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Spin squeezing via atom-cavity field coupling
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Spin squeezing via atom-field interactions is considered within the context of the Tavis-Cummings model.
An ensemble oN two-level atoms interacts with a quantized cavity field. For all the atoms initially in their
ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the
initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is
restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also
discussed. Optimal conditions for obtaining squeezing are obtained. An analytic solution is found that is valid
in the limit that the number of atoms is much greater than unity and is also much larger than the average
number of photonsg?, initially in the coherent state of the cavity field. In this limit, the degree of spin
squeezing increases with increasigeven though the field more closely resembles a classical field for which
no spin squeezing could be achieved.
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I. INTRODUCTION result in spin squeezing. In this paper, we study the dynamics
of the creation of squeezing in an ensemble of spins via
Spin squeezed states offer an interesting possibility focoupling to a cavity field in the Tavis-Cummings modi4].
reducing quantum noise in precision measurem¢its3l.  An ensemble oN atoms is coupled in a spatially indepen-
Spin squeezing is described in terms of spin operators thafent manner to the field with no losses for the field and with
are associated with quantum-mechanical operators of twahe neglect of any spontaneous emission for the atoms. We
level atomyTLA) (we refer to atoms and spins interchange-are concerned mainly with the type of spin squeezing that
ably). In an appropriate interaction representation, combinazan pe generated by coupling to a radiation field that is ini-
tions of atomic raising and lowering operators for atoare tja|ly a coherent state, but also will consider an initial state of
associated with thet andy spin components, andS}),  the field that is a squeezed state. The evolution of the radia-
while the population difference operator for the two states igjon field will also be determined. There have been a number
associated with the spin componentg)). One then defines ot stydies of atom-field dynamics in the Tavis-Cummings
collective operatorS,=ZX;S, that obey the usual spin cOm- mqdel in which the squeezing of the cavity field was calcu-

mutator relations. If one measures an average S lated in various limitg5]. Some numerical solutions to the
= (S0*+(S))?+(S,)? then the system is said to be spin problem of spin squeezing in the Tavis-Cummings model are
squeezed if given in Ref.[1].
The initial condition for the atoms is taken as one in
&= ‘/Z—SASL/|<S>|<1’ @) which all the atoms are in their lower energy state, corre-

whereAS, is the uncertainty in a spin component perpen_sponding to a coherent spin state. For a very large number of
dicular to(S), S=N/2, andN is the number of atomL,2). atoms N%l andN much greater than the average number of
Spin squeezing is impossible for a single atom and requireBNotons in the coherent state of the fielthe relevant energy

the entanglement of the spins of two or more atoms. TheréVels of the spin system approach those of a simple har-
are many ways to theoretically construct a Hamiltonian thafMonic oscillator with corrections that vanish ds-«. Thus
can give rise to the necessary entanglement antomgo- it would seem that spin squeezing can never be achieved if
level atoms. Since a linear Hamiltonian merely rotates thdhe initial state of the cavity field is a coherent state, since
spin components leaving the uncertainties unchanged, it igne is dealing with a linear interaction between two har-
generally necessary to use Hamiltonians that are quadratic imonic oscillators each of them initially in a coherent state.
the spin operators to generate squeezing. On the other harldevertheless, we show that for any finlte spin squeezing

it is possible to generate squeezing using a Hamiltonian lineccurs and the degree of spin squeezing actually increases
ear in the spin operators provided the spin system is coupledith increasing field strength.

to another quantum system, such as a harmonic oscillator. It To follow the atom-field dynamics, we consider first a
is then not surprising to find that a squeezed state of theystem havingN=2. It is not difficult to obtain analytic
oscillator can be transferred to some degree to the atomsolutions in this case, enabling us to track the dependence of
What may be a little more surprising is that an oscillator&, on field strength and\. In addition, we determine if the
prepared in a coherent state and coupled to the spins cagueezed vacuum state results in optimal transfer of squeez-
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ing from the fields to the atoms. After discussing the two-aligned along the axis, with thex axis chosen such thatS,

atom case, we generalize the resultdtatoms. is the minimum value ofS, . Using the facts tha{S,)=S,
The paper is organized as follows. In Sec. Il we presentS,)=(S,)=0, AS,AS,=((S,)|/2, one finds

the mathematical framework and obtain results that show

that no squeezing can be achieved when the field is either, _

classical, or quantized in a number state. In Sec. Ill, we &= \/NAS"/KSZMB\/N/ASY_

consider theN=2 case and obtain analytical results for both

coherent and squeezed cavity fields, in the limit that the avFor correlated states, the sum can be positive and one cannot

erage number of photons in the field is much less than unitytule out the possibility that,<1. On the other hand, for

