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Electromagnetic-field quantization and spontaneous decay in left-handed media
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We present a quantization scheme for the electromagnetic field interacting with atomic systems in the
presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative
real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the
center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones.
Results for both big and small cavities are presented, and the problem of local-field corrections within the
real-cavity model is addressed.
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[. INTRODUCTION lightening discussiongl1-13. More recent experimen{$§]
seem to confirm the negative refraction observed in F3f.

The problem of propagation of electromagnetic waves irNevertheless, there have been still many open questions
materials having, in a certain frequency range, simulta@bout the electrodynamics in magnetodielectrics, i.e., mate-
neously negative permittivity and permeability thus leadingrials with simultaneously significant electric and magnetic
to a negative refractive index was first studied by Veselag®roperties, including LHMs. o
[1]. Since in such materials the electric field, the magnetic N this paper, we first study the problem of quantization of
field, and wave vector of a plane wave form a left-handedh® macroscopic electromagnetic field in the presence of
system, so that the direction of the Poynting vector and th&agnetodielectrics, with special emphasis on LHMs. Apart
wave vector have opposite directions, they are also callefflom the more fundamental interest in the problem, quanti-
left-handed materiald.HMs). Other unusual properties are a Zation is requwe_d to |_nclude nonclas_slcal radiation in the
reverse Doppler shift, reverse Cerenkov radiation, negativétudies. Since dispersion and absorption are related to each
refraction, and reverse light pressure. Since LHMs do nO_pthe.r by the Kramers-Kronig relations, not_meaple dispersion
exist naturally, they have remained a merely academic curimplies that absorption also cannot be omitted in general. As
osity until recent reports on their fabricatig2—6]. The  We will show, quantization of the electromagnetic field in the
metamaterials considered there consist of periodic arrays diésence of dispersing and absorbing magnetodielectrics can
metallic thin wires to attain negative permittivity, inter- P& performed by means of a source-quantity representation
spersed with split-ring resonators to attain negative permeg?ased on the classical Green tensor in a similar way as in
ability. Although the metamaterials that have been availablétefs.[14—19 for purely dielectric material.
so far behave like LHMs only in the microwave range, there AS @ simple application of the quantization scheme, we
have been suggestions on how to construct metamateriaigen study the spontaneous decay of an excited two-level
that can operate at optical frequencies, by reducing the siz&€§0m in a dispersing and absorbing magnetodielectric envi-
of the inclusions(split rings, chiral, or omega particlef7] ~ ronment, .Wlth special emphasis on an atom in a spherical
or by using point defects in photonic crystals as magneti€aVvity. It is well known that the spontaneous decay of an
emitters[8]. A number of potential applications of LHMs atom is influenced by the environment. If the atom is embed-
have been proposed, including effective light-emitting de-ded in a homogeneous, purely electric medium with real and
vices, beam guiders, filters, and near-field lenses. For exositive (frequency-independenpermittivity, the decay rate
ample, LHMs could be used to realize highly efficient low Without local-field corrections reads
reflectance surface®] or superlenses which, in principle,
can achieve arbitrary subwavelength resolufibd]. The in- I'=nTY, (1)
triguing superlense proposal and the reported observation of
negative refractiorf3] have touched off intensive and en- whereT'y is the decay rate in free space ame \¢ is the

refractive index(see, e.g., Refs[20-229 and references
therein. From energy scaling arguments it can be inferred
*Also at Institute of Physics, National Center for Sciences andthat the electric field in a medium corresponds to the electric
Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, field in free-space times {£. From a mode decomposition
Vietnam. one can conclude that the mode density is proportionafto
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With that, Eq.(1) immediately follows from Fermi's golden frequency limit of the permittivity and the permeability, Eq.
rule. Now if we take into account that in the more general(4), and the requirement that ljpp_...n(r,»)=1 it follows
case of positivee and u the refractive index isi=+eu, we  that the+ sign is correc{12],

conclude that _
n(r,w)=|e(r,)u(r,o)|el?)ré.0na0l2 (g)

) The same result can be found from energy argum@jfsee
Unfortunately, these arguments cannot be used if, 2.9nd 5,50 the remark following Eq27) in Secs. Il and V A.
n are simultaneously negative. Basing the calculations on grom Eq.(9) it can be seen that when bo#{r,®) and
rigqroys q_uantization, we show that EQZ} also remains u(r,®) have negative real parts[qsg(r,w),(’b”(r,w)
vahql in this case. More_over, we gener_allze ER) to the _e(m/2,m)], then Ren(r,w) is also negative. It should be
realistic case of dispersing and absorbing matter, '”d“d'n%ointed out that for negative R¥r,) it is not necessary

local-field effects. that Res(r,») and Reu(r,w) are simultaneously negative.

The paper is organized as follows. In Sec. Il, SOme gengq, the reql part of the refractive index to be negative, it is

eral aspects of the refractive index of a medium whose Pers fficient that[ . (r, @)+ b, (r,@)]>m, i.e., one of the
& L] y23 1 ) ey

mittivity and permeability can simultaneously become nega- hases can still be smaller thar2, provided the other one

tive are discussed. Section Ill is devoted to the quantizatioy large enough. In fact, the definition of LHMs was origi-

of the electromagnetic field in the presence of a dispersing . introduced for frequency ranges where material absorp-
and absorbing magnetodielectric medium. The interaction O{ion is negligibly small, and thus(r,®) and u(r,®) can be

the medium-assisted field with additional charged particles i ; ; :
considered in Sec. IV and the minimal-coupling HamiItoniani;?]a(rac)i:ias(‘jt grsosggg trhe aétl ]5 Olt;(trh Iz)c:iz,ﬂp(rroze)lg:rt;ngir\;]vsl\fes

q f ted two-level at ith ial hasi ?aneously either positive or negative. If they have different
ecay of an excited two-ievel atom, with Special emphasis Od%igns, then the refractive index is purely imaginary, and only

I'=punly. 2)

. . . omplicated when material absorption cannot be disregarded,

ing remarks are given in Sec. V1. because there is always a nonvanishing real part of the re-

fractive index(apart from the specific case wheré,(r, )

+ ¢,(r,w)]=m). In the following we refer to a material as

being left handed if the real part of its refractive index is
Let us consider a causal linear magnetodielectric mediunf€9ative. .

characterized by &elative permittivity e(r,w) and a(rela- In o_rder_ to illustrate the de_pendence on_frequency_of the

tive) permeabilitys(r, ), both of which are spatially vary- refractive mdex,_ I_et_ us restrict our attention to a single-

ing, complex functions of frequency satisfying the relations "éSonance permittivity

II. PERMITTIVITY, PERMEABILITY,
AND REFRACTIVE INDEX

e(r,—w*)=c*(r,o), u(r,—o*)=u*(r,m). (3 w3
e(w)=1+—5—— (10)
They are holomorphic in the upper complex half plane with- WTe” W lWYe
out zeros and approach unity as the frequency goes to infin- ) .
ity, and a single-resonance permeability
lim &(r,w)= lim u(r,0)=1. (4) wp
|w|—o0 |w|—o0 ,LL(a)):1+ Z;Pma (11)

