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Enhancing nonlinear frequency conversion using spatially dependent coherence
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We consider pulse propagation in aL-type medium with spatially dependent coherence. It has been shown
in previous works that it is impossible to get complete nonlinear energy conversion between an injected pulse
and a generated pulse for homogenous coherence distribution. The aim of our work is to achieve unity
conversion efficiency. We show by analytic considerations and numerical simulations that this can be achieved
only if the propagation satisfies the conditions of adiabaticity in the local frame on the position domain. We
also derive an exact analytic model for pulse propagation in ourL-type medium, which is valid even if
adiabaticity is not satisfied.
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I. INTRODUCTION

The interaction of laser fields with the three-levelL-type
system has revealed several interesting phenomena, fo
ample, electromagnetically induced transparency@1#, coher-
ent population trapping@2#, stimulated Raman adiabatic pa
sage @3#, lasing without inversion@4#, and many others
Besides their fundamental interest, the above phenom
give rise to several useful applications ranging from e
hanced nonlinear optics, where one can obtain generatio
radiation with high efficiency in regimes where convention
methods fail@5#, to practical schemes for quantum compu
tion. In the latter area theL-type system has been, for ex
ample, used for creating quantum bits and for storing a
transporting quantum information@6#.

A particular series of studies using theL-type system
focuses on the properties of the so-called phaseonium sy
@7#. The prototype model of the phaseonium system i
L-type system that is initially prepared in a coherent sup
position of the two lower levels. When laser pulses propag
in this system then several novel phenomena can occur,
as enhancement of the index of refraction@7#, creation of
matched pulses in optically thick media@8–14#, and occur-
rence of high efficiency nonlinear pulse generation@15–
17,19,18,20–23#. In the latter area it has been shown th
quantum coherence and interference can make a mater
have an active role in nonlinear optical processes@22#, in
contrast to the traditional case of nonlinear optics wher
material has a rather passive role@24#. Some interesting ex
periments verifying some of the theoretical predictions ha
already been conducted@25–30#, showing the potential for
useful applications of the predicted phenomena.

Grobe and co-workers@31# introduced a phaseonium me
dium where the coefficients of the initial coherent super
sition, which of course are the probability amplitudes, a
dependent on space. This system was termed as a sy
with spatial excitation distribution. As it was shown, in ce
tain regimes the spatial excitation distribution can be writ
and read by laser fields. A similar system of phaseonium w
spatial excitation distribution was also studied by Kazin
et al. @32#. There, a new type of transparency was rec
nized, which combines the properties of electromagnetic
induced transparency and self-induced transparency.
1050-2947/2003/68~4!/043817~9!/$20.00 68 0438
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It can be shown, through a straightforward calculati
@33#, that if the amplitudes in the initial coherent superpo
tion of the phaseonium are constant, then complete nonlin
conversion from an incoming pulse to a generated puls
impossible in general. Using a simplified analysis of
phaseonium medium with spatial excitation distribution w
have recently shown that nonlinear conversion between
laser pulses with unity conversion efficiency is possible@33#.
In this paper, we continue study of this problem and pres
a thorough theoretical analysis of nonlinear frequency c
version in aL-type medium with spatially dependent cohe
ence. Our analysis contains results in the adiabatic reg
exact analytical results, and finally numerical results. O
findings show that complete nonlinear frequency convers
in a specifically designed phaseonium medium is possible
a wide range of system parameters.

This paper is organized as follows. In the following se
tion we present the main equations that govern the propa
tion dynamics of laser pulses in our system. We assume
the system is initially prepared in a spatially dependent
herent superposition state and that the laser-matter inte
tion is weak. Following the standard approximation metho
we obtain an equation for the propagation of laser pulse
the medium. In Sec. III we present a detailed study of
adiabatic behavior of the propagation equation, with emp
sis to the case of nonlinear frequency conversion. Two
ferent situations are analyzed, the case in which the gene
ized propagation constants are equal and the case in w
they are different. The findings from the adiabatic analy
are also verified via numerical simulations. Then, in Sec.
we present an analytical solution of the propagation eq
tion, for a specific spatial excitation, that is based on a mo
for two-state level-crossing problems. Finally, a summary
our findings is given in Sec. V.

