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Enhancing nonlinear frequency conversion using spatially dependent coherence
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We consider pulse propagation imatype medium with spatially dependent coherence. It has been shown
in previous works that it is impossible to get complete nonlinear energy conversion between an injected pulse
and a generated pulse for homogenous coherence distribution. The aim of our work is to achieve unity
conversion efficiency. We show by analytic considerations and numerical simulations that this can be achieved
only if the propagation satisfies the conditions of adiabaticity in the local frame on the position domain. We
also derive an exact analytic model for pulse propagation in/fodype medium, which is valid even if
adiabaticity is not satisfied.

DOI: 10.1103/PhysRevA.68.043817 PACS nuntber42.50.Gy, 42.50.Md, 42.65.5Sf, 42.65.Dr

[. INTRODUCTION It can be shown, through a straightforward calculation
[33], that if the amplitudes in the initial coherent superposi-
The interaction of laser fields with the three-leveitype  tion of the phaseonium are constant, then complete nonlinear
system has revealed several interesting phenomena, for egonversion from an incoming pulse to a generated pulse is
ample, electromagnetically induced transparefidy coher-  impossible in general. Using a simplified analysis of a
ent population trappinfg], stimulated Raman adiabatic pas- Phaseonium medium with spatial excitation distribution we
sage[3], lasing without inversion[4], and many others. have recently shown that nonlinear conversion between two

Besides their fundamental interest, the above phenomer@Se" Pulses with unity conversion efficiency is poss[Bi&].

give rise to several useful applications ranging from en-n this paper, we continue study of this problem and present
hanced nonlinear optics, where one can obtain generation & thorough theoretical analysis of nonlinear frequency con-
radiation with high efficiency in regimes where conventionalVersion in aA-type medium with spatially dependent coher-
methods fai[5], to practical schemes for quantum computa-&NCe: Our analysus contains rgsults in the _adlabatlc regime,
tion. In the latter area thé -type system has been, for ex- €Xact analytical results, and finally numerical results. Our

ample, used for creating quantum bits and for storing andindings show that complete nonlinear frequency conversion
transporting quantum informatidi6]. in a specifically designed phaseonium medium is possible for

A particular series of studies using the-type system & Wide range of system parameters. ,
focuses on the properties of the so-called phaseonium system 1 hiS paper is organized as follows. In the following sec-
[7]. The prototype model of the phaseonium system is 410N We present the main equations that govern the propaga-

A-type system that is initially prepared in a coherent supertion dynamics of laser pulses in our system. We assume that
e system is initially prepared in a spatially dependent co-

position of the two lower levels. When laser pulses propagat - ,
rent superposition state and that the laser-matter interac-

in this system then several novel phenomena can occur, suchr' ! ) =
tion is weak. Following the standard approximation methods

as enhancement of the index of refractidf], creation of \ ; - ;
matched pulses in optically thick media—14), and occur- W€ obtam an equation for the propagation pf laser pulses in
the medium. In Sec. lll we present a detailed study of the

rence of high efficiency nonlinear pulse generatidb— . X . . . .
17,19,18,20—2B In the latter area it has been shown thata_d'abat'c behavior of the propagation equation, with empha-

quantum coherence and interference can make a material f° © the case of nonlinear frequency conversion. Two dif-
have an active role in nonlinear optical procesk®, in erent situations are analyzed, the case in which the general-
contrast to the traditional case of nonlinear optics where &€d propagation constants are equal and the case in which
material has a rather passive ré®4]. Some interesting ex- they are d|ff_e_rent._ The fmo_lmgs _from t_he adlabatlg analysis
periments verifying some of the theoretical predictions have™® also verified via numerical simulations. Then, in Sec. IV

already been conductd@5—30, showing the potential for we present an analytical solution of the propagation equa-
useful applications of the predicted phenomena. tion, for a specific spatial excitation, that is based on a model

Grobe and co-worker81] introduced a phaseonium me- for two-state level-crossing problems. Finally, a summary of

dium where the coefficients of the initial coherent superpo2Ur findings is given in Sec. V.

