
PHYSICAL REVIEW A 68, 043816 ~2003!
Electromagnetic-field quantization and spontaneous decay in left-handed media

Ho Trung Dung,* Stefan Yoshi Buhmann, Ludwig Kno¨ll, and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

Stefan Scheel
Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road,

London SW7 2BW, United Kingdom

Jürgen Kästel
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We present a quantization scheme for the electromagnetic field interacting with atomic systems in the
presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative
real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the
center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones.
Results for both big and small cavities are presented, and the problem of local-field corrections within the
real-cavity model is addressed.

DOI: 10.1103/PhysRevA.68.043816 PACS number~s!: 42.50.Nn, 42.50.Ct, 78.20.Ci, 12.20.2m
i
lta
ing
g
ti
e
th
lle
a
tiv
no
u

s
r-
m
b
r
ri
iz

et
s
e
e
w
,

n
-

ions
ate-
tic

of
of

art
nti-
he
each
ion
As

he
can
tion
s in

we
vel

nvi-
ical
an
ed-
nd

ed
tric
n

n
y,
I. INTRODUCTION

The problem of propagation of electromagnetic waves
materials having, in a certain frequency range, simu
neously negative permittivity and permeability thus lead
to a negative refractive index was first studied by Vesela
@1#. Since in such materials the electric field, the magne
field, and wave vector of a plane wave form a left-hand
system, so that the direction of the Poynting vector and
wave vector have opposite directions, they are also ca
left-handed materials~LHMs!. Other unusual properties are
reverse Doppler shift, reverse Cerenkov radiation, nega
refraction, and reverse light pressure. Since LHMs do
exist naturally, they have remained a merely academic c
osity until recent reports on their fabrication@2–6#. The
metamaterials considered there consist of periodic array
metallic thin wires to attain negative permittivity, inte
spersed with split-ring resonators to attain negative per
ability. Although the metamaterials that have been availa
so far behave like LHMs only in the microwave range, the
have been suggestions on how to construct metamate
that can operate at optical frequencies, by reducing the s
of the inclusions~split rings, chiral, or omega particles! @7#
or by using point defects in photonic crystals as magn
emitters @8#. A number of potential applications of LHM
have been proposed, including effective light-emitting d
vices, beam guiders, filters, and near-field lenses. For
ample, LHMs could be used to realize highly efficient lo
reflectance surfaces@9# or superlenses which, in principle
can achieve arbitrary subwavelength resolution@10#. The in-
triguing superlense proposal and the reported observatio
negative refraction@3# have touched off intensive and en
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lightening discussions@11–13#. More recent experiments@6#
seem to confirm the negative refraction observed in Ref.@3#.
Nevertheless, there have been still many open quest
about the electrodynamics in magnetodielectrics, i.e., m
rials with simultaneously significant electric and magne
properties, including LHMs.

In this paper, we first study the problem of quantization
the macroscopic electromagnetic field in the presence
magnetodielectrics, with special emphasis on LHMs. Ap
from the more fundamental interest in the problem, qua
zation is required to include nonclassical radiation in t
studies. Since dispersion and absorption are related to
other by the Kramers-Kronig relations, noticeable dispers
implies that absorption also cannot be omitted in general.
we will show, quantization of the electromagnetic field in t
presence of dispersing and absorbing magnetodielectrics
be performed by means of a source-quantity representa
based on the classical Green tensor in a similar way a
Refs.@14–19# for purely dielectric material.

As a simple application of the quantization scheme,
then study the spontaneous decay of an excited two-le
atom in a dispersing and absorbing magnetodielectric e
ronment, with special emphasis on an atom in a spher
cavity. It is well known that the spontaneous decay of
atom is influenced by the environment. If the atom is emb
ded in a homogeneous, purely electric medium with real a
positive~frequency-independent! permittivity, the decay rate
without local-field corrections reads

G5nG0 , ~1!

whereG0 is the decay rate in free space andn5A« is the
refractive index ~see, e.g., Refs.@20–22# and references
therein!. From energy scaling arguments it can be inferr
that the electric field in a medium corresponds to the elec
field in free-space times 1/A«. From a mode decompositio
one can conclude that the mode density is proportional ton3.
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With that, Eq.~1! immediately follows from Fermi’s golden
rule. Now if we take into account that in the more gene
case of positive« andm the refractive index isn5A«m, we
conclude that

G5mnG0 . ~2!

Unfortunately, these arguments cannot be used if, e.g.,m and
n are simultaneously negative. Basing the calculations
rigorous quantization, we show that Eq.~2! also remains
valid in this case. Moreover, we generalize Eq.~2! to the
realistic case of dispersing and absorbing matter, includ
local-field effects.

The paper is organized as follows. In Sec. II, some g
eral aspects of the refractive index of a medium whose p
mittivity and permeability can simultaneously become ne
tive are discussed. Section III is devoted to the quantiza
of the electromagnetic field in the presence of a dispers
and absorbing magnetodielectric medium. The interaction
the medium-assisted field with additional charged particle
considered in Sec. IV and the minimal-coupling Hamiltoni
is given. In Sec. V, the theory is applied to the spontane
decay of an excited two-level atom, with special emphasis
an atom in a spherical cavity surrounded by a dispersing
absorbing magnetodielectric. A summary and some conc
ing remarks are given in Sec. VI.

II. PERMITTIVITY, PERMEABILITY,
AND REFRACTIVE INDEX

Let us consider a causal linear magnetodielectric med
characterized by a~relative! permittivity «(r ,v) and a~rela-
tive! permeabilitym(r ,v), both of which are spatially vary
ing, complex functions of frequency satisfying the relatio

«~r ,2v* !5«* ~r ,v!, m~r ,2v* !5m* ~r ,v!. ~3!

They are holomorphic in the upper complex half plane wi
out zeros and approach unity as the frequency goes to in
ity,

lim
uvu→`

«~r ,v!5 lim
uvu→`

m~r ,v!51. ~4!

Since for absorbing media Im«(r ,v).0, Imm(r ,v).0
~see, e.g., Ref.@23#!, we may write

«~r ,v!5u«~r ,v!ueif«(r ,v), f«~r ,v!P~0,p!, ~5!

m~r ,v!5um~r ,v!ueifm(r ,v), fm~r ,v!P~0,p!. ~6!

The relationn2(r ,v)5«(r ,v)m(r ,v) formally offers two
possibilities for the~complex! refractive indexn(r ,v),

n~r ,v!56Au«~r ,v!m~r ,v!uei [f«(r ,v)1fm(r ,v)]/2, ~7!

where

0,@f«~r ,v!1fm~r ,v!#/2,p. ~8!

The6 sign in Eq.~7! leads to Imn(r ,v):0. To specify the
sign, different arguments can be used. From the hi
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frequency limit of the permittivity and the permeability, E
~4!, and the requirement that limuvu→`n(r ,v)51 it follows
that the1 sign is correct@12#,

n~r ,v!5Au«~r ,v!m~r ,v!uei [f«(r ,v)1fm(r ,v)]/2. ~9!

The same result can be found from energy arguments@9# @see
also the remark following Eq.~27! in Secs. III and V A#.