II. THEORETICAL MODEL AND EQUATIONS
OF MOTION

The quantum system under study is displayed in Fig
Denoting the excited level byu0& and the lower levels by
u1&, u2& and allowing each laser pulse to drive only o
transition, the Hamiltonian of this system in the interacti
picture and in the rotating wave and dipole approximation
©2003 The American Physical Society17-1
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given by ~we use units such that\51)

Ĥ~z,t !5V1~z,t !e2 id1t2 ik1zu1&^0u1V2~z,t !e2 id2t2 ik2zu2&

3^0u1H.c. ~2.1!

Here,Vn(z,t)52mn0•«nEnf n(z,t), with n51,2, is the Rabi
frequency of the transitionun&↔u0&, with mn0 being the as-
sociated dipole transition matrix element. Also,dn5v0

2vn2v̄n is the laser field detuning from resonance for t
transitionun&↔u0&, with the energies of thenth lower level
and the upper level, respectively, beingvn and v0 and the
angular frequency of the laser field beingv̄n .

The laser field is described classically as a time-depen
and spatially dependent electric field,

E~z,t !5«1E1f 1~z,t !ei (v̄1t2k1z)1«2E2f 2~z,t !ei (v̄2t2k2z)

1c.c., ~2.2!

wherekn , with n51,2, is the wave number,«n the polariza-
tion vector,En the electric-field amplitude, andf n(z,t) the
dimensionless pulse envelope of each laser pulse.

We analyze the dynamics of the system using a den
matrix approach. From the Liouville equation of motion w
obtain the following equations for the density-matrix e
ments

i
]

]t
r00~z,t !52 i ~G011G02!r00~z,t !1V1* ~z,t !r10~z,t !

2V1~z,t !r01~z,t !1V2* ~z,t !r20~z,t !

2V2~z,t !r02~z,t !, ~2.3a!

i
]

]t
r11~z,t !5 iG01r00~z,t !1 iG21r22~z,t !1V1~z,t !r01~z,t !

2V1* ~z,t !r10~z,t !, ~2.3b!

i
]

]t
r22~z,t !5 iG02r00~z,t !2 iG21r22~z,t !1V2~z,t !r02~z,t !

2V2* ~z,t !r20~z,t !, ~2.3c!

FIG. 1. Schematic diagram of the system studied.
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i
]

]t
r10~z,t !52~d11 ig10!r10~z,t !1V1~z,t !r00~z,t !

2V1~z,t !r11~z,t !2V2~z,t !r12~z,t !,

~2.3d!

i
]

]t
r20~z,t !52~d21 ig20!r20~z,t !1V2~z,t !r00~z,t !

2V1~z,t !r21~z,t !2V2~z,t !r22~z,t !,

~2.3e!

i
]

]t
r12~z,t !5~d22d12 ig12!r12~z,t !1V1~z,t !r02~z,t !

2V2* ~z,t !r10~z,t !, ~2.3f!

with (nrnn(z,t)51 and rnm(z,t)5rmn* (z,t). We have as-
sumed a closed system, i.e., there is no decay to levels
side of the three-level manifold we study. For differences
the propagation dynamics of closed and open three-level
tems see Ref.@34#. We denote byGnm the radiative decay
rate of the populations from levelun& to level um& and by
gnm the coherence decay rate between statesun& and um&,
with

gnm5
1

2 (
k

Gnk1
1

2 (
l

Gml1gnm8 , ~2.4!

where indicesk,l correspond to the statesuk& and u l & in
which statesun& and um&, respectively, decay to. Also,gnm8
describes the decay due to dephasing processes. Examp
dephasing processes include inelastic collisions in ato
and molecular systems or electron-electron scattering, in
face roughness, and phonon scattering in semicondu
quantum well systems. The effects of Doppler broaden
will not be considered in this paper.

To complete the set of equations for the study of pro
gation of short laser pulses in this medium, the Maxw
wave equation is required, which in the slowly varying e
velope approximation reads

F ]

]z
f n~z,t !1

1

c

]

]t
f n~z,t !G«nE nei (v̄nt2knz)

52
2ipv̄n

c
Pn~z,t !, n51,2. ~2.5!

As Doppler broadening has been ignored, the negative
quency part of the macroscopic polarization of the mediu
Pn(z,t), is given by

Pn~z,t !5Nm0nrn0~z,t !ei (v̄nt2knz), n51,2, ~2.6!

whereN is the density of the particles. Substituting Eq.~2.6!
into Eq. ~2.5! we obtain the following equations for th
propagation of the Rabi frequencies:
7-2
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S ]

]z
1

1

c

]

]t DV1~z,t !5 ia1r10~z,t !, ~2.7a!