sition, which of course are the probability amplitudes, are

dependent on space. This system was termed as a system | 11,e G RETICAL MODEL AND EQUATIONS

with spatial excitation distribution. As it was shown, in cer- OF MOTION

tain regimes the spatial excitation distribution can be written

and read by laser fields. A similar system of phaseonium with The quantum system under study is displayed in Fig. 1.
spatial excitation distribution was also studied by KazinetsDenoting the excited level bj0) and the lower levels by
et al. [32]. There, a new type of transparency was recogq{1l), |2) and allowing each laser pulse to drive only one
nized, which combines the properties of electromagneticallyransition, the Hamiltonian of this system in the interaction
induced transparency and self-induced transparency. picture and in the rotating wave and dipole approximations is
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J
iﬁplo(z-t) =—(01+1710p10(Z,1) + Q41(Z,t) poo(Z,1)

—Q04(2,1)p12(Z,1) —Qx(Z,1) p1(Z,1),
(2.30

J
iapzo(z,t) =—(92+1v20p20(2Z,1) + Q2(Z,1) poo( Z,1)

2) —Q41(Z,) p21(Z,1) = Q5(Z,1) poA Z,1),

1) (2.38

FIG. 1. Schematic diagram of the system studied. 0 .
'ﬁplz(zi):wz_ 01 =112 p1AZ,1) + Q1(Z,t) por(Z,1)
given by (we use units such thdit=1)
_Qz(z!t)pIO(th)v (23f)
H(z,t)=Q4(z,t)e 21t k1Z1)(0| + Q,(z,t) e~ %2 ~Tk27|2)
with =, pnn(z,t)=1 and p,(z,t) =ppn(z,t). We have as-
X(0[+H.c. 2.1 sumed a closed system, i.e., there is no decay to levels out-
) ) _side of the three-level manifold we study. For differences in
Here,(1n(z,t) = — ptno- £n&nfn(z,1), With n=1,2, is the Rabi  the propagation dynamics of closed and open three-level sys-
frequency of the transitiomn)«[0), with pqo being the as-  tems see Ref(34]. We denote byl',, the radiative decay
sociated dipole transition matrix element. Alsé,=wo  rate of the populations from levéh) to level m) and by
—wp— oy is the laser field detuning from resonance for they, ., the coherence decay rate between stat¢sand |m),
transition|n)«|0), with the energies of thath lower level  with
and the upper level, respectively, being and w, and the
angular frequency of the laser field being . _
The laser field is described classically as a time-dependent Yam=
and spatially dependent electric field,

N| =

1
; Lot ZI Tt Yo (2.9

. . where indicesk,| correspond to the statd&) and |I) in
E(z,t)=£,&f(z, )€ (@117 + g,6,f,(z,1)e! (w2l ~k2?) which stategn) and|m), respectively, decay to. Alsoy/,,
tec 2.2 describgs the decay dug to dephasing'proce'sges. Example§ of
r : dephasing processes include inelastic collisions in atomic
and molecular systems or electron-electron scattering, inter-
face roughness, and phonon scattering in semiconductor

) ) guantum well systems. The effects of Doppler broadening
dimensionless pulse envelope of each laser pulse.

Wi I the d ) £ th : ) q _twiII not be considered in this paper.
€ analyze the dynamics of the System using a density complete the set of equations for the study of propa-
matrix approach. From the Liouville equation of motion we

btain the followi ’ for the densit trix_ el gation of short laser pulses in this medium, the Maxwell
obtain the foflowing equations for the density-matrix €le-,\ave equation is required, which in the slowly varying en-

wherek,,, with n=1,2, is the wave numbeg,, the polariza-
tion vector, &, the electric-field amplitude, antl,(z,t) the

ments velope approximation reads
i%poo(z,t)=—i(F01+F02)P00(z,t)+Qf(z,t)plo(2,t) 7 (zt)+3 9. (2) | .6 @it ked
gz "7 cot MmN
—Q4(2,1) pos(z,1) + Q3 (Z,) pao( Z,1) i
—_ZT%p zt), n=12 (2.5
—Q5(z,1) poAzZ,1), (2.33 o Pa(zb), 2. .

d . . As Doppler broadening has been ignored, the negative fre-
= p1(Z ) =1L 01pod2,1) +11'21022(2,1) + Q4(Z,Dp0r(Z)  guency part of the macroscopic polarization of the medium,
P.(zt), is given by
_QI(th)plo(Z!t)! (23b)

