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Generalized radiation-field quantization method and the Petermann excess-noise factor
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We propose a generalized radiation-field quantization formalism, where quantization does not have to be
referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to
directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of
the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the
laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the
excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise
factor for oscillating modes, the total spatially averaged decay rate for the laser atoms remains unchanged.
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I. INTRODUCTION

The standard approach for the quantization of electrom
netic radiation is to express the field in a set of pow
orthogonal modes, and then quantize each mode as a si
harmonic oscillator@1#. These power-orthogonal modes a
in general defined by an enclosed physical boundary o
fictious quantization box. While this quantization formul
tion has been widely acknowledged and used in many imp
tant physical problems with great success, its application
recent quantum optics problems possess certain mathe
cal difficulties due to the orthogonality requirement of t
basis used in the field quantization. These problems inclu
in particular, the quantum noise problems in laser resona
and amplifiers where a set of power-orthogonal modes d
not clearly exist. In fact, many optical systems in practice
most naturally described by modes that are non-pow
orthogonal due to the open nature of the cavity or nonu
form gain or loss involved in wave propagation. Promine
examples are unstable resonator lasers and gain-guided
plifiers @2,3#. Each is best described by the non-pow
orthogonal eigenmodes of its non-Hermitian propagation
erator. The eigenmodes of such non-Hermitian systems
instead biorthogonal to a set of adjoint functions@4,5#, which
physically correspond to the backward propagation eig
modes of optical system.

For the question whether a set of power-orthogonal mo
exists in a quantum optics problem, the answer really
pends on the chosen boundary condition, which in so
cases can have certain flexibilities. For the classic proble
like blackbody radiation, spontaneous emission, and La
shift problems, where the radiation field is either the subj
of interest~system! or no interest~reservoir!, the boundary
condition is assumed to be a closing box. Regardless of
detail shape, it naturally defines a set of orthogonal mo
that can be used by the standard quantization formulat
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For laser resonator problems, where the radiation field
partly of interest~laser oscillation modes! and partly of no
interest~external reservoir!, the choice of boundary condi
tion has some flexibility. Ideally, one can still picture that t
laser device is enclosed by, again, a large artificial quant
tion box and use the orthogonal plane-wave eigenmode
the basis for field quantization. To describe the laser osc
tion, one then has to calculate the interaction between
quantized plane-wave components and laser atoms as we
the wave propagation inside laser cavity@6–8#. The cavity
eigenmodes are often also assumed to be plane-wave m
to avoid further complicating the calculation by the diffra
tion effect in wave propagation. However, the laser osci
tion eigenmodes are seldom plane-wave modes in prac
Because eventually only the resonator eigenmodes, a su
of the entire radiation-field components, are of interest,
alternative approach is to directly quantize the laser osc
tion eigenmodes from the beginning@9,10#. Conventionally,
quantum operators similar to those derived from the stand
quantization approach are directly assigned to the oscilla
eigenmodes@10#. Even though this method is justified i
cases where the cavity eigenmodes are indeed orthogo
there are examples in which the oscillation eigenmodes
be noticeably nonorthogonal and the direct application of
conventional operator to nonorthogonal eigenmodes is q
tionable.

To resolve this problem, a basis-independent quantiza
formalism has been proposed@11#, where the amplitude op
erator of an arbitrary mode is defined as a linear combina
of the operators of orthonormal modes with the expans
coefficients equal to the overlap integrals between the a
trary mode and the orthonormal modes. This approach, h
ever, still implies that the arbitrary mode belongs to a set
orthogonal modes. Another approach has also been repo
where the quantization is focused on the open system ei
modes with loss@12#. Here, we focus on the mode orthog
nality and propose a generalized system eigenmode qu
zation in Sec. II, which is applicable to orthogonal as well
nonorthogonal eigenmodes.