S ]

]z
1

1

c

]

]t DV2~z,t !5 ia2r20~z,t !. ~2.7b!

Here,an52pNumn0u2v̄n /c, with n51,2, is the propagation
constant. It is convenient to transform Eqs.~2.3! and~2.7! in
the local frame wheret5t2z/c andz5z. In this frame Eq.
~2.3! will be the same with the substitutiont→t andz→z,
while Eq. ~2.7! reads

]

]z
V1~z,t!5 ia1r10~z,t!, ~2.8a!

]

]z
V2~z,t!5 ia2r20~z,t!. ~2.8b!

Equations~2.3!—written in the local frame—and~2.8! gov-
ern the spatiotemporal evolution of the laser pulses in
medium.

We assume that the system is initially prepared in a
perposition of the lower levels with spatially dependent c
efficients, such that

uc~z,t5t i !&5b1~z!u1&1b2~z!u2&, ~2.9!

with b1(z) andb2(z) being, in general, complex, satisfyin
ub1(z)u21ub2(z)u251. As has been shown in Ref.@31#, any
superposition with spatially dependent coefficients of
form of Eq. ~2.9! can be created with the use of stimulat
Raman adiabatic passage@3#. According to this method two
laser pulses are applied to the medium and their shape
delay determine the spatial dependence of the coheren
perposition of Eq.~2.9!. This has been shown through the
retical analysis and detailed numerical simulations@31#. We
note here that the effect of the initially applied or preparat
laser pulses are simply to prepare the medium in the su
position of Eq. ~2.9!. At time t5t i the preparation lase
pulses have already created the superposition and do no
teract with the medium anymore.

We also assume that the two-photon resonance cond
d15d25d is satisfied and that the coherence decay rate
tween the lower levels is negligibly small, i.e.,g12'0. This
condition implies that the radiative decay ratesGnm between
the lower levels are practically zero, which is quite plausib
The constantsg128 describing the dephasing contributions
broadening could be kept small by controling the experim
tal conditions. If the excited stateu0& decays rapidly and the
laser-matter interaction is weak, so that the following re
tions uVnu!g, gt̄@1, anduVnu2t̄!g are satisfied, witht̄
being a characteristic pulse length andg5min(g10,g20), the
approximate solutions of Eqs.~2.3d! and ~2.3e! are

r10~z,t!'2
V1~z,t!ub1~z!u21V2~z,t!b1~z!b2* ~z!

d1 ig10
,

~2.10a!
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r20~z,t!'2
V1~z,t!b1* ~z!b2~z!1V2~z,t!ub2~z!u2

d1 ig20
,

~2.10b!

and the propagation equation for the Rabi frequencies, E
~2.8a! and ~2.8b!, reduce to@10,23#

]

]z
V~z,t!52 iK~z!V~z,t!, ~2.11!

with

K~z!5F a1ub1~z!u2 a1b1~z!b2* ~z!

a2b2~z!b1* ~z! a2ub2~z!u2 G . ~2.12!

Here, an5an /(d1 ign0/2) are the generalized propagatio
constants and the vector of the Rabi frequencies is given
V(z,t)5@V1(z,t),V2(z,t)#T.

We note that in the case in which the probability amp
tudesb1(z) andb2(z) are arbitrary spatially dependent fun
tions, there is no general analytic solution of the propagat
equation~2.11!. This equation resembles the time-depend
Schrödinger equation with the replacementz↔t, where the
propagatorK(z), Eq. ~2.12!, plays the role of the Hamil-
tonian and is non-Hermitian in this case. In the case o
time-dependent Hamiltonian general solutions can be
tained if the dynamics satisfies adiabaticity@35#. Therefore, it
is useful to study the adiabatic evolution of the system@36#.

III. ADIABATIC TREATMENT

In this section we study the behavior of the propagati
Eq. ~2.11! in the adiabatic limit. As we have already me
tioned, the propagation matrixK(z) in Eq. ~2.12! is non-
Hermitian. Nevertheless, we can introduce an adiabatic ba
which consists of the right-hand eigenvectors ofK(z). In
general, these vectors are nonorthogonal, although we
use them without any additional difficulty. After transform
ing the propagation equation~2.11! to the adiabatic basis, we
can follow the standard adiabatic approximation methods
study the evolution of the system.

