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Joint measurement of photon-number sum and phase-difference operators in a two-mode field
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We present an experimental scheme that realizes joint measurement of photon-number sum and phase-
difference operators on a two-mode field. The proposed scheme only involves linear optical elements and
photon detectors with single-photon sensitivity. Furthermore, we demonstrate that such a measurement setup
can be applied to generate two-mddghoton entangled states from a pair of squeezed vacuum states. These
N-photon entangled states are useful resources for quantum-information processing, high-precision frequency
measurement, and quantum optical lithography.
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I. INTRODUCTION 1 N "
_ _ _ | e = L > €™ n);[N=n),, 2)
An important problem in quantum theory is the quantum- N+1n=0
mechanical description of the phase of the radiation fi¢]d
Various ingenious ways have been explored in order to un- oN= 6+ 2 3)
r

derstand the quantum nature of phase of a single-mode N+1’
bosonic field[2—-4,6. First, some of these approaches were

motivated by the aim of expressing phase as the complemeHmthere|n) denotes the-photon Fock state and is an arbi-

of the photon numbef2], and we mention particularly the trary angle. It is obvious that the phase-difference operator
work of Pegg and Barneff8] on the limit approach based on &,, commutes with the total photon-number operafor

a finite Hilbert space. A second conception of quantum phase-n i, wheren, andn, are the photon-number operators
is based on examining quantum phase probability distribufor ‘each mode. Therefore, the joint measurement of the
tion from the s-parametrized quasiprobability distribution photon-number sum and phase-difference operators on two-
functions[4]. In Ref. [5], several schemes have been pro-mode field | W) projects the quantum state into the state
posed to measure canonical quantum phase probability diggNy - The success probability of the measurement is
tribution function of single-mode field. The third conception, |<‘1’|¢L\'>|21 which is the joint probability distribution func-

ﬂ:e tozergttﬁ]onal apﬁ)roiachf tohqtjgntum Ipl)hase by %b.al' | tion for the total number and the phase differef8k In Ref.
started with an analysis of what IS usually measured in cla 10], it is shown that the joint measurement of the photon-

sical optics when the phase d!ﬁerence s to be determine_ umber sum and phase-difference operators play a role of
and then translated the formalism into the quantum domait .|\ easurement in quantum teleportation of photon-

[6]. Although all experimental tests of operational approacr}1 mber states. In this paper, we show that the joint measure-

ngzrir:s:&]leiigoozegrlgt?gnglg;f)irrgzzth ?12¥vleeilnt;htﬁzrzo?1- ent of the photon-number sum and phase-difference opera-
clusion that there is no unique phase operator, but that ditIOrS can be used to generate two-madghoton entangled

! states of the form
ferent measurement schemes correspond to different opera-

tors. N
Now it has been recognized that the absence of a proper > CynyN—-n) (4)
n=0

phase operator in single-mode case is mainly due to the

semiboundedness of spectrum of the number opefator _ )

This motivated an intensive research in finding the operatof"®m & pair of squeezed vacuum states. Hefeare arbitrary
corresponding to the phase difference of two-mode fielg§omplex parameters. If the amplltudes of all the paramgters
[8,9]. In the two-mode case, the conjugate variable to thé>n are equal, statei@) are maximally entangled state, which
phase difference is the number difference, which is nof® useful resources in guantum teleportation processing
bounded from below. So, it is reasonable to expect that theL0l- If the amplitudes of paramete€y, andCy are equal to
phase difference will be free of the problems arising in thel/y2 and other parameters are zero, stégsre reduced to
single-mode case. In Rg#], Luis et al. introduced the Her-

mitian phase-difference operator i(|0>|N)+e“P|N)|0>) (5)
\/E L
el N
s NI ANy, N which have been used to improve the sensitivity of interfero-
P1= NZO Zo ¢rlor)(dr @ metric measuremenfél] and form a key ingredient of quan-

tum optical lithography{12]. Recently several experimental
setups for the generation of two-modéiephoton entangled
with states have been suggesféd]. But these schemes require
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FIG. 1. Schematic experimen-
tal setup for joint measurement of
photon-number sum and phase-
difference operators on two field
modes|¥;,), which includes two
symmetricN-port devicesF, and
Fy, N beam splitters BS and 2N
photon detector®, andDy, .