One of the very important and interesting problems
©2003 The American Physical Society08-1
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quantum optics is the quantum noise in laser oscillators
amplifiers @13#. In conventional quantum optics, it is we
accepted that the noise added into an amplification pro
for each eigenmode is equivalent to as if it is induced by o
noise photon in the same mode. This statement is in ess
a mathematical result of the conventional unity commutat
relation between the creation and annihilation operators
each eigenmode. In our proposed quantization formali
this commutation relation is, however, greater than unity
systems having nonorthogonal modes, which then sugg
the existence of an excess-noise factor for each eigenm
This excess-noise factor was first proposed by Peterm
@14# in a semiclassical analysis for the fundamental linewi
of gain-guided semiconductor lasers. Haus and Kawak
@15# then extended this result to demonstrate that there w
correlation between the excess-noise emissions into diffe
transverse modes of these gain-guided lasers. Subsequ
it was further generalized by one of the authors that t
excess-noise factor actually exists for all laser resonators
amplifiers with nonorthogonal eigenmodes@2,3#. This
excess-noise factor has been under serious investigation
several research groups both theoretically@15–29# and ex-
perimentally@30–38#. Even though it has been experime
tally confirmed, it is still somewhat intriguing from the the
oretical point of view because it mysteriously contradicts
the conventional one noise photon per mode statement.
cent efforts have been focused on the full quantu
mechanical analyses@24–29#. However, the analyses ar
mostly limited to linear regime without taking into accou
the gain saturation@24–28#, or considering a simplified two
mode system to include gain saturation@29#. The proposed
quantization procedure together with quantum Langevin
mulation enable us to provide a rather general theoret
basis for this excess-noise factor in a fully quantu
mechanical context. The analysis, detailed in Sec. III, a
includes gain saturation effect that is missing in the rec
linear regime analyses. A discussion is followed in Sec.

II. QUANTIZATION OF ELECTROMAGNETIC FIELD

In the conventional quantization formulation, the elect
magnetic radiation is often expressed in terms of a se
orthonormal modes, where each mode is quantized a
simple harmonic oscillator. Following this approach, t
quantized electric-field operatorÊ referenced to the plane
wave mode expansion basis has the expression

Ê5(
k,«
A \vk

2e0V
«k$âkexp~2 ivkt1 ik•x!

1âk
†exp~ ivkt2 ik•x!%, ~1!

where k is the wave vector of each plane-wave mode,«k
(«51,2) are the two orthogonal polarization states for ea
plane-wave modek, vk is the corresponding oscillation fre
quency, andV is the volume of the quantization box. Th
creation and annihilation operatorsâk

† andâk satisfy the con-

ventional commutation relations @ ân ,âm
† #5dnm and
04380
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@ ân ,âm#5@ ân
† ,âm

† #50. To further simplify the notation, the
electric-field operator is rewritten as

Ê5(
k
A\vk

2e0
$âek

ek1âek

† ek* %, ~2!

whereek ,

ek5A1

V
exp~ ik•x!«k , ~3!

is the power normalized plane-wave mode with two orthog
nal polarization states,«51,2, implicitly included in index
k. The constantA\vk/2e0 is to lead to a familiar simple
harmonic oscillator HamiltonianHk5\vk(âek

âek

† 11/2).

The subscriptek is to explicitly identify its corresponding
quantization mode. The time dependent function e
(2ivkt) is absorbed into annihilation operatorâek

from now

on, likewise for creation operatorâek

† .

To describe the dynamics of an optical system, it is of
more convenient to express the electromagnetic field in
system eigenmode basis. In general, the eigenmode basi
fined by an optical system does not necessarily expand
whole functional space defined by the plane-wave mode
sis of the quantization box. For example, the eigenmode
sis of a conventional standing wave or traveling wave la
resonator cannot expand plane-wave modes propagating
pendicular to the resonator axis. Let us denote the sys
eigenmode basis as$ui

s%, which is the eigensolution define
by the system propagation equation and boundary condit
It expands only the space within system boundary. To es
lish a complete set of basis, mathematically it is possible
construct an additional set of basis$uj

r%, which expands the
functional space not covered by the system eigenmode b
$ui

s%. $uj
r% can be regarded as reservoir. This basis is ortho

nal to $ui
s% and together with$ui

s% form a complete basis
$un%[$ui

s%1$uj
r% expanding the same functional space d

fined by the plane-wave mode basis$ek%. Note that the
eigenmode polarization states are also implicitly included
the mode indexn, i.e., indexn is for each spatial eigenmod
and polarization state. We further confine each mode of$un%
to be consisting of a single frequency componentvn . There-
fore, un can be expressed as a linear combination ofek ,

un5(
k

cn,kek , ~4!

where the summation is taken over only foruku5vn /c and
un is power normalized just likeek . This formulation, to-
gether with the fact that the two basis systems$ek% and$un%
expand the same space, allows us to express the electric
operatorÊ in the new basis similar to that in the plane-wa
mode basis,
8-2
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Ê5(
k
A\vk

2e0
$âek

ek1âek

† ek* %, ~5!

5(
n
A\vn

2e0
$âun

un1âun

† un* %, ~6!

where âun
and âun

† are the new creation and annihilatio

operators assigned to modeun . The second equality is bas
cally anE field quantization referenced to mode basis$un%,
which is not necessarily power orthogonal.