A. The case whena1Åa2

In principle, the generalized propagation constantsa1 and
a2 are not equal. This is the case when, e.g., the transi
frequenciesv1 andv2 and the relevant matrix elements a
unrelated. The right-hand eigensystem of the propaga
matrix K(z) in Eq. ~2.12! reads

l150, s05F2b2~z!*

b1~z!* G , ~3.1a!

l25ā, sā5
1

N Fa1b1~z!

a2b2~z!
G , ~3.1b!

where ā5a1ub1u21a2ub2u2 and the normalization for the
second adiabatic state isN5Aua1b1u21ua2b2u2. One of the
eigenstates,l1, is zero, whereas the other onel2 is nonzero.
7-3
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The eigenvaluel2 is complex due to the fact that the prop
gator K(z) is non-Hermitian. For the same reason, the t
adiabatic states are not orthogonal. Nevertheless, we can
them as basis vectors, but we should keep in mind that
work in a nonorthogonal basis.

We now transform the propagation equation~2.11! to the
adiabatic basis that is defined by Eq.~3.1!. The transforma-
tion is performed by the nonunitary matrix

V~z!5F 2b2~z!*
1

N
a1b1~z!

b1~z!*
1

N
a2b2~z!

G . ~3.2!

The transformed propagation equation~2.11! reads

]

]z
Ṽ~z,t!52 i K̃~z!Ṽ~z,t!, ~3.3!

where

Ṽ~z,t!5V~z!21V~z,t!, ~3.4!

K̃~z!52 iV~z!21
]

]z
V~z!1V~z!21K~z!V~z!.

The matrix elements of the transformed propagatorK̃ are
given by

K̃1152 i
ā8

2ā
, ~3.5a!

K̃125 i
a1a2

āN
~b18b22b1b28!, ~3.5b!

K̃2152 i
N

ā
~b1* 8b2* 2b1* b2* 8!, ~3.5c!

K̃225 i S N8

N
2

ā8

2 ā
D 1ā, ~3.5d!

where, for convenience, we have introduced the shorth
notation8[d/dz. We notice thatK̃11 is nonzero even though
the matrix element (V21KV)11 is zero. The nonzero valu
results entirely from the diabatic correction, i.e., from t
first term in the definition ofK̃ in Eq. ~3.4!.

To obtain the adiabatic limit the coupling between t
adiabatic basis vectors should be negligible@35#, therefore,
we must have

uK̃12u,uK̃21u!uK̃112K̃22u. ~3.6!

This requirement imposes certain conditions on the spa
dependence of the probability amplitudesb1(z) and b2(z):
04381
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they must vary with position slowly enough so that the
derivatives are so small that the adiabaticity condition is f
filled.

In this model there are two possibilities to fulfill the adi
baticity condition, Eq.~3.6!: the first one is the proper choic
for the position dependence of the probability amplitud
bi(z). We can simply say that the wider the transition regi
is, the smaller the derivatives ofbi(z) are. Certainly, it is
assumed thatbi(z) is smooth. The second possibility is t
vary the particle densityN of the medium. It is easy to se
that the propagator matrix elementsK̃12 andK̃21 are indepen-
dent of the density. On the other hand, the differenceK̃11

2K̃22 depends linearly onN. Therefore, the adiabaticity
conditions can be satisfied by increasing the particle den
However, the density cannot be increased arbitrarily: In
case of too large density the dephasing effects increas
well, which ruin the coherent superposition state, Eq.~2.9!,
of the medium. In the master equation~2.3! these sorts of
decays are accounted for by the decay ratesgnm8 defined in
Eq. ~2.4!. In addition, if the particle density becomes hig
enough, then near dipole-dipole interactions~local-field ef-
fects! arise@37#. This leads to a modification of the dynamic
of the laser-matter interaction and, in that case, Eqs.~2.3!
and ~2.8! are no longer adequate to describe the system.

In the adiabatic limit, the transformed Rabi frequenc
Ṽ l(z,t) evolve according to

Ṽ0~z,t!5expS 2 i E
z i

z

K̃11~j!dj D Ṽ0~z i ,t!, ~3.7a!