From Eq.~9! it can be seen that when both«(r ,v) and
m(r ,v) have negative real parts@f«(r ,v),fm(r ,v)
P(p/2,p)#, then Ren(r ,v) is also negative. It should be
pointed out that for negative Ren(r ,v) it is not necessary
that Re«(r ,v) and Rem(r ,v) are simultaneously negative
For the real part of the refractive index to be negative, it
sufficient that @f«(r ,v)1fm(r ,v)#.p, i.e., one of the
phases can still be smaller thanp/2, provided the other one
is large enough. In fact, the definition of LHMs was orig
nally introduced for frequency ranges where material abso
tion is negligibly small, and thus«(r ,v) andm(r ,v) can be
regarded as being real@1#. In this case, propagating wave
can exist provided that both«(r ,v) andm(r ,v) are simul-
taneously either positive or negative. If they have differe
signs, then the refractive index is purely imaginary, and o
evanescent waves are supported. The situation becomes
complicated when material absorption cannot be disregar
because there is always a nonvanishing real part of the
fractive index„apart from the specific case where@f«(r ,v)
1fm(r ,v)#5p…. In the following we refer to a material a
being left handed if the real part of its refractive index
negative.

In order to illustrate the dependence on frequency of
refractive index, let us restrict our attention to a sing
resonance permittivity

«~v!511
vPe

2

vTe
2 2v22 ivge

~10!

and a single-resonance permeability

m~v!511
vPm

2

vTm
2 2v22 ivgm

, ~11!

wherevPe , vPm are the coupling strengths,vTe , vTm are
the transverse resonance frequencies, andge , gm are the
absorption parameters. For notational convenience, we h
omitted the spatial argument. Both the permittivity and t
permeability satisfy the Kramers-Kronig relations. Equati
~10! corresponds to the well-known~single-resonance!
Drude-Lorentz model of the permittivity. The permeabili
given by Eq.~11!, which is of the same type as Eq.~10!, can
be derived by using a damped-harmonic-oscillator model
the magnetization@24#. It also occurs in the magneti
metamaterials constructed recently@2,3,6,25#.

For very small material absorption (ge/m!vPe/m , vTe/m),
permittivity ~10! and permeability~11!, respectively, feature
band gaps between the transverse frequencyvTe and the lon-
gitudinal frequencyvLe5AvTe

2 1vPe
2 , where Re«(v),0,

and the transverse frequencyvTm and the longitudinal fre-
6-2
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ELECTROMAGNETIC-FIELD QUANTIZATION AND . . . PHYSICAL REVIEW A68, 043816 ~2003!
quency vLm5AvTm
2 1vPm

2 , where Rem(v),0. With in-
creasing values ofge and gm the band gaps are shifted t
higher frequencies and smoothed out. Figure 1 shows
dependence on frequency of the refractive index@Eq. ~9!#
for the case of overlapping band gaps and various
bsorption parameters. In particular, if max(vTe ,vTm),v
,min(vLe ,vLm), then Re«(v),0 and Rem(v),0, and
thus a negative real part of the refractive index is observ
In Fig. 1, this is the case in the frequency interval whe
1.03,v/vTm,1.088. For the chosen parameters, a nega
real part of the refractive index can also be realized for f
quencies slightly smaller thanvTe , where Rem(v),0
while Re«(v).0, as is clearly seen from the inset in Fi
1~a!. In this region, however,uRen(v)u is typically small
whereas Imn(v) is large thereby effectively inhibiting trav
eling waves. It is worth noting that a negative real part of
refractive index is typically observed together with stro
dispersion, so that absorption cannot be disregarded in
eral. On the other hand, increasing absorption smooths
frequency response of the refractive index thereby mak
negative values of the refractive index less pronounced.

III. THE QUANTIZED MEDIUM-ASSISTED
ELECTROMAGNETIC FIELD

The quantization of the electromagnetic field in a cau
linear magnetodielectric medium characterized by b

FIG. 1. Real ~a! and imaginary~b! parts of the refractive
index n(v) as functions of frequency, with the permittivity«(v)
and the permeabilitym(v) being, respectively, given by Eqs.~10!
and ~11! @vTe51.03vTm ;vPm50.43vTm ;vPe50.75vTm ;ge5gm

50.001vTm ~solid lines!, 0.01vTm ~dashed lines!, and 0.05vTm

~dotted lines!#. The values of the parameters have been chosen t
similar to those in Refs.@3,13#.
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«(r ,v) and m(r ,v) can be performed by generalizing th
theory given in Refs.@16,19# for dielectric media. Let
P̂(r ,v) and M̂ (r ,v), respectively, be the operators of th
polarization and the magnetization in frequency space.
operator-valued Maxwell equations in frequency space t
read

“B̂~r ,v!50, ~12!

“D̂~r ,v!50, ~13!

“3Ê~r ,v!5 ivB̂~r ,v!, ~14!

“3Ĥ~r ,v!52 ivD̂~r ,v!, ~15!

where

D̂~r ,v!5«0Ê~r ,v!1P̂~r ,v!, ~16!

Ĥ~r ,v!5k0B̂~r ,v!2M̂ ~r ,v! ~17!

(k05m0
21). Similar to the electric constitutive relation,

P̂~r ,v!5«0@«~r ,v!21#Ê~r ,v!1P̂N~r ,v!, ~18!

with P̂N(r ,v) being the noise polarization associated w
the electric losses due to material absorption, we introd
the magnetic constitutive relation

M̂ ~r ,v!5k0@12k~r ,v!#B̂~r ,v!1M̂N~r ,v!, ~19!

wherek(r ,v)5m21(r ,v), andM̂N(r ,v) is the noise mag-
netization unavoidably associated with magnetic losses.
call that for absorbing media Imm(r ,v).0, and thus
Im k(r ,v),0. Substituting Eqs.~14! and~16!–~19! into Eq.
~15!, we obtain

“3k~r ,v!“3Ê~r ,v!2
v2

c2
«~r ,v!Ê~r ,v!5 ivm0ĵN~r ,v!,

~20!

where

ĵN~r ,v!52 ivP̂N~r ,v!1“3M̂N~r ,v! ~21!

is the noise current. The noise charge density is given
r̂N(r ,v)52“P̂N(r ,v), and the continuity equation holds
The solution of Eq.~20! can be given by

Ê~r ,v!5 ivm0E d3r 8G~r ,r 8,v! ĵN~r 8,v!, ~22!

where G(r ,r 8,v) is the ~classical! Green tensor satisfying
the equation

F“3k~r ,v!“32
v2

c2
«~r ,v!GG~r ,r 8,v!5d~r2r 8!

~23!

be
6-3
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DUNG et al. PHYSICAL REVIEW A 68, 043816 ~2003!
together with the boundary condition at infinity. It is n
difficult to prove that the relationG* (r ,r 8,v)5G(r ,r 8,
2v* ), which is analogous to relations~3!, is valid. Other
useful relations are~see Appendix A!

Gi j ~r ,r 8,v!5Gji ~r 8,r ,v! ~24!

and

E d3sH 2Im k~s,v!@G~r ,s,v!3“
Q

s#@“s3G* ~s,r 8,v!#

1
v2

c2
Im «~s,v!G~r ,s,v!G* ~s,r 8,v!J

5Im G~r ,r 8,v!, ~25!

where

@G~r ,s,v!3“
Q

s# i j 5e jkl]k
sGil ~r ,s,v!. ~26!

In the simplest case of bulk material, Eq.~23! implies that
the Green tensor can simply be obtained by multiplying
Green tensor for a bulk dielectric@19,22,26# by m(v) and
replacing«(v) with «(v)m(v),

Gi j ~r ,r 8,v!5m~v!@] i
r] j

r1q2~v!d i j ~r2r 8!#

3
eiReq(v)ur2r8u

4pq2~v!ur2r 8u
e2Im q(v)ur2r8u ~27!

@q(v)5n(v)v/c#. From the boundary condition for th
Green tensor atur2r 8u→`, it follows that Imn(v).0,
which is consistent with Eq.~9!.