Pn(zrt):NNOnpnO(Z:t)ei(;ntiknz)y n:1121 (2'6)

. d . .
512220 =1 0apod 2,8) =1T21p24(2,1) + Q22,0 por 2,1) whereis the density of the particles. Substituting E2.6)
into Eq. (2.5 we obtain the following equations for the

= Q3(z,1)padZ,1), (2.30  propagation of the Rabi frequencies:
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g 19 i Q1(Z,7)bF ()b () +Q5(L,7)|by()|?
(5+gE)ﬂﬂz,t)qalpm(z,t). @78 gy HETNIC (Zsfim At
(2.10h
Jd 19 . . . . .
(_+_ —)QZ(Z,t):mzpzo(z’t)_ (2.7p  and the propagation equation for the Rabi frequencies, Egs.
Jz ¢ dt (2.83 and (2.8b), reduce td 10,23

Here,a,= 27N pno| 2w, /c, with n=1,2, is the propagation J .

constant. It is convenient to transform E¢®.3) and(2.7) in g_gQ(Z'T)_ —IK(O)Q(L,7), (2.13)
the local frame where=t—z/c and{=z. In this frame Eq.

(2.3) will be the same with the substitutidn- 7 andz— ¢, with

while Eq. (2.7) reads
aibi(OIF by (b3 (2)
K(Z)

%Ql(g,T)zialplo(f,T), (2.89 - aby (DT (L) anlby()|?

(2.12

Here, ay=a,/(d+ivy,0/2) are the generalized propagation
9 _ constants and the vector of the Rabi frequencies is given by
7 Qa& ) =1a2p2l £,7). (2.80 Q1) =[Q4(£,7), Q5,7
We note that in the case in which the probability ampli-
tudesb,(¢) andb,(¢) are arbitrary spatially dependent func-
) ) . ions, there is no general analytic solution of the propagation
emn the spatiotemporal evolution of the laser pulses in théequation(z.ll). This equation resembles the time-dependent

medium. - . .
We assume that the system is initially prepared in a Su_Schrcdlnger equation with the replacemefit-t, where the

perposition of the lower levels with spatially dependent Co_pro_pagatorK_(g), Eq. (2'1.2.)’ pl_ays _the role of the Hamil-
efficients, such that tonian and is non-Hermitian in this case. In the case of a

time-dependent Hamiltonian general solutions can be ob-
W tained if the dynamics satisfies adiabati¢®p]. Therefore, it
|98 7= 7)) =bu(D)[1)+b(0)[2), 29 ig useful to study the adiabatic evolution of the sys{&@.

Equations(2.3—written in the local frame—an®.8) gov-

with b;(¢) andb,(¢) being, in general, complex, satisfying

[b1(0)|?+]|by(£)|?=1. As has been shown in RéB1], any Ill. ADIABATIC TREATMENT

superposition with spatially dependent coefficients of the |, this section we study the behavior of the propagation,
form of Eq. (2.9 can be created with the use of stimulated Eq. (2.11 in the adiabatic limit. As we have already men-
Raman adiabatic passaﬁﬁi. According to this me;hod WO tioned, the propagation matrik(¢) in Eq. (2.12 is non-
laser pulses are applied t.o the medium and their shape angkmitian. Nevertheless, we can introduce an adiabatic basis,
delay d_e_:termlne the spatl_al dependence of the coherent siich consists of the right-hand eigenvectorski). In
perposition of Eq(2.9). This has been shown through theo- general, these vectors are nonorthogonal, although we can
retical analysis and detailed numerical simulatipBs]. We e them without any additional difficulty. After transform-
note here that the effect of the initially applied or preparatloning| the propagation equatid@.1l) to the adiabatic basis, we

laser pulses are simply to prepare the medium in the supegap follow the standard adiabatic approximation methods to
position of Eq.(2.9). At time 7= 7; the preparation laser study the evolution of the system.
pulses have already created the superposition and do not in-

teract with the medium anymore.