Numerical solutions for larger field strength are presented. Ilyncorrelated states, using the fact “(1592:0, it follows

Sec. IV, the results are generalizedN@toms. In both Secs. that 1_’_2“_’¢j<5§/j)s§/j’)>:1_2j<sglj)>2. As a consequence,

[l and IV, the time evolution and squeezing of the field is / . .
also calculated for the case that t?le fieldgis initially in agX>1 and there is no spin squeezing for uncorrel_ated states.
coherent state. In Sec. V, a formal derivation of the laxge We note two general conclusions that are valid for arbi-

' . trary N. First, if we were to replace the cavity field by a

limit is given using the Holstein-Primakoff transformation . . S :
. X .. classical field, the Hamiltonian would be transformed into
[6], valid for an arbitrary strength of the coherent cavity

field. The Holstein-Primakoff transformation was used pre- _ o o
viously by Persico and Vetiji7] to analyze the atom-field Heass= > [0SV +hg (SPeTet+selety],
dynamics in the limit of largeN. The approach we follow !

differs somewhat from theirs and our results seem to have_ \‘FK‘/hereg’ is a constant. Since the Hamiltonian is now a sum

wider range of validity than that stated by Persico and Vem‘of Hamiltonians for the individual atoms, the wave function
The results are summarized in Sec. VI.

is a direct product of the wave functions of the individual
atoms. As a consequence, there is no entanglement and no
Il. GENERAL CONSIDERATIONS spin squeezing for a classical field. Second, if the initial state
In dipole and rotating-wave approximations, the Hamil-Of the field is a Fock state, although there is entanglement
tonian for an ensemble of TLAower state|1), upper state P€tween the atoms and the field, there is no spin squeezing.
|2), transition frequency) interacting with a resonant cav- There is no spin squeezing unless the initial state of the field

1+ >, <s§i>s§i’>>}l.
i

J'#]

ity field, E(t)=Ea e '“'+E*a'e'“!, is of the form has coherence between at least two states differimgoiy 2.
For a Fock state, there is no such coherenceénell.
H=hwS,+hwa a+hg(S,a+S_a"), It is convenient to carry out the calculations in an inter-
action representation with the wave function expressed as
where
N/2 e
s,=3M[(12)(2));— (J1)(1]);1/2, |¢(t)>=mEN/2 nZO Cne M M mn),  (2)

_ N —iwt
S+_EJ=1(|2><1|)1 e wherem labels the value o5, andn labels the number of
s —sN (|1)2]) gt photons in the cavity field. In this representation, the Hamil-

- Sj=1 (11X |)ie , tonian governing the time evolution of tlog,(t) is given by

S.=(S,+S.)/2, H=#Ag(S,a+S_a"). ©)
S,=(S;—S.)/2i,

aanda' are annihilation and creation operators for the field, We first setN=2, S=1. If the spins are all in their lower
andg is a coupling constant. The spin operators have bee@nergy state at=0 ' the iﬁitial wave function is

defined in a reference frame rotating at the field frequency. '
Constants of the motion ar&’= S{+S/+S2 and (S, °°
+a*a). If, initially, all spins are in their lower energy state, |4(0))=2, ¢/ —1k), (4)
then S?=N?/4. In order to calculate, from Eq. (1), one k=0
must first find(S) and define two independent directions
orthogonal to(S), S,; andS, ,. It then follows that(S, ;)
=(S,,)=0 and

. N=2

where thec, are the initial state amplitudes for the field.
Solving the time-dependent Schiinger equation with initial
condition (4), one finds