Analogously to the noise polarization that can be rela
to a bosonic vector fieldf̂e(r ,v) via

P̂N~r ,v!5 iA\«0

p
Im «~r ,v! f̂e~r ,v!, ~28!

the noise magnetization can be related to a bosonic ve
field f̂m(r ,v) via

M̂N~r ,v!5A2
\k0

p
Im k~r ,v! f̂m~r ,v!, ~29!

with (l,l85e,m)

@ f̂ l i~r ,v!, f̂ l8 j
†

~r 8,v8!#5dll8d i j d~r2r 8!d~v2v8!,
~30!

@ f̂ l i~r ,v!, f̂ l8 j~r 8,v8!#50. ~31!

Substituting in Eq.~21! for P̂N(r ,v) and M̂N(r ,v) expres-
sions~28! and~29!, respectively, we may expressĵN(r ,v) in
terms of the bosonic fieldsf̂l(r ,v) as follows:
04381
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ĵN~r ,v!5vA\«0

p
Im «~r ,v! f̂e~r ,v!1“

3A2
\k0

p
Im k~r ,v! f̂m~r ,v!. ~32!

Note that in Eqs.~28! and ~29!, respectively,P̂N(r ,v) and
M̂N(r ,v) are only determined up to some phase fact
which can be chosen independently of each other. Here
have them chosen such that in Eq.~32! the coefficients of
f̂e(r ,v) and f̂m(r ,v) are real.

The f̂l(r ,v) and f̂l
†(r ,v) can be regarded as being th

fundamental variables of the system composed of the e
tromagnetic field and the medium including the dissipat
system, so that the Hamiltonian can be given by

Ĥ5 (
l5e,m

E d3r E
0

`

dv\v f̂l
†~r ,v! f̂l~r ,v!. ~33!

In this approach, the medium-assisted electromagnetic fi
is fully expressed in terms of thef̂l(r ,v) and f̂l

†(r ,v). In
particular, the electric-field operator~in the Schro¨dinger pic-
ture! reads

Ê~r !5E
0

`

dvÊ~r ,v!1H.c., ~34!

where Ê(r ,v) is given by Eq.~22! together with Eq.~32!.
Similarly, the other fields can be expressed in terms of
f̂l(r ,v) and f̂l

†(r ,v), by making use of Eqs.~14!, ~18!, ~19!,
~28!, and ~29!. It can then be shown~Appendix B! that the
fundamental~equal-time! commutation relations

@Êi~r !,Êj~r 8!#505@B̂i~r !,B̂j~r 8!#, ~35!

@«0Êi~r !,B̂j~r 8!#52 i\e i jk]k
r d~r2r 8! ~36!

are preserved. Furthermore, it can be verified~Appendix C!
that in the Heisenberg picture the medium-assis
electromagnetic-field operators obey the correct tim
dependent Maxwell equations.

The introduction of a noise magnetization of the type
Eq. ~29! was first suggested in Ref.@19#, but it was wrongly
concluded that such a noise magnetization and the noise
larization in Eq.~28! can be related to a common boson
vector field f̂(r ,v). Sincef̂e(r ,v) in Eq. ~28! is an ordinary
vector field, whereasf̂m(r ,v) in Eq. ~29! is a pseudovector
field, the use of a common vector field would require a re
tion for the noise magnetization that is different from E
~29! but must ensure preservation of the commutation re
tions ~35! and~36! and lead to the correct Heisenberg equ
tions of motion. For the metamaterial considered in Re
@2–6#, where the electric properties and the magnetic pr
erties are provided by physically different material comp
nents, the assumption that the polarization and the magn
zation are related to different basic variables is justified. I
6-4
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ELECTROMAGNETIC-FIELD QUANTIZATION AND . . . PHYSICAL REVIEW A68, 043816 ~2003!
also in the spirit of Ref.@24#, where the polarization and th
magnetization are caused by different degrees of freedo

IV. INTERACTION OF THE MEDIUM-ASSISTED FIELD
WITH CHARGED PARTICLES

In order to study the interaction of charged particles w
the medium-assisted electromagnetic field, we first introd
the scalar potential

ŵ~r !5E
0

`

dv ŵ~r ,v!1H.c. ~37!

and the vector potential

Â~r !5E
0

`

dvÂ~r ,v!1H.c., ~38!

where in the Coulomb gauge,ŵ(r ,v) and Â(r ,v) are, re-
spectively, related to the longitudinal partÊ i(r ,v) and the
transverse partÊ'(r ,v) of Ê(r ,v) @Eq. ~22! together with
Eq. ~32!# according to

2“ŵ~r ,v!5Ê i~r ,v!, ~39!

Â~r ,v!5~ iv!21Ê'~r ,v!. ~40!

Similarly, the momentum fieldP̂(r ) that is canonically con-
jugated with respect to the vector potentialÂ(r ) can be con-
structed noting thatP̂(r ,v)52«0Ê'(r ,v). Now the Hamil-
tonian ~33! can be supplemented by terms describing
energy of the charged particles and their interaction ene
with the medium-assisted electromagnetic field in the sa
way as in Ref.@19# for dielectric matter. In the minimal-
coupling scheme and for nonrelativistic particles, the to
Hamiltonian then reads

Ĥ5 (
l5e,m

E d3r E
0

`

dv\v f̂l
†~r ,v! f̂l~r ,v!1(

a

1

2ma
@ p̂a

2qaÂ~ r̂a!#21
1

2E d3r r̂A~r !ŵA~r !1E d3r r̂A~r !ŵ~r !,

~41!

where r̂a and p̂a are, respectively, the position and the c
nonical momentum operator of theath particle of massma
and chargeqa . The first term in Eq.~41! is the Hamiltonian
~33! of the electromagnetic field and the medium includi
the dissipative system. The second term is the kinetic en
of the charged particles, and the third term is their Coulo
energy, with

r̂A~r !5(
a

qad~r2 r̂a!, ~42!

ŵA~r !5E d3r 8
r̂A~r 8!

4p«0ur2r 8u
~43!
04381
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being, respectively, the charge density and the scalar po
tial of the particles. Finally, the last term is the Coulom
energy of the interaction between the charged particles
the medium.

Let EŴ (r ) and BŴ (r ) be, respectively, the operators of th
electric field and the induction field in the presence of t
charged particles,

EŴ ~r !5Ê~r !2“ŵA~r !, BŴ ~r !5B̂~r !. ~44!

Accordingly, the displacement fieldDŴ (r ) and the magnetic

field HŴ (r ) in the presence of the charged particles are giv
by

DŴ ~r !5D̂~r !2«0“ŵA~r !, HŴ ~r !5Ĥ~r !. ~45!

Note that in Eqs.~44! and ~45! the electromagnetic fields
must be thought of as being expressed in terms of the
damental fieldsf̂l(r ) and f̂l

†(r ). From the construction of the
induction field and the displacement field it follows that th
obey the time-independent Maxwell equations

“BŴ ~r !50, “DŴ ~r !5 r̂A~r !. ~46!

Further, it can be shown~Appendix C! that the Hamiltonian
~41! generates the correct Heisenberg equations of mot
i.e., the time-dependent Maxwell equations

“3EŴ ~r !1BẆ̂ ~r !50, ~47!

“3HŴ ~r !2DẆ̂ ~r !5 ĵA~r !, ~48!

where

ĵA~r !5
1

2 (
a

qa@ r̂̇ad~r2 r̂a!1d~r2 r̂a! r̂̇a#, ~49!

and the Newtonian equations of motion for the charged p
ticles

r̂̇a5
1

ma
@ p̂a2qaÂ~ r̂a!#, ~50!

ma r̂̈a5qa$EŴ ~ra!1 1
2 @ r̂̇a3BŴ ~ra!2BŴ ~ra!3 r̂̇a#%. ~51!