L e FOR 7
Since for absorbing media la(r,w)>0, Imu(r,0)>0

(see, e.g., Ref23]), we may write where wpe, wpy, are the coupling strengthsyre, wr, are
the transverse resonance frequencies, @pd v, are the

e(r,w)=|e(r,w)|e'®") ¢ (r,w)e(0,m), (5  absorption parameters. For notational convenience, we have
omitted the spatial argument. Both the permittivity and the
p(r,o)=|u(r,w)e?), ¢ (r,w)e(0m). (6) permeability satisfy the Kramers-Kronig relations. Equation
(10) corresponds to the well-knowr(single-resonange
The relationn?(r,w)=&(r,w)u(r,») formally offers two  Drude-Lorentz model of the permittivity. The permeability
possibilities for thelcomplex refractive indexn(r,w), given by Eq.(11), which is of the same type as Ed.0), can
. be derived by using a damped-harmonic-oscillator model for
n(r,o)==\le(r,0) u(r,w)[e"oull2 0 (7) e magnetization[24]. It also occurs in the magnetic
metamaterials constructed recer|t®;3,6,29.
For very small material absorptiony§m< @pe/m, ®@T1e/m):
0<[,(r, @)+ ¢, (r,0)]2<. ®) permittivity (10) and permeability(11), respectively, feature
band gaps between the transverse frequengyand the lon-
The = sign in Eq.(7) leads to Irm(r,w)=0. To specify the gitudinal frequencyw, o= w2+ w2, where Re(w)<O0,
sign, different arguments can be used. From the highand the transverse frequeney,, and the longitudinal fre-

where
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40 - - T e(r,w) and u(r,») can be performed by generalizing the
theory given in Refs.[16,19 for dielectric media. Let
P(r,») and M(r,w), respectively, be the operators of the
polarization and the magnetization in frequency space. The
operator-valued Maxwell equations in frequency space then
read

20

VB(r,»)=0, (12)

VD(r,w)=0, (13)

V XE(r,w)=i0B(r,0), (14)

VXH(r,w)=~iwD(r,), (15
where
B(r,0)=soE(r,0)+P(r,0), (16)

H(r,0)=koB(r, @) —M(r,») 17

€t 1y, Similar to the electric constitutive relation,

0.95 1 1.05 1.1 P(r,0)=zq[e(r,0)~ 1]E(r,0) +Py(r,0), (18

O/ Oy, - - -
with EN(r,w) being the noise polarization associated with
the electric losses due to material absorption, we introduce
the magnetic constitutive relation

FIG. 1. Real(a) and imaginary(b) parts of the refractive
index n(w) as functions of frequency, with the permittivig( )
and the permeability.(w) being, respectively, given by Eg&L0)
and (11) [wTe: l'O&HTm , Wpm= 0-43“)Tm s Wpe= 0-75‘)Tm 1 Ye™ Ym

=0.00lw, (solid lines, 0.0lwr, (dashed lines and 0.0%r, M(r, @)= ko[ 1 - «(r,®)]B(r,w) + M\(r, @), (19
(dotted lineg]. The values of the parameters have been chosen to be . - ] ]
similar to those in Refd.3,13]. wherek(r,w)=u" "(r,o), andMy(r,w) is the noise mag-

netization unavoidably associated with magnetic losses. Re-
quencwam:\/szanszm, where Reu(w)<0. With in- call that for absorbing media Im(r,0)>0, and thus
creasing values o, and y,, the band gaps are shifted to Im «(r,w)<0. Substituting Eqs.14) and(16)—(19) into Eq.
higher frequencies and smoothed out. Figure 1 shows thél5), we obtain
dependence on frequency of the refractive inflEx. (9)]
for the case of overlapping band gaps and various a- ~ @2 ~ R
bsorption parameters. In particular, if max{,orm)<w  VXk(r,o)VXE(r )= —e&(r,o)E(r o) =ioujy(r o),
<min(w e, ), then Res(w)<0 and Reu(w)<O0, and ¢
thus a negative real part of the refractive index is observed. (20)
In Fig. 1, this is the case in the frequency interval where here
1.03< w/ wt,<<1.088. For the chosen parameters, a negativgv
real part of the refractive index can also be realized for fre-
guencies slightly smaller thaw+., where Reu(w)<O0
while Ree(w)>0, as is clearly seen from the inset in Fig. . h . h . h density is i b
1(a). In this region, however|Ren(w)| is typically small 'S the noise cAurrent. The noise ¢ a_rge, enS|ty.|s given by
whereas Inn(w) is large thereby effectively inhibiting trav- Pn(r @)= —VPy(r,»), and the continuity equation holds.
eling waves. It is worth noting that a negative real part of theThe solution of Eq(20) can be given by
refractive index is typically observed together with strong
dispersion, so that absorption cannot be disregarded in gen- = . 3./ rONE
eral. On the other hand, increasing absorption smooths the E(r,w)—w,uof d*rGrr 0)in(r, o), (22)
frequency response of the refractive index thereby making
negative values of the refractive index less pronounced. where G(r,r’,w) is the (classical Green tensor satisfying

the equation

In(r @)= —iwPy(r,0)+ VXM\(r,o) (22)

IIl. THE QUANTIZED MEDIUM-ASSISTED
ELECTROMAGNETIC FIELD 2

VX (1,0) VX~ (1) |G, )= &1 1)
C

The quantization of the electromagnetic field in a causal
linear magnetodielectric medium characterized by both (23
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together with the boundary condition at infinity. It is not ~ heg R
difficult to prove that the relationG* (r,r’,w)=G(r,r’, N ®)=w Tlms(r,w)fe(f,w)JrV

—w*), which is analogous to relation(8), is valid. Other
useful relations arésee Appendix A

ﬁKO ~
X\/—Tlmx(r,w)fm(r,w). (32

Gij(r,r',0)=Gj(r',r,») (29
and Note that in Eqs(28) and (29), respectively,E’N(r,w) and
MN(r,w) are only determined up to some phase factors
_ which can be chosen independently of each other. Here we
f d®s{ —Im k(s,0)[G(r,s,w) X VJ[VXG* (s, 0)] have them chosen such that in E§2) the coefficients of
fo(r,») andf(r,w) are real.
w2 The f,(r,w) andf/(r,w) can be regarded as being the
+—Ime(sw)G(r,5,0)G*(s1',) fundamental variables of the system composed of the elec-
¢ tromagnetic field and the medium including the dissipative
=ImG(r,r',w), (25)  System, so that the Hamiltonian can be given by
where A= f d3rf dwfiofl (r,0)f(r,w). (33
A=e,m 0
[G(r,5,0) X Vdi; = € diGi(1,5,). (26)

