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Generalized radiation-field quantization method and the Petermann excess-noise factor
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We propose a generalized radiation-field quantization formalism, where quantization does not have to be
referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to
directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of
the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the
laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the
excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise
factor for oscillating modes, the total spatially averaged decay rate for the laser atoms remains unchanged.
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[. INTRODUCTION For laser resonator problems, where the radiation field is
partly of interest(laser oscillation modéesand partly of no

The standard approach for the quantization of electromagnterest(external reservojr the choice of boundary condi-
netic radiation is to express the field in a set of power-tion has some flexibility. Ideally, one can still picture that the
orthogonal modes, and then quantize each mode as a simgéser device is enclosed by, again, a large artificial quantiza-
harmonic oscillatof1]. These power-orthogonal modes aretion box and use the orthogonal plane-wave eigenmodes as
in general defined by an enclosed physical boundary or &e basis for field quantization. To describe the laser oscilla-
fictious quantization box. While this quantization formula- tion, one then has to calculate the interaction between the
tion has been widely acknowledged and used in many imporguantized plane-wave components and laser atoms as well as
tant physical problems with great success, its applications tthe wave propagation inside laser ca\if~8]. The cavity
recent quantum optics problems possess certain mathemagiigenmodes are often also assumed to be plane-wave modes
cal difficulties due to the orthogonality requirement of theto avoid further complicating the calculation by the diffrac-
basis used in the field quantization. These problems includeion effect in wave propagation. However, the laser oscilla-
in particular, the quantum noise problems in laser resonatongon eigenmodes are seldom plane-wave modes in practice.
and amplifiers where a set of power-orthogonal modes doeBecause eventually only the resonator eigenmodes, a subset
not clearly exist. In fact, many optical systems in practice areof the entire radiation-field components, are of interest, an
most naturally described by modes that are non-poweralternative approach is to directly quantize the laser oscilla-
orthogonal due to the open nature of the cavity or nonunition eigenmodes from the beginning,10]. Conventionally,
form gain or loss involved in wave propagation. Prominentquantum operators similar to those derived from the standard
examples are unstable resonator lasers and gain-guided aguantization approach are directly assigned to the oscillation
plifiers [2,3]. Each is best described by the non-power-eigenmodeqd10]. Even though this method is justified in
orthogonal eigenmodes of its non-Hermitian propagation opeases where the cavity eigenmodes are indeed orthogonal,
erator. The eigenmodes of such non-Hermitian systems at@ere are examples in which the oscillation eigenmodes can
instead biorthogonal to a set of adjoint functiddss], which  be noticeably nonorthogonal and the direct application of the
physically correspond to the backward propagation eigeneonventional operator to nonorthogonal eigenmodes is ques-
modes of optical system. tionable.

For the question whether a set of power-orthogonal modes To resolve this problem, a basis-independent quantization
exists in a quantum optics problem, the answer really deformalism has been proposgtil], where the amplitude op-
pends on the chosen boundary condition, which in somerator of an arbitrary mode is defined as a linear combination
cases can have certain flexibilities. For the classic problemsf the operators of orthonormal modes with the expansion
like blackbody radiation, spontaneous emission, and Lamigoefficients equal to the overlap integrals between the arbi-
shift problems, where the radiation field is either the subjectrary mode and the orthonormal modes. This approach, how-
of interest(system or no interest(reservoij, the boundary ever, still implies that the arbitrary mode belongs to a set of
condition is assumed to be a closing box. Regardless of it'erthogonal modes. Another approach has also been reported,
detail shape, it naturally defines a set of orthogonal modewhere the quantization is focused on the open system eigen-
that can be used by the standard quantization formulatiormodes with los$12]. Here, we focus on the mode orthogo-

nality and propose a generalized system eigenmode quanti-
zation in Sec. Il, which is applicable to orthogonal as well as
*Electronic address: yjcheng@stanfordalumni.org nonorthogonal eigenmodes.
"Electronic address: siegman@stanford.edu One of the very important and interesting problems in
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quantum optics is the quantum noise in laser oscillators anfa | 3 1=[a',a’ 1=0. To further simplify the notation, the
amplifiers[13]. In conventional quantum optics, it is well gjectric-field operator is rewritten as

accepted that the noise added into an amplification process
for each eigenmode is equivalent to as if it is induced by one
noise photon in the same mode. This statement is in essence =S /@{é e+ al e @)
a mathematical result of the conventional unity commutation K 26 KT Tock
relation between the creation and annihilation operators of
each eigenmode. In our proposed quantization formalism,
this commutation relation is, however, greater than unity forV
systems having nonorthogonal modes, which then suggests
the existence of an excess-noise factor for each eigenmode. 1