V. SPONTANEOUS DECAY OF AN EXCITED
TWO-LEVEL ATOM

Let us consider a two-level atom~position rA , transition
frequencyvA) that resonantly interacts with the electroma
netic field in the presence of magnetodielectrics and res
our attention to the electric-dipole and the rotating-wave
proximations. By analogy with the case of an atom in t
presence of dielectric material@27,19#, the Hamiltonian~41!
reduces to
6-5
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Ĥ5 (
l5e,m

E d3r E
0

`

dv\v f̂l
†~r ,v! f̂l~r ,v!1\vAŝ†ŝ

2F ŝ†dAE
0

`

dvÊ~rA ,v!1H.c.G , ~52!

where ŝ5u l &^uu and ŝ†5uu&^ l u are the Pauli operators o
the two-level atom. Here,u l & is the lower state whose energ
is set equal to zero anduu& is the upper state of energy\vA .
Further,dA5^ l ud̂Auu&5^uud̂Au l & is the transition dipole mo-
ment.

To study the spontaneous decay of an initially exci
atom, we may look for the system wave function at timet in
the form of @ u1l(r ,v)&[fl

†(r ,v)u$0%&]

uc~ t !&5Cu~ t !e2 i ṽAtu$0%&uu&

1 (
l5e,m

E d3r E
0

`

dve2 ivtCl l~r ,v,t !u1l~r ,v!&u l &,

~53!

whereCu(t) andCl l(t) are slowly varying amplitudes and
in anticipation of the environment-induced transitio
frequency-shiftdv @28#, ṽA5vA2dv is the shifted transi-
tion frequency. The Schro¨dinger equation i\] tuc(t)&
5Ĥuc(t)& then leads to the set of differential equations

Ċu~ t !52 idvCu~ t !2
1

Ap«0\
E

0

`

dv
v

c
e2 i (v2ṽA)t

3E d3r dAH v

c
AIm «~r ,v!G~rA ,r ,v!Cel~r ,v,t !

1A2Im k~r ,v!@G~rA ,r ,v!3“
Q

r#Cml~r ,v,t !J ,

~54!

Ċel~r ,v,t !5
1

Ap«0\

v2

c2
AIm «~r ,v!ei (v2ṽA)t

3dAG* ~rA ,r ,v!Cu~ t !, ~55!

Ċml~r ,v,t !5
1

Ap«0\

v

c
A2Im k~r ,v!ei (v2ṽA)t

3dA@G* ~rA ,r ,v!“Q r#Cu~ t !, ~56!

which has to be solved under the initial conditionsCu(0)
51 andCl l(r ,v,0)50. Formal integrations of Eqs.~55! and
~56! and substitution into Eq.~54! leads to, upon using rela
tion ~25!,

Ċu~ t !52 idvCu~ t !1E
0

t

dt8K~ t2t8!Cu~ t8!, ~57!

where
04381
d

K~ t2t8!52
1

\p«0
E

0

`

dv
v2

c2

3e2 i (v2ṽA)(t2t8)dA Im G~rA ,rA ,v!dA .

~58!

It should be noted that, by integrating with respect tot, the
integrodifferential equation~57! can equivalently be ex-
pressed in the form of a Volterra integral equation of seco
kind @27#. Equations~57! and ~58! formally look like those
valid for nonmagnetic structures@27#. Since the matter prop
erties are fully included in the Green tensor, the results o
differ in the actual Green tensor.

Equations~57! and ~58! apply to an arbitrary coupling
regime @27#. Here, we restrict our attention to the wea
coupling regime, where the Markov approximation appli
That is to say, we may replaceCu(t8) in Eq. ~57! by Cu(t)
and approximate the time integral according to

E
0

t

dt8e2 i (v2ṽA)(t2t8)→z~ṽA2v! ~59!

@z(x)5pd(x)1 iP(1/x)#. Identifying the principal-part inte-
gral with the transition-frequency shift, we obtain

dv5
1

p\«0
PE

0

`

dv
v2

c2

dA Im G~rA ,rA ,v!dA

v2ṽA

, ~60!

which, together with Eq.~53!, can be regarded as being th
self-consistent defining equation for the transition-frequen
shift @28#. Equation ~57! then yields Cu(t)5exp(21

2Gt),
where the decay rateG is given by the formula

G5
2ṽA

2

\«0c2
dA Im G~rA ,rA ,ṽA!dA , ~61!

which is obviously valid independently of the~material! sur-
roundings of the atom.

A. Nonabsorbing bulk material

Let us first consider the limiting case of nonabsorbi
bulk material, i.e.,«(ṽA) andm(ṽA) are assumed to be rea
Using the bulk-material Green tensor~27!, it can easily be
proved that

Im G~rA ,rA ,ṽA!5
ṽA

6pc
Re@m~ṽA!n~ṽA!#I . ~62!

Substitution into Eq.~61! yields the decay rate

G5Re@m~ṽA!n~ṽA!#G0 , ~63!

where
6-6



iti

rg
cy

a
n

-
-
ab

g

on
on

e

g
ee
eo

d
ec

so
t

pi

re

c
n

n
s

re-

y
by

et
the

ace.
al-
e

ot

-

ay

te

The

tic
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G05
ṽA

3dA
2

3\p«0c3
~64!

is the free-space decay rate, but taken at the shifted trans
frequency. Equation~63! is in agreement with Eq.~2! ob-
tained from simple arguments on the change of the ene
density and the mode density for positive and frequen
independent« and m. Clearly, Eq.~63! is more general in
that it also applies to dispersive magnetodielectrics. In p
ticular, when«(ṽA) and m(ṽA) have opposite signs, the
the refractive index defined according to Eq.~9! is purely
imaginary, thereby leading toG50. This is because the elec
tromagnetic field cannot be excited atṽA , so that spontane
ous emission is completely inhibited. Note that material
sorption always gives rise to a finite value ofG, which of
course can be very small.

From Eq. ~63! it is clearly seen that for nonabsorbin
LHM, i.e., «(ṽA),0 andm(ṽA),0, the now real refractive
index must also be negative, in order to arrive at a n
negative value of the decay rate. This is yet another str
argument for the choice of the1 sign in Eq.~7!.

B. Atom in a spherical cavity

For realistic bulk material, the imaginary part of th
Green tensor at equal positions is singular@19,22,26#. Physi-
cally, this singularity is fictitious, because the atom, thou
surrounded by matter, is always localized in a small fr
space region. The Green tensor for such an inhomogen
system reads

G~r ,r 8,v!5GV~r ,r 8,v!1GS~r ,r 8,v!, ~65!

where GV(r ,r 8,v) is the vacuum Green tensor an
GS(r ,r 8,v) is the scattering part, which describes the eff
of reflections at the surface of discontinuity. Using Eq.~65!
together with ImGV(r ,r ,v)5(v/6pc)I @cf. Eq. ~62!#, we
can write the decay rate~61! as

G5G01
2ṽA

2

\«0c2
dA Im GS~rA ,rA ,ṽA!dA , ~66!

which is again seen to be valid for any type of material.
Within a classical theory of spontaneous emission@29#, a

formula of type~66! has been used in Ref.@30# to calculate
the decay rate of an atom near a dispersionless and ab
tionless LHM sphere. Classical theory means here, tha
classically moving dipole in the presence of macrosco
bodies is considered, with the value ofG0 being borrowed
from quantum mechanics. As in Ref.@30#, the atomic transi-
tion frequency is commonly understood as being that in f
space. From Eq.~66! it is seen that the medium-assisted~i.e.,
shifted! frequencyṽA must be used instead of the free-spa
frequencyvA , since the two frequencies can differ substa
tially.