+ > (sihsiny, 1

(A8,)*= _ N
Iy c,l,k(t)—(Zk_l)[k—lJrkcos( 4k—2gt)]ck, (5a

A Z

wherei=1,2 andS\) is a spin operator for atorn

A necessary condition to havg <1 is that the different _ i k+1 = ——
spins are entangled. To see this, take a system in wisicks Cou(V)= 1\ 5y 7SINVak+200C s, (5D)
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V(k+1)(k+1)
Clyk(t)—W[—1+COE{\/4K+GQU]CK+2. 11l N:Z, 0=0.4
(50)
These state amplitudes can be used to calculate all expect:
tion values of the spin operators. u&d 1t

A. Coherent state

If the initial state of the cavity field is a coherent state, 4 ¢
then

= ake—|a|2/2/\/ﬁ' 6) 0 10 ot 20 30

a”ﬂ thezaveragfe “”.m.b“é of photons in the field is given by FIG. 1. Spin squeezing, as a function ofgt for «=0.4 and
no=|a|*. For simplicity, we takex andg to be real. N=2
1. Solution for |a|?><1

1 2
Keeping terms to ordex?, one finds from Eqs(5) and &= \/— |<:’>’| 1+ a?{ — zsinz(\/fgt)Jr §sin2( \/Egt/Z)
(6) that the only state amplitudes of importance are

(9b)
C_1dt)=(1-2a?2), (73
The lowest possible value for the squeezing occurs inxthe
C_q14(t)=acoyg \/Egt), (7b) direction and is equal to
\/_ Emin=1— %az (10
Co1it)=—+ [1+2co$ 6gt)], (70
\/_ at a time when sin(2gt)=0 and cos(6gt)=—1. The
squeezing, as a function ofyt for «=0.4 is plotted in Fig.
Codt) = —iasin(y2g1), (7d 1.
i a? ) \/_ 2. Numerical results for all values ot
Coa(t)=— Esm( égv), (e General expressions for the spin expectation values and

variances can be obtained and used for numerical simula-
a? tions for any values ofr. With « real, the expectation value
Crft)=— 5 [1-cod V6gt)]. (7f)  of the x component of the spin vanishes and, with the nota-
tion Con=Cop/i,
The spin components’ expectation values are

(S)=0, (S))=2asin(y2gt), (83 (S)=122 ConlCin=C 1),
(S))=—[1-a?sir?(\2g1)]. (80)

The motion of the average value for the spin vector op-
erator is in theyz plane, with the length of the vector always
equal to unity, to order®. Since(S,)=0, the plane in The variances are
which we look for spin squeezing is the one defined byxhe
axis and an axis orthogonal to bathand the instantaneous
direction of the spin. Making the appropriate rotation in the

yz plane to define g’ axis perpendicular t¢S) andx, and

<SZ>:n§O (|Cl,n|2_ |C—1,n|2)-

H

o (1
(AS)?=(SH=5+ 2, {glco,n|2+c1,ncl,n], (11a

afterwards choosing an arbitrary direction defined by an 1 =

angle ¢ in this plane, one finds thag,=min{ &, &}, (AS))?=(S})~ <Sy>2_§ Z [_|C0n| Cl,nc—l,n]
which implies that the best squeezing is to be found in either B

thex ory’ directions. The analytical expressions &, &,/ _<5y>2_ (11b
are

) The variance in thex component of the spin cannot be less
_ . _c than 1/2 unlesg; ,c_;,<<0. Sincec, ,c_,, is proportional
=1+a® sz( ﬁgt) 3S|r12( Jégt/Z)}, to ¢, 2Cx, Where thec,s are initial state amplitudes for the
(9a cavity field, spin squeezing can be induced by a field only if

