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Observation of quantum-classical correspondence from high-order transverse patterns
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Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

~Received 23 October 2002; published 6 October 2003!

We experimentally observe the formation of high-order transverse patterns in a laser resonator with a high
degree of frequency degeneracy. It is found that the transverse patterns are well localized on theLissajous
orbits. The connection between the wave functions and the classical periodic orbits is analytically constructed
by using the representation of SU~2! coherent states. With this connection, the observed transverse patterns are
reconstructed very well. The nice reconstruction suggests that the laser resonators can be deliberately designed
to attain a more thorough understanding of the quantum-classical connection.
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It is well known that the paraxial wave equation for th
spherical laser resonators has the identical form with
Schrödinger equation for the two-dimensional~2D! har-
monic oscillator@1,2#. The eigenfunction of the 2D quantum
harmonic oscillator can be analytically expressed as
Hermite-Gaussian function with Cartesian symmetry~x,y! or
a Laguerre-Gaussian function with cylindrical symme
(r ,f) @1–3#. Since the functional forms of the 2D quantu
oscillator and the spherical resonators are similar, the hig
transverse modes of the spherical resonators can be in t
of Hermite-Gaussian~HG! modes or Laguerre-Gaussia
~LG! modes.

The wave functions of HG mode native to a spheri
resonator are given by

Fm,n
~HG!~x,y;Ão!5

1

A2m1n21pm!n!

1

Ão
HmS&x

Ão
DHnS&y

Ão
D

3expF2
~x21y2!

Ão
2 G , ~1!

with the resonance frequencies

n l ,m,n5 l ~DnL!1~m1n11!~Dn t!, ~2!

whereHn(•) is a Hermite polynomial of ordern, Ão is the
laser beam waist,l is the longitudinal mode index,m andn
are the transverse mode indices,DnL is the longitudinal
mode spacing, andDnT is the transverse mode spacing. Fo
plano-concave resonator, as shown in Fig. 1, the transv
mode spacing is given by

DnT5DnLF 1

p
cos21SA12

d

RD G , ~3!

whered is the cavity length andR is the radius of curvature
of the output coupler. Recently, we use a doughnut pu
profile to generate the LG06N modes in ana-cut Nd:YVO4
laser @4# and to generate the elliptical modes in ac-cut
Nd:YVO4 laser@5#. The emission froma-cut Nd:YVO4 crys-
tals is linearly polarized, whereas the emission is usuall
random polarization forc-cut crystals. The polarization prop
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erty is the main difference betweena-cut andc-cut crystals.
Therefore, when a linear polarized emission is desir
a-cut crystals are used. The LG06N modes are formed
by the superposition of the degenerate HG eigenmo
FK,N2K

(HG) (x,y;Ão), whereK50,1,2, . . . ,N @3#

F0,6N
~LG! ~x,y;Ã!522N/2(

K50

N S N
K D 1/2

~6 i !KFK,N2k
~HG! ~x,y;Ão!.

~4!

To generate LG06N modes we setup the resonator length
be as short as possible for reaching single-longitudinal m
operation andDnL@DnT .

As indicated in Eq.~3!, adjusting the cavity lengthd may
result in the ratioDnL /DnT to be an integerS. These cavity
configurations constitute a high degree of frequency deg
eracy. From Eq.~2! it can be seen that lowering~raising! the
longitudinal mode indexl by K, while simultaneously raising
~lowering! the sum of the transverse mode indicesn1m by
S3K, will leave the frequency unaltered. It has been sho
that configurations with a high degree of frequency deg
eracy allow closed geometric trajectories@6#. So far, the
transverse modes suited in a frequency degenerate cavit
focused on one dimension@7#. Here we use the cavity show

FIG. 1. Schematic of a fiber-coupled diode-end-pumped mic
chip laser; a typical pump profile of a fiber-coupled laser dio
away from the focal plane; the cavity lengthd is set atDnL /
DnT53.
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in Fig. 1 to investigate 2D transverse modes in a freque
degenerate cavity with ana-cut Nd:YVO4 microchip laser.
The radius of curvature of the output coupler is 10 mm. T
pump radius on the crystal is controlled to be aroundÃp
50.16– 0.22 mm. Experimental measurement reveals
the thickness of the pump ring can be approximately
pressed asDÃp50.02510.16Ãp (mm). In other words, the
thickness of the pump profile relatively increases with
creasing the pump radius. The fundamental mode size in
present cavity isÃo'0.04 mm. From the formula F
5vp

