams will then again provide a
d onvenient route to obtaining good approximations. Finally,

g:::z,z ftjr?(;tlg):: acr); ;he:ec:slizt:moanggf?ii tig:n)ﬁt?) Bi:l;?amiﬁz one might also change the strategy and calculate the current
correlation functions in the dielectric, instead of the Poynting

required expectation value of the Poynting vector. This Iatte(/ector

result follows from both the equations of motions and the In a forthcoming paper we are going to apply the results

diagrammatic Keldysh approach. . . .
We have shown that both quantum approaches lead to thoef this work to several geometrical arrangements of interest.

same result for the Poynting vector, as expressed by Egs.

(66) and(136). This result coincides with a well-known for- ACKNOWLEDGMENTS
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