&= \[vexp(ikx)sk,

heree,,

This excess-noise factor was first proposed by Petermann ©)
[14] in a semiclassical analysis for the fundamental linewidth

of gain-guided semiconductor lasers. Haus and Kawakami

[15] then extended this result to demonstrate that there wasia the power normalized plane-wave mode with two orthogo-
correlation between the excess-noise emissions into differemal polarization stateg;=1,2, implicitly included in index

transverse modes of these gain-guided lasers. Subsequenfty, The constanty w,/2¢y is to lead to a familiar simple
it was further generalized by one of the authors that thisharmonic oscillator HamiltonianH, =% w(ae a} +1/2).
k Kk

excess-noise factor actually exists for all laser resonators anf;he subscripte, is to explicitly identify its corresponding
amplifiers . with  nonorthogonal e|genmode[§‘2,3]. .Th'.s uantization nﬁode The time dependent function exp
excess-noise factor has been under serious investigations gy, '

several research groups both theoreticillg—29 and ex- (Ziw) is absorbed into annihilation operaﬁ;gk from now
perimentally[30—38. Even though it has been experimen- on, likewise for creation operat&lk_

tally confirmed, it is still somewhat intriguing from the the- 14 yescribe the dynamics of an optical system, it is often
oretical point of view because it mysteriously contradicts t0mqre convenient to express the electromagnetic field in the
the conventional one noise photon per mode statement. R@ystem eigenmode basis. In general, the eigenmode basis de-
cent efforts have been focused on the full quantumsineq py an optical system does not necessarily expand the
mechanical analysef24-29. However, the analyses are hqe functional space defined by the plane-wave mode ba-
mostly limited to linear regime without taking into account gjs of the quantization box. For example, the eigenmode ba-
the gain saturation24—28, or considering a simplified two  gjs of 4 conventional standing wave or traveling wave laser

mode system to include gain saturati@®]. The proposed | ogonator cannot expand plane-wave modes propagating per-

quantization procedure together with quantum Langevin forpengicular to the resonator axis. Let us denote the system
mulation enable us to provide a rather general theoretic

aéigenmode basis s}, which is the eigensolution defined

baS||sq fqr lth|s text;e§r3h-n0|sel chto& Itn'l ad f.u”)é qu‘ﬁTtuT'by the system propagation equation and boundary condition.
mechanical context. The analysis, detaried in Sec. 1, als t expands only the space within system boundary. To estab-
includes gain saturation effect that is missing in the recent

linear reaime anal Adi ion is followed in Sec. V. sh a complete set of basis, mathematically it is possible to
ear regime analyses. scussion is fotlowe €C- V- construct an additional set of bas{isjf}, which expands the

functional space not covered by the system eigenmode basis
Il. QUANTIZATION OF ELECTROMAGNETIC FIELD {uf}. {uj} can be regarded as reservoir. This basis is orthogo-

S H S H
In the conventional quantization formulation, the electro-nal © {Usi} an(? together with{ui} form a complete basis
magnetic radiation is often expressed in terms of a set ofUny={U} +{Uj}; expanding the same functional space de-
orthonormal modes, where each mode is quantized as fjied by the plane-wave mode badig}. Note that the
simple harmonic oscillator. Following this approach, the€igenmode polarization states are also implicitly included in
quantized electric-field operatdt referenced to the plane- the mode index, i.e., indexn is for each spatial eigenmode

wave mode expansion basis has the expression and polarization state. We further confine each modgigf
to be consisting of a single frequency componept There-