In this approach, the medium-assisted electromagnetic field

In the simplest case of bulk material, E@3) implies that is fully expressed in terms of thi;;(r,w) and f{(r,w). In
the Green tensor can simply be obtained by multiplying theparticular, the electric-field operatéin the Schrdinger pic-
Green tensor for a bulk dielectr{d9,22,26 by u(w) and  ture) reads

replacinge (w) with g(w)u(w),

Gij(1,1,) = p(@)[ 3]0 +q%(@) & (r—1")] E(”:Jo dwE(r.w)+He, (34
eiReq(w)[r—r'| ~ L .
X————————e Mma)r=r'l (27 whereE(r,w) is given by Eq.(22) together with Eq/(32).
4mq*(w)|r—r'| Similarly, the other fields can be expressed in terms of the

- f\(r,w) andfl(r,»), by making use of Eqg14), (18), (19),
[q(w)=n(w)w/c]. From the boundary condition for the (28), and (29). It can then be showfAppendix B that the

Green tensor afr—r'|—eo, it follows that Imn(w)>0,  fyndamentalequal-timé commutation relations
which is consistent with Eq9).

Analogously to the noise polarization that can be related [E-(r) E-(r')]:o:[é.(r) I§-(r’)] @5
to a bosonic vector fielae(r,w) via iVt i(r),B; ,

~ r— [eoEi(r).Bj(r)]=—ifieas(r—r)  (36)
Pn(r, o) =i 7Ims(r,w)fe(r,w), (29

are preserved. Furthermore, it can be verifidgpendix Q
) o ) that in the Heisenberg picture the medium-assisted
the noise magnetization can be related to a bosonic VeCt%rIectromagnetic-field operators obey the correct time-
field f(r,w) via dependent Maxwell equations.
The introduction of a noise magnetization of the type of

- \/ hkg - Eq. (29) was first suggested in Rdfl9], but it was wrongly
Mn(r @)=\ = —=IM (1, w)fn(r, ), (29 concluded that such a noise magnetization and the noise po-
larization in EQ.(28) can be related to a common bosonic
with (A\,N"=e,m) vector fieldf(r,w). Sincefs(r,) in Eq.(28) is an ordinary
A A vector field, wherea$,(r,») in Eq. (29) is a pseudovector
[fm(r,w),fl,j(r’,w’)]= O Gijo(r—r')o(w—w'), field, the use of a common vector field would require a rela-

(30)  tion for the noise magnetization that is different from Eq.
(29) but must ensure preservation of the commutation rela-
[fm(r,w),?w(r’,w’)]=0. (31) tions (35) and(36) and lead to the correct Heisenberg equa-
tions of motion. For the metamaterial considered in Refs.
T = — [2—6], where the electric properties and the magnetic prop-
Sybsmutmg in Eq(21) for.EN(r,w) andMN(r"_ﬁ’) exprgs— erties are provided by physically different material compo-
sions(28) and (29), respectively, we may expref(r,) in  nents, the assumption that the polarization and the magneti-
terms of the bosonic fieldg (r,w) as follows: zation are related to different basic variables is justified. It is
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also in the spirit of Ref[24], where the polarization and the being, respectively, the charge density and the scalar poten-
magnetization are caused by different degrees of freedom.tial of the particles. Finally, the last term is the Coulomb

IV. INTERACTION OF THE MEDIUM-ASSISTED FIELD
WITH CHARGED PARTICLES

energy of the interaction between the charged particles and
the medium.

Let I%(r) and I§(r) be, respectively, the operators of the

In order to study the interaction of charged particles Withelectric field _and the induction field in the presence of the
the medium-assisted electromagnetic field, we first introduc&Narged particles,

the scalar potential

&(r)=J do o(r,0)+ H.c. 37)
0 &
and the vector potential
A(r)zf dwA(r,0)+H.c., (39)
N al

where in the Coulomb gauge(r,») and A(r,w) are, re-
spectively, related to the longitudinal pdt(r,») and the
transverse parE* (r,w) of E(r,») [Eq. (22) together with
Eq. (32)] according to

~Vo(r,w)=El(r,0), (39)

Ar,0)=(iw) E(r,0). (40)

Similarly, the momentum fielcﬁ(r) that is canonically con-
jugated with respect to the vector potentiglr) can be con-
structed noting thaf[(r,w) = —sOEl(r,w). Now the Hamil-

E(n=E(r)—Vea(r), B(r)=B(r). (44)

Accordingly, the displacement fielﬁ(r) and the magnetic
field ﬁ(r) in the presence of the charged particles are given
by
D(r)=D(r)—eoVea(r), H()=H(r). (45

Note that in Egs.(44) and (45) the electromagnetic fields
must be thought of as being expressed in terms of the fun-
damental field$, (r) andf!(r). From the construction of the
induction field and the displacement field it follows that they
obey the time-independent Maxwell equations

VB(r)=0, VB(r)=pa(r). (46)
Further, it can be showAppendix Q that the Hamiltonian

(41) generates the correct Heisenberg equations of motion,
i.e., the time-dependent Maxwell equations

tonian (33) can be supplemented by terms describing the VXE(r)+B(r)=0, (47)
energy of the charged particles and their interaction energy .
with the medium-assisted electromagnetic field in the same Vxﬁ(r)—ﬁ(r)zfA(r), (48)

way as in Ref.[19] for dielectric matter. In the minimal-
coupling scheme and for nonrelativistic particles, the totalyhere
Hamiltonian then reads

~ _1 A ~ A A
H: Z J d3rf dwﬁwf;[(r,w)f)\(r,w)—l-z zi[f)a JA(r)_E Zﬂ qa[raé(r_ra)—'_(s(r_ra)ra]! (49)
A=e,m 0 a m,

. 1 . . . . and the Newtonian equations of motion for the charged par-
— AT )P+ 5] d3rpA(r)<pA<r>+J drpa(ne(r),  ticles

41 A 1 . o A
“ fo=—[Pa—QeA(To)], (50
where?a and f)a are, respectively, the position and the ca- “
nonical momentum operator of theth particle of massn, x - 1A A - A
and chargey,, . The first term in Eq(41) is the Hamiltonian Mgl o= o{E(ra) + 2[FoXB(ra) —B(ra) Xr,l}. (51)
(33) of the electromagnetic field and the medium including
the dissipative system. The second term is the kinetic energy
of the charged particles, and the third term is their Coulomb
energy, with

V. SPONTANEOUS DECAY OF AN EXCITED
TWO-LEVEL ATOM

Let us consider a two-level atofpositionr,, transition
frequencyw,) that resonantly interacts with the electromag-

pA(r):zal 9ad(r=Ta), (42 netic field in the presence of magnetodielectrics and restrict
our attention to the electric-dipole and the rotating-wave ap-
oar’) proximations. By analogy with the case of an atom in the
;A(r):j d%rL (43 presence of dielectric materig27,19, the Hamiltonian(41)
dmeo|r—r'| reduces to
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. *© N ~ ~n~pn o 2
A= > fd%f dwhofl (r,0)f\(r,0) +hoso’o K(t—t')=— 1 f do 2
rZem 0 haeglo c?