6=\ gy |<S>|
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1.0 -..—l_‘ T T T T T gkl would have for the vacuum field. Initially the field is in a
x ; ) coherent state of real amplitudewith (Q)= 2« and(P)
X N=2 - =0, and variancesXQ)?=(AP)?=1} satisfying the mini-
09| 'k.\ /.--" - mum uncertainty condition
||
‘-\._ - (AQ*(AP)?=3[([Q,P]I*=5. (12
< L ! .
,-g 08| il . Using the wave functiori2), one finds
)
—r 1 w
Q=2 > [Vkchi (D)
07 F Heisenberg limit 7 m=-1 k=0
+ ke 1ch 1 (D]Cmi(1/V2,
Y . oI5 . 1Io . 1I5 . 20 2 i
' ' ' ' ' (Py= 2 2 [Vkehy ()
a m=—-1 k=0
FIG. 2. Optimal spin squeezing) mi, as a function ofa for +Vk+ 1cﬁ1,k+1(t)]cm,k(t)/\/§v
N=2. The time range out tgt=5000 was explored in obtaining
the minimal squeezing. In this and other plots, the points represent A2\ _ 1 1T e lk— ) %
actual values for which the squeezing was calculated. A line is (Q9=z+ 32l Vk(k l)cm,k—z(t)cm,k(t)
drawn through these points. + (k+1)(k+1)c’,§1‘k+2(t)cm,k(t)
the field has at least one nonvanishing off-diagonal density 12k VK Llew o(1)]2
matrix elemenfp,, for which |k—k’|=2. [emi D[],
The values for the spin averages and uncertainties are Ao 11 —
calculated in terms ofr and gt. For a?<1 the numerical (P9)= 12— [ Vk(k=1)cg - o(t) ()
and analytical results agree. For larger valuesrpho ana- + kT D(k+ Dc* e (t
lytical solution is available. The numerical results indicate ( | JCmicr2()Cmilt)
that the optimal squeezing is obtained in theirection. As —2kVk+ 1|cm'k(t)|2].
a is increased, the spin squeezing increases and then de- 5 o .
creases fow=0.9, as shown in Fig. 2. With increasing To ordera“, for the field initially in a coherent state, one

the optimal squeezing occurs at increasingly large values dinds squeezing parameters
gt. For example, withe=1.6, there is effectively no spin N
squeezing fogt<333 and the optimal spin squeezing occurs £Q= V24Q=1-a*{cog(V2gt) — 5[ 1+2 cos VoGt I},
for gt=2439. The squeezing data in this and subsequent .
graphs are the optimal squeezing that is obtainedjfdess Ep=\2AP=1+ a?{cog(\2gt)— 5[ 1+2 cog \/6gt)]}.
than some arbitrary cutoff that we have chosen. In the limit ) L )
of a>1, the field closely resembles a classical field and/Vith this definition, squeezing occurs fgp<1 or £p<1.
(£)min @approaches unity. Formally, this result could be de-TO s_epond order |mu_the state of the_ field evol\_/es in time as
rived by using a transformation proposed by Moll8} in a minimum uncertainty state but with squeezing transfer be-
which the transformed Hamiltonian is that of a classical field™W€en the two quadratures. The minimum value for the
having amplituder plus a fluctuating field. Any spin squeez- Sdu€ezing parameters that can be obtained is
ing that is produced depends on the ratio of the fluctuations (é0)min=1—2a? (12)
to the average field strength and must decrease with increas- Q/min T

(é€p)min=1— a. (12)

ing «, provided the average number of photons in the field is
much larger tharN.
A continuous transfer of squeezing betweenGhguadrature
B. Squeezing in the radiation field and thex component of the spin, and also between Ehe
Although the field is initially in a coherent state, it is quadrature and thg component of the spin is taking place.
squeezed as a result of its interaction with the atphisin ~ The maximum field squeezing as a functionofs shown in

terms of quadrature operatofsandQ defined as Fig. 3.

. - i C. Squeezed initial cavity field
Q=—=(a+a"), P=—-—(a—a") L

\/E \/E From Eq.(11) one can see that initial state coherence
o between photon field states differing by 2 is needed for
with [Q,P]=i, squeezing of the field occurs if the variance squeezing. The squeezed vacuum is a superposition of even

of one of these two operators is smaller than the value iFock states; therefore, it is a good choice for inducing the
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FIG. 4. Optimal spin squeezingé{)min as a function of the
squeezing parameterfor an initially squeezed cavity field fax
=2. The time range out tgt=5000 was explored in obtaining the
minimal squeezing.