Let us apply Eq.~66! to an atom in a free-space regio
surrounded by a multilayer sphere. Using the Green ten
given in Ref.@31#, we obtain
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G'

G0
511

3

2(
n51

`

n~n11!~2n11!F j n~kAr A!

kAr A
G2

ReCn
N

~67!

for a radially oriented dipole moment (dAirA) and

G i

G0
511

3

4 (
n51

`

~2n11!F j n
2~kAr A!ReCn

M

1S @kAr A j n~kAr A!#8

kAr A
D 2

ReCn
NG ~68!

for a tangentially oriented dipole moment (dA'rA) @the
prime indicating the derivative with respect tokAr A , (kA

5ṽA /c)]. In Eqs. ~67! and ~68!, j n(z) and hn
(1)(z) are the

spherical Bessel and Hankel functions of the first kind,
spectively. The coefficientsCn

N and Cn
M have to be deter-

mined through recurrence formulas@31#.
Equations~67! and ~68! apply to an atom at an arbitrar

position inside a spherical free-space cavity surrounded
an arbitrary spherical multilayer material environment. L
us specify the system such that the atom is situated at
center of the cavity~i.e., r A50) and let the surrounding
material homogeneously extend over all the remaining sp
For small cavity radii, the system corresponds to the re
cavity model of local-field corrections. Making use of th
explicit expressions for the coefficientsCn

N as in Ref.@31#
and the fact that forr A50 only then51 term in Eq.~67!
contributes@32#, we derive from Eq.~67!

G

G0
511ReH F12 i ~n11!z2n~n11!

m2n

m2n2
z2

1 in2
m2n

m2n2
z3GeizF2 i sinz2~n sinz2 i cosz!z

1S cosz2 i
12m

m2n2
n sinzD nz2

2~n sinz1 im cosz!
n2

m2n2
z3G21J ~69!

@m5m(ṽA), n5n(ṽA), and z5RṽA /c, with R being the
cavity radius#. Obviously, the dipole orientation does n
matter here, and Eqs.~67! and~68! lead to exactly the same
result. Equation~69! is the generalization of the result de
rived in Ref.@32# for dielectric matter. It is straightforward to
show that Eq.~69! gives a positive expression for the dec
rate as long as Im«(ṽA).0 and Imm(ṽA).0 as it should
be.

Figures 2–4 illustrate the dependence of the decay raG
given by Eq.~69! on the~shifted! transition frequency for the
case of the cavity being surrounded by~a! purely dielectric
matter,~b! purely magnetic matter, and~c! magnetodielectric
matter, with special emphasis on the band-gap zones.
permittivity and permeability are given by Eqs.~10! and
~11!, respectively. In the figures, the dielectric and magne
6-7
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band gaps are assumed to extend fromvTe51.03vTm to
vLe.1.274vTm and fromvTm to vLm.1.088vTm , respec-
tively. They overlap in the frequency interval 1.03vTm,v
,1.088vTm .

1. Large cavities

In Fig. 2, a relatively large cavity is considere
(2R/lTm520). From Figs. 2~a! and 2~b! it is seen that inside
a dielectric or magnetic band gap the decay rate sensiti
depends on the transition frequency. Narrow-band enha
ment of the spontaneous decay (G.G0) alternates with

FIG. 2. The decay rateG as a function of the~shifted! atomic

transition frequencyṽA for an atom at the center of an emp
sphere surrounded by single-resonance matter.~a! Dielectric matter
according to Eq.~10! @vTe/vTm51.03; vPe/vTm50.75; ge /vTm

50.001~solid line!, 0.01 ~dashed line!, and 0.05~dotted line!#, ~b!
magnetic matter according to Eq.~11! @vPm /vTm50.43; gm /vTm

50.001~solid line!, 0.01~dashed line!, and 0.05~dotted line!#, and
~c! magnetodielectric matter according to Eqs.~10! and ~11! @the
parameters are the same as in~a! and ~b!#. The diameter of the
sphere is 2R520lTm (lTm52pc/vTm).
04381
ly
e-

broadband inhibition (G,G0). The maxima of enhancemen
are observed at the frequencies of the~propagating-wave!
cavity resonances, theQ factors of which are essentially de
termined by the material losses~see the curves for differen
values ofge andgm). Note that the cavity resonances as t
poles ofG are different for dielectric and magnetic materi
in general. From Fig. 2~c! it is seen that the decay rate of a
atom surrounded by magnetodielectric matter shows a s
lar behavior as in Figs. 2~a! and 2~b!, provided that the tran-
sition frequency is outside the region of overlapping diele
tric and magnetic band-gap zones. When the transi
frequency is in the overlapping region of the two band-g
zones, then the medium becomes left handed. Thus, a
tively large input-output coupling due to propagating wav

FIG. 3. The decay rateG as a function of the~shifted! atomic

transition frequencyṽA for an atom at the center of an emp
sphere surrounded by single-resonance matter.~a! Dielectric matter
according to Eq.~10!, ~b! magnetic matter according to Eq.~11!,
and ~c! magnetodielectric matter according to Eqs.~10! and ~11!
@ge /vTm5 gm /vTm50.001, the other parameters are the same
in Fig. 2#. The values of the sphere diameter are 2R520lTm

~dashed lines! and 2R51lTm ~solid lines!.
6-8
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ELECTROMAGNETIC-FIELD QUANTIZATION AND . . . PHYSICAL REVIEW A68, 043816 ~2003!
in the medium becomes possible, thereby the typical ba
gap properties getting lost. As a result, neither strong inh
tion nor substantial resonant enhancement of the spontan
decay is observed, as is clearly seen from Fig. 2~c!.

In Fig. 3 the results for the cavity in Fig. 2 are compar
with those observed for a smaller cavity with 2R/lTm51.
As expected, the number of clear-cut cavity resonances
creases as the radius of the cavity decreases. For the sm
of the chosen radii, just one resonance has survived in
case of the magnetic medium@Fig. 3~b!#, while the reso-
nances are gone altogether in the case of the dielectric
dium @Fig. 3~a!#. Accordingly, inhibition of spontaneous de
cay is typically observed in the band-gap zones of dielec

FIG. 4. The decay rateG as a function of the~shifted! atomic

transition frequencyṽA for an atom at the center of an emp
sphere surrounded by single-resonance matter.~a! Dielectric matter
according to Eq.~10!, ~b! magnetic matter according to Eq.~11!,
and ~c! magnetodielectric matter according to Eqs.~10! and ~11!.
The diameter of the sphere is 2R50.1lTm . The other parameter
are the same as in Fig. 2.
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and magnetic matter and in the nonoverlapping band-
region of magnetodielectric matter. In contrast, a behav
quite similar to that in free space can be observed in
overlapping~left-handed! region.

2. Small cavities

In Fig. 4, a cavity is considered whose radius is mu
smaller than the transition wavelength (2R/lTm50.1).
Comparing Fig. 4~a! with 4~b!, we see that the frequenc
response of the decay rate in the dielectric band-gap zon
quite different from that in the magnetic band-gap zone.
the dielectric band-gap zone@Fig. 4~a!#, a more or less abrup
decrease ofG belowG0 with increasing transition frequenc
is followed by an increase ofG to a maximum that can
substantially exceedG0. In the case of magnetic matter@Fig.
4~b!#, on the contrary, only a rather distorted band-gap zo
is observed in whichG monotonously decreases belowG0.
The maximum of enhancement of spontaneous decay in
4~a! is observed at the local-mode resonance associated
the small cavity, which may be regarded as being a defec
the otherwise homogeneous dielectric. This is obviously
the same nature as the donor and acceptor local modes
cussed in Ref.@33#. In the regions where the dielectric an
magnetic band-gap zones of the magnetodielectric in F
4~c! do not overlap, the frequency response of the decay
is dominated by the respective matter, i.e., the character
features are either dielectric or magnetic. The situat
changes when the transition frequency is in the overlapp
region, where LHM is realized. Since this region can
longer be regarded as an effectively forbidden zone
propagating waves, the value ofG can become comparabl
with or even bigger than that ofG0. From Fig. 4~c! it is seen
that entering the overlapping region from the magnetic s
stops the decrease ofG on that side, thereby changing it to a
increase. Similarly, the decrease ofG on the dielectric side
stops and changes to an increase when the overlappin
gion is entered from the dielectric side.