P fore, u, can be expressed as a linear combinatioe,Qf
s [ho, - N o
E—% —ZEOVsk{akexq o t+ik-x)
a Un= 2, Cn €, 4
+ajexpliodt—ik-x)}, (1) n ; n.kEk (4)

wherek is the wave vector of each plane-wave modg, \here the summation is taken over only fat=w,/c and
(e=1,2) are the two orthogonal polarization states for each, s power normalized just like,. This formulation, to-

plane-wave modé&, wy is the corresponding oscillation fre-  gether with the fact that the two basis systeimg and{u,}
quency, andV is the volume of the quantization box. The expand the same space, allows us to express the electric-field

creation and annihilation operataag anday satisfy the con-  gperatorE in the new basis similar to that in the plane-wave
ventional commutation relations|a, ,aTm]= 6om @and  mode basis,
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55

hwk{A valer) in {e,} basis, wherey, is the amplitude coefficient of thg,
\/ 5 18¢ kT 3¢ E 1)
K 260 k k

(5  mode component of the coherent stat¢. The expectation
value ofa,, in this state is

h . R ~
=3\ gedaguntal vk (6) (afae]a)=ay. ()

In this state, the expectation value of the electric-field opera-
where a, and aj are the new creation and annihilation tOf expressed in the plane-wave mode basis,(&q.is

operators assigned to modg. The second equality is basi- PN
cally anE field quantization referenced to mode bais}, (a|E|a)y=>, \lz—ek{akekJr H.cl=a+H.c., (12
which is not necessarily power orthogonal. k 0
The next step is to find the commutation relations for the . .
~ ~t . . where H.c. stands for Hermitian conjugate. If one uses the
new mode operators, andaun. This can be easily accom-

expression of operator in the(u,,} basis, Eq(6), together
plished if one can find the transformation between the cre P P &Un} a(6), tog

: Ay > ) with the transformation relations Eq®) and(9), the expec-
ation and annihilation operators in these two different expans,ion value is

sion basis systems. To carry out the derivation, we need to

introduce another set of basj#,}, called adjoint modes, . hon . A

which expands the same functional space defined upy (alE|a)y=(a|>, 2—"{au Up+al u*}e)
and satisfies the biorthogonal relation n € " !

S\ eleartnt Hood
= ey) au .C.
(¢n|um)5f ¢:undx= Snm- (7 n.k 260 nEeTE

h(,t)k
Mathematically, this basi§e,} is said to bereciprocal to :En: [(d’n Ek: 2, 1k ”n+H'C'}
basis{u,}. Projecting the annihilation and creation parts of
the above two electric-field operator expressi@hsn this =S {(¢o|a)u,+H.cl=a+H.c (13)
reciprocal basis system by operatigpe’ and [,¢,, re- n mesTn o

spectively, we readily obtain the following transformation
relations: where the closure relatioX u,(¢,|==,u,/dx¢,=1 is
used in the last equality. Since the reciprocal basis function
¢, consists of only plane-wave components witk|
a, =, (¢nlewae,, (8) =w,/c just like u, does, g€y is not zero only forw,
"ok =w, and we haveJw,(d,|e) = Voi(Pqe). This relation
is used in the above third equality. Thus, we have shown that
A N the expectation value of electric-field operator for an arbi-
al = (dolen*al . 9 trar is i i [ -
n 4 " y state is indeed independent of the choice of the expan
sion basis and have justified the derived transformation rela-
tions between different basis systems.
The commutation relations for operators in an arbitrary
%asis system can be readily obtained

The creationannihilation) operator of a general mods, is
expressed as a linear combination of the conventional plan
wave mode creatiorfannihilation) operators, weighted by
the overlap integrals between the corresponding adjoint A L

mode ¢, and the plane-wave modg . The above crucial [aun,alm]=2 (¢nle(ejl dm)[e,al 1= (ol m),
result is different from other quantization approaches h :

[18,24,25,27,2B where different expansion coefficients are (14
proposed. A a g oag
One can check the validity of the above derived transfor- [aun’aum]_[aun 'aum]_o' (19

mation relations by evaluating the expectation value of the ] ] )
electric-field operator in an arbitrary coherent staip. The ~ Where the closure relatian;|e;) (e[ =1 is used. Note that, in
resulting value should be independent of the expansion bas§e above derived formalism, we have so far let the basis
used for mode amplitude quantization. Since a continuous sét!n} 10 be as general as possible, in particular, without the
of coherent state forms a complete basis for the state space 8fthogonality requirement. ifu,} is an orthonormal basis, it
simple harmonic oscillator9], it is sufficient to constitute can be easily shown that(| ¢.,) = 8,m and [aun,aﬂm] re-

a proof by using a coherent state. Assume thatis a co-  duces to the conventional commutation relation{uf} is