FIG. 3. Optimal field squeezingég) i, as a function ofa for
N=2. The time range out tgt=5000 was explored in obtaining
the minimal squeezing.

necessary coherences in the atomic system. Analytical results
are available for a small squeezing parameter of the field,
and numerical results can be obtained for larger values. For a
squeezed vacuum thgs are given by for which a minimum value, =0.724 is achieved. We have
not been able to formulate a general proof as to the minimum

|4(0))=—0.790) — 0.5942) + 0.154) + 0.0216)

1 squeezing one can obtain for an arbitrary initial state of the
Co= , i
0 m field.
. :(k—l)!!(—l)k’ztanH"zr or K oven IV. N ATOMS
“ vk!coshr ' As the number of atombl increases, the spin squeezing

that can be achieved depends critically on the initial state of
the cavity field. If the field is in a coherent state, one might
expect that the squeezing vanishedNagoes to infinity since
wherer is the squeezing parameter, assumed real. For arijie atomic spin Hamiltonian approaches that of a simple har-
field containing only even expansion Coefficien<§x> monic oscillator in this limit. A formal proof of this result is
:<Sx>:0 Forr<1, one obtains for the Spin Squeezing given below. On the other hand, for finité there are times

for which spin squeezing occurs, ang, i, decreases with
_ 5 AS, 4 \F
&= @— + §r Sl Egt )

c=0 for k odd,

increasing field strength, providédlis much larger than the

average number of photons in the field. If the initial state of

the field is a squeezed state such as the squeezed vacuum, the

field squeezing can be transferred to the atoms. In this man-

gy:\/EA_Syzl_ L_lr sinz( \ﬁgt _ ner, one can generate a high degree of spin _squeefg(ing
(S| 3 2 <1, but still considerably less than that predicted by the
_ . . . o Heisenberg limité, = 1/y/N.

To the first order irr, the resulting state is a minimum un-  For arbitraryN, the cavity field can, in principle, couple

certainty state, and the minimum squeezing that can ben+ 1) collective states corresponding to the angular mo-

achieved is the same for both components. Squeezing asygentum manifoldS=N/2. In practice, the number of states

function of r is shown in Fig. 4. With increasing £, de-  coupled is on the order of the average number of photons in

creases to minimum value of 0.78 for=0.7, and then in-  tne jnitial field. The equations of motion for the state ampli-

creases with increasing This result is consistent with the tudes, obtained from Eqé2) and (3) are

general conclusion that optimal squeezing is obtained when

the average number of photons in the field is much less than N N
N. Con=—1 {\/—er —-—m+1l|(n+1l)c,_

One might think that the squeezed vacuum produces op- g 2 2 montd
timal squeezing, but field states that more closely approach N N
the Heisenberg Iimi§y=1/ﬁ can be constructed. One such + \/(E_m E+m+l nCm+1n1) (13
state is ’
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with initial condition ¢, ,(0)=cC,dy —n2- This equation
represents a set of coupled equations, starting from

—N/2 and reaching some maximum value toN/2 plus

Nmax, Wheren,,., is the smallesh where the initial field state
amplitudec, is negligibly small.

A. Coherent cavity field

1. Analytical solution for|e|?<1

For a?<1, the lowest order nonvanishing amplitudes ob-
tained from Eqs(13) and (6) are

C_solt)=(1-0a?/2), (143
C_sa(t) = cog YNgb), (14b
C_sirdt)=—iasin(yNg), (149

2

C_golt)= %[N— 1+N cog VAN—2gt)], (14d
a®N

s

a®\J2N(N—1)

4N—2

sin(v4N—2gt),

Cosr1a(t)= (149
[1—cog v4N—2gt)]
(14f)

In the largeN limit, the average spin components calculate
using these amplitudes are

(S0=0, (S))=Nasin(\Ngt),

Cosiodt)=—

<sz>=—§+a2sin2<mgt>, (15

such thaf(S)|=S=N/2 to ordera?.
The squeezing parameter, calculated using Efd, is
given by

2 %sinz( VNgt)

\/—<S>| 1+a
zém 1) sir’[ (2N—1)/2 gt]] (16)
In the limit of largeN this reduces to
§x~1+azsin(Z\N—m>gtlsin(%). (17)

As N approaches infinity, the squeezing vanishes; however

for any finiteN, there is a time of order2N/g where spin
squeezing withé,~1— a? occurs. Note that, for smatjt
<N~%2 ¢ from Eq.(18) varies ag 1— a?(gt)*(N—1)/6]
while &, from Eq.(19) varies ag 1+ a?(gt)?/2], which have
different functional forms; however, thdifferencebetween
these two results varies a8/N<1/N<1.

dmg saturates foN> a?.