2/(pv0
2), the Fresnel number can be estimated to

5–10. Since the emission from ana-cut crystal is naturally
linearly polarized, the experimental pattern is a pure sc
field. Slightly adjusting the cavity length in the vicinity o
DnL /DnT53 and controlling the pump spot size, seve
typical sharp patterns on the concave mirror are obtained
shown in Fig. 2. The sharp patterns outside the resonato
found to be preserved in free-space propagation. The pre
vation of the experimental patterns consists of the prop
that HG modes remain HG field patterns as they propag
The incident angle of the pump beam is controlled to
within 65° with respect to the longitudinal axis. The critic
points to obtain a locked pattern consist in the adjustmen
the cavity length and the use of the doughnut pump pro
The fine modification of the pump angle can further enha
the sharp patterns, however, it is very difficult to precis
define the optimal incident angle for each pattern. Althou
each different sharp pattern is obtained at a different ca
length, the change of the cavity lengths is rather short.
difference between the cavity lengths of two sharp pattern
approximately 30mm. The difference of the cavity length
for different sharp patterns mainly arises from the fact t
the effective cavity length depends on the order of the tra
verse mode, even though the dependence is very weak.
cifically there is unavoidable astigmatism in the present c
ity because of the thermal lensing effect and anisotro
properties of the gain medium. Astigmatism-induced sp
ting of the two degenerate mode frequencies can lead
significant influence on laser dynamics@4#. Here we believe
that the inevitable astigmatism plays an important role
only for the dependence of the effective cavity length on
transverse order but also for the origin of the symme

FIG. 2. Experimental results for the typical transverse patte
observed in a cavity length nearDnL /DnT53.
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breaking of the present experiment. The range of the ca
length for each sharp pattern to be structure stable is aro
10 mm. When the cavity length does not meet the range
the locking modes, the transverse pattern is usually irreg
and vague. It can be seen that the observed sharp pattern
completely unlike a HG or LG mode. Interestingly, the
patterns are well localized on theLissajousfigures that are
classical periodic orbits for a 2D anisotropic harmonic osc
lator with commensurate frequencies. The measuremen
the optical spectrum shows that all observed patterns
single frequency emissions. In other words, the transve
pattern formation is a spontaneous process of coopera
frequency locking@8#. However, it is worthwhile to note tha
the frequency locking of the present patterns is among
ferent transverse order with the help of different longitudin
order.

To explain the observed patterns, it is essential to kn
how the wave functions can be associated with the class
trajectories for a 2D harmonic oscillator. Here we use
representation of the SU~2! coherent state to make a conne
tion between the wave functions and the classical trajecto
in a 2D anisotropic oscillator with commensurate freque
cies. The Hamiltonian for a 2D quantum harmonic oscilla
is generally given by

H5
2\2

2mx

]2

]x2 1
2\2

2my

]2

]y2 1
mxvx

2x2

2
1

myvy
2y2

2
. ~5!

The eigenfunctions of Eq.~5! can be expressed as

Fm,n~x,y;Ãx ,Ãy!5
1

A2m1n21pm!n!

1

AÃxÃy

3HmS&x

Ãx
DHnS&y

Ãy
D

3expF2S x2

Ãx
2 1

y2

Ãy
2D G , ~6!

where Ãx5A2\/(mxvx) and Ãy5A2\/(myvy). The ei-
genvalues associated with the eigenfunctio
Fm,n(x,y;Ãx ,Ãy) are given by

Em,n5S m1
1

2D\vx1S n1
1

2D\vy . ~7!