We also assume that the two-photon resonance condition
8,=8,= 4 is satisfied and that the coherence decay rate be- In principle, the generalized propagation constantsnd
tween the lower levels is negligibly small, i.e;;,~0. This @, are not equal. This is the case when, e.g., the transition
condition implies that the radiative decay raigs, between frequenciesn; andw, and the relevant matrix elements are
the lower levels are practically zero, which is quite plausible.unrelated. The right-hand eigensystem of the propagation
The constantsy;, describing the dephasing contributions to matrix K(£) in Eqg. (2.12 reads
broadening could be kept small by controling the experimen-

A. The case whena;# a,

— *
tal conditions. If the excited sta{®) decays rapidly and the =0 So:[ b2({) } (3.1
laser-matter inte_raction is weak_,so that the foIIowing_reIa— = bi(O)* |
tions |Q,|<y, yr>1, and|Q,|?r<1y are satisfied, withr
being a characteristic pulse length ape min(y,q, v-0), the Aoz 7 _i a1b1({) 3.1b
approximate solutions of Eq§2.3d and(2.3e are 274 ST asbo(0)] )
N_91(5,7)|b1(§)|2+92(§,T)b1(§)b§(§) where a=a4|b;|>+ a,|b,|? and the normalization for the
p1ol&,7)= S+iyo ’ second adiabatic state M= \[a;b;[?+[a,b,[?. One of the

(2.10a  eigenstatesy,, is zero, whereas the other okgis nonzero.
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The eigenvalue., is complex due to the fact that the propa- they must vary with position slowly enough so that their
gator K(¢) is non-Hermitian. For the same reason, the twoderivatives are so small that the adiabaticity condition is ful-
adiabatic states are not orthogonal. Nevertheless, we can uied.

them as basis vectors, but we should keep in mind that we In this model there are two possibilities to fulfill the adia-

work in a nonorthogonal basis.

We now transform the propagation equati@ll) to the
adiabatic basis that is defined by E&.1). The transforma-
tion is performed by the nonunitary matrix

1

_bZ(g)* Nalbl(g)

V({)= 3.2

1
b,({)* Nazbz(g)

The transformed propagation equati@ll) reads

J ~ ~ o~
(L, 7)=—1K(OQ(L,7),

9z (3.3

where

QL =V() (¢, 7), (3.4
1.9,

K(§)==IV(O 7 VD VIO TIK(OV(D)-

The matrix elements of the transformed propagafoare
given by

’

- L«
Kl].: - —, (BSa
2a
~ L a1y , ,
Kip=i—=—(bib,—b1b;), (3.5p
aN
- N
Kz1= —i=(bI b3 —bib3"), (3.50
a
Koo=i NT_ o +a, (3.50
=l = a, .
22 N 20

baticity condition, Eq(3.6): the first one is the proper choice
for the position dependence of the probability amplitudes
b;({). We can simply say that the wider the transition region
is, the smaller the derivatives & () are. Certainly, it is
assumed thab;({) is smooth. The second possibility is to
vary the particle densityV of the medium. It is easy to see

that the propagator matrix elemeits, andK,; are indepen-
dent of the density. On the other hand, the differekge

—K,, depends linearly onV. Therefore, the adiabaticity
conditions can be satisfied by increasing the particle density.
However, the density cannot be increased arbitrarily: In the
case of too large density the dephasing effects increase as
well, which ruin the coherent superposition state, Eq39),
of the medium. In the master equati¢®.3) these sorts of
decays are accounted for by the decay ratgs defined in
Eqg. (2.4). In addition, if the particle density becomes high
enough, then near dipole-dipole interactiqitcal-field ef-
fects arise[37]. This leads to a modification of the dynamics
of the laser-matter interaction and, in that case, EQ<
and(2.8) are no longer adequate to describe the system.

In the adiabatic limit, the transformed Rabi frequencies

Q,(¢,7) evolve according to

~ [ ~
Qo@,r):exp( - L_Kn@dg)no(a 7. @7a

~ % ~
QZ(Z,T)=8XP< i L.Kzz(f)df)ﬂz(ii 7). (3.7D

These equations are always valid in the adiabatic limit. We
have not made any specific assumptions about the spatial
dependence of the probability amplitudeg ) andb,(¢),
except that the adiabaticity conditions should be fulfilled. Let
us consider the exponential factors in E(&73a and(3.7h).

The first one yields

(5 a;
exp{ —1 L_Kll(f)d§> = \/;

and the second is

(3.9

the matrix element\{"KV),, is zero. The nonzero value
results entirely from the diabatic correction, i.e., from the
first term in the definition oK in Eq. (3.9).