many single-photon resources as auxiliary resources. Trig- 1

gered single-photon sources operate by means of fluores- UN=—=» D07, 7
cence from a single molecu[d4] or a single quantum dot N

[15,16 with terrible spatial properties. With the currently o i .
available technology of single-photon resources, the requiré¥nere yn=exp(2a/N) and indicesi andj denote the input

ments of these schemes are difficult to satisfy. and the exit port, respectively. The matrix elemeijt gives
The paper is organized as follows. In Sec. I, we presenth€ probability amplitude for a single photon entering via
an experimental setup to implement the joint measurement dfPut i and leaving the device by outpit(i,j=1,... N).

the photon-number sum and phase-difference operators drecket al.[18] have shown that it is possible to construct a
the two-mode fields with linear optical elements and photorimultiport device from mirrors, beam splitters, and phase
detectors. Furthermore, we demonstrate that the experimefbifters that will transform the input modes into the output
tal setup can measure quantum state overlaps of one twdodes in accord with anMX N unitary matrix.

mode radiation field and one arbitrary two-mollephoton Now we present a detailed analysis of the proposed
entangled statéd) by appropriately choosing the parametersscheme shown in Fig. 1. We assume that the nagdsf state

of the setup. In Sec. I, we show that the measurement setuf®) is mixed with theN—1 vacuum modea,, . .. ay at the
proposed in Sec. Il can be used to generate the two-mod&mmetricN-port deviceF,, while the modeb, of state(6)
N-photon entangled staté) from a pair of squeezed vacuum is mixed with theN—1 vacuum mode®,, ... by at the
states. In addition, a simple scheme is proposed for the gesymmetricN-port deviceF, . After these modes pass through
eration of the entangled stat8). Finally, the conclusion are two symmetricN-port devicesF, andFy,, the state of the

given in Sec. IV, system becomes
N
Ny (N
Il. LINEAR OPTICAL IMPLEMENTATION Uan|\Pi“>J—H2 |0>aj|o>bj' (8)
OF PHOTON-NUMBER SUM AND PHASE-DIFFERENCE
OPERATORS ON A TWO-MODE FIELD Then the modes; andb; are mixed at a beam splitters BS

Our main goal in this section is to present a scheme thaﬁi :_1' - N). Th? action of the beam splitters BB de-
can measure the joint probability distribution function for the SCTiP€d by the unitary operator
total photon number and the phase difference on one two-

mode field of the form UPs=exd 6i(ajbje®i—albe )], 9

where parameter#; and ¢; characterize the beam splitter
o BS, which will be determined later. After these photon
W)= > CrmlMa, M, (6)  modes passing through beam splitters, we can obtain the
n,m=0 state of the system:

N N
where Cp, o, are arbitrary cpmp]ex parameters. The experi- (H Uibs) U’Q'Um‘l'in)H |0, |0y (10)
mental setup is depicted in Fig. 1, which consists of two i=1 j=2 o
symmetricN-port devicesF, andFy,, N beam splitters, and

2N photon detectors. An extended introduction to the symNow let the photodetectors RDand PRy measure the pho-

metric multiport device is given in Refl17]. The action of ton numbers in the mode andb; (i=1,... N+1), re-
the symmetridN-port device can be described by the unitary spectively. Consider the case where one photon is detected in
operatorUN. The matrix element otV is given by the detectors PP and the detectors I%iDdo not detect any
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photon (=1, ... N). This means that all detectors can dis-
tinguish between zero photon, one photon, and more than

one photon. The probability for the detection event is

N
Pv=|( I a].<1|bj<0|>
=1
N N+1 2
X |:1_[1 UFS)UEUE|\I,in>J_1_[2 |O>aj|0>bj
:<\I’in|\PN><‘I’N|\Pin>’ (11
where
N N
0 =| I ool (oD w2 T vee|

N
X ]_1:[1 |1>aj|0>bj)- (12)
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N

_1:[ aj<0|bj<0|
]=2

N

N
11 (cosejE uial
i=1 =1

|‘I’N>:

N

N
+sing;e'¢i Y, Uh‘bf”( I1 |0>a_|0)b.)
i=1 j=1 ) ]