- &TdAf dwB(rs, @) +H.c.|, (52) xe @ et=g, ImG(ra,ra, @)da.
, doE

(58)

where o=|1)(u| and o"=|u)(l| are the Pauli operators of
the two-level atom. Heré|) is the lower state whose energy
is set equal to zero anjd) is the upper state of enerdiyw, .

It should be noted that, by integrating with respect,tthe

integrodifferential equation57) can equivalently be ex-
A A . . . pressed in the form of a \Volterra integral equation of second

Further,da=(I[da|u)=(u[dall) is the transition dipole mo- kind [27]. Equations(57) and (58) formally look like those

ment. ) ; )

- .. valid for nonmagnetic structurg¢&7]. Since the matter prop-

To study the spontaneous decay of an |_n|t|aIIy .e.XC'tederties are fully included in the Green tensor, the results only
atom, we may look for the system wave function at tinie

differ in the actual Green tensor.
ot
the form of [|1,(r,@))=fi(r,«) {0})] Equations(57) and (58) apply to an arbitrary coupling

B - regime [27]. Here, we restrict our attention to the weak-
(1)) =Cy(t)e™"“~"{0})|u) coupling regime, where the Markov approximation applies.
o . That is to say, we may repladg,(t’) in Eq. (57) by C,(t)
+}\2 f d3rJ0 dwe ™ "“ICy\(r,w,t) |1, (r, @)1, and approximate the time integral according to
=e,m

53 t L~ , ~

( ) f dt/e—l(m—wA)(t—t )Hé’((l)A_(J)) (59)
whereC,(t) andC,(t) are slowly varying amplitudes and, 0
in anticipation of the environment-induced transition-

frequency-shiftsw [28], wa= wa— dw is the shifted transi-
tion frequency. The Schdinger equation iid,|(t))

= I:i|z//(t)> then leads to the set of differential equations

[£(X)=md(x)+1P(1k)]. Identifying the principal-part inte-
gral with the transition-frequency shift, we obtain

1 © @2 dalmG(ra,ra,w)d
Lo e ) b= —— fdw—z AIMG(ra ra )A, (60)
Cy(t)= —i 8wC,y(t)— — hfo do 205w o Jo ¢ w—0n
v 6]

which, together with Eq(53), can be regarded as being the
w If-consistent defining equation for the transition-frequenc
> 3 E Mmair ), sel _ g eq ' q y
jd rdA[c IM&(r,@)Gra.r@)Celr,w.t) shift [28]. Equation (57) then yields C,(t)=exp(iTt),
where the decay rat€ is given by the formula

= IMk(r,)[G(r a1, 0) XV, ]Cmi(r @, 1)},

2wi -
(54) I'= ZdAImG(rA,rA,(J)A)dA, (61)
ﬁSOC
2 ~
Col(l, @, 1) =— w—\/|m e(r,w)e (@ enlt which is obviously valid independently of tienateria) sur-
Vmeoh ¢ roundings of the atom.
XdAG*(I’A ,I’,w)Cu(t), (55)
A. Nonabsorbing bulk material
. l o Lo~ Let us first consider the limiting case of nonabsorbing
— [ i(w—wp)t - _
Coni(1, 0,1 Jmeoh © M «e(r,w)e " bulk material, i.e.g(w,) andu(w,) are assumed to be real.
~ Using the bulk-material Green tens(®#7), it can easily be
X da[G*(ra,r,w)V,]Cy(1), (56)  proved that
which has to be solved under the initial conditioBg(0) ~ PN ~ ~
=1 andC,,(r,»,0)=0. Formal integrations of Eq$55) and IMG(ra.ra,wa) =g R u(wa)n(wa) ]I (62
(56) and substitution into Eq54) leads to, upon using rela-
tion (25), Substitution into Eq(61) yields the decay rate
- . ! ’ ’ ’ ~ ~
Cu(t):—I(Sa)Cu(t)-l—fodt K(t—t")Cy((t"), (57 I'=Re u(wp)N(wa) ], (63)
where where
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1

r 3w
(64) F—0=1+§n§l n(n+1)(2n+1)

2
ReC)

(67)

~3 42
wady

0 3hme OCS

Kal' o

is the free-space decay rate, but taken at the shifted transition , i i
frequency. Equatiori63) is in agreement with Eq(2) ob-  Tof @ radially oriented dipole momenti{[r») and

tained from simple arguments on the change of the energy rl 3 =

Qensity and the mode density for po.sitive and frequgncy- =1+ = Z (2n+1) jﬁ(kArA)ReCr'\{'
independent and w. Clearly, Eq.(63) is more general in Lo 471

that it also applies to dispersive magnetodielectrics. In par- [Kar aj o (Kaf )] |2

ticular, whene(w,) and u(w,) have opposite signs, then + AAJI(”A) ReCN (68)
the refractive index defined according to E§) is purely Al A

imaginary, thereby leading 19=0. This is because the elec- for a tangentially oriented dipole momenti (L r,) [the

tromagnetic field cannot be excitedaj , so that spontane- prime indicating the derivative with respect kar,, (Ka
ous emission is completely inhibited. Note that material ab-_;A/C)] In Egs. (67) and (68), j(z) and h(l)(z) are the
. . 1 n n

sorption always gives rise to a finite value Bf which of spherical Bessel and Hankel functions of the first kind, re-
course can be very small.

From Eqg. (63) it is clearly seen that for nonabsorbing specnvely. The coefficient€, and Cy' have to be deter-

) ~ ~ ) mined through recurrence formulg31].
LHM, i.e., e(wa) <0 andu(wa) <0, the now real refractive Equations(67) and (68) apply to an atom at an arbitrary
index must also be negative, in order to arrive at a NONysition inside a spherical free-space cavity surrounded by
negative value of the decay rate. This is yet another strondy, grpitrary spherical multilayer material environment. Let

argument for the choice of the sign in Eq.(7). us specify the system such that the atom is situated at the
center of the cavity(i.e., ro=0) and let the surrounding
B. Atom in a spherical cavity material homogeneously extend over all the remaining space.