Ṽā~z,t!5expS 2 i E
z i

z

K̃22~j!dj D Ṽā~z i ,t!. ~3.7b!

These equations are always valid in the adiabatic limit.
have not made any specific assumptions about the sp
dependence of the probability amplitudesb1(z) and b2(z),
except that the adiabaticity conditions should be fulfilled. L
us consider the exponential factors in Eqs.~3.7a! and~3.7b!.
The first one yields

expS 2 i E
z i

z

K̃11~j!dj D 5Aā i

ā
~3.8!

and the second is

expS 2 i E
z i

z

K̃22~j!dj D 5
N

Ni
Aā i

ā
expS 2 i E

z i

z

ā~j!dj D ,

~3.9!

where the subscripti means that the quantity should b
evaluated at the entry of the mediumz i . In Eq. ~3.9! the
exponential factor on the right-hand side~rhs! describes at-
tenuation, therefore, for a sufficiently long propagation d
tance the exponential factor in Eq.~3.7b! becomes zero. This
means that the component of the field along the eigenve
sa vanishes. Here we see a clear advantage of adiabatic
lution: if adiabaticity prevails throughout the propagatio
7-4
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the injected pulse propagates without energy loss. If adia
ticity is violated, then part of the injected energy is absorb
by the medium.

In the adiabatic limit the solution of the propagation equ
tion ~2.11! is given by

V~z,t!5W~z,z i !V~z i ,t!, ~3.10!

with

W~z,z i !5V~z!Fe2 ik1(z) 0

0 e2 ik2(z)GV~z i !
21, ~3.11!

wherek l(z)5*z i

z K̃ ll (j)dj, with l 51,2. As we have shown

for sufficiently long propagation distanceuz2z i u the factor
exp@2ik2(z)# goes to zero. In this limit the transition matrix
Eq. ~3.11!, reads

W~z,z i !

5
e2 ik1(z)

ā i
F a2b2~z i !b2~z!* 2a1b1~z i !b2~z!*

2a2b2~z i !b1~z!* a1b1~z i !b1~z!* G .
~3.12!

Let us assume that at the entry of the medium the probab
amplitudes take the valuesb1(z i)50 andb2(z i)51. We re-
quire that the occupations between the two ground st
change completely in the course of the propagation, i.e
the end of the mediumz f we haveub1(z f)u51 andb2(z f)
50. For the field we choose such an initial condition so t
it is decoupled from the system:

V1~z i ,t!5V i~t!, V2~z i ,t!50. ~3.13!

By making use of the solution given by Eq.~3.10! with the
transition matrix, Eq.~3.12!, we find for V(z f ,t),

V1~z f ,t!50, ~3.14a!

V2~z f ,t!52Aa2

a1
e2 i argb1(z f )V i~t!. ~3.14b!

Now let us consider the energy conservation in this s
tem: The total energy density of the two pulses is given b
bilinear formP(z,t) defined as

P~z,t!5V†~z,t!DV~z,t!, ~3.15!

whereD is a diagonal matrix with constant elements that
the dimension of the energy density. The derivative ofP with
respect toz should vanish if the energy is conserved

]P~z,t!

]z
5 i ~V†K†DV2V†DKV!. ~3.16!

On the rhs the components of the vectorV are the Rabi
frequencies at the positionz. If this vector belongs to the
zero-eigenvalue subspace of the propagatorK, then both sca-
lar products vanish. Therefore, the energy is conserved in
system if the evolution is adiabatic, and initially the vect
04381
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Vi was in the zero-eigenvalue subspace of the propaga
Adiabatic evolution implies that the transition matrix of th
system is given by Eq.~3.11!. If the previous conditions are
not met, then the rhs of Eq.~3.16! is nonzero and the equa
tion describes attenuation.

In the example that leads to Eq.~3.14! we satisfied the
conditions of energy conservation, hence the result sh
that complete nonlinear conversion between two laser pu
is possible in our model.

The process of nonlinear frequency conversion in our s
tem is illustrated in Fig. 2, where the spatiotemporal evo
tion of the normalized intensities of the laser pulses is d
played. The results have been obtained from a numer
solution of Eq. ~2.11!. The initial spatial distributions are
chosen as

b1~z!5A 1

11e2(z2z0)/ z̄
, ~3.17a!

b2~z!5A 1

11e(z2z0)/ z̄
, ~3.17b!

and the incoming pulse has a sin-squared shape. It is c
that the incoming laser pulse is completely converted t
new laser pulse. The accuracy of the approximations
lead to Eq.~2.11! has been assessed by comparing the
merical solution of Eqs.~2.3! and ~2.8! with that of Eq.
~2.11!. These calculations verify the validity of Eq.~2.11! for
describing the propagation of pulses in our system.