The next step is to find the commutation relations for
new mode operatorsâun

andâun

† . This can be easily accom

plished if one can find the transformation between the c
ation and annihilation operators in these two different exp
sion basis systems. To carry out the derivation, we nee
introduce another set of basis$fn%, called adjoint modes
which expands the same functional space defined by$un%
and satisfies the biorthogonal relation

~fnuum![E fn* undx5dnm . ~7!

Mathematically, this basis$fn% is said to bereciprocal to
basis$un%. Projecting the annihilation and creation parts
the above two electric-field operator expressionsÊ in this
reciprocal basis system by operation*xfn* and *xfn , re-
spectively, we readily obtain the following transformatio
relations:

âun
5(

k
~fnuek!âek

, ~8!

âun

† 5(
k

~fnuek!* âek

† . ~9!

The creation~annihilation! operator of a general modeun is
expressed as a linear combination of the conventional pla
wave mode creation~annihilation! operators, weighted by
the overlap integrals between the corresponding adj
modefn and the plane-wave modeek . The above crucial
result is different from other quantization approach
@18,24,25,27,28#, where different expansion coefficients a
proposed.

One can check the validity of the above derived transf
mation relations by evaluating the expectation value of
electric-field operator in an arbitrary coherent stateua&. The
resulting value should be independent of the expansion b
used for mode amplitude quantization. Since a continuous
of coherent state forms a complete basis for the state spa
simple harmonic oscillators@39#, it is sufficient to constitute
a proof by using a coherent state. Assume thatua& is a co-
herent state and has an expression

ua&5ua1 ,a2 ,a3 , . . . ,ak , . . . & ~10!
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in $ek% basis, whereak is the amplitude coefficient of theek
mode component of the coherent stateua&. The expectation
value of âek

in this state is

^auâek
ua&5ak . ~11!

In this state, the expectation value of the electric-field ope
tor expressed in the plane-wave mode basis, Eq.~5!, is

^auÊua&5(
k
A\vk

2e0
$akek1H.c.%[a1H.c., ~12!

where H.c. stands for Hermitian conjugate. If one uses
expression ofÊ operator in the$un% basis, Eq.~6!, together
with the transformation relations Eqs.~8! and~9!, the expec-
tation value is

^auÊua&5^au(
n
A\vn

2e0
$âun

un1âun

† un* %ua&

5(
n,k
A\vn

2e0
$~fnuek!akun1H.c.%

5(
n

H S fnU(
k
A\vk

2e0
akekD un1H.c.J

5(
n

$~fnua!un1H.c.%5a1H.c., ~13!

where the closure relation(nun(fnu[(nun*dxfn51 is
used in the last equality. Since the reciprocal basis func
fn consists of only plane-wave components withuku
5vn /c just like un does, (fnuek) is not zero only forvk

5vn and we haveAvn(fnuek)5Avk(fnuek). This relation
is used in the above third equality. Thus, we have shown
the expectation value of electric-field operator for an ar
trary state is indeed independent of the choice of the exp
sion basis and have justified the derived transformation r
tions between different basis systems.

The commutation relations for operators in an arbitra
basis system can be readily obtained

@ âun
,âum

† #5(
i , j

~fnuei !~ej ufm!@ âei
,âej

† #5~fnufm!,

~14!

@ âun
,âum

#5@ âun

† ,âum

† #50, ~15!

where the closure relation( i uei)(ei u51 is used. Note that, in
the above derived formalism, we have so far let the ba
$un% to be as general as possible, in particular, without
orthogonality requirement. If$un% is an orthonormal basis, i
can be easily shown that (fnufm)5dnm and @ âun

,âum

† # re-

duces to the conventional commutation relation. If$un% is
not an orthogonal basis, then (fnufm)Þdnm , and more in-
terestingly, the overlap integral (fnufn).1 @2#. At the very
fundamental level, the conventional unity commutation re
8-3



d
su
te
no
al

is

on
-
am
a
in
m

de
te

i

-
n
u
ra
om

t
i-
o
n
in
o

r

le

ns
d
te
w

-

ld
ion

n

e-
he
g

-
ates,

e
the

cy
de
ions

he

Y.-J. CHENG AND A. E. SIEGMAN PHYSICAL REVIEW A68, 043808 ~2003!
tion leads to the well-known one noise photon per mo
statement in quantum optics. Given the above derived re
the noise photon becomes larger than one if the sys
eigenmode is nonorthogonal. However, one should also
that noise photons between different modes are not tot
independent due to (unuum)Þdnm .

III. QUANTUM NOISE IN LASER OSCILLATORS

We now apply the above results to laser quantum no
analysis. Here, we use the quantum Langevin formalism
describe the dynamics of laser oscillators. However, in c
trast to the conventional approach@10#, where standard boso
nian commutation relations are directly assigned to the
plitude operators of the laser oscillation eigenmodes, we t
a more generalized approach without this presumption s
these eigenmodes are not necessarily orthogonal as
tioned earlier.