herent state and has an expression not an orthogonal basis, them{| ¢,,) # Sym, and more in-
terestingly, the overlap integratpg| ¢,) >1 [2]. At the very
la)=|ay,a@s,a3, ...y, ...) (100  fundamental level, the conventional unity commutation rela-
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tion leads to the well-known one noise photon per modgyjitude operato,, . The interaction between atom and field

statement in quantum optics, Given the above (_jerlved resuIEJperators are introduced by the electric-dipole interaction
the noise photon becomes larger than one if the systeM 4 miltonian

eigenmode is nonorthogonal. However, one should also note

that noise photons between different modes are not totally Ao, - A
independent due toug|uy,) # 8- H,=f dx >, \/?{aanu:(x)v(x)eD
n 0

lIl. QUANTUM NOISE IN LASER OSCILLATORS +&T(x)eD~éunun(x)} (18)
We now apply the above results to laser quantum noise
analysis. Here, we use the quantum Langevin formalism to :J dx>, gnfi{al ur (x)o(x)+ ot (x)a, un(x)},
describe the dynamics of laser oscillators. However, in con- n " .
trast to the conventional approad0], where standard boso- (19

nian commutation relations are directly assigned to the am- N
plitude operators of the laser oscillation eigenmodes, we tak&hereeD=e(e[r|g) is the atomic dipole moment between
a more generalized approach without this presumption sinci€ laser transition stat¢s) and|g). The coupling factog,
these eigenmodes are not necessarily orthogonal as me-
tioned earlier.

The general aspect of quantum Langevin theory is to de- 9= /ﬂs .eD (20)
scribe the equation of motion of the operators of a system " 2egh " T

under the influence of surrounding reservoir. Its format is ) o )
often expressed as whereg, is the mode polarization state. Applying the Lange-

vin theory to the atom and field operators along with the
d 1 above interaction Hamiltonian, we have the following

mo: - 576+ Fs, (16) coupled quantum Langevin equations

d. - I R R
. | _ 00 =A =70 ()i 2 gilaluro(x) o' (x)anuy]
whereo is the system operatoy, is the corresponding damp- dt n
ing coefficient due to the system-reservoir interaction, and
F¢ is the accompanying noise operator that introduces fluc-
tuations into the system. The presence of the noise operator
Fo is essential here to ensure the conservation of the com- E

mutation relation of system operatorand satisfies relation dt

+F5.(¥), (21)

0g(X) == ygog(X) —i 2 galalut o(x)— o' (x)ayu,]

+F5 (X), (22

[Fa(t),Fi(t")]=10,0"]8(t—t"). (17) ’
d . : - .

The reservoir noise is considered@sorrelated with respect a“(x) =~lytilo=n]ot)+i ; Gn

to system relaxation time 4/because a reservoir by defini-

tion consists of a very large number of degrees of freedom X[ 0e(X) = ag(X)]agun+ F5(X), (23)
[9]. This condition is generally satisfied by the environment

surrounding most of laser systems. Because we are mainly d. 1 ) - i

interested in the laser system variables, the mode field nota- giun” ~ §7c,n+'(9n_ v) aun—lgnf dx

tion u, primarily refers to laser eigenmodés®} in the fol- A

lowing Langevin analysis. Whea is the amplitude operator Xbn (o) +F; (24)

of laser oscillation eigenmode,,, the above commutation
relation becomes[Fj (t),Fg1 (tH1= y[éun,ézn] S(t—t'),  whereA is the pump rate to the laser upper st@eand is
A Ay " o ) assumed to be constant in timg, and y4 are the spontane-

where[a, ,a, ] is equal to unity if{u,} is an orthogonal  ous decay rates of upper and lower laser states to other states,
basis and equal tog,| ¢,)>1 otherwise. v is the atomic dipole decay rate, and , is the system

Before writing down the quantum Langevin equations, leteigenmodeu, decay rate. For the simplicity of analysis, we
us first introduce the relevant operator notations. We|gse assume that the laser is in single mode oscillation and the
and|g) to denote the upper and lower states of laser transiescillation frequencyv lines up with the dipole transition
tion, where the lower state of laser transition is assumed térequencyw and the lasing resonator eigenmode frequency
be different from the laser atom ground state. The systenf),. The coupling terms containing both atomic and mode
operators that are of interest are atomic upper and lowefield operators in the above Langevin operator rate equations

population density operatore.=|e)(e| and frgE|g>(g|, are obtained from interaction Hamiltonian byAi[H, 0],
atomic dipole operator-=|g)(e|, and laser mode field am- whereo is the atomic or mode field operators of interest. The
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presence of adjoint modg, in the mode amplitude operator the cavity decay rate. ,, which is a valid approximation
rate Eq.(24) might look odd at the first glance but indeed it for most solid-state lasers. The atomic dipole then closely
is also derived from the same interaction Hamiltonian follows the phase of cavity field, and E@3) can be simpli-