The validity of the adiabatic approximation method
demonstrated in Fig. 3. The agreement is very good betw
the numerical solution of Eq.~2.11! and the result obtained
by using the analytic form of the transition matrix, E
~3.12!, the maximum difference between the two results
about 531023, implying that the adiabatic approximation
valid for the chosen parameter set.

B. The case whena1Äa2

A physically interesting limit appears whena15a25a.
This is quite common, since the two ground states can be
magnetic sublevels of a state withJ51 andM561 and the
excited state hasJ50. Now the eigensystem of the propa
gation matrixK(z) in Eq. ~2.12! reads

l150, s05F2b2~z!*

b1~z!* G ,
l25a, sa5Fb1~z!

b2~z!
G . ~3.18!

The two eigenstatess0 and sa are orthogonal. We form a
matrix U from these vectors that is unitary now,

U~z!5F2b2~z!* b1~z!

b1~z!* b2~z!
G . ~3.19!
7-5
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FIG. 2. Plots of uV1(z,t)u2/uV1u2 for ~a! and
ua1 /a2uuV2(z,t)u2/uV1u2 for ~b! as a function oft for different
values ofz, with z50 ~solid curves!, z5100 ~dashed curves!, and
z5200 ~dot-dashed curves!. In ~c!, we present the maximum of th
normalized field intensities as a function ofz for the incoming field
~dashed curve! and the generated field~solid curve!. The figures
were obtained with the spatial distribution of Eq.~3.17! with z0

5100 andz̄55. The incident pulse isV(t)5V1sin2(tp/tp), with
0<t<tp . The parameters used in the calculations area151000,
a252000,V150.01, tp550, d50, g105g205100, z05100, and

z̄55. All quantities are in arbitrary units.
04381
This matrix transforms the propagation equation~2.11! to the
adiabatic basis, Eq.~3.18!, according to Eq.~3.4!. The trans-
formed propagation matrix takes the form

K̃~z!5F 0 2 i ~b1b282b18b2!

i ~b1* b2*
82b1*

8b2* ! a G .

~3.20!

The eigenvaluea in the diagonal ofK̃ describes attenuation
therefore, the field component along the eigenvectorsa van-
ishes for sufficiently long propagation distance. In the ad
batic limit the off-diagonal elements ofK̃ are negligible com-
pared with the difference of the diagonal ones, such that

ub1b282b18b2u!uau. ~3.21!

In this case the above condition should be fulfilled in order
have adiabatic evolution of the system.

If adiabaticity is fulfilled and we study the field in th
long distance limit (z2z i@uau21), the transition matrix
reads

FIG. 3. In ~a! we present numerical and analytical results f
ua1 /a2uuV2(z,t)u2/uV1u2 at positionz5200 in the medium. The
numerical and analytical results are practically indistinguishable
the figure. We also plot the difference between the numerical
analytical results in~b!. The medium and pulse parameters are as
Fig. 2. Similar agreement between the analytical and numerica
sults is obtained foruV1(z,t)u2/uV1u2.
7-6
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W~z,z i !5U~z!F1 0

0 0GU~z i !
21

5F b2~z i !b2~z!* 2b1~z i !b2~z!*

2b2~z i !b1~z!* b1~z i !b1~z!* G .
~3.22!

For the same choice of the boundary conditions for the pr
ability amplitudesb1,2(z) and initial conditions for the field
V(z i ,t) as in Sec. III A, we find that at the end of th
medium the field is given by

V1~z f ,t!50, ~3.23a!

V2~z f ,t!52e2 i argb1(z f )V i~t!. ~3.23b!