N
=J_H1 (cosf;al+sing;e ‘*’JbD|0>a1|0>b11 (15

where we have used the relation

N
Uil (s,

N N

Il |0>a,.|0>b].)=(H |0>aj|0>bj>,

=1 =1

N N
(H aj<0|>al=0, (H b,.<0|)bl=o, k=2. (16

i=2 i=2

In order to realize the joint measurement of photon-number
sum and phase-difference operators on two field mg6gs
we require that the measurement probabilty;,| ¥ y)|? be
proportional to the joint probability distribution function

If we write the photon creation operators acting on the|<q,m|¢£u>|2 for the total photon-numbeN and the phase

modesa; andb; asa; andb], respectively, Eq(12) can be
rewritten as

N

H aj<0|bj<0|)

|y = /
j=2

N
X 11:[1 (UNTUNTUPSTaTU, U, U [UNTURY

N N
x11 <U?S*>(H |0>aj|0>bj). (13
=1 =1

By using the unitary transformation of the operatdn‘g,
Up, and BS,

UP*"aUPs=cosg;al +sing;e'“ib],
UPS'b/UP*=cosg;b] —sing;e "“ia],
UPTbiuPs=by, UPTaluP=al (j#k),

N
Nt TN Nt
u ajua—;l uia/,

N
Ug”b]uyzi; uib/,

Udb/Uy=b/, Uy'ajup=al, (14

we obtain

difference. This requirement can be satisfied by appropriately
choosing parameterst; and ¢;. If the parameters
tang.e'1, ..., tandye'*N are theN complex roots of the
characteristic polynomial

N ein;l:r‘ .
nzo m(tanee qD) =0, (17)

expressior(15) is proportional to the statkp}'). This dem-
onstrates that the proposed setup, which is shown in Fig. 1,
definitely implements the joint measurement of photon-
number sum and phase-difference operators on the two-mode
field | W;,). . _

Further, if the parameters t#pe'#1, . . . ,tandye'*N are
the N complex roots of the characteristic polynomial

N
> (18)
n=0

. - (tange'¥)"=0,

C
Vn!(N—n)

whereC,, are determined by Ed4), expression(15) is pro-
portional to state4). This demonstrates that the proposed
setup can also be used to measure quantum state overlap of
one two-mode field state and arbitrary two-mddghoton
entangled statéd).

Ill. GENERATION OF TWO-MODE N-PHOTON
ENTANGLED STATE FROM A PAIR OF SQUEEZED
VACUUM STATES

In this section, we show that the experimental setup pro-
posed in Sec. Il can be used to generate two-mdgéoton
entangled state@!) from a pair of squeezed vacuum states.
In principle, the scheme proposed here is closely related to
quantum entanglement swappifitf] in which the patrticles
that have never interacted directly are entangled and can be
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b, »
)
a‘lbl al >
FIG. 2. Schematic experimen-
tal setup for generation of
M N-photon entangled states from
the a pair of squeezed state
|¥s)a, b, and|[¥e)a, b, Here M
a denotes the setup proposed in
2 Fig. 1.
... L
b, >
regarded as a specific version of entanglement concentration 1 N o
protocol t_)y using en@ngl_ement swappia®]. In Ref.[21], > e ind |N—n>b1|n>b2, (21
an experimental purification scheme has been proposed for N+1 n=0

generating two-mode maximall)-photon entangled states

from a pair of squeezed vacuum states. However, the schemghich are the maximallN-photon entangled states. These
requires thg _nonhnear Kerr mfadlum. W|§h the c_urrent tech-states have found applications in quantum teleportdtioh
nology, sufficiently strong nonlinear Kerr interactions are nottpe present scheme provides an experimental realization of

available. Compared with the schenj@l], the present e specific version of entanglement concentration protocol
scheme still requires a nonlinear process such as parametegg ysing entanglement swappifi0].

down conversion to prepare the squeezed vacuum states, butop the other hand, if the parameters of the setup are cho-
avoids the necessity of nonlinear Kerr interaction. Figure Zen to satisfy

shows the required experimental setup, which can generate a
two-modeN-photon entangled state from a pair of squeezed
states. We assume that we have generated a pair of squeezed
vacuum statep¥ ), b, and| V), p,, Which in the number

basis can be written in the form

*

. -[tan(0)e*]"=0, (22)