To obtain the adiabatic limit the coupling between thewhere the subscript means that the quantity should be
adiabatic basis vectors should be negligi8é], therefore,  evaluated at the entry of the mediugp. In Eq. (3.9 the
we must have exponential factor on the right-hand si¢ihs) describes at-
tenuation, therefore, for a sufficiently long propagation dis-
tance the exponential factor in E@.7b becomes zero. This
means that the component of the field along the eigenvector
This requirement imposes certain conditions on the spatiad, vanishes. Here we see a clear advantage of adiabatic evo-
dependence of the probability amplitudeg ¢) andb,({): lution: if adiabaticity prevails throughout the propagation,

where, for convenience, we have introduced the shorthand
notation’ =d/d{. We notice thaK,; is nonzero even though i N ;i i
exp(—if K22(§)d§)=— :ex;{—if a(g)d§>,
4 Ni V 4
(3.9

K1, [K el <K 13— Kol (3.6
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the injected pulse propagates without energy loss. If adiabaf; was in the zero-eigenvalue subspace of the propagator.
ticity is violated, then part of the injected energy is absorbedadiabatic evolution implies that the transition matrix of the

by the medium. system is given by Eq3.11). If the previous conditions are
In the adiabatic limit the solution of the propagation equa-not met, then the rhs of E¢3.16 is nonzero and the equa-
tion (2.11) is given by tion describes attenuation.
_ In the example that leads to E¢3.14 we satisfied the
QL) =W(L,E)QUE 7). (310 conditions of energy conservation, hence the result shows

that complete nonlinear conversion between two laser pulses
is possible in our model.
The process of nonlinear frequency conversion in our sys-
V()Y (31D  tem s illustrated in Fig. 2, where the spatiotemporal evolu-
tion of the normalized intensities of the laser pulses is dis-

_ L played. The results have been obtained from a numerical
wherex({) féiK”(g)df’ with [=1,2. As we have shown, solution of Eq.(2.11). The initial spatial distributions are

for sufficiently long propagation distan¢é— ¢;| the factor  chosen as
exd —ixy({)] goes to zero. In this limit the transition matrix,

Eqg. (3.11), reads :
W({,4i) bi({)= \/m (3.173
e O azby(L)ba()*  —aiby(Li)ba({)*

T L ab@bi@  aba(2by(0)* | -\
a; a3b5(£;)b1(8) a1b1(£i)b1(0) b,(0)= PRI (3.17b

(3.12

Let us assume that at the entry of the medium the probabilitgnd the incoming pulse has a sin-squared shape. It is clear
amplitudes take the valuds (¢;)=0 andb,({;)=1. We re- that the incoming laser pulse is completely converted to a
quire that the occupations between the two ground statedew laser pulse. The accuracy of the approximations that
change completely in the course of the propagation, i.e., dead to Eq.(2.1]) has been assessed by comparing the nu-
the end of the mediung; we have|b;(Z;)|=1 andb,(¢;) merical solution of Eqs(2.3) and (2.8) with that of Eq.
=0. For the field we choose such an initial condition so that2.11). These calculations verify the validity of E2.11) for

with

e*i"l(év) 0
W(Z, &) =V()

0 e*iKZ(g)

it is decoupled from the system: describing the propagation of pulses in our system.
The validity of the adiabatic approximation method is
Q4(&i 1) =Qi(7), Qu({,7)=0. (3.13  demonstrated in Fig. 3. The agreement is very good between

) _ ) ) the numerical solution of Eq2.11) and the result obtained
By making use of the solution given by E.10 with the  py ysing the analytic form of the transition matrix, Eq.
transition matrix, Eq(3.12), we find for Q({s,7), (3.12, the maximum difference between the two results is
about 5 10" 2, implying that the adiabatic approximation is

04(Z1,7)=0, (3148 \alid for the chosen parameter set.
o .
Qy(Ls,1)=— \/a—ie*' agbi(é ) (7). (3.14b B. The case whena;=a,