The energy conservation is obvious in this case, hence, c
plete nonlinear conversion between the incoming and
outgoing laser pulses is possible. We note that we have v
fied numerically that the findings of this section are valid

IV. EXACT ANALYTIC TREATMENT

In the preceding section we considered adiabatic pu
propagation and we derived approximate analytic soluti
for the propagation equation~2.11!. For practical applica-
tions probably this is the most important case because
injected light pulse can be converted to a new pulse with
energy loss. However, it is interesting to study that situat
where the adiabaticity conditions are not satisfied. One p
sibility is to solve numerically the propagation equati
~2.11!. Another one is to look for some special choice for t
probability amplitudesb1(z) andb2(z) for which exact ana-
lytic solution of the propagation equation can be obtained
the following we will consider such an example.

Let us choose the probability amplitudes of the atom
coherent superposition state, Eq.~2.9!, as

b1~z!5A1

2 S 11tanh
z

Dz Deiw1,

b2~z!5A1

2 S 12tanh
z

Dz Deiw2. ~4.1!

The positionz varies from2` to 1`. The limiting values
6` correspond touz i , f u@Dz in practice. For the spatial de
pendence of Eq.~4.1! the propagation matrix, Eq.~2.12!,
becomes

K~z!5
1

2F a1S 11tanh
z

Dz D a1eiwsech
z

Dz

a2e2 iwsech
z

Dz
a2S 12tanh

z

Dz D G ,

~4.2!

wherew5w12w2. Inserting this propagator to the propag
tion equation~2.11! we obtain a system of differential equa
tions that can be solved analytically.

Apart from some minor differences, the matrixK(z) in
Eq. ~4.2! defines a famous level-crossing problem, first stu
04381
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ied by Demkov and Kunike@38#. For equal and reala1 , a2
the solution is well known@38–40#. However, to the best o
our knowledge, the more general case in whicha1 , a2 are
different and complex has not been studied yet. Theref
we present here the solution for that case. We follow
derivation of Ref.@39#, however, as the propagation co
stantsa l are complex in our case we have a non-Hermit
propagator. For brevity we introduce the notations

Ā1~z!5
a1

2
eiwsech

z

Dz
, ~4.3a!

Ā2~z!5
a2

2
e2 iwsech

z

Dz
, ~4.3b!

B̄1~z!5
a1

2 S 11tanh
z

Dz D , ~4.3c!

B̄2~z!5
a2

2 S 12tanh
z

Dz D , ~4.3d!

The diagonal terms ofK(z) in Eq. ~4.2! can be eliminated by
the transformation

U~z!5Fexp2 iB1~z,z i ! 0

0 exp2 iB2~z,z i !
G , ~4.4!

where Bl(z,z i)5*z i

z B̄l(j)dj. The propagation equation

~2.11! is transformed by this transformation in the same w
as in Eq.~3.4!. The transformed equation reads

]

]z
Ṽ1~z,t!52 iĀ1~z!e2 iB(z,z i )Ṽ2~z,t!, ~4.5a!

]

]z
Ṽ2~z,t!52 iĀ2~z!eiB(z,z i )Ṽ1~z,t!, ~4.5b!

where B(z,z i)5B2(z,z i)2B1(z,z i). Then we eliminate
Ṽ2(z,t) from Eq. ~4.5a! and replace the variablez with

q5
1

2 S 11tanh
z

Dz D . ~4.6!

The new variableq varies from 0 to 1 asz goes from2` to
`. Finally we arrive at the hypergeometric differential equ
tion

q~12q!
]2Ṽ1

]q2
1@n2~l1m11!q#

]Ṽ1

]q
2lmṼ150.

~4.7!

The constantsl,m,n are defined as

l5 i
a1Dz

2
, m5 i

a2Dz

2
, ~4.8!

n5
1

2
~11 ia2Dz!.

The general solution of Eq.~4.7! reads
7-7
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Ṽ15aF~l,m,n;q!1bq12nF~l112n,m112n,22n;q!,
~4.9!

where the parametersa andb are determined from the initia
conditions andF(l,m,n;q) is the hypergeometric function
Note thata andb may depend ont in general.

The solution for the other fieldṼ2 can be obtained by
using Eqs.~4.5a! and ~4.9!

Ṽ25
2iei (B2w)Aq~12q!

a1Dz Fa
lm

n
F~l11,m11,n11;q!

1b ~12n!z2nF~l112n,m112n,12n;q!G .
~4.10!