) fied to
i - ) Atk R
FlHLa]=1 | I gl ur)a(0,a,] (29 S
12, gal (%)~ 7g(X) Jantn + F5(X)
_ - a(x)= (39)
=1 f dX% gm(¢n|¢m)u:1(x)0'(x) (26) Y
Substituting this expression into the atomic population and
:_ignf dx¢;§(x)<}(x), (27) f|§ald Qperator rate Eqs(2_1), (22), and (24), we obtain the
simplified coupled equations
Wheregm( dn| ) = Gn( nl ) is used because) br) is d. o, .
not zero only for thosevy,=w,. The noise operators; , age(x):/\— YeTo(X)— — > gngn,aznauéu:un,
F;Tg, F;, and Fa, are considered to bé correlated in time Yo'

compared to the time scale of interest in the system. The
atomic noise operatois; , F(;g, andF are also assumed to

be 6 correlated in space because laser atoms are normally
fairly far apart in gain medium compared to the characteristic

X[oe)~ 3001+~ 3 0u] UEF30

+H.cH+F; (x), (39

dimension of atom-atom interaction. Their correlation rela-

tions can be obtained from the Einstein relatj,

(Fs (OF; ()= ((A)rt ve(0e)r) S(t—t") S(x—X),
(28)

(F5,(DF 5 (1)r=7g(0g)rd(t—t) 8(x=X"), (29)

(FLOF(t))r=2%0o)rt (Nr— Ye(Te)R)

X S(t—t")o(x—x"), (30

(FoOFL(t))r= (270 g)r— v¢(0g)r) S(t—t") (x—X"),

(3D)
(Fa, (DFa, (1)r=ven(al &y )rolt=t"), (32
(Fa, (DFZ, (1)r=Yen(ay,ay )ro(t-t"), (33

d. - 2 ap o~
&Ug(x): - ')’go'g(x)+ ; E gngn’aanauéu; Up:

n,n’

X[5e0X) 301 = 3 0,8l UEF50

X +H.cHF; (%), (40)
d. i « .
aaun:_z')’c,naun'{' 7J dx ¢ (X)g On
- - - .On
x[ae(x)—ag(x)]aun,un,(x)—l7f dx
><¢;‘(X)F;,(x)+F;Un. (41)

The above operator rate equations are in a form very similar
to their classical counterparts except that the additional noise

where(- - - ) stands for reservoir average. In this paper, theoperator terms are uniquely derived from the quantum
reservoir average is taken over zero point vacuum statd,angevin theory. In addition, the spatial dependence is ex-
which gives the following results for mode amplitude opera-plicitly spelled out and eigenmodfu,} is a true system

tor a, ,
<a3naun>R:iEj (¢’n|ei)(ej|¢n)<0|a;éej|o> (34)
=0, (35)
<auna3n>R=iEj (¢nlen(ej| dn)(0lagag 0)
| (36)
= (¢n| ®n). (37)

We now suppose that the dipole relaxation rgtés much
faster than the atomic population decay rajgsand y4 and

eigenmode basis, which does not have to be an orthogonal
basis.

To carry the analysis further, we rewrite the atomic popu-
lation and field amplitude operators into complex numbers
and small signal operators,

Te= 0'e"""}el (42)
ng oyt Eg , (43
ay =Ay tay (44)

The complex numbers are the reservoir averaged steady-state
solutions, satisfying the following equations
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2 d. g5 - -
A= Yoo = = 2 GnGn Al Ay, U U —Bo1=—[7X) ~ 0g(X) 1A
'yn‘nr n n dt Y
X X)—o4(X)]=0, 45 )
o)l 9 R iR r e 6D
Yo
2
—Ygog(X)+ = E gngn’AInAun/u;un’ d- . do
Y up Uy &aoflm —|7(¢>0|F;,)+Fg1 , (52
Yo
X[oe(X) —0og(x)]=0, (46)
where subscripts 1 and 2 denote the in-phase and
1 gz quadrature-phase components, respectively,
un
— = YerAy +— - A, =0, = 7 i
27c,n un y [Ue(x) Ug(x)] un dg=ag1t+l1agy, (53
(47)
Fo=F;1+iF;,, (54

where we have assumed that the atomic population inver- .