As is well known, the classical trajectory for 2D anisotrop
harmonic oscillator with commensurate frequencies is a
riodic orbit, called aLissajousfigure @9#. However, the con-
ventional eigenstatesFm,n(x,y;Ãx ,Ãy) do not manifest the
characteristics of classical periodic orbits even in the co
spondence limit of large quantum numbers.
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Recently, the wave functions associated with the class
elliptical trajectories in a 2D isotropic harmonic oscillat
have been analytically constructed by using the represe
tion of SU~2! coherent states@10,11#. Mathematically, the
SU~2! coherent states is a superposition of degenerate ei
states. Here we find that the wave functions related to
Lissajousfigures can be constructed by coherent states s
lar to the SU~2! representation. Consider a 2D anisotrop
harmonic oscillator with frequencies in the ratiovx :vy
5q:p, wherep and q are integers. The eigenvalues can
rewritten in the form

Em,n5F S m1
1

2Dq1S n1
1

2D pG\v, ~8!

where v is the common factor of the frequenciesÃx and
Ãy . For q:p anisotropic quantum oscillators, it is explic
that a family of the eigenstatesFpK,q(N2K)(x,y;Ãx ,Ãy)
with K50,1,2, . . . ,N are degenerate for a given indexN and
the eigenvalue of these eigenstates is given byEN5@pqN
1(p1q)/2#\v. As in the Schwinger representation of th
SU~2! algebra, the coherent state forq:p anisotropic quantum
oscillators is given by

CN
p,q~x,y;Ãx ,Ãy ,t!5

1

~11utu2!N/2 (
K50

N S N
K D 1/2

3tKFpK,q~N2k!~x,y;Ãx ,Ãy!,

~9!

where the parametert is, in general, complex andutu2 is
approximately the ratio of the mean energies in thex andy
axes. With the SU~2! coherent state in Eq.~9!, the mean
energies in thex andy axes are derived to be

EN,x5FpqNS utu2

11utu2D1
q

2G\v,

EN,y5FpqNS 1

11utu2D1
p

2G\v. ~10!

It can be found thatEN5EN,x1EN,y and the ratioEN,x /EN,y
approachesutu2 for N@1.

For making a connection with the classical periodic
bits, it is convenient to express the parametert as the polar
representation, i.e.,t5A exp(if). In terms ofA and f, the
coherent stateCN

p,q(x,y;Ãx ,Ãy ,Aeif) can be associate
with the Lissajousfigures,

x~ t !5A2^x2& cosS qvt2
f

p D ,

y~ t !5A2^y2& cos~pvt !, ~11!

where

^x28&5S A2

11A2 pN1
1

2D Ãx
2

2
,
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^y2&5S 1

11A2 qN1
1

2D Ãy
2

2
. ~12!

Note that ^x2& and ^y2& are, respectively, the expectatio
values of x2 and y2 for the coherent state
CN

p,q(x,y;Ãx ,Ãy ,Aeif). Figure 3 shows a comparison be
tween the SU~2! coherent states and the classical Lissajo
figures for the frequency ratio of 2:1, 3:2, and 4:3 withA
51, f5p/2, Ãx5Ãy , andN530. It can be seen that th
distributions of uCN

p,q(x,y;Ãx ,Ãy ,Aeif)u2 are in good
agreement with the classical periodic orbits. Moreover,
behavior ofuCN

p,q(x,y;Ãx ,Ãy ,Aeif)u2 illustrates geometri-
cally Bohr’s correspondence principle: the velocity of t
classical particle is at a minimum at the apogees of the m
tion, and therefore the probability density has a peak at th
points.

Although the number of eigenstates used in the cohe
stateCN

p,q(x,y;Ãx ,Ãy ,Aeif) is N11, the number of domi-
nant eigenstates for wave localization is rather small
high-order states. To manifest the efficiency of wave loc
ization, we modifyCN

p,q(x,y;Ãx ,Ãy ,Aeif) to define a par-
tially coherent state as

CN,M
p,q ~x,y;Ãx ,Ãy ,Aeif!

5F (
K5J

N2J S N
K DA2G21/2F (

K5J

N2J S N
K D 1/2

AKeiKf

3FpK,q~N2K !~x,y;Ãx ,Ãy!G , ~13!

where the indexM5N22J11 represents the number o
eigenstates used in the stateCN,M

p,q (x,y;Ãx ,Ãy ,Aeif).
Numerical analyses reveal that the transverse pat

shown in Fig. 2 can be nicely explained by the partia
coherent state in Eq.~13!. As mentioned earlier, the forma
tion of the observed patterns is a cooperative frequency lo
ing among different transverse orders with the help of diff
ent longitudinal orders. For a cavity nearDnL /DnT53, the