The general aspect of quantum Langevin theory is to
scribe the equation of motion of the operators of a sys
under the influence of surrounding reservoir. Its format
often expressed as

d

dt
ô52

1

2
gô1Fô , ~16!

whereô is the system operator,g is the corresponding damp
ing coefficient due to the system-reservoir interaction, a
Fô is the accompanying noise operator that introduces fl
tuations into the system. The presence of the noise ope
Fô is essential here to ensure the conservation of the c
mutation relation of system operatorô and satisfies relation

@Fô~ t !,Fô
†
~ t8!#5g@ ô,ô†#d~ t2t8!. ~17!

The reservoir noise is considered asd correlated with respec
to system relaxation time 1/g because a reservoir by defin
tion consists of a very large number of degrees of freed
@9#. This condition is generally satisfied by the environme
surrounding most of laser systems. Because we are ma
interested in the laser system variables, the mode field n
tion un primarily refers to laser eigenmodes$us% in the fol-
lowing Langevin analysis. Whenô is the amplitude operato
of laser oscillation eigenmodeun , the above commutation
relation becomes@Fâun

(t),Fâun

† (t8)#5g@ âun
,âun

† #d(t2t8),

where @ âun
,âun

† # is equal to unity if$un% is an orthogonal

basis and equal to (fnufn).1 otherwise.
Before writing down the quantum Langevin equations,

us first introduce the relevant operator notations. We useue&
and ug& to denote the upper and lower states of laser tra
tion, where the lower state of laser transition is assume
be different from the laser atom ground state. The sys
operators that are of interest are atomic upper and lo
population density operatorsŝe[ue&^eu and ŝg[ug&^gu,
atomic dipole operatorŝ[ug&^eu, and laser mode field am
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plitude operatorâun
. The interaction between atom and fie

operators are introduced by the electric-dipole interact
Hamiltonian,

HI5E dx(
n
A\vn

2e0
$âun

† un* ~x!•ŝ~x!eD

1ŝ†~x!eD•âun
un~x!% ~18!

5E dx(
n

gn\$âun

† un* ~x!ŝ~x!1ŝ†~x!âun
un~x!%,

~19!

whereeD5e^eurWug& is the atomic dipole moment betwee
the laser transition statesue& andug&. The coupling factorgn
is

gn5A vn

2e0\
«n•eD, ~20!

where«n is the mode polarization state. Applying the Lang
vin theory to the atom and field operators along with t
above interaction Hamiltonian, we have the followin
coupled quantum Langevin equations

d

dt
ŝe~x!5L2geŝe~x!1 i(

n
gn@ ân

†un* ŝ~x!2ŝ†~x!ânun#

1F ŝe
~x!, ~21!

d

dt
ŝg~x!52ggŝg~x!2 i(

n
gn@ ân

†un* ŝ~x!2ŝ†~x!ânun#

1F ŝg
~x!, ~22!

d

dt
ŝ~x!52@g1 i ~v2n!#ŝ~x!1 i(

n
gn

3@ŝe~x!2ŝg~x!#ânun1F ŝ~x!, ~23!

d

dt
âun

52F1

2
gc,n1 i ~Vn2n!G âun

2 ignE dx

3fn* ~x!ŝ~x!1Fâun
, ~24!

whereL is the pump rate to the laser upper stateue& and is
assumed to be constant in time,ge andgg are the spontane
ous decay rates of upper and lower laser states to other st
g is the atomic dipole decay rate, andgc,n is the system
eigenmodeun decay rate. For the simplicity of analysis, w
assume that the laser is in single mode oscillation and
oscillation frequencyn lines up with the dipole transition
frequencyv and the lasing resonator eigenmode frequen
V0. The coupling terms containing both atomic and mo
field operators in the above Langevin operator rate equat
are obtained from interaction Hamiltonian byi /\@HI ,ô#,
whereô is the atomic or mode field operators of interest. T
8-4
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presence of adjoint modefn in the mode amplitude operato
rate Eq.~24! might look odd at the first glance but indeed
is also derived from the same interaction Hamiltonian

i

\
@HI ,âun

#5 i E dx(
m

gm@ âum

† um* ~x!ŝ~x!,âun
# ~25!

52 i E dx(
m

gm~fnufm!um* ~x!ŝ~x! ~26!