0 Yn!'(N—n)

M z

n

- whereC,, are determined by Ed4), the expressiorl5) is
. N * .
W oa b= JI-2 2> A"NYa [N (19) proportional toX _,C}, |n)bl|N—n)b2. In this case, the state
o n=0 S of the modes; andb, is projected into staté4). In particu-
lar, if the parameters); and ¢; are chosen to satisfy);

where\ <1 is the squeezing parameter. Based on (&), =ml/4 andg;=2jn/N, the state of the modds; andb, is
we can rewrite the state of total system as follows: projected into staté€5).
Note that if we only consider the generation of the en-
¥ 9a bl ¥oa b tangled staté5), we can simplify our scheme and reduce the
e 272 number of the linear optical elements and photon detectors.
* The simplified scheme is shown in Fig. 3, which consists of
=(1-\? 20 )\”““|n)al|n)b1|m>az|m),D2 one symmetricN-port device F, and N-photon detectors.
n,m=

Now we present a detailed analysis of the proposed simple
% N scheme. Let the modes anda, of state(20) inject into two
=(1-\? 2 )\NE D a N=1alide.IN=])p.. input ports of the symmetrit\-port devicesF,. The other
N=o j=o 7! 2 2 input modes of this device are in the vacuum state. After the
(20) modesa; anda, pass through~,, the state of the system
becomes

The modesa; anda, of state(20) act as input modes of the

experimental setup shown in Fig. 1. We appropriately choose N

the parameters of the beam splitters; BS satisfy Eq.(17) U2'|‘I’s>al,bl|‘1’s>a2,b2( I1 |0)aj)- (23
and implement joint measurement of photon-number sum =3

and phase-difference operators on these two field modes. If

the result of measurement is the sthﬁé‘), the states of the If each detector detects one photon, the state of the nindes
modesb; andb, is projected into andb, is projected into
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D

FIG. 3. A simplified scheme

D, D,
-~ o
L 2N BN N ]
for the generation of the entangled

F stateg5). F, denotes the symmet-
ric N-port device and)ai are pho-
ton detectors.

a, a, a3T‘O> ceeceoe Ay ‘O>
"] P

N IV. CONCLUSION

N
N
(11 aj<1|)Ua|w5>a1'b1|\lrs>az’bz< H3 |O>aj)' (24) In summary, we have presented an experimental scheme
J ' that measures the joint probability distribution function of
photon-number sum and phase-difference operators on two-

which can be rewritten as mode fields. We also demonstrate that such an experimental
setup can be used to measure the quantum state overlaps of
N N one two-mode radiation field and arbitrary two-mode
(H a_(OI)H (Ug”ajU§)|\Ifs)alvbl|\lfs>a2,b2 N-photon entangled states. As an example of application of
=1 =1 the proposed experimental setup, we consider the generation

N of arbitrary two-modeN-photon entangled states from a pair
H 10), ) (25) of squeezed vacuum states. If we only consider the genera-
i=3 i tion of the entangled stat®), we can simplify the scheme
and reduce the number of the linear optical elements and
photon detectors. Since the present scheme does not need
single-photon resource as auxiliary resources, the main diffi-
culty of the scheme in respect of an experimental demonstra-
tion consists in the requirement on the sensitivity of the de-
) tectors. These detectors should be capable of distinguishing
a1<0|a2<0|1:[ (a1t W'a)|Ve)a, b, Vsa, b, between no photon, one photon, or more photons. Recently,
=t experimental techniques for single-photon detection have
= N_(_1)NgN made tremendous progress. A photon detector based on
au(Ola(Olar = (= 1)z ][¥s)ay ¥ s)a, oy visible-light photon counter has been reported, which can
(26) distinguish between a single-photon incidence and two-
photon incidence with high quantum efficiency, good time
Substituting Eq.(20) into Eq. (26), we obtain the state of €Solution, and low bit-error ratg22]. More recently, high
modesb, andb,: efﬂmency.photon counting has been proposed by combmmg
the techniques of photonic quantum memory and ion-trap
fluorescence detection. It is possible to achieve photon
1 N counting with efficiency approaching 10023,24]. How-
E(|O>b1|N>b2_(_l) IN)b,[0)p,), (27)  ever, experimental realization to detect very weak optical
fields with high efficiency and to distinguish the number of
photons in a given time interval is still a very challenging

X

By using relation(14), we obtain the state of the modbs
andb,:

N

which is expired entangled statg). technical problem.
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