FIG. 3. A comparison between the coherent states and the
sical Lissajousperiodic orbits for p:q to be 2:1, 3:2, and 4:3.
~a!–~c! The coherent states calculated with Eq.~9! and t
5exp(ip/2) and N530. ~d!–~f! The coherent states calculate
with Eqs.~11! and ~12! andA51, f5p/2, andÃx5Ãy .
3-3
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family of the transverse modesFpK,q(N2K)
(HG) (x,y;Ão) with a

given indexN can be frequency locked by a different long
tudinal index l 5L7K with a given index L, where K
50,1,2,...,N and p2q563. Substitutingm5pK, n5q(N
2K), l 5L7K, p2q563, andDnL /DnT53 into Eq.~2!,
the laser frequency of the familyFpK,q(N2K)

(HG) (x,y;Ão) can
be found to benL,N5L(DnL)1(qN11)(DnT) independent
of K. From the numerical analysis, the transverse patte
shown in Fig. 2 are found to be associated with the partia
coherent states in Eq.~13! with A51 and f50. In other
words, the wave functions related to the observed patte
can be in terms of HG modes as

UN,M
p,q ~x,y!5F (

K5J

N2J S N
K D G21/2F (

K5J

N2J S N
K D 1/2

3FpK,q~N2K !
~HG! ~x,y;Ão!G ~14!

with p2q563. Note that for a spherical cavity, the tran
verse components of the resonance frequencies are no
generate for each eigenstate in Eq.~14! except forp5q. For
the Kth eigenstate of the coherent stateUN,M

p,q (x,y), the
transverse components of the resonance frequencies
@qN111(p2q)K#DnT . If the condition ofp2q563 is
satisfied, then the frequency of each eigenstate in the co
ent stateUN,M

p,q (x,y) can be possibly locked with the help o
different longitudinal component of (L7K)DnL because of
DnL /DnT53. To be brief, the formation of the present tran
verse patterns is a spontaneous frequency locking in th
11 dimension, not a pure transverse mode locking. Figu
shows the numerically reconstructed patterns for the res
shown in Fig. 2, calculated with Eq.~14! for several cases o
p2q563. It is clear that only 3–5 eigenstates are alrea
sufficient to localize the wave patterns on the classical
jectories, even for high-order periodic orbits. The pres
analysis indicates that the wave function obtained as a lin
superposition of a few degenerate eigenstates can prov
more physical description of a phenomenon than the
eigenstates in mesoscopic systems@12#. The good agreemen
between the experimental and reconstructed patterns
firms that the interrelation between wave optics and g
metrical optics is somewhat similar to that between quan
and classical mechanics. Such an analogy enables us to
ploy quantum theory in analyzing the formation of hig
order laser transverse modes.
P
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In conclusion, we have used the representation of
SU~2! coherent state to make a connection between the w
functions and the classical trajectories in a 2D anisotro
oscillator with commensurate frequencies. With the anal
cal wave function, the experimental transverse patterns a
ciated with theLissajoustrajectories can be explained ver
well. The nice explanation suggests that the laser resona
with an identical functional form can be used to attain a m
thorough understanding of the quantum-classical connect
It is worthwhile to mention that a similar phenomenon
found in a nonintegrable classical system; the wave patte
of the eigenstates are usually concentrated along unst
periodic orbits instead of being randomly distributed@13–
15#. In addition, there are some striking phenomena in op
quantum ballistic cavities associated with the wave functio
in terms of classical periodic orbits@16–18#. Therefore, to
construct the connection between the wave functions
classical periodic trajectories is not only useful for expla
ing the present transverse patterns but also helpful for un
standing quantum-classical correspondence as well as
quantum transport in mesoscopic systems. Recently, D
et al. @19,20# have introduced the paraxial approximation
establish an analogy between light propagation along a m
timode fiber and quantum confined systems. We believe
these analogies will continue to be exploited for understa
ing the physics of mesoscopic systems.

The authors thank the National Science Council for fina
cially supporting this research under Contract No. NSC-
2112-M-009-030.

FIG. 4. The numerically reconstructed patterns for the res
shown in Fig. 2, calculated with Eq.~14!. ~a! uU20,5

4,1 (x,y)u2; ~b!
uU16,5

5,2 (x,y)u2; ~c! uU10,3
6,3 (x,y)u2; ~d! uU10,3

7,4 (x,y)u2; ~e! uU8,3
8,5(x,y)u2;

~f! uU8,3
9,6(x,y)u2.
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