For realistic bulk material, the imaginary part of the For_small cavity radii, _the system_ correspo_nds to the real-
Green tensor at equal positions is singyld,22,26. Physi- cavity model of local-field corrections. Making use of the
cally, this singularity is fictitious, because the atom, thougheXPlicit expressions for the coefficien@)) as in Ref.[31]
surrounded by matter, is always localized in a small freeand the fact that for =0 only then=1 term in Eq.(67)
space region. The Green tensor for such an inhomogeneo@@ntributes32], we derive from Eq(67)

system reads
r ) p—n _,
G(r,r’,w)=GV(r,r’,w)+GS(r,r’,w), (65) F_0:1+R 1—|(n+1)z—n(n+1)M_n22
where GY(r,r',w) is the vacuum Green tensor and “n
G3(r,r’,w) is the scattering part, which describes the effect +in? ® 223 e'?l —isinz—(nsinz—i cosz)z
of reflections at the surface of discontinuity. Using E8F) pu—n
together with InGY(r,r,»)=(w/6mc)l [cf. Eq. (62)], we
can write the decay rat@$1) as +| cosz—i 1-p n sinz) n72
- pw—n?
2
- “A S p -1
F—Fo+—2dA|mG (rA,rA,wA)dA, (66) n2
fhieoc —(nsinz+iu cosz) 52 (69)
m—nN

which is again seen to be valid for any type of material. 5 5 5

Within a classical theory of spontaneous emisgi@®, a [u=u(wa), N=N(wa), andz=Rw,/c, with R being the
formula of type(66) has been used in Rdf30] to calculate  cavity radiug. Obviously, the dipole orientation does not
the decay rate of an atom near a dispersionless and absommatter here, and Eqé67) and(68) lead to exactly the same
tionless LHM sphere. Classical theory means here, that eesult. Equation(69) is the generalization of the result de-
classically moving dipole in the presence of macroscopiaived in Ref.[32] for dielectric matter. It is straightforward to
bodies is considered, with the value Bf, being borrowed show that Eq(69) gives a positive expression for the decay
from quantum mechanics. As in R¢80], the atomic transi-  rate as long as Im(w,)>0 and Imu(@,)>0 as it should
tion frequency is commonly understood as being that in fregye.
space. From E66) it is seen that the medium-assisiee., Figures 2—4 illustrate the dependence of the decayltate
shifted frequencyw, must be used instead of the free-spacegiven by Eq.(69) on the(shifted transition frequency for the
frequencyw,, since the two frequencies can differ substan-case of the cavity being surrounded @ purely dielectric
tially. matter,(b) purely magnetic matter, ar(d) magnetodielectric

Let us apply Eq(66) to an atom in a free-space region matter, with special emphasis on the band-gap zones. The
surrounded by a multilayer sphere. Using the Green tensgrermittivity and permeability are given by Eq&l0) and
given in Ref.[31], we obtain (11), respectively. In the figures, the dielectric and magnetic
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FIG. 2. The decay rat€ as a function of thdshifted atomic FIG. 3. The decay rat€ as a function of thdshifted atomic

transition frequencyZ>A for an atom at the center of an empty transition frequencyfuA for an atom at the center of an empty
sphere surrounded by single-resonance ma#dgDielectric matter  sphere surrounded by single-resonance matebDielectric matter
according to Eq(10) [ wte/ ©1n=1.03; wpe/ ©1m=0.75; Yo/ o1 according to Eq(10), (b) magnetic matter according to E¢L1),
=0.001(solid line), 0.01(dashed ling and 0.05(dotted ling], (b) and (c) magnetodielectric matter according to E$0) and (11)
magnetic matter according to EQL) [ wpy/ @1m=0.43; v/ o1m [ve! wtm= Ym!/wtm=0.001, the other parameters are the same as
=0.001(solid line), 0.01(dashed ling and 0.05(dotted ling], and  in Fig. 2]. The values of the sphere diameter arR=20\,
(c) magnetodielectric matter according to E¢s0) and (11) [the (dashed lingsand 2R= 1\, (solid lines.
parameters are the same as(& and (b)]. The diameter of the o )
sphere is B=20\ 1, (Am=27C/ w1 broadband inhibitionI{ <T"y). The maxima of enhancement
are observed at the frequencies of tlpeopagating-wave
cavity resonances, th@ factors of which are essentially de-
0Le=1.274w7,, and from ey, 10 | y=1.08807,, respec- termined by the material lossésee the curves for different
tively. They overlap in the frequency interval 103,<w values ofye and_ym). Note th_at the_cawty resonances as t_he
<1.0880,,. poles ofl" are dlffe_rent f(_)r_dlelectnc and magnetic material

in general. From Fig. @) it is seen that the decay rate of an
atom surrounded by magnetodielectric matter shows a simi-
lar behavior as in Figs.(2) and 2b), provided that the tran-

In Fig. 2, a relatively large cavity is considered sition frequency is outside the region of overlapping dielec-
(2R/\1»=20). From Figs. &) and 2b) it is seen that inside tric and magnetic band-gap zones. When the transition
a dielectric or magnetic band gap the decay rate sensitivelfrequency is in the overlapping region of the two band-gap
depends on the transition frequency. Narrow-band enhanceenes, then the medium becomes left handed. Thus, a rela-
ment of the spontaneous decay >I'y) alternates with tively large input-output coupling due to propagating waves

band gaps are assumed to extend frem=1.03wt, to

1. Large cavities

043816-8
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10000

and magnetic matter and in the nonoverlapping band-gap
region of magnetodielectric matter. In contrast, a behavior
quite similar to that in free space can be observed in the
overlapping(left-handedl region.

2. Small cavities

In Fig. 4, a cavity is considered whose radius is much
smaller than the transition wavelength R/A+,,=0.1).
Comparing Fig. 4a) with 4(b), we see that the frequency
response of the decay rate in the dielectric band-gap zone is
quite different from that in the magnetic band-gap zone. In
the dielectric band-gap zofEig. 4a)], a more or less abrupt
10000 - - - - decrease of belowI, with increasing transition frequency
(b) is followed by an increase of to a maximum that can
substantially exceell,. In the case of magnetic mattg¥ig.
4(b)], on the contrary, only a rather distorted band-gap zone
is observed in whicH" monotonously decreases beldw.

The maximum of enhancement of spontaneous decay in Fig.
4(a) is observed at the local-mode resonance associated with
the small cavity, which may be regarded as being a defect of
the otherwise homogeneous dielectric. This is obviously of
the same nature as the donor and acceptor local modes dis-
cussed in Ref[33]. In the regions where the dielectric and
magnetic band-gap zones of the magnetodielectric in Fig.
4(c) do not overlap, the frequency response of the decay rate
is dominated by the respective matter, i.e., the characteristic
features are either dielectric or magnetic. The situation
changes when the transition frequency is in the overlapping
region, where LHM is realized. Since this region can no
longer be regarded as an effectively forbidden zone for
propagating waves, the value bfcan become comparable
with or even bigger than that df,. From Fig. 4c) it is seen
that entering the overlapping region from the magnetic side
stops the decrease Bfon that side, thereby changing it to an
1 11 12 13 increase. Similarly, the decrease Iofon the dielectric side

DA /O stops and changes to an increase when the overlapping re-

Al Tm gion is entered from the dielectric side.