Figure 5 illustrates the influence of the cavity radius
the decay rate for small cavities. Figure 5~a! reveals that
when the value of 2R/lTm changes from 2R/lTm50.1 to
2R/lTm50.8, then the maximum of the spontaneous de
rate associated with the local-mode resonance in dielec
matter shifts towards smaller transition frequencies, ther
being reduced. In the case of magnetic matter, increa
value of 2R/lTm reduces the distortion of the band-gap zon
as is seen from Fig. 5~b!. As expected, the frequency re
sponse of the decay rate shown in Fig. 5~c! for the case of
magnetodielectric material including LHM combines, in
sense, the respective curves in Figs. 5~a! and 5~b!.

3. Local-field corrections

For an atom in bulk material, the local field with whic
the atom really interacts can differ from the macrosco
field used in the derivation of the decay rate of the fo
given by Eq.~63!. To include local-field corrections in the
rate, one can use Eq.~69! and let the radius of the cavity ten
to a value which is much smaller than the transition wa
length,
6-9
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RṽA

c
5

2pR

lA
!1, ~70!

but still much larger than the distances between the med
constituents to ensure that the macroscopic theory applie
this way we arrive at the real-cavity model frequently used
the literature@21,32,34–36#. The results shown in Fig. 4 ma
be regarded as being typical of the real-cavity model.

ExpandingG @Eq. ~69!# in powers ofz5RṽA /c we ob-
tain

FIG. 5. The decay rateG as a function of the~shifted! atomic

transition frequencyṽA for an atom at the center of an emp
sphere surrounded by single-resonance matter.~a! Dielectric matter
according to Eq.~10!, ~b! magnetic matter according to Eq.~11!,
and ~c! magnetodielectric matter according to Eqs.~10! and ~11!
@ge /vTm5 gm /vTm50.001, the other parameters are the same
in Fig. 2#. The values of the sphere diameter areR5 0.8lTm ~dotted
lines!, 0.4lTm ~dashed lines!, and 0.1lTm ~solid lines!.
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n

G

G0
5ReF S 3«

112« D 2

mnG1
9 Im«

u112«u2 S c

ṽAR
D 3

1
9

5
ImF«~113«15m«!

~112«!2 G S c

ṽAR
D 1O~R!, ~71!

which for nonmagnetic media reduces to results obtai
earlier @32,36#. Note that the actual value ofR, which is
undetermined within the real-cavity model, should be tak
from the experiment. Equation~71! without theO(R) term
has to be employed with great care, because it fails when
small absorption, the atomic transition frequencyṽA be-
comes close to a medium resonance frequency such asvTe
or vTm , thus leading to a drastic increase of the first term
Eq. ~71!. The first three terms on the right-hand side in E
~71! reproduce the curves in Fig. 4 sufficiently well, exce
in the vicinities ofvTe andvTm . In particular, it can easily
be checked that the position of the local-mode-assisted m
mum of the decay rate in the dielectric band-gap zone
where 2«(ṽA).21.

For transition frequencies that are sufficiently far aw
from a medium resonance frequency and, in case of die
tric and magnetodielectric matter, the local-mode frequen
so that material absorption can be disregarded, the first t
in Eq. ~71! is the leading one, hence

G.F 3«~ṽA!

112«~ṽA!
G 2

Re@m~ṽA!n~ṽA!#G0 . ~72!

In this case, the local-field correction simply results in m
tiplying the rate obtained for the case of nonabsorbing b
material @Eq. ~63!# by the factor@3«/(112«)#2. Interest-
ingly, this factor is exactly the same as that for dielect
material.

Inspection of the second and the third term in Eq.~71!
shows that such a separation is no longer possible when
terial absorption must be taken into account. It should
pointed out that the second term proportional toR23 is
purely dielectric, whereas the magnetization starts to co
into play only via the third term proportional toR21. These
two terms can be regarded as resulting from the near-fi
component and the induction-field component accompany
the decay of the excited atomic state. In particular for su
ciently small cavity size and strong~dielectric! absorption,
the second term is the leading one, so that magnetodielec
approximately give rise to the same decay rate as dielect

G.
9 Im«~ṽA!

u112«~ṽA!u2 S c

ṽAR
D 3

G0 . ~73!

In this case, the decay may be regarded as being purely
diationless, with the energy being transferred from the
cited atomic state to the surrounding medium mediated
the near field.

s
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VI. SUMMARY AND CONCLUSIONS

It has been shown that the quantization scheme origin
developed for the electromagnetic field in the presence
dielectric matter described in terms of a spatially varyin
Kramers-Kronig-consistent permittivity@14–19# can be ex-
tended to causal magnetodielectric matter, with special
phasis on the recently fabricated metamaterials, includ
LHMs that can exhibit a negative real part of the refract
index, thereby leading to a number of unusual propert
The quantization scheme is based on a source-quantity
resentation of the medium-assisted electromagnetic fiel
terms of the classical Green tensor and two independen
finite sets of appropriately chosen bosonic basis fields of
system that consists of the electromagnetic field and the
dium, including a dissipative system. We have further sho
that the minimal-coupling Hamiltonian governing the inte
action of the medium-assisted electromagnetic field with
ditional charged particles can be obtained from the stand
form, by expressing in it the potentials in terms of t
bosonic basis fields. The theory can serve as basis for var
studies, including generation and propagation of nonclass
radiation through magnetodielectric structures, Casi
forces between magnetodielectric bodies, or van der W
force between atomic systems and magnetodielectric bod

As an example, we have applied the theory to the prob
of the spontaneous decay of a two-level atom in the prese
of arbitrarily configured, dispersing and absorbing media
particular, we have shown that the theory naturally gives
decay rate and the frequency shift in terms of the class
Green tensor—formulas that are valid for any kind of geo
etry and material. To be more specific, we have studied
decay rate of an atom at the center of a cavity surrounde
an infinitely extended magnetodielectric, assuming a sin
resonance permittivity and a single-resonance permeab
of Drude-Lorentz type. A LHM is realized for transition fre
quencies in the region where the dielectric and magn
band-gap zones overlap, thereby the real parts of the per
tivity and permeability becoming negative. When the tran
tion frequency enters that region from the dielectric or m
netic side, then the typical band-gap properties such
enhancement of the spontaneous decay at the cavity r
nances and inhibition between them get lost and a decay
comparable with that in free space can be observed.
calculations have been performed for both large and sm
cavities. In particular, if the diameter of the cavity becom
small compared to the transition wavelength of the atom,
system reduces to the real-cavity model for including loc
field corrections in the decay rate of the atom in bulk ma
rial. We have discussed this case in detail both analytic
and numerically and made contact with the results obtai
from simple mode-decomposition arguments in case of p
tive permittivity and permeability.