sion, oe(X) —o4(X), is uniformly distributed in space for Fa,~ Fa,1T1Fa, 2- (55

mathematical simplicity. Now, we assume the laser is in a

single mode oscillation and label the oscillation modeigs  As one can see, the in-phase amplitude rate(®L, and the

From Eq. (47), this gives A, =0 except A, and  atomic population rate, Eq$48) and (49), are coupled to-

gﬁo/y[ge(x)_gg(x)]:%7010. Given the above steady-state gether and always try to retain the fluctuations around their

solutions, the linearized rate equations for the small signaf.c2dy-state values. This effect can also be understood from

o the atom-field interaction term in the atomic and field opera-
perators are . o

tor rate Eqs(39)—(41), where its contribution to the change

rates of the atomic population inversion and the field ampli-

d~ - 2 .
(X)) = — v X)— — Al A, Utu, tude are out of phase. The quadrature-phase amplitude fluc-
dt o) vere(X) Y n,Enr InTn B Puy tn n tuation rate, Eq(52), on the other hand, does not have any
constrain force and basically is a random-walk process
X[Tu(X)— o (X)]_E E 9nGnr driven by the dipole and reservoir field fluctuations. This
¢ ¢ Yow oo quadrature-phase fluctuation contributes to the laser fre-
~ i~ guency noise and is the dominant source for the fundamental
X (@pAns + Ajay ) Up Un [ 0e(X) — ag(X)] laser linewidth.
i The phase fluctuation rate equation of laser oscillator is
_ to*E- N
+y; InAIUR () +H.cHF; (X), (48) ¢ 14 N
at = Ay drte2 (56)
E?r(x)z—y?r(x)JrE})gg Al A, utu g 1
g 9“9 nIn’ My MuyHn Hn’ 0 .
dt Y on =AM —i(olFs0) ]+ IM[F o). (57)
Ao’y AO Up
~ ~ 2
><[Ue,-(X)—Ug(X)]‘*'; E 9n0n Because both dipole and amplitude noise operatorséare
nn correlated in time, the laser frequency fluctuation noise has a
X (3l Ay + AR, U Uy [0e(X) — 07g(X)] white power spectrum and its noise power spectral density is
iZ AlUfFo(x)+H.cH+F; (), (49 S % F Fi)h?
- — urFo(x CHF; (X)), = o)t o
v 4 OnAnUn g f 4A(2)72<((¢0| ) (¢O| ))>R
1
d- g ~ ~ . On ——((F; —Fl)2 58
G Doy 1A1 2 [ o aaz(Fa, =3, m 58
X o (X)Fo(x)+F; . (50) 2
" o _ 9 fogt —(F! Fy +F4 F)
_2A87(¢0|¢0)(Ue U'g) 4_A(2)< ay, ay, ay, au0>R
These small signal rate equations basically describe the fluc- (59)
tuations added into the steady-state solutions by the reservoir
noise. If we choose a phase reference suchApas real, the ot o 1
e g
——+ — Yool ol Po) (60)

in-phase and quadrature-phase components of amplitude=—2ycvo(¢>o|¢0)
0

. 2
rate, Eq.(50), are respectively, Oe™0g  4Ag
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1 et o
: %[ [ s
4A2 7’c0(¢0|¢0 e_o'g), (61 B d’n( )< e(X))
X S(t—t")8(x—x")dt’ (68
where Eq.(47) is used to reach the last equality. Finally, we
obtain the full width at half maximum quantum limited laser =—igno* (X)oe(X), (69)
linewidth

where Eq.(30) is used to evaluatéF:frF,;) and the assump-

Ao =S (62)  tion that dipole decay rate is much faster than other system
decay constants is also used in the fourth equality to reach