Figure 5 illustrates the influence of the cavity radius on
the decay rate for small cavities. Figuréabreveals that
when the value of R/\t,, changes from R/\{,=0.1 to

FIG. 4. The decay rat€ as a function of thdshifted atomic

transition frequencyw, for an atom at the center of an empty

sphere surrounded by single-resonance matgbielectric matter .
according to Eq(10), (b) magnetic matter according to Eq1), ~ 2R/Atm=0.8, then the maximum of the spontaneous decay
and (c) magnetodielectric matter according to E¢0) and (12). ~ 'ate associated with the local-mode resonance in dielectric

The diameter of the sphere iR 0.1\1,,. The other parameters Matter shifts towards smaller transition frequencies, thereby
are the same as in Fig. 2. being reduced. In the case of magnetic matter, increasing
value of R/\ 1, reduces the distortion of the band-gap zone,

. . . . s is seen from Fig. (b). As expected, the frequency re-
in the med|ym bec.omes possible, thereby the typ|call bqn_ Sponse of the decay rate shown in Figc)Sor the case of
gap properties getting lost. As a result, neither strong Ir‘h'b"rnagnetodielectric material including LHM combines, in a
tion nor substantial resonant enhancement of the spontaneogénse, the respective curves in Fige) &nd 5b).
decay is observed, as is clearly seen from Fig).2

In Fig. 3 the results for the cavity in Fig. 2 are compared
with those observed for a smaller cavity witlRRA,,=1.
As expected, the number of clear-cut cavity resonances de- For an atom in bulk material, the local field with which
creases as the radius of the cavity decreases. For the smaltee atom really interacts can differ from the macroscopic
of the chosen radii, just one resonance has survived in thigeld used in the derivation of the decay rate of the form
case of the magnetic mediufirig. 3(b)], while the reso- given by Eq.(63). To include local-field corrections in the
nances are gone altogether in the case of the dielectric meate, one can use E(9) and let the radius of the cavity tend
dium [Fig. 3(@)]. Accordingly, inhibition of spontaneous de- to a value which is much smaller than the transition wave-
cay is typically observed in the band-gap zones of dielectridength,

3. Local-field corrections
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10000 r R% 3¢ |2 T, 9Ime [ c °
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Lo 1+2¢) ¥ |1+ 2¢|? | wAR
100
9 e(1+3e+5ue c
Lo 4 2im| & - [ - >+O(R), (71)
! S (1+2¢) waR
which for nonmagnetic media reduces to results obtained
0.01 > earlier [32,36. Note that the actual value d®, which is
| e undetermined within the real-cavity model, should be taken

1 1.1 1.2 1.3 from the experiment. Equatiof71) without the O(R) term
has to be employed with great care, because it fails when, for

' ' ' ' small absorption, the atomic transition frequeney be-

100 F (b)_ comes close to a medium resonance frequency suebyas

or oy, thus leading to a drastic increase of the first term in
Eq. (71). The first three terms on the right-hand side in Eq.
(71) reproduce the curves in Fig. 4 sufficiently well, except
in the vicinities ofwt, and wt,. In particular, it can easily

be checked that the position of the local-mode-assisted maxi-
mum of the decay rate in the dielectric band-gap zone is

where Z(wa)=—1.

L L L L For transition frequencies that are sufficiently far away

1 1.1 1.2 1.3 from a medium resonance frequency and, in case of dielec-

10000 : : tric and magn_etodielectﬁc matter, thg local-mode frequency,

(c) so that material absorption can be disregarded, the first term
in Eq. (72) is the leading one, hence

I'T,

0.01

100
3e(wa)
1+2&(wp)

2
Re[u(wa)n(@a)Ilo.  (72)

______

T,

In this case, the local-field correction simply results in mul-
tiplying the rate obtained for the case of nonabsorbing bulk
material [Eq. (63)] by the factor[3¢e/(1+2¢)]?. Interest-
ingly, this factor is exactly the same as that for dielectric
material.

Inspection of the second and the third term in Efjl)
shows that such a separation is no longer possible when ma-
terial absorption must be taken into account. It should be
pointed out that the second term proportional Ro® is

and (c) magnetodielectric matter according to Eq$0) and (11) _purel;q dlelelctrlg, V\;]herre]_as the magnetl_zatloln S,tflirtshto come
[ve! 0tm= Ym/wtm=0.001, the other parameters are the same aémo play only via the third term proportional " . These

in Fig. 2]. The values of the sphere diameter Rre 0.8\, (dotted (WO t€rms can be regarded as resulting from the near-field
lines), 0.4\, (dashed lines and 0.A+, (solid lines. component and the induction-field component accompanying

the decay of the excited atomic state. In particular for suffi-
5 ciently small cavity size and stronglielectrig absorption,
Rws 27R the second term is the leading one, so that magnetodielectrics
c Ma <1, (70 approximately give rise to the same decay rate as dielectrics:

0.01

FIG. 5. The decay rat€ as a function of thdshifted atomic
transition frequencyw, for an atom at the center of an empty
sphere surrounded by single-resonance matgbielectric matter
according to Eq(10), (b) magnetic matter according to Efl1),

but still much larger than the distances between the medium = =0
constituents to ensure that the macroscopic theory applies. In |1+ 22(wp)]
this way we arrive at the real-cavity model frequently used in

the Iiteratur{21,32,34—3$ The results shown in Flg 4 may |n this case, the decay may be regarded as being pure|y ra-

~ 3
9Ime(wp) ( C )Fo 73

waR

be regarded as being typical of the real-cavity model. diationless, with the energy being transferred from the ex-
Expandingl’ [Eq. (69)] in powers ofz=Rw,/c we ob-  cited atomic state to the surrounding medium mediated by
tain the near field.
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VI. SUMMARY AND CONCLUSIONS medium is large compared to the resonance wavelength the
L .. bulk-material Green tensor is an excellent approximation.

It has been shown that the quantization scheme originally For simplicity, all the calculations have been performed

, : : , , ~ Sfor isotropic magnetodielectric material, by assuming a sca-
dielectric matter described in terms of a spatially varying,jar permittivity and a scalar permeability. The extension to
Kramers-Kronig-consistent permittivi}l4—19 can be ex-  anisotropic material is straightforward. It can be done in es-
tended to causal magnetodielectric matter, with special emsentially the same way as for anisotropic dielectric material,

phasis on the recently fabricated metamaterials, includingy first transforming the permittivity and permeability ten-
LHMs that can exhibit a negative real part of the refractivesors into their diagonal forms.

index, thereby leading to a number of unusual properties.