For experimental observations of the decay, as in R
@37,38# for the case of dielectrics, photodetectors need to
placed outside of the magnetodielectric material and th
strictly speaking, the Green tensor is needed for a finite
dium. However, if back reflection effects from the corr
sponding boundary can be disregarded and the extent o
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medium is large compared to the resonance wavelength
bulk-material Green tensor is an excellent approximation

For simplicity, all the calculations have been perform
for isotropic magnetodielectric material, by assuming a s
lar permittivity and a scalar permeability. The extension
anisotropic material is straightforward. It can be done in
sentially the same way as for anisotropic dielectric mater
by first transforming the permittivity and permeability te
sors into their diagonal forms.
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APPENDIX A: SOME PROPERTIES
OF THE GREEN TENSOR

Following Ref.@19#, we regard the Green tensor as bei
the matrix elements in the position basis of a tensor-val
Green operatorĜ5Ĝ(v) in an abstract single-particle Hil
bert space,G(r ,r 8,v)5^r uĜur 8&, so that Eq.~23! can be
regarded as the position representation of the operator e
tion ĤĜ5 Î , where

Ĥ52p̂3k~ r̂ ,v!p̂32
v2

c2
«~ r̂ ,v! Î . ~A1!

Using the relations ^r u r̂ ur 8&5rd(r2r 8), ^r up̂ur 8&
52 i“d(r2r 8), and^r u Î ur 8&5d(r2r 8), we have

H~r ,r 8,v![^r uĤur 8&

5“3k~r ,v!“3d~r2r 8!2
v2

c2
«~r ,v!d~r2r 8!,

~A2!

which in Cartesian coordinates reads

Hi j ~r ,r 8,v!5H ] j
rk~r ,v!] i

r2F ] l
rk~r ,v!] l

r

1
v2

c2
«~r ,v!Gd i j J d~r2r 8!. ~A3!

Since Ĥ is injective and thus an invertible one-to-one m
between vector functions, we can writeĜ5Ĥ21. Multiply-
ing this equation byĤ from the right, we have

ĜĤ5 Î , ~A4!

which in the position basis reads
6-11
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E d3s^r uĜus&^suĤur 8&5d~r2r 8!. ~A5!

Recalling Eq.~A3!, we derive, on integrating by parts an
taking into account that the Green tensor vanishes at infin

E d3s Gik~r ,s,v!Hk j~s,r 8,v!

5H ]k
r 8k~r 8,v!] j

r 82F ] l
r 8k~r 8,v!] l

r 81
v2

c2
«~r 8,v!Gdk jJ

3Gik~r ,r 8,v!5d i j ~r2r 8!. ~A6!

Interchanging the vector indicesi and j and the spatial argu
mentsr and r 8, we obtain

H ]k
r k~r ,v!] i

r2F ] l
rk~r ,v!] l

r1
v2

c2
«~r ,v!GdkiJ Gjk~r 8,r ,v!

5d i j ~r2r 8!, ~A7!

which, according to Eq.~23!, is just the defining equation fo
Gk j(r ,r 8,v). Thus, the reciprocity relation~24! is proved
valid.

To prove the integral relation~25!, we introduce operators
Ô‡ by (Ô‡) i j 5(Ôji )

†5Ôji
† . From Eq.~A4! it then follows

that

Ĥ‡Ĝ‡5 Î . ~A8!

Multiplying Eq. ~A4! from the right byĜ‡ and Eq.~A8! from
the left by Ĝ and subtracting the resulting equations fro
each other, we obtain

Ĝ~Ĥ2Ĥ‡!Ĝ‡5Ĝ‡2Ĝ, ~A9!

which in the position basis reads

E d3sE d3s8Gim~r ,s,v!@Hmn~s,s8,v!

2Hnm* ~s8,s,v!#Gn j* ~s8,r 8,v!522i ImGi j ~r ,r 8,v!.

~A10!

Note that ^r uĤmn
‡ ur 8&5Hnm* (r 8,r ,v) and ^r uĜi j

‡ ur 8&
5Gji* (r 8,r ,v). Inserting Eq.~A3! into Eq.~A10!, after some
manipulation we derive

E d3sH Im k~s,v!]n
sGim~r ,s,v!@]m

s Gn j* ~s,r 8,v!

2]n
sGm j* ~s,r 8,v!#

1
v2

c2
Im «~s,v!Gim~r ,s,v!Gm j* ~s,r 8,v!J

5Im Gi j ~r ,r 8,v!, ~A11!
04381
y,

which is just Eq.~25! in Cartesian coordinates.
To examine the asymptotic behavior of the Green ten

in the upper half of the complexv plane asuvu→` and
uvu→0, we introduce the tensor-valued projectors

Î'5 Î2 Î i, Î i5
p̂^ p̂

p̂2
~A12!

@note that^r u Î'(i)ur 8&5d'(i)(r2r 8)], and decomposeĜ as
@19#,

Ĝ5Ĥ215 Î i~ Î iĤÎ i!21Î i1@ Î'2 Î i~ Î iĤÎ i!21Î iĤÎ'#K̂@ Î'

2 Î'ĤÎ i~ Î iĤÎ i!21Î i#, ~A13!

where

K̂5@ Î'ĤÎ'2 Î'ĤÎ i~ Î iĤÎ i!21Î iĤÎ'#21. ~A14!

Recalling that«(r ,v),m(r ,v)→1 asuvu→`, we easily see
that the high-frequency limits ofĤ andĜ are the same as fo
dielectric material, thus@19#

lim
uvu→`

v2

c2
G~r ,r 8,v!52d~r2r 8!. ~A15!

To find the low-frequency limit ofĜ, we note that the secon
term in Eq. ~A13! is regular. To study the first term, w
distinguish between two cases.

~i! The first term ofĤ in Eq. ~A1! is transverse,

2 Î ip̂3k~ r̂ ,v!p̂352p̂3k~ r̂ ,v!p̂3 Î i50, ~A16!

and therefore does not contribute toÎ iĤÎ i. It then follows
that the same low-frequency behavior as in the case of
electric matter is observed, thus@19#

lim
uvu→0

v2

c2
Ĝ52 Î i@ Î i«~ r̂ ,v50! Î i#21Î i, ~A17!

i.e., because«(r ,v50)Þ0,

lim
uvu→0

v2

c2
G~r ,r 8,v!5M, Mi j ,`. ~A18!

~ii ! Equation~A16! is not valid, so that the first term ofĤ
in Eq. ~A1! contributes toÎ iĤÎ i. Sincem(r ,v50)Þ0 @thus
k(r ,v50) being finite#, we find that

lim
uvu→0

G~r ,r 8,v!5N, Ni j ,`. ~A19!

APPENDIX B: COMMUTATION RELATIONS

By using Eqs.~22!, ~32!, the commutation relations~30!
and ~31!, and the integral relation~25!, we derive
6-12
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@Êi~r ,v!,Êj
†~r 8,v8!#5

\v2

p«0c2
Im Gi j ~r ,r 8,v!d~v2v8!,

~B1!

@Êi~r ,v!,Êj~r 8,v8!#5@Êi
†~r ,v!,Êj

†~r 8,v8!#50.
~B2!

From Eqs.~34!, ~B1!, and ~B2! it is easily seen that the
commutation relations~35! are valid. Moreover, we find that
on recalling thatG* (r ,r 8,v)5G(r ,r 8,2v* ),

@«0Êi~r !,Âj~r 8!#

5E d3sF2i\

p E
0

`

dv
v

c2
Im Gik~r ,s,v!Gdk j

' ~s2r 8!

5E d3sF \

p
PE

2`

`

dv
v

c2
Gik~r ,s,v!Gdk j

' ~s2r 8!

5
\

p
PE

2`

` dv

v

v2

c2
^r uĜÎ'ur 8& i j ~B3!

~P, principal part!. Since the Green tensor is analytic in th
upper half of the complexv plane with the asymptotic be
havior according to Eq.~A15!, the frequency integral in Eq
~B3! can be evaluated by contour integration along an i
nitely small half circle aroundv50, and along an infinitely
large half circleuvu→`. Taking into account that the Gree
tensor either has only longitudinal components in the lim
uvu→0, cf. Eq. ~A17!, and hencev/cĜÎ'→0, or is well
behaved, cf. Eq.~A19!, we see that the integral along th
infinitely small half circle vanishes. Recalling Eq.~A15!, we
then readily find

@«0Êi~r !,Âj~r 8!#5 i\d i j
'~r2r 8!. ~B4!