A physically interesting limit appears whem = a,= .
Now let us consider the energy conservation in this sysThis is quite common, since the two ground states can be the
tem: The total energy density of the two pulses is given by anagnetic sublevels of a state will-1 andM =+ 1 and the

bilinear formP(¢, 7) defined as excited state had=0. Now the eigensystem of the propa-
T gation matrixK(¢) in Eq. (2.12 reads
PL,7)=Q' (L, )DL, 7), (3.195
- - . —by(O)*
whereD is a diagonal matrix with constant elements that fix AN=0, = « |
the dimension of the energy density. The derivativé@afith b1({)
respect ta/ should vanish if the energy is conserved
bl(g)}
aP(¢, No=a, S,= . (3.18
(ai D _i(@'K'DO-Q'DKQ). (316 ? ba(¢)

The two eigenstates, and s, are orthogonal. We form a

On the rhs the components of the vec@rare the Rabi matrix U from these vectors that is unitary now,

frequencies at the positiofi. If this vector belongs to the
zero-eigenvalue subspace of the propagitahen both sca-
lar products vanish. Therefore, the energy is conserved in our U(g)=
system if the evolution is adiabatic, and initially the vector

—ba()*  bi(0)
by()*  ba({)

. (3.19

043817-5
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(a)

Intensity

Intensity

Intensity

0 50 100 150 200
Distance
FIG. 2. Plots of [Q,7)|%Qq% for (8 and

|yl ay) | Q5(2,7) |21 Q4|2 for (b) as a function ofr for different
values of{, with {=0 (solid curve$, =100 (dashed curvgsand
=200 (dot-dashed curveslin (c), we present the maximum of the
normalized field intensities as a function ofor the incoming field
(dashed curveand the generated fieltsolid curve. The figures
were obtained with the spatial distribution of E@.17 with ¢,
=100 and{=5. The incident pulse iﬁ(T)Zﬂlsinz(T'ZT/Tp), with
0=7=<1,. The parameters used in the calculations @re 1000,
a,=2000,,=0.01, 7,=50, 6=0, y10=v20=100, {,=100, and
{=5. All quantities are in arbitrary units.
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(a)

Intensity

Time
(b)
0
-0.001
o
&
o -0.002
v
&
o -0.003
-
o)
-0.004
-0.005
0 10 20 30 40 50
Time

FIG. 3. In (a) we present numerical and analytical results for
laq las||Q4(,7)|?|Q4|? at positionZ=200 in the medium. The
numerical and analytical results are practically indistinguishable in
the figure. We also plot the difference between the numerical and
analytical results irib). The medium and pulse parameters are as in
Fig. 2. Similar agreement between the analytical and numerical re-
sults is obtained fofQ(Z,7)|%/|Q4)2.

This matrix transforms the propagation equatiaril) to the
adiabatic basis, Eq3.18), according to Eq(3.4). The trans-
formed propagation matrix takes the form

0 —i(byby—biby)

R = ’ ’
O ibrbs bt 'b3) o

(3.20

The eigenvaluer in the diagonal oK describes attenuation,
therefore, the field component along the eigenvestoran-
ishes for sufficiently long propagation distance. In the adia-
batic limit the off-diagonal elements &f are negligible com-
pared with the difference of the diagonal ones, such that
[bibs—bibs|<|al. (3.2

In this case the above condition should be fulfilled in order to
have adiabatic evolution of the system.

If adiabaticity is fulfiled and we study the field in the
long distance limit (—¢;>|a|™ 1), the transition matrix
reads

043817-6
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1 ied by Demkov and Kunik¢38]. For equal and reak;, a,
W(Z,Z)=U(Q) 0 0 Uit the solution is well known38—-4Q. However, to the best of
our knowledge, the more general case in which «, are
[ bo(Z)bo()*  —by(&)by()* different and complex has not been studied yet. Therefore,
= . . |- we present here the solution for that case. We follow the
~ba()ba(0) ba(£i)ba({) derivation of Ref.[39], however, as the propagation con-