52 ignE dxfn* ~x!ŝ~x!, ~27!

wheregm(fnufm)5gn(fnufm) is used because (fnufm) is
not zero only for thosevm5vn . The noise operatorsF ŝe

,

F ŝg
, F ŝ , andFâun

are considered to bed correlated in time

compared to the time scale of interest in the system.
atomic noise operatorsF ŝe

, F ŝg
, andF ŝ are also assumed t

be d correlated in space because laser atoms are norm
fairly far apart in gain medium compared to the characteri
dimension of atom-atom interaction. Their correlation re
tions can be obtained from the Einstein relation@9#,

^F ŝe
~ t !F ŝe

~ t8!&R5~^L&R1ge^ŝe&R!d~ t2t8!d~x2x8!,
~28!

^F ŝg
~ t !F ŝg

~ t8!&R5gg^ŝg&Rd~ t2t8!d~x2x8!, ~29!

^F ŝ
†
~ t !F ŝ~ t8!&R5~2g^ŝe&R1^L&R2ge^ŝe&R!

3d~ t2t8!d~x2x8!, ~30!

^F ŝ~ t !F ŝ
†
~ t8!&R5~2g^ŝg&R2gg^ŝg&R!d~ t2t8!d~x2x8!,

~31!

^Faun

† ~ t !Faun
~ t8!&R5gc,n^aun

† aun
&Rd~ t2t8!, ~32!

^Faun
~ t !Faun

† ~ t8!&R5gc,n^aun
aun

† &Rd~ t2t8!, ~33!

where^•••&R stands for reservoir average. In this paper,
reservoir average is taken over zero point vacuum st
which gives the following results for mode amplitude ope
tor âun

,

^aun

† aun
&R5(

i , j
~fnuei !~ej ufn!^0uâei

† âej
u0& ~34!

50, ~35!

^aun
aun

† &R5(
i , j

~fnuei !~ej ufn!^0uâei
âej

† u0&

~36!

5~fnufn!. ~37!

We now suppose that the dipole relaxation rateg is much
faster than the atomic population decay ratesge andgg and
04380
e

lly
c
-

e
e,
-

the cavity decay rategc,n , which is a valid approximation
for most solid-state lasers. The atomic dipole then clos
follows the phase of cavity field, and Eq.~23! can be simpli-
fied to

ŝ~x!5

i(
n

gn@ŝe~x!2ŝg~x!#ânun1F ŝ~x!

g
. ~38!

Substituting this expression into the atomic population a
field operator rate Eqs.~21!, ~22!, and ~24!, we obtain the
simplified coupled equations

d

dt
ŝe~x!5L2geŝe~x!2

2

g (
n,n8

gngn8âun

† âu
n8
un* un8

3@ŝe~x!2ŝg~x!#1
i

g (
n

gnâun

† un* F ŝ~x!

1H.c.1F ŝe
~x!, ~39!

d

dt
ŝg~x!52ggŝg~x!1

2

g (
n,n8

gngn8âun

† âu
n8
un* un8

3@ŝe~x!2ŝg~x!#2
i

g (
n

gnâun

† un* F ŝ~x!

31H.c.1F ŝg
~x!, ~40!

d

dt
âun

52
1

2
gc,nâun

1
gn

g E dx fn* ~x!(
n8

gn8

3@ŝe~x!2ŝg~x!#âun8
un8~x!2 i

gn

g E dx

3fn* ~x!F ŝ~x!1Fâun
. ~41!

The above operator rate equations are in a form very sim
to their classical counterparts except that the additional n
operator terms are uniquely derived from the quant
Langevin theory. In addition, the spatial dependence is
plicitly spelled out and eigenmode$un% is a true system
eigenmode basis, which does not have to be an orthog
basis.

To carry the analysis further, we rewrite the atomic pop
lation and field amplitude operators into complex numb
and small signal operators,

ŝe5se1s̃e , ~42!

ŝg5sg1s̃g , ~43!

âun
5Aun

1ãun
. ~44!

The complex numbers are the reservoir averaged steady-
solutions, satisfying the following equations
8-5
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L2gese~x!2
2

g (
n,n8

gngn8Aun

† Aun8
un* un8

3@se~x!2sg~x!#50, ~45!

2ggsg~x!1
2

g (
un ,un8

gngn8Aun

† Aun8
un

†un8

3@se~x!2sg~x!#50, ~46!