The quantization scheme is based on a source-quantity rep- ACKNOWLEDGMENTS

resentation of the medium-assisted electromagnetic field in

terms of the classical Green tensor and two independent in- We thank Reza Matloob and Adriaan Tip for discussions.
finite sets of appropriately chosen bosonic basis fields of th®--G-W. acknowledges discussions with Falk Lederer. S.Y.B.
system that consists of the electromagnetic field and the méS 9rateful for being granted a Thoger Landesgraduierten-

: ; : it tipendium. S.S. was partly funded by the Alexander von
dium, including a dissipative system. We have further showr®’ ) . :
that the minimal-coupling Hamiltonian governing the inter- Humboldt foundation. J.K. thanks M. Fleischhauer for stimu-

action of the medium-assisted electromagnetic field with adlifltlng S'SCUSS'OnSﬁ Th;]S \fl;/orkdwtar\]s Séjgggéed by the Deutsche
ditional charged particles can be obtained from the standarg® >chungsgemeinschait and the '
form, by expressing in it the potentials in terms of the
bosonic basis fields. The theory can serve as basis for various
studies, including generation and propagation of nonclassical
radiation through magnetodielectric structures, Casimir Following Ref.[19], we regard the Green tensor as being
forces between magnetodielectric bodies, or van der Waake matrix elements in the position basis of a tensor-valued
force between atomic systems and magnetodielectric bodiegaan operatoé=é(w) in an abstract single-particle Hil-

As an example, we have applied the theory to the problem , o0,

of the spontaneous decay of a two-level atom in the presené?aert space G(r,r ,w)__z(r|G|r ), SO t_hat Eq.(23 can be

of arbitrarily configured, dispersing and absorbing media. Inrgga[d?d as the position representation of the operator equa-
particular, we have shown that the theory naturally gives thdion HG=1, where
decay rate and the frequency shift in terms of the classical
Green tensor—formulas that are valid for any kind of geom-
etry and material. To be more specific, we have studied the
decay rate of an atom at the center of a cavity surrounded by
an infinitely exterjqe_d ma%netOQiellectric, assuming a sinbgll_eUSing the relations (r|r|r'y=rs(r—r'), (r|p|r’)
resonance permittivity and a single-resonance permeability _ . e e\ — Sy p!

of Drude-Lorentz type. A LHM is realized for transition fre- 1V a(r=r"), and{r[l|r’)=&r-r’), we have
guencies in the region where the dielectric and magneti@_m r w)s<r||:||r’>

band-gap zones overlap, thereby the real parts of the permit-* '’

APPENDIX A: SOME PROPERTIES
OF THE GREEN TENSOR

2
I:|=—f)>< K(F,w)f)x—w—zs(f,w)f. (A1)
Cc

tivity and permeability becoming negative. When the transi- w2

tion frequency enters that region from the dielectric or mag- =VXk(r,o)VXs(r—r')— —zg(r,w)ﬁ(r—r’),
netic side, then the typical band-gap properties such as c

enhancement of the spontaneous decay at the cavity reso- (A2)

nances and inhibition between them get lost and a decay rate
comparable with that in free space can be observed. Thehich in Cartesian coordinates reads
calculations have been performed for both large and small
cavities. In particular, if the diameter of the cavity becomes
small compared to the transition wavelength of the atom, the
system reduces to the real-cavity model for including local-

A k(r,w)d|

Hij(r,r’,w):[l?EK(r,w)&{_

field corrections in the decay rate of the atom in bulk mate- w2
rial. We have discussed this case in detail both analytically +—e(r)|&jor—r’). (A3)
and numerically and made contact with the results obtained ¢

from simple mode-decomposition arguments in case of posi- . “~ ) )

tive permittivity and permeability. SinceH is injective and thus an mver:ubIeA one-to-one map
For experimental observations of the decay, as in Refshetween vector functions, we can wri=H"*. Multiply-

[37,38 for the case of dielectrics, photodetectors need to béng this equation by3| from the right, we have

placed outside of the magnetodielectric material and thus,

strictly speaking, the Green tensor is needed for a finite me- GA=T, (A4)

dium. However, if back reflection effects from the corre-

sponding boundary can be disregarded and the extent of thwehich in the position basis reads
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. . which is just Eq.(25) in Cartesian coordinates.
J d*s(r|G|s)(gH[r"y=ar—r"). (A5) To examine the asymptotic behavior of the Green tensor
in the upper half of the comple® plane as|w|—% and
Recalling Eq.(A3), we derive, on integrating by parts and |@|—0, we introduce the tensor-valued projectors
taking into account that the Green tensor vanishes at infinity, o
p®p

=i, Tl=— (A12)
f d3s Gy(r,s,0)Hyj(s 1, ) p
' , / w2 [note that(r|T*D[r"y= "D (r—r")], and decompos& as
=1 K(r',a))ﬂjr =9 k(r',w)d| +?8(r',w) 8j [19],
X G(r, @)= 8,;(r—1"). (A6) G=A"t=ilIATh =1+ 7+ =TI AIAT IR R
i Afl AT -1, (A13)

Interchanging the vector indicésandj and the spatial argu-

mentsr andr’, we obtain
where

2
&[K(r,w)ﬁ{-l— —Zs(r,w)
C

T

5ki ij(r',r,w) Rz[il i\l_i\LHi\H(i\”ﬁi\H)ili\Hﬁi\L]71 (A14)

|¢9rkK(r,w)z9ir—

Recalling thats (r, ), u(r,w)— 1 as|w|—, we easily see

that the high-frequency limits dff andG are the same as for
dielectric material, thug19]

:5ij(r_r,), (A7)

which, according to Eg23), is just the defining equation for

Gyj(r,r',w). Thus, the reciprocity relatioi24) is proved 5

valid. : w ’ _ ’
To prove the integral relatio®5), we introduce operators |QI,I‘TDO c? Grrw)=—-&r=r. (A15)
OF by (0%);;=(0;;)"=0j;. From Eq.(A4) it then follows i
that To find the low-frequency limit o6, we note that the second
term in Eq.(Al13) is regular. To study the first term, we
A¥GH=1. (A8)  distinguish between two cases.

R (i) The first term ofH in Eqg. (Al) is transverse,
Multiplying Eq. (A4) from the right byG* and Eq.(A8) from
the left by G and subtracting the resulting equations from —lpx k(r,w)px = —pX k(r,w)pxil=0, (A16)
each other, we obtain
and therefore does not contribute itiil. It then follows
G(H-HHG =G -G, (A9) that the same low-frequency behavior as in the case of di-