(3.22 stantse, are complex in our case we have a non-Hermitian

propagator. For brevity we introduce the notations
For the same choice of the boundary conditions for the prob-

e smptides il condiors fr e e e e
medium the field is given by
Q¢ ,7)=0, (3.233 Ay(0)= %e“"secrf—g, (4.30)
Qo(¢g.)=—e ¥ (n).  (3.23b o ;
The energy conservation is obvious in this case, hence, com- By(g)= 2 1+tanhA—§) (4.39

plete nonlinear conversion between the incoming and the

outgoing laser pulses is possible. We note that we have veri- = {
fied numerically that the findings of this section are valid. Ba(0)= 2 1= tanhA_g (4.3d
IV. EXACT ANALYTIC TREATMENT The diagonal terms df(¢) in Eq. (4.2) can be eliminated by
) ) . ) . the transformation
In the preceding section we considered adiabatic pulse )
propagation and we derived approximate analytic solutions | exp=iBy(4,4) 0 aa
for the propagation equatiof2.11). For practical applica- (0= 0 exp-iB,(4, &) (4.4

tions probably this is the most important case because the
injected light pulse can be converted to a new pulse withoUjyhere B,(¢,¢;)= fz B,(§)dé. The propagation equation

energy loss. However, it is interesting to study that snuatlon(2 11) is transforme d by this transformation in the same way
where the adiabaticity conditions are not satisfied. One pos '
as in Eq.(3.4). The transformed equation reads

sibility is to solve numerically the propagation equation
(2.13). Another one is to look for some special choice for the J .- — B
probability amplituded,(¢) andb,(¢) for which exact ana- a—gﬂl(&T): —iA1(e "m0, (¢, ), (4.59
lytic solution of the propagation equation can be obtained. In

the following we will consider such an example. d - — B
Let us choose the probability amplitudes of the atomic &—gﬂz(Z,TF —iAy(0)eBN0, (¢, 1),  (4.5D
coherent superposition state, £g.9), as
1 ‘ \Lvhere B(Z,Z)=B1(¢,¢) —B1(¢,¢). Then we eliminate
bi({)= V32 1+tanhA—g e'ey, Q,(Z,7) from Eq. (4.5a and replace the variable with
/1 ¢ q= L 1+tanh£> (4.6)
b,(2)= ( —tanhA—g ez, (4.1 2 A¢ '

The new variable) varies from 0 to 1 ag goes from—oo to

The position/ varies from—c to +c. The limiting values - Finally we arrive at the hypergeometric differential equa-

*o correspond td¢; ¢|>A{ in practice. For the spatial de-

pendence of Eq(4.1) the propagation matrix, Eq2.12), tion
becomes FEON Q
¢ ¢ a(l-a)—— +[v (>\+M+1)q] Ay =0.
1 1+tanhA—§) ale""sechA—g o9° @.7)
K({)= > o | .
aze*"*’sechA—g ayl 1— tanhA—g) The constanta, u,v are defined as
(4.2) N=i a1A @Al
=i 5 m=i 5 (4.8
whereo= ¢, — ¢,. Inserting this propagator to the propaga-
tion equation(2.11) we obtain a system of differential equa- _ E(l+ia2A§)

tions that can be solved analytically. =5
Apart from some minor differences, the mathy¢) in
Eq. (4.2 defines a famous level-crossing problem, first stud-The general solution of Eq4.7) reads
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§1=aF()\,,u,V;q)+bql_”F()\+ 1-v,u+1-v,2-v;q),

(4.9
where the parameteessandb are determined from the initial 0.
conditions and=(\,u,v;q) is the hypergeometric function. 5,
Note thata andb may depend omr in general. E 0.
The solution for the other field), can be obtained by g
using Eqgs(4.53 and (4.9 £ 0.
H
~  2ie'®9Jq(1-q)[ Iu
_ . 0.
= — +1lu+ly+
Q, PY: a » FIN+1lu+1lpv+1;q)
+b(1-v)Z7"F(N+1—v,u+1—-v,1-v;q)]|.
(4.10
The solution of the original propagation equati¢hll) is 0
given by 0. 002
= 0}
Q=UQ, 4.1 3]
(4.13 5 -0.004
whereQ=[Q,,0,]". E) 0,006
We choose the initial condition to be given by Eg§.13), “ '
as this field is decoupled from the quantum system at thea -g .08
initial position ;. Therefore, according to Eqet.9)—(4.11),
a=Q;(7) andb=0 becausd=(\,u,v;0)=1. The solution -0.01
then reads | 0 10 20 30 40 50
04(4,1)=Qi(1)e” P1IF(\, 1, v;0), (4.123 Time
o FIG. 4. Numericaksolid curve, analytical(dash-dotted curye
Q —0 2ie” !Bt g(1-q) Ap and adiabatid¢dashed curvefor |a; /a,||Q,(Z,7)|%/|Q4|? at posi-
28, 1) =Qi(7) a AL v tion =200 in the medium are presented (@, using the spatial
distribution of Eq.(4.1) with A{=5. In (b) we plot the difference
XF(A+1u+1r+1;0). (4.120  petween the numerical and the analytical res(deshed curveand