2
1

2
gc,nAun

1
gun

2

g
@se~x!2sg~x!#Aun

50,

~47!

where we have assumed that the atomic population in
sion, se(x)2sg(x), is uniformly distributed in space fo
mathematical simplicity. Now, we assume the laser is in
single mode oscillation and label the oscillation mode asu0.
From Eq. ~47!, this gives Aun

50 except Au0
and

gu0

2 /g@se(x)2sg(x)#5 1
2 gc,0. Given the above steady-sta

solutions, the linearized rate equations for the small sig
operators are

d

dt
s̃e~x!52ges̃e~x!2

2

g (
n,n8

gngn8Aun

† Aun8
un* un8

3@s̃e~x!2s̃g~x!#2
2

g (
n,n8

gngn8

3~ ãn
†An81An

†ãn8!un* un8@se~x!2sg~x!#

1
i

g (
n

gnAn
†un* F ŝ~x!1H.c.1F ŝe

~x!, ~48!

d

dt
s̃g~x!52ggs̃g~x!1

2

g (
n,n8

gngn8Aun

† Aun8
un* un8

3@s̃e~x!2s̃g~x!#1
2

g (
n,n8

gngn8

3~ ãn
†An81An

†ãn8!un* un8@se~x!2sg~x!#

2
i

g (
n

gnAn
†un* F ŝ~x!1H.c.1F ŝg

~x!, ~49!

d

dt
ãn5

gn
2

g
@s̃e~x!2s̃g~x!#An2 i

gn

g E dx

3fn* ~x!F ŝ~x!1Fâun
. ~50!

These small signal rate equations basically describe the
tuations added into the steady-state solutions by the rese
noise. If we choose a phase reference such thatA0 is real, the
in-phase and quadrature-phase components of ampli
rate, Eq.~50!, are respectively,
04380
r-

a

al

c-
oir

de

d

dt
ã015

g0
2

g
@s̃e~x!2s̃g~x!#A0

1ReF2 i
g0

g
~f0uF ŝ!1Fâu0

G , ~51!

d

dt
ã025ImF2 i

g0

g
~f0uF ŝ!1Fâu0

G , ~52!

where subscripts 1 and 2 denote the in-phase
quadrature-phase components, respectively,

ã05ã011 i ã02, ~53!

F ŝ5F ŝ11 iF ŝ2 , ~54!

Fâu0
5Fâu0

11 iF âu0
2 . ~55!

As one can see, the in-phase amplitude rate, Eq.~51!, and the
atomic population rate, Eqs.~48! and ~49!, are coupled to-
gether and always try to retain the fluctuations around th
steady-state values. This effect can also be understood
the atom-field interaction term in the atomic and field ope
tor rate Eqs.~39!–~41!, where its contribution to the chang
rates of the atomic population inversion and the field am
tude are out of phase. The quadrature-phase amplitude
tuation rate, Eq.~52!, on the other hand, does not have a
constrain force and basically is a random-walk proc
driven by the dipole and reservoir field fluctuations. Th
quadrature-phase fluctuation contributes to the laser
quency noise and is the dominant source for the fundame
laser linewidth.

The phase fluctuation rate equation of laser oscillator

d

dt
f5

1

A0

d

dt
ã02 ~56!

5
g0

A0g
Im@2 i ~f0uF ŝ1!#1

1

A0
Im@Fâu0

2#. ~57!

Because both dipole and amplitude noise operators ard
correlated in time, the laser frequency fluctuation noise ha
white power spectrum and its noise power spectral densit

Sf5
g0

2

4A0
2g2

^„~f0uF ŝ!1~f0uF ŝ!†
…

2&R

2
1

4A0
2 ^~Fâu0

2Fâu0

†
!2&R ~58!

5
g0

2

2A0
2g

~f0uf0!~se1sg!1
1

4A0
2 ^Fau0

† Fau0
1Fau0

Fau0

† &R

~59!

5
1

4A0
2
gc,0~f0uf0!

se1sg

se2sg
1

1

4A0
2
gc,0~f0uf0! ~60!
8-6
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5
1

4A0
2
gc,0~f0uf0!S 11

se1sg

se2sg
D , ~61!

where Eq.~47! is used to reach the last equality. Finally, w
obtain the full width at half maximum quantum limited las
linewidth

Dv l5Sf ~62!

5~f0uf0!
\v lgc

2

Pl

1

4 S 11
se1sg

se2sg
D ~63!

.~f0uf0!
\v lgc

2

2Pl
, ~64!

where laser powerPl5A0
2\v lgc is used in the second equa

ity. The term (se1sg)/(se2sg) describes the noise depe
dence on atomic inversion level. The last expression is
tained for the highly inverted casese@sg , which is a valid
approximation for lasers with fast lower laser transition st
decay rategg . This is the well-known quantum laser line
width equation with the excess-noise factor (f0uf0) now
derived in a fully quantum-mechanical framework.