electric matter is observed, th{is9]
which in the position basis reads

2
W . All_ A A A A
lim — G=—1l[lg(r,0=0)i]7, A17
f d3sf dss/Gim(r,S,w)[Hmn(S,S,,w) \w|_‘002 [ 8( w ) ] ( )
—Hin(s',80)]GH(s' 1", 0)=—2i ImGjj(r,I'", ). i.e., because(r,w=0)#0,
(A10) 2
. . im —G(r,r',w)=M, M, <co, A18
Note that (r|H} r")=H}.(r'.,r,®) and (r|G}|r") o|-0C? ( ) ! (818
=Gji(r',r,»). Inserting Eq(A3) into Eq.(A10), after some
manipulation we derive (i) Equation(A16) is not valid, so that the first term &f
in Eq. (A1) contributes tdlAil. Sinceu(r,w=0)+0 [thus
f d3s[ Im K(S,a))ﬂﬁGim(l’,S,w)[aﬁ.]G:j(S,r',a)) k(r,o=0) being finitd, we find that
lim G(r,r',w)=N, Njj<ce. (A19)
—hGhj(sr',w)] lo|—0
2
w .
+— IMe(s,0)Giy(r,s,w)Gr(sr', o) APPENDIX B: COMMUTATION RELATIONS
By using Egs.(22), (32), the commutation relation&0)
=ImG;;(r,r',w), (Al11) and (31), and the integral relatiof25), we derive
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b w? Note that Eq(B9) follows by using similar arguments as in
[E (r, w),E r', ’)]— =2 ImGj(r,r',0)é(w—o'), the derivation of Eq(B4) from Eq. (B3). A similar calcula-
tion leads to
(B1)
¥ A(r'\]— ool
[Ei(r,0). B o) ]=[E](r,0) E](r",0")]=0. LA A 1= =), (B10
(B2)
o [Hi(1),Aj(r)]=[Di(r),e(r")]=[Hi(r),e(r")]=0.
From Egs.(34), (B1), and (B2) it is easily seen that the ' . ' ' (B11)
commutation relation&35) are valid. Moreover, we find that,
on recalling thaG* (r,r', @) =G(r,r', - »*), By combining Egs.(B10) and (B11) with Egs. (B4) and
. ~ (B6), it is not difficult to verify that polarization and magne-
[£oEi(r),Aj(r")] tization commute with the introduced potentials as well as
ik among themselves.
=f f dw—ImG,k(r Sw) 5kJ(s—r )
APPENDIX C: HEISENBERG EQUATIONS OF MOTION
_ 3 u y using the Hamiltonia(41) and recalling the defini
_f d’s Wpf dw Gilr,s,0) 5'<J(S r) tions of the medium-assisted field quantities in terms of the

basic fieldsfm(r,w), the basic-field commutation relations
_ S (30) and(31), the commutation relations that have been de-
T f_mj ?(r|GI Iri (B3 rived from them, and the standard commutation relations for
the particle coordinates and canonical momenta, it is
(P, principal pait Since the Green tensor is analytic in the straightforward to prove that the theory yields both the cor-
upper half of the complex» plane with the asymptotic be- rect Maxwell equation$47) and (48) and the correct New-
havior according to EqA15), the frequency integral in Eq. onian equation of motio51). _ _
(B3) can be evaluated by contour integration along an infi- L€t us begin with the Maxwell equations. We derive on
nitely small half circle around =0, and along an infinitely "€calling Eqs(40) and(34) together with Eqs(22) and(32)
large half circle|w|— . Taking into account that the Green and the commutation relatiori80) and (31),
tensor either has only longitudinal components in the limit
|w|—0, cf. Eq.(A17), and hencew/céll_—>0, or is well §(r,t)=i[§(r,t),l3|]
behaved, cf. Eq(A19), we see that the integral along the if
infinitely small half circle vanishes. Recalling Ef\15), we

then readily find =V X fxdw—[A(r w),H]+H.c.

[eoEi(r),Aj(r)]=ifis;(r—r"). (B4) . N
=—VXE(r)=—-VXE(r), (Cy
SinceB(r)=V xA(r), from Eq.(B4) it follows that
which is Eq.(47). To derive the equation of motion for the
[sOEi(r),éj(r’)]= — iﬁeijk&[ﬁ(r—r’), (B5) displacement field, we have to consider several commutators
according to
i.e., EQ.(36). It is then not difficult to see that the commu-
tation relation(B4) implies A 1 = .
D(r): E[D(r!t)!H]
Le(r),Ai(r)]=[e¢(r),Bi(r")]=0. (B6)

— e B ftepr Fi ’
To evaluate commutators involving the displacement field = dr fo dwﬁwA:Eem [D(r),fi(r",@)f\(r',o)]
and the magnetic field, recall Egd.6)—(19). Using the re- '

lations presented above, we derive 1 -
+ [D(r) [Pa— A1)
[Di(r).D;(r")]1=0, (B7)
Alr 2
[Hi(r)'ﬂj(r!)]:O’ (BS) 2 [VQDA r) [pa qu(ra)] ] (Cz)

and The first commutator in Eq(C2) can easily be found by

. . ) ; recalling the definitions of displacement and magnetic fields
[Di(r), moHj(r") 1=~ it € o(r—r’). (B9  as

043816-13
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1fd3'rdh
m roww)\

= _f dwiwﬁ(r,w)+H.c.=Vxﬁ(r).
0 =

> D), f(r, )i ()]

(C3

Applying the commutation relatiofB10), and recalling the
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The first term on the right-hand side of EH&6) is again
-~ gif d3rf doho X [AT),f(r0)f(re)]
ih 0 A=e,m

=10 A(T,) =B (T,).

The second term gives rise to two terms,

(C7)

definition of the current density, we find that the second term

on the right-hand side of EC2) can be written as

1 1 . ~ ~Non 92 oL
E - Z_rna[D(r)a[pa_qu(ra)]] JA(r)’ (C4)

where the Newtonian equation of moti@0) has been used
which follows directly from the Hamiltoniari41). Finally,

1 1 .« . .
E > Z_H]ﬁ[par[pﬁ_qﬁA(rﬁ)]]

=%qa{?aA(Fa>®\7+V®A<Fa>?a} (C8)

and

standard commutation relations together with the definitions

of the scalar potential, Eq$42) and (43), and the current
density, Eq.(49) together with Eq(50), lead to

€0 1

~ T 2 am Ve [Pa= AT ) 121=—u(r).
(€5

Inserting Eqs(C3)—(C5) into Eq.(C2), we arrive at Eq(48).
In order to prove Eq(51), we consider the equation

1 . I
marazﬁ[pa_qu(ra)’H]

_ Y 3 7
= iﬁfdrfodwﬁw)\

1 1 . A A A oo
1% 2 2m,[Pa GeA ) [Dg— AT )]

> [A)fl(ro)f(re)]

=e,m

1 ~A A -
s o | rlp oaEA]

1 aA o~ -
w2 [ b a0 (o)

R
Tk 2 amy A [Ps= QAT 1]

l A A A A A A -
== 50T VOA(T) +A(T)@r, V], (C9
and thus
- P~ QA (), [Ps— asA(T 5) 12
i ﬁ Z_rnﬁ[pa_qa (re),[pg—agA(rg) 1]

1 ~ =3 =3 A
:Eqa[raXB(ra)_B(ra)ra]' (Clo)
By means of Eqs(39) and(42) one can see that the last two
terms in Eq.(C6) can be rewritten as
d*[Pa,pA(N@a(N]=—0dVea(r,), (C1D)

2ih
1fd3 Popa(N @(r)]=0,El(r (C12
7| drlPaspalNe(N]=0.EN(ra).

Inserting Eqs(C7), (C10—(C12) into Eq.(C6) and making
use of Eq.(44), we just arrive at Eq(51).
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