PHYSICAL REVIEW A8, 043809 (2003
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FIG. 5. Optimal spin squeezing)min as a function ofN for
a=0.5.

2. Numerical results for all values ofr

Since the average number of photons in a coherent state is
a2, one needs to solve E(L3) up to terms withn> a?. As
a grows, the numerical solution becomes somewhat un-
wieldy. In Fig. 5, the optimal squeezing is plotted as a func-
tion of N for «=0.5. The quantity §,)min diminishes with
increasingN, eventually reaching an asymptotic value of
0.86. This result represents the general trend that the squeez-
Spin squeezing as a function af
for fixed N=20 is shown in Fig. 6 for 08 a<3.5. The
values of¢, in Fig. 6 do not necessarily represent the optimal
spin squeezing; rather they give first minimum of #meve-
lope of a graph ofé, versusgt. It is possible that better spin
squeezing occurs at higher valuesgifthan those consid-
ered (e.g., for «=0.6, the first envelope minimum at
=9.03 gives&,=0.906, while the second envelope mini-

1.0 T T T T T

0.9

0.8

0.7
0.5 1.0 1.5 25 3.0 3.5

FIG. 6. Optimal spin squeezing,) min as a function ofe for
N=20 and Osgt=<10. Since only a restricted range gt was
considered, the values plotted may not represent the global optimal
squeezing, but still reflect the qualitative variation of,)min
with a.
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mum atgt=28.1 gives¢(,=0.817); the computation time S,=—N/2+b'b, (193
that would be needed to determing )i, for all values ofgt
grows rapidly with increasingr. Spin squeezing improves ST=e “'NYpT(1-b'h/N)¥?

with increasinge up to a~2.7~0(/20) and then decreases
with increasinge, following the general trend noted above..
Spin squeezing for larger values afand N> «? are better
treated by the method given in Sec. V.

zefiwt

JNbf— %b*b*b) , (19b)

— _ Alot\120q _ i 1/2
3. Squeezing in the field S =€ NH(1-b'b/N)™b

For «<1, one finds squeezing parameters —eiot| [Nb— 1 bTbb> (196
. 2w )
=\2AQ=1-a?cog(\/Ngt)+
£=124Q (VWNgy 2N-1 The boson occupation states(Fock states |m)

=(b")M \/ﬁ|0> correspond to the different projections onto
the collective angular momentum states and, in effect, repre-
a? sent excitations above the lowest state hav@g —N/2.
Ep=\2AP=1+ a2 cod(\Ngt)— The transformation to théb bosons (Holstein-Primakoff
2N-1 transformation[6]) is exact. The approximations in Egs.
_ TGy (219 and (21b) are valid provided the relative variations of
XIN=1+NcosvaN-2g0)], the spin projection are small,

X[N—1+Ncog v4N—2gt)],

implying that
plying (b"h)/N<1; (20
(éQ)min=1— maz, (183 in other words, the average spin remains aligned very close
to the z axis. The key point in this calculation is that all
(ép)min=1—a? (18b) changes in the eigenkets of orderyW are neglected.
min .

Changes in the eigenenergies of ordeyN./lead to signifi-
The best squeezing is obtained for 2. With increasingr,  cant changes in thehasesof the time-dependent wave func-
the field squeezing mirrors the spin squeezing. tion for any finiteN. Such changes in the phase can result in
spin squeezing.
The total Hamiltoniar(in an interaction representatipis

] ) . ] written asH=Hy+H’, with
The spin squeezing one can achieve increases dramati-

cally if the initial state of the cavity field is a squeezed state. Ho=%+Ng(bta+a'b), (213
For a squeezed vacuum with squeezing parameter
the initial squeezing in one quadrature component of

B. Squeezed initial cavity field

h
the field is ég=e™". In the limit that N>sinttr H’:——g(bTbTbaJraTbTbb). (21b
++/2 sinhr coshr=(average plus standard deviation of the 2N

number of photons in the original cavity figJdne can show . . )