IV. DISCUSSION

From the above derived laser linewidth equation, ther
excess quantum noise coupled into the laser oscillation m
if resonator eigenmodes are not orthogonal. Since this re
is very different from the well accepted one noise photon
mode statement, it might raise the question whether
atomic spontaneous decay rate will also be enhanced by
same excess-noise factor. To answer this question, we
take a closer look at the atomic rate Eqs.~39! and~40!. The
spontaneous decay is embedded in the noise terms con
ing amplitude operatorâun

and dipole noise operatorF ŝ ,

i.e., i /g(ngnâun

† un* F ŝ(x)1H.c. The spontaneous decay ra

is in fact described by the ensemble average of this n
term. Because amplitude operatorâun

is in part driven by

dipole noise operatorF ŝ in Eq. ~41!, the average of this term
is not zero and can be calculated by first computing the
erage

^F ŝ
†
âun

&5^F ŝ
†
~ t !âun

~ t2Dt !&1K F ŝ
†E

t2Dt

t

ȧ̂un
~ t8!dt8L ~65!

5K 2 i
gn

g E
t2Dt

t

F ŝ
†
~x,t !E

x8
fn* ~x8!F ŝ~x8,t8!dt8L

~66!

52 i
gn

g E
t2Dt

t E
x8

fn* ~x8!^F ŝ
†
~x,t !F ŝ~x8,t8!&dt8

~67!
04380
b-

e

is
de
ult
r
e
he
w

in-

e

v-

52 i
gn

g E
t2Dt

t E
x8

fn* ~x8!^ŝe~x!&

3d~ t2t8!d~x2x8!dt8 ~68!

52 ignfn* ~x!se~x!, ~69!

where Eq.~30! is used to evaluatêF ŝ
†
F ŝ& and the assump

tion that dipole decay rate is much faster than other sys
decay constants is also used in the fourth equality to re
the final result. The first term in the first equality is ze
becauseâun

is uncorrelated to futureF ŝ . The second equal

ity is obtained from the fact thatF ŝ are uncorrelated to al

the terms for ȧ̂un
in Eq. ~41! except 2 i (gn /g)*xfn* F ŝ .

Given the above result, we readily obtain the ensemble
erage

K i

g (
n

gnâun

† un* F ŝ1H.c.L 5
2

g (
n

gn
2fn* unse . ~70!

Now, we compare this term with respect to the stimula
emission term in Eq.~39!, i.e.,

2

g(
n,n8

gngn8âun

† âu
n8
un* un8~se2sg!.

For an orthogonal basis, where (unuum)5dnm and fn5un ,
the above ensemble average and the stimulated emis
term are reduced to 2/g(ngn

2un* unse and

2/g(ngn
2âun

† âun
un* un(se2sg), respectively. We see that Eq

~70! indeed represents the spontaneous decay and desc
one noise photon per mode for spontaneous decay rate. F
nonorthogonal basis, it is less clear to talk about the pho
number per mode because eigenmodes are nonorthogon
is interesting to see that the spontaneous decay has a s
dependencefn* un compared to the stimulated decay depe
denceun* un . The spontaneous emission can be enhance
suppressed depending on location. On the other hand, we
evaluate the average atomic spontaneous decay rate by
ing spatial integral

E
x

2

g (
n

gn
2fn* unse5

2

g (
n

gn
2se , ~71!

where we assume a uniform distribution ofse . The above
result is independent of whether the eigenmode basis is
thogonal or nonorthogonal and shows that the spatially a
aged atomic decay rate is preserved.

Another question that might be asked is that since the
excess-noise factor results from the nonorthogo
eignemode basis and only the oscillating mode is concer
for a single mode laser oscillation, theoretically, one can
construct those nonoscillating eigenmodes to become
thogonal to each other and to the lasing mode. Then,
excess-noise factor can be artificially reduced to unity. T
answer to this seeming paradox is that in the above der
tion the eigenmode basis defined by the optical system ha
8-7
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be used in order to obtain the decoupled Langevin la
mode equation, Eq.~24!. If laser propagation eigenmode b
sis is not used, it is not possible to write such a decoup
amplitude operator rate equation. Instead, the amplitude
erator rate equation will be coupled among different mo
and make the calculation totally different and more compl
However, even if such an approach is taken@7,8#, the laser
system is often simplified to an one-dimensional cav
model to make the calculation manageable and the resu
the excess-noise factor is still the same.
,

m

s.

J

m

s

04380
er

d
p-
s
.

of

V. CONCLUSION

In this paper, we have derived a generalized radiati
field quantization formalism, where quantization does n
have to be referenced to a set of orthogonal eigenmo
This formalism can be applied to the quantization of the t
system propagation eigenmodes especially for those w
are nonorthogonal. We use this generalized quantization
proach to provide a fully quantum-mechanical derivation
the excess-noise factor in the fundamental laser linewidt
-

tt.

an-

ett.

P.