SinceB̂(r )5“3Â(r ), from Eq. ~B4! it follows that

@«0Êi~r !,B̂j~r 8!#52 i\e i jk]k
r d~r2r 8!, ~B5!

i.e., Eq.~36!. It is then not difficult to see that the commu
tation relation~B4! implies

@ŵ~r !,Âi~r 8!#5@ŵ~r !,B̂i~r 8!#50. ~B6!

To evaluate commutators involving the displacement fi
and the magnetic field, recall Eqs.~16!–~19!. Using the re-
lations presented above, we derive

@D̂ i~r !,D̂ j~r 8!#50, ~B7!

@Ĥ i~r !,Ĥ j~r 8!#50, ~B8!

and

@D̂ i~r !,m0Ĥ j~r 8!#52 i\e i jk]k
r d~r2r 8!. ~B9!
04381
-

t

d

Note that Eq.~B9! follows by using similar arguments as i
the derivation of Eq.~B4! from Eq. ~B3!. A similar calcula-
tion leads to

@D̂ i~r !,Âj~r 8!#5 i\d i j
'~r2r 8!, ~B10!

@Ĥ i~r !,Âj~r 8!#5@D̂ i~r !,ŵ~r 8!#5@Ĥ i~r !,ŵ~r 8!#50.
~B11!

By combining Eqs.~B10! and ~B11! with Eqs. ~B4! and
~B6!, it is not difficult to verify that polarization and magne
tization commute with the introduced potentials as well
among themselves.

APPENDIX C: HEISENBERG EQUATIONS OF MOTION

By using the Hamiltonian~41! and recalling the defini-
tions of the medium-assisted field quantities in terms of
basic fieldsf̂ l i(r ,v), the basic-field commutation relation
~30! and ~31!, the commutation relations that have been d
rived from them, and the standard commutation relations
the particle coordinates and canonical momenta, it
straightforward to prove that the theory yields both the c
rect Maxwell equations~47! and ~48! and the correct New-
tonian equation of motion~51!.

Let us begin with the Maxwell equations. We derive o
recalling Eqs.~40! and~34! together with Eqs.~22! and~32!
and the commutation relations~30! and ~31!,

BẆ̂ ~r ,t !5
1

i\
@BŴ ~r ,t !,Ĥ#

5“3E
0

`

dv
1

i\
@Â~r ,v!,Ĥ#1H.c.

52“3Ê~r !52“3EŴ ~r !, ~C1!

which is Eq.~47!. To derive the equation of motion for th
displacement field, we have to consider several commuta
according to

DẆ̂ ~r !5
1

i\
@DŴ ~r ,t !,Ĥ#

5
1

i\E d3r 8E
0

`

dv\v (
l5e,m

@D̂~r !, f̂l
†~r 8,v! f̂l~r 8,v!#

1
1

i\ (
a

1

2ma
@D̂~r !,@ p̂a2qaÂ~ r̂a!#2#

2
«0

i\ (
a

1

2ma
@“ŵA~r !,@ p̂a2qaÂ~ r̂a!#2#. ~C2!

The first commutator in Eq.~C2! can easily be found by
recalling the definitions of displacement and magnetic fie
as
6-13
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1

i\E d3r 8E
0

`

dv\v (
l5e,m

@D̂~r !, f̂l
†~r 8,v! f̂l~r 8,v!#

52E
0

`

dv ivD̂~r ,v!1H.c.5“3HŴ ~r !. ~C3!

Applying the commutation relation~B10!, and recalling the
definition of the current density, we find that the second te
on the right-hand side of Eq.~C2! can be written as

1

i\ (
a

1

2ma
†D̂~r !,@ p̂a2qaÂ~ r̂a!#2

‡52 ĵA
'~r !, ~C4!

where the Newtonian equation of motion~50! has been used
which follows directly from the Hamiltonian~41!. Finally,
standard commutation relations together with the definiti
of the scalar potential, Eqs.~42! and ~43!, and the current
density, Eq.~49! together with Eq.~50!, lead to

2
«0

i\ (
a

1

2ma
†“ŵA~r !,@ p̂a2qaÂ~ r̂a!#2

‡52 ĵA
i ~r !.

~C5!

Inserting Eqs.~C3!–~C5! into Eq.~C2!, we arrive at Eq.~48!.
In order to prove Eq.~51!, we consider the equation

ma r̂̈a5
1

i\
@ p̂a2qaÂ~ r̂a!,Ĥ#

52
qa

i\E d3r E
0

`

dv\v (
l5e,m

@Â~ r̂a!, f̂l
†~r ,v! f̂l~r ,v!#

1
1

i\ (
b

1

2mb
@ p̂a2qaÂ~ r̂a!,@ p̂b2qbÂ~ r̂b!#2#

1
1

2i\E d3r @ p̂a ,r̂A~r !ŵA~r !#

1
1

i\E d3r @ p̂a ,r̂A~r !ŵ~r !#. ~C6!
S

et

ev

M

n
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The first term on the right-hand side of Eq.~C6! is again

2
qa

i\E d3r E
0

`

dv\v (
l5e,m

@Â~ r̂a!, f̂l
†~r ,v! f̂l~r ,v!#

5 ivqaÂ~ r̂a!5qaÊ'~ r̂a!. ~C7!

The second term gives rise to two terms,

1

i\ (
b

1

2mb
@ p̂a ,@ p̂b2qbÂ~ r̂b!#2#

5
1

2
qa$ r̂̇aÂ~ r̂a! ^“

Q 1“^ Â~ r̂a! r̂̇a% ~C8!

and

2
qa

i\ (
b

1

2mb
@Â~ r̂a!,@ p̂b2qbÂ~ r̂b!#2#

52
1

2
qa$ r̂̇a“^ Â~ r̂a!1Â~ r̂a! ^ r̂̇a“

Q %, ~C9!

and thus

1

i\ (
b

1

2mb
@ p̂a2qaÂ~ r̂a!,@ p̂b2qbÂ~ r̂b!#2#

5
1

2
qa@ r̂̇a3BŴ ~ra!2BŴ ~ra! r̂̇a#. ~C10!

By means of Eqs.~39! and~42! one can see that the last tw
terms in Eq.~C6! can be rewritten as

1

2i\E d3r @ p̂a ,r̂A~r !ŵA~r !#52qa“ŵA~ra!, ~C11!

1

i\E d3r @ p̂a ,r̂A~r !ŵ~r !#5qaÊi~ r̂a!. ~C12!

Inserting Eqs.~C7!, ~C10!–~C12! into Eq. ~C6! and making
use of Eq.~44!, we just arrive at Eq.~51!.
s.
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Rousochatzakis, and C.M. Soukoulis, Phys. Rev. E66,
045601~R! ~2002!; P.M. Valanju, R.M. Walser, and A.P. Val
anju, Phys. Rev. Lett.88, 187401~2002!; A.L. Pokrovsky and
A.L. Efros, ibid. 89, 093901~2002!; J. Pacheco, Jr., T.M. Grze
gorczyk, B.-I. Wu, Y. Zhang, and J.A. Kong,ibid. 89, 257401
6-14



-

ng

-
na

ys

-

ys.

art,

ol.

s.

.

rik,

ELECTROMAGNETIC-FIELD QUANTIZATION AND . . . PHYSICAL REVIEW A68, 043816 ~2003!
~2002!; N. Fang and X. Zhang, Appl. Phys. Lett.82, 161
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