The solution of the original propagation equation~2.11! is
given by

V5UṼ, ~4.11!

whereṼ5@Ṽ1 ,Ṽ2#T.
We choose the initial condition to be given by Eq.~3.13!,

as this field is decoupled from the quantum system at
initial positionz i . Therefore, according to Eqs.~4.9!–~4.11!,
a5V i(t) and b50 becauseF(l,m,n;0)51. The solution
then reads

V1~z,t!5V i~t!e2 iB1F~l,m,n;q!, ~4.12a!

V2~z,t!5V i~t!
2 i e2 i (B11w)Aq~12q!

a1Dz

lm

n

3F~l11,m11,n11;q!. ~4.12b!

As an example we compare the results of the anal
solution of Eq.~4.12! with those obtained from the numeric
solution of Eqs.~2.3! and~2.8! and the adiabatic solution o
Sec. III A. The agreement between the three results is v
good as can be seen in Fig. 4. In detail, numerical and a
lytical solutions are practically indistinguishable in Fig. 4~a!,
whereas the adiabatic results give a good approximate s
tion to the system. For clarity we also plot the differen
between the numerical and analytical or adiabatic result
Fig. 4~b!.

Finally, we demonstrate that the exact analytic soluti
Eq. ~4.12!, describes the dynamics correctly even if we a
out of the adiabatic limit. We take equal propagation co
stantsa15a2 for the two modes. Then, for the probabilit
amplitudes in Eq.~4.1! the adiabaticity condition, Eq.~3.21!,
yields

1

Dz
!uau. ~4.13!

We chooseDz5uau21 which clearly violates the previou
inequality. We compared the numerical solution of Eqs.~2.3!
and~2.8! with the analytic solution, Eq.~4.12!, and with the
approximate adiabatic solution, Eq.~3.22!. We have found
that according to our expectations, the exact analytic and
numerical solutions agree very well, whereas the adiab
04381
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approximation yields a significantly different result. We co
clude that the exact analytic solution describes correctly
pulse-propagation dynamics as long as the conditions
led to the propagation equation~2.11! are satisfied.

V. SUMMARY

In this paper we have presented a thorough theoret
analysis of nonlinear frequency conversion in aL-type me-
dium with spatially dependent coherence. The medium wa
phaseonium system, in which the two lower states were p
pared initially in a coherent superposition state. The th
excited state was empty initially. We have studied pu
propagation in this system assuming that the coherent su
position state of the medium is position dependent.

In the first part of the paper we have considered adiab
pulse propagation: here adiabaticity is considered in the lo
frame on the position domain. Starting from a linear prop
gation equation for the pulses we have derived the conditi
for adiabatic propagation. We have found explicit expre
sions for the matrix elements of the propagator that sho
be fulfilled. However, since the propagator is formed of t

FIG. 4. Numerical~solid curve!, analytical~dash-dotted curve!,
and adiabatic~dashed curve! for ua1 /a2uuV2(z,t)u2/uV1u2 at posi-
tion z5200 in the medium are presented in~a!, using the spatial
distribution of Eq.~4.1! with Dz55. In ~b! we plot the difference
between the numerical and the analytical results~dashed curve! and
the difference between the numerical and the adiabatic results~solid
curve!. Rest of the medium and pulse parameters are as in Fig
Similar agreement is obtained foruV1(z,t)u2/uV1u2.
7-8
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position-dependent coefficients of the atomic superposi
state and the propagation constants of the medium, the a
baticity conditions pose restrictions on these quantities.
have analyzed in detail two different cases:~a! the propaga-
tion constants are not equal for the two modes; and~b! the
propagation constants are equal. We have shown that in
cases the efficiency of energy transfer between an inje
pulse and the generated pulse is unity. Moreover, unit tra
fer efficiency can be achieved only if the propagation sa
fies the conditions of adiabaticity in the local frame on t
position domain. We have tested the results by comparing
approximate adiabatic solutions with numerical ones.
have found very good agreement for the chosen param
sets.

In the second part of the paper we have worked out
exact analytic solution for pulse propagation in our syste
For a special choice of the coefficients of the atomic sup
position state we have derived an exact analytic solution
d

ys

04381
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the propagation equation. We have realized that this spe
model is closely related to the Demkov-Kunike model
driven two-level systems. We have tested the exact ana
solution versus numerical simulations in cases when adia
ticity is satisfied or it is not satisfied, and have verified th
the analytic solution is correct. Therefore, it can be used
study further pulse-propagation effects in aL-type medium
with spatially dependent coherence.
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