[1] that this squeezing can be transferred totally to the spin¥/e now diagonalizéd, and treatH” as a perturbation. The
£, =e ", For larger, this represents substantial squeezingHamiltonianH, can be written as

but since N>sint?r++/2 sinhr coshr, it follows that &,

=e™" >(1+.2)/2yN. Thus, one is still far from the
Heisenberg limit. It may be possible to construct an originalWith
cavity field state that leads more closely to the Heisenberg

Ho=w. I T+w_vy"y, wi=t\/ﬁg,

limit &.=1/JN, but we have not explored this possibility in at+bt af—b'
the largeN limit. rf= . Y= ,
V2 V2
V. ASYMPTOTIC SOLUTION FOR LARGE N
. | |
For an ensemble having a number of atoms much larger af= . bf= ,
than unity and much larger than the average number of pho- V2 V2

tons in the field, the interaction between the atoms and the

cavity field can be seen as an interaction between a harmony¢hile perturbatiorH’ has the form
oscillator (the field and an imperfect oscillatgthe atomg

To attempt to map this problem into one of interacting har-
monic oscillators, which will be valid as the number of at-
oms N approaches infinity, one defines boson operators for
the atoms via +2{T'"y (yy—TT)+H.c}].

hg
H'=——=[y"y"yy—TTTTT+TTTyy+ 4" TT
4\/ﬁ[77w yy+y'y
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Only the first two terms in this expression, conserving the 3f
total number of excitations, contribute in first order.
The eigenkets oH, are
rhr  (yhm
—10)

[N}, |m)_= Jnt

with energies

N 0)

(22

eO(n,m)=#A(w,n+w_m).

The first order correction to the energies of these states is

0 50 100 150 200
eB(n,m)= h—g(n—nz—m+ m?)=eM(n)+eM(m), gt
4\/N FIG. 7. Spin squeezing, as a function ofgt for =2 andN
and we define =60.

e.(N=hw.n+e(n). with a@=a/\2 and

To this order state€24) are unmodified.
In order to neglect higher order correction to the energies, A=
it is necessary that the phase produced by such corrections
must be much less than unity. This translates into the condiygie that
tion [g*/N(w, — w_)]t=gt/2N%?<1, which can always be

N+

g, A=

1
2N

satisfied for sufficiently largdN, but would be violated for (S = m[<beiwt>+<b‘re*iwt>]:0_
N=2. There is no restriction on the value of the phase
le.(n+1)—e.(n)|t/h~ngt/ YN, providedgt/(2N*?)<1. In order to compute the squeezing, we need the following

In fact, such phases are responsible for the fihiteorrec- averages:
tions calculated below. _ A
(aZe—ZI)\Zt)n

LI = 32ei20tg— a?gi (201 =3\t
Coherent cavity field { )= zn:

n!
For an initial state in which the cavity field is in a coher- :azeizwtei(2)\173)\2)16}12((9*2”\2171)
ent state an&,= —N/2, one has '
[W(t=0))=e e 2e|0)=e" e+ 7))0), (1Y) =aZe2otem i@ Ialtgadeho),
~m <FT>:aeiwtei\sNgteEZ(e*“z‘—l),
R & e (MUh - imot
[W(t))=e *| X ——e leMiitgmimotm) o
m H — ot n—i1VNgtaa“(e' "2 —
Vm (y")=aeiwte 1 Notga’(e2-1)
~n
X 2 ie—is,(n)t/ﬁe—inmt|n> 1.0 T T d T T T T T
= Ut -
I 2
o2 ~m-17m 08 J{ N>a .
Y(O)|blW(t)=—=1 2 (M=-1T|m) ——= :
< ) 2 | ® < >*\/m!(m—1)! L‘
« - iotg—ile, (M= e, (m-1)]t/h 4 O'S'E T
<
anflan A 04 _\. ]
—2 (n=1]yn) —= "y
n < b >’\/n!(n—l)! L ."'H. ]
02| \,\ J
X g iotg=ile_(n)—e_(n—1)]t/% —— . )
1 M 1 2 1 M 1 M 1 M
o - Z2(0-1) 00 0 200 400 600 800 1000
=qe otem e 2i D D1 «@
n - H
FIG. 8. Optimal spin squeezingy) min as a function ofe for
XS|r{()\1_n)\2)]t N>C¥2.
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The value of(S) remains equal tdN/2, with corrections of fluctuations in the field still lead to increased squeezing with

ordera?/N, and the squeezing,~ (2/\/N)AS, is calculated increasinga. Of course, if we explore the range&>N, we

as would find an increase in&()min With increasinge, as we
found for the cas&=2.