P.

n,

n
d-
@1# R. Loudon,The Quantum Theory of Light~Clarendon Press
Oxford, 1985!.

@2# A.E. Siegman, Phys. Rev. A39, 1253~1989!.
@3# A.E. Siegman, Phys. Rev. A39, 1264~1989!.
@4# A. Kostenbauder, Y. Sun, and A.E. Siegman, J. Opt. Soc. A

A 14, 1780~1997!.
@5# A.E. Siegman, Opt. Commun.31, 369 ~1979!.
@6# P. Goldberg, P.W. Milonni, and B. Sundaram, Phys. Rev. A44,

1969 ~1991!.
@7# K. Ujihara, IEEE J. Quantum Electron.20, 814 ~1984!.
@8# X.-P. Feng and K. Ujihara, Phys. Rev. A41, 2668~1990!.
@9# M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.,Laser Phys-

ics ~Addison-Wesley, Reading, MA, 1977!.
@10# Y. Yamamoto and H.H. Haus, Phys. Rev. A41, 5164~1990!.
@11# I.H. Deutsch, Am. J. Phys.59, 834 ~1991!.
@12# K.C. Ho, P.T. Leung, A.M. van den Brink, and K. Young, Phy

Rev. E58, 2965~1998!.
@13# A.L. Schawlow and C.H. Townes, Phys. Rev.112, 1940

~1958!.
@14# K. Petermann, IEEE J. Quantum Electron.15, 566 ~1979!.
@15# H.A. Haus and S. Kawakami, IEEE J. Quantum Electron.21,

63 ~1985!.
@16# A.E. Siegman, P.L. Mussche, and J.-L. Doumont, IEEE

Quantum Electron.25, 1960~1989!.
@17# W.A. Hamel and J.P. Woerdman, Phys. Rev. A40, 2785

~1989!.
@18# I.H. Deutsch, J.C. Garrison, and E.M. Wright, J. Opt. Soc. A

B 8, 1244~1991!.
@19# A.E. Siegman, Appl. Phys. B: Lasers Opt.60, 247 ~1995!.
@20# G.H.C. New, J. Mod. Opt.42, 799 ~1995!.
@21# O. Emile, M. Brunel, A.L. Floch, and F. Bretenaker, Europhy

Lett. 43, 153 ~1998!.
.

.

.

.

@22# D. Abbott and L. Kish,Unsolved Problems of Noise and Fluc
tuations~AIP, New York, 1999!.

@23# P. Grangier and J.-P. Poizat, Eur. Phys. J. D1, 97 ~1998!.
@24# P. Grangier and J.-P. Poizat, Eur. Phys. J. D7, 99 ~1999!.
@25# C. Lamprecht and H. Ritsch, Phys. Rev. Lett.82, 3787~1999!.
@26# P.J. Bardroff and S. Stenholm, Phys. Rev. A60, 2529~1999!.
@27# P.J. Bardroff and S. Stenholm, Phys. Rev. A61, 023806

~2000!.
@28# S.M. Dutra and G. Nienhuis, Phys. Rev. A62, 063805~2000!.
@29# P.J. Bardroff and S. Stenholm, Phys. Rev. A62, 023814

~2000!.
@30# W. Streifer, D.R. Scifres, and R.D. Burnham, Appl. Phys. Le

40, 305 ~1982!.
@31# W.A. Hamel and J.P. Woerdman, Phys. Rev. Lett.64, 1506

~1990!.
@32# G. Yaoet al., Opt. Lett.17, 1207~1992!.
@33# Y.-J. Cheng, P.L. Mussche, and A.E. Siegman, IEEE J. Qu

tum Electron.30, 1498~1994!.
@34# Y.-J. Cheng, C.G. Fanning, and A.E. Siegman, Phys. Rev. L

77, 627 ~1996!.
@35# M.A. van Eijkelenborg, A.M. Lindberg, M. Thijssen, and J.

Woerdman, Phys. Rev. Lett.77, 4314~1996!.
@36# M.A. van Eijkelenborg, A.M. Lindberg, M. Thijssen, and J.

Woerdman, Opt. Commun.137, 303 ~1997!.
@37# M.A. van Eijkelenborg, M.P.V. Exter, and J.P. Woerdma

Phys. Rev. A57, 571 ~1998!.
@38# A.N. van der Lee, N.J. van Druten, A. Mieremet, M.A. va

Eijkelenborg, A.M. Lindberg, M.P. van Exter, and J.P. Woer
man, Phys. Rev. Lett.79, 4357~1997!.

@39# C. Cohen-Tannoudji, B. Diu, and F. Laloe,Quantum Mechan-
ics ~Addison-Wesley, Reading, MA, 1985!.
8-8