the difference between the numerical and the adiabatic resolid

As an example we compare the results of the analytiGyrg. Rest of the medium and pulse parameters are as in Fig. 2.
solution of Eq.(4.12) with those obtained from the numerical sjmilar agreement is obtained ft0,(¢, 7)|%/] Q4.

solution of Egs(2.3) and(2.8) and the adiabatic solution of
Sec. llIA. The agreement between the three results is ver

¥pproximation yields a significantly different result. We con-
good as can be seen in Fig. 4. In detail, numerical and an bb y d y

%lude that the exact analytic solution describes correctly the

lytical solutions are practically indistinguishable in Figay pulse-propagation dynamics as long as the conditions that
whereas the adiabatic results give a good approximate SOIlI{éd to the propagation equatidB.11) are satisfied
tion to the system. For clarity we also plot the difference ' '

between the numerical and analytical or adiabatic results in
Fig. 4(b). V. SUMMARY

Finally, we demonstrate that the exact analytic solution, In thi ¢ we have presented a thorouah theoretical
Eq. (4.12, describes the dynamics correctly even if we are S paper we have presented a horoug eoretica

out of the adiabatic limit. We take equal propagation con-anaIySIS of nonlinear frequency conversion i dype me-

stantsa, = a, for the two modes. Then, for the probability dium with spatially dependent coherence. The medium was a

; . - . s phaseonium system, in which the two lower states were pre-
;rglpdllstudes In Bq(4.1) the adiabaticity condition, Eq3.21), pared initially in a coherent superposition state. The third

excited state was empty initially. We have studied pulse
propagation in this system assuming that the coherent super-
position state of the medium is position dependent.

In the first part of the paper we have considered adiabatic
We chooseA{=|a| ™ which clearly violates the previous pulse propagation: here adiabaticity is considered in the local
inequality. We compared the numerical solution of E@s3)  frame on the position domain. Starting from a linear propa-
and(2.8) with the analytic solution, Eq4.12), and with the  gation equation for the pulses we have derived the conditions
approximate adiabatic solution, E(B.22. We have found for adiabatic propagation. We have found explicit expres-
that according to our expectations, the exact analytic and thsions for the matrix elements of the propagator that should
numerical solutions agree very well, whereas the adiabatibe fulfilled. However, since the propagator is formed of the

1
A—§<|a’|. (4.13
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position-dependent coefficients of the atomic superpositiothe propagation equation. We have realized that this special
state and the propagation constants of the medium, the adiarodel is closely related to the Demkov-Kunike model of
baticity conditions pose restrictions on these quantities. Welriven two-level systems. We have tested the exact analytic
have analyzed in detail two different casé®: the propaga- solution versus numerical simulations in cases when adiaba-
tion constants are not equal for the two modes; @ndhe ticity is satisfied or it is not satisfied, and have verified that
propagation constants are equal. We have shown that in bothe analytic solution is correct. Therefore, it can be used to
cases the efficiency of energy transfer between an injectestudy further pulse-propagation effects imatype medium
pulse and the generated pulse is unity. Moreover, unit transwith spatially dependent coherence.
fer efficiency can be achieved only if the propagation satis-
fies the conditions of adiabaticity in the local frame on the
position domain. We have tested the results by comparing the
approximate adiabatic solutions with numerical ones. We Z.K. acknowledges the support from thénda Bolyai
have found very good agreement for the chosen paramet@rogram of the Hungarian Academy of Sciences and from
sets. the Research Fund of the Hungarian Academy of Sciences
In the second part of the paper we have worked out atOTKA) under Contract No. T43287. He is also grateful to
exact analytic solution for pulse propagation in our systemBruce W. Shore for helpful discussions. E.P. acknowledges
For a special choice of the coefficients of the atomic superthe financial support of the IKY. He also would like to thank
position state we have derived an exact analytic solution oNiels J. Kylstra for assistance in the numerical simulations.
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