gxz \/<(bTeflwt+ belwt)2>:(1+a2{efa23in2{)\2t)coi(2\/ﬁg
—N)t—(@22)Sin(2\ 1) ] — e~ 2a7siP(22) 4 1 VI- SUMMARY
uzar? . It has been shown that a linear interaction Hamiltonian
—e 278012 cog 2 INgt—a?sin(\ o) 1)DY2 (23)  between a coherent state cavity field and an ensemble of
two-level atoms can produce spin squeezing. Analytical so-
lutions for small values of the amplitude of the field state
- T ! ] : were derived, showing a reduction in the squeezing param-
which condition (22) remains valid and for which gier quadratic inv. Computer simulations were used to find
g.t/(2N3’2)<1 [9]. Persico and Vetri7] employ a somewhat he pest value for squeezing, whenis varied over a range
different approach in solving this problem using the of raq| positive values. The limit of a large number of atoms
Holstein-Primakoff transformation and obtain a validity \ya5 also examined. For an initial coherent state for the cavity
range,gt< JN/a?. Since N¥%>IN/a?, the validity range  field, it was found that the squeezing parameter approaches
for Eq. (23) should be much greater than that of Persico anderg with increasingy. This might seem like a remarkable
Vetri. To test this hypothesis, we compared the term of ordefesyt since the coherent state closely resembles a classical
a® in the exact solution with the:* term of EQ.(23). The  field for large a. Even thoughe is large, the number of
two results agreed for timest/(2N*%) <1, as expected. It atoms is assumed to be much larger thanas such the field
might be noted that Eq23) agrees with the exact result to can pe totally depleted. The entanglement of the field and the
ordera?, independent oft, providedN>1. This is why we  spins can produce significant phase shifts that can lead to
had to compare th@f‘ terms. . _ _ spin squeezing. Althoughé()min approaches zero with in-
For <1, there is a slow modulation having perigd creasinga, the ratio, = (£,) /N that relates the squeez-
=4 N, in addition to the rapid oscillations having period jng to the Heisenberg limitlecreasesvith increasinge. If
gt=/\/N. With increasinge, andN>a?, the overall pe- squeezing relative to the Heisenberg limit is used as a mea-
riod is gt=4mN, with a subharmonic having periogt  sure, the best squeezing is obtained fo=2. This is in
=2mN, and the rapid oscillations having periogt  marked contrast to the optimal squeezing that can be ob-
= /\N. These features are seen clearly in Fig. 7, drawn fotained with nonlinear spin interactiofs, 2.
a=2 and N=60. Similar curves were obtained by Ko- The interaction with a squeezed cavity field was also in-
zierowski and Chumakoy5] for the field squeezing. With vestigated. While a squeezed vacuum field has the potential
increasinga, (&,)min decreases slowly as is shown in Fig. 8, to transfer significant spin squeezing to the atoms, the degree
where the conditiodlN> «? is maintained as is varied. In  of spin squeezing produced is still well above the Heisenberg
contrast to thex<1 case, the optimal squeezing fee>1, limit. By constructing alternative squeezed states, we were
always occurs at a timgt~ JN/a¥?<\N. In the limit that  able to improve the squeezing relative to that of a spin-

a>1 andz=a?gt/2N<\/a, one can show that Eq23)  squeezed vacuum, but the ultimate degree of spin squeezing
can be approximated as that can be transferred to the atoms via an interaction with a

cavity field remains an open question.

This expression agrees with E@L9) in the limit that «
<1; however, it extends that result to all values mffor

E~{1+zsin(oz—2)+ 2% sinf[(oz—2)12]}*?,
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