1 the final result. The first term in the first equality is zero
I7c Oet 0y ~
—(¢o|¢o) I+ —— (63 becausa,_is uncorrelated to futuré; . The second equal-
e
’ ity is obtained from the fact th&t; are uncorrelated to all
ch the terms foréun in Eq. (41) except—i(gn/vy)[xPrF;.
(¢o|¢o) 2P, (64 Given the above result, we readily obtain the ensemble av-

erage

where laser powep, =A(2)ﬁ w7, 1S used in the second equal- i R 2

ity. The term @+ o)/(de— o) describes the noise depen- <— > gna, UnFot H.c.> == d’p*u,oe. (70)
dence on atomic inversion level. The last expression is ob- Yon Yon

tained for the highly inverted casg.> o, which is a valid
approximation for lasers with fast lower laser transition state
decay ratey,. This is the well-known quantum laser line-
width equation with the excess-noise factapy(sy) now

Now, we compare this term with respect to the stimulated
S mission term in Eq39), i.e.,

derived in a fully quantum-mechanical framework. ;2 gngn'a au/u Up (o= 0yg).
n,n
IV. DISCUSSION For an orthogonal basis, whera(U,) = é,m and ¢,=u,,

the above ensemble average and the stimulated emission
From the above derived laser linewidth equation, there i
erm are reduced to QEngnu UpOe and

excess quantum noise coupled into the laser oscillation mode
if resonator eigenmodes are not orthogonal. Since this resullY=ndnay, &, Uy Un(oe— o), respectively. We see that Eq.
is very different from the well accepted one noise photon pef70) mdeed represents the spontaneous decay and describes
mode statement, it might raise the question whether thene noise photon per mode for spontaneous decay rate. For a
atomic spontaneous decay rate will also be enhanced by thenorthogonal basis, it is less clear to talk about the photon
same excess-noise factor. To answer this question, we nomumber per mode because eigenmodes are nonorthogonal. It
take a closer look at the atomic rate E¢39) and(40). The is interesting to see that the spontaneous decay has a spatial
spontaneous decay is embedded in the noise terms contaiependenceb’ u, compared to the stimulated decay depen-
ing amplitude operatoéun and dipole noise operatdf;, denceu? u,. The spontaneous emission can be enhanced or
ie.. i/72ngnéT U*F(x) +H.c. The spontaneous decay rate suppressed depending on location. On the other hand, we can
evaluate the average atomic spontaneous decay rate by tak-
is in fact descrlbed by the ensemble average of this n0|5ﬁ,,g spatial integral

term. Because amplitude operam; is in part driven by

dipole noise operatdt;, in Eq. (41), the average of this term f% 2 4% _ E 2 71
is not zero and can be calculated by first computing the av- 04 2 Gnn Unre 2 e, 7D
erage

where we assume a uniform distribution @f. The above
fa § o ft = result is independent of whether the eigenmode basis is or-
(Foa, )=(F (Da, (t—At))+ < F;,f aun(t')dt’> (65  thogonal or nonorthogonal and shows that the spatially aver-
At aged atomic decay rate is preserved.

Another question that might be asked is that since the the

_On + e excess-noise factor results from the nonorthogonal

= _|7£7MF‘A’(X’UL'¢”(X JF(x",t7)dt eignemode basis and only the oscillating mode is concerned

(66) for a single mode laser oscillation, theoretically, one can re-

construct those nonoscillating eigenmodes to become or-

thogonal to each other and to the lasing mode. Then, the

= _f f BE (X! )(F (X, DF(x,t"))dt’ excess-noisg factor can be artific_ially re_duced to unity. The

t—At answer to this seeming paradox is that in the above deriva-
(67) tion the eigenmode basis defined by the optical system has to
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be used in order to obtain the decoupled Langevin laser V. CONCLUSION

mode equation, Eq24). If laser propagation eigenmode ba-

sis is not used, it is not possible to write such a decoupled In this paper, we have derived a generalized radiation-
amplitude operator rate equation. Instead, the amplitude ogield quantization formalism, where quantization does not
erator rate equation will be coupled among different mode$iave to be referenced to a set of orthogonal eigenmodes.
and make the calculation totally different and more complexThis formalism can be applied to the quantization of the true
However, even if such an approach is tak@8], the laser system propagation eigenmodes especially for those which
system is often simplified to an one-dimensional cavityare nonorthogonal. We use this generalized quantization ap-
model to make the calculation manageable and the result gfroach to provide a fully quantum-mechanical derivation for
the excess-noise factor is still the same. the excess-noise factor in the fundamental laser linewidth.
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