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Observation of quantum-classical correspondence from high-order transverse patterns
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We experimentally observe the formation of high-order transverse patterns in a laser resonator with a high
degree of frequency degeneracy. It is found that the transverse patterns are well localized_issajoels
orbits. The connection between the wave functions and the classical periodic orbits is analytically constructed
by using the representation of &) coherent states. With this connection, the observed transverse patterns are
reconstructed very well. The nice reconstruction suggests that the laser resonators can be deliberately designed
to attain a more thorough understanding of the quantum-classical connection.

DOI: 10.1103/PhysRevA.68.043803 PACS nuntber42.60.Jf, 03.65-w, 05.45.Mt

It is well known that the paraxial wave equation for the erty is the main difference betweancut andc-cut crystals.
spherical laser resonators has the identical form with th&herefore, when a linear polarized emission is desired,
Schralinger equation for the two-dimensiong2D) har-  a-cut crystals are used. The LG, modes are formed
monic oscillatof1,2]. The eigenfunction of the 2D quantum by the superposition of the degenerate HG eigenmodes
harmonic oscillator can be analytically expressed as ab&“,ﬁ)_K(x,y;mo), whereK=0,1,2 ... N [3]
Hermite-Gaussian function with Cartesian symmeiy) or ’

a Laguerre-Gaussian function with cylindrical symmetry o N2 NNy Kox (HE)

(r,¢) [1-3]. Since the functional forms of the 2D quantum Po=n(X.Y:@)=2 KZO (K) (£1) Py N k(X, Y m0).
oscillator and the spherical resonators are similar, the higher (4)
transverse modes of the spherical resonators can be in terms

of Hermite-Gaussian(HG) modes or Laguerre-Gaussian To generate LG. modes we setup the resonator length to

(LG) modes. be as short as possible for reaching single-longitudinal mode
The wave functions of HG mode native to a sphericaloperation and\ v, >Av+.
resonator are given by As indicated in Eq(3), adjusting the cavity lengtd may

result in the ratioA v, /A v to be an intege&. These cavity

DHO) (x yie5) = 1 iH (ﬁx) H (‘fzy) configurations constitute a high degree of frequency degen-
mn AT el omin=T inl we T\ @, M @, eracy. From Eq(2) it can be seen that loweringaising the

longitudinal mode index by K, while simultaneously raising
(1) (lowering the sum of the transverse mode indicesm by
' SXK, will leave the frequency unaltered. It has been shown
that configurations with a high degree of frequency degen-
eracy allow closed geometric trajectorig8]. So far, the
v mn=1(Av)+(M+n+1)(Awy), (2)  transverse modes suiteq in a frequency degener:?\te cavity are
n focused on one dimensi@i]. Here we use the cavity shown

X242
XEXF{——( Zy)
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with the resonance frequencies

whereH,(-) is a Hermite polynomial of ordem, w, is the
laser beam waist, is the longitudinal mode indexmn andn

are the transverse mode indicesy, is the longitudinal
mode spacing, andl v; is the transverse mode spacing. For a
plano-concave resonator, as shown in Fig. 1, the transverse
mode spacing is given by

Lot f, @
;COS ﬁ

whered is the cavity length an® is the radius of curvature

of the output coupler. Recently, we use a doughnut pump
profile to generate the L{& modes in ara-cut Nd:YVO,
laser [4] and to generate the elliptical modes incecut
Nd:YVO, laser[5]. The emission frona-cut Nd:YVO, crys-

tals is linearly polarized, whereas the emission is usually a

random polarization foc-cut crystals. The polarization prop-  FiG. 1. Schematic of a fiber-coupled diode-end-pumped micro-
chip laser; a typical pump profile of a fiber-coupled laser diode
away from the focal plane; the cavity lengthis set atAwv /
*Email address: yfchen@cc.nctu.edu.tw Av;=3.
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<—(0.36 mm—> breaking of the present experiment. The range of the cavity
‘ length for each sharp pattern to be structure stable is around
10 xm. When the cavity length does not meet the range of

n ' 2 7 i the locking modes, the transverse pattern is usually irregular
’ i 7 S

o W N

and vague. It can be seen that the observed sharp patterns are
completely unlike a HG or LG mode. Interestingly, these
patterns are well localized on thassajousfigures that are
classical periodic orbits for a 2D anisotropic harmonic oscil-
lator with commensurate frequencies. The measurement of
the optical spectrum shows that all observed patterns are
single frequency emissions. In other words, the transverse
pattern formation is a spontaneous process of cooperative
frequency lockind8]. However, it is worthwhile to note that
_ ) the frequency locking of the present patterns is among dif-
FIG. 2. Experimental results for the typical transverse pattern§grent transverse order with the help of different longitudinal
observed in a cavity length nearv, /Av;=3. order.

To explain the observed patterns, it is essential to know
in Fig. 1 to investigate 2D transverse modes in a frequencyiow the wave functions can be associated with the classical
degenerate cavity with aa-cut Nd:YVO, microchip laser. trajectories for a 2D harmonic oscillator. Here we use the
The radius of curvature of the output coupler is 10 mm. The'epresentation of the SP) coherent state to make a connec-
pump radius on the Crysta| is controlled to be arouﬂg tion between the wave functions and the classical trajectories
=0.16—0.22 mm. Experimental measurement reveals thdf @ 2D anisotropic oscillator with commensurate frequen-
the thickness of the pump ring can be approximate|y ex..CieS. The Hamiltonian for a 2D quantum harmonic oscillator
pressed ad w,=0.025+ 0.16w, (mm). In other words, the 1S generally given by
thickness of the pump profile relatively increases with in-
creasing the pump radius. The fundamental mode size in the
present cavity isw,~0.04 mm. From the formula Fr _—h? 3_2+ —h? 0_2+ My wix® N mywgy?
=w’/(mwg), the Fresnel number can be estimated to be ©2m, 9x? " 2m, dy? 2 2
5-10. Since the emission from ancut crystal is naturally
linearly polarized, the experimental pattern is a pure scalar
field. Slightly adjusting the cavity length in the vicinity of The eigenfunctions of Eq5) can be expressed as
Av /Avy=3 and controlling the pump spot size, several
typical sharp patterns on the concave mirror are obtained and
shown in Fig. 2. The sharp patterns outside the resonator are 1 1
found to be preserved in free-space propagation. The preser- DX Y@y, @y) = 2Lt o
vation of the experimental patterns consists of the property TN N© Dy

©)

that HG modes remain HG field patterns as they propagate. VIX V2y

The incident angle of the pump beam is controlled to be XHpnl —|Hp —)

within =5° with respect to the longitudinal axis. The critical X @y

points to obtain a locked pattern consist in the adjustment of x2 y2

the cavity length and the use of the doughnut pump profile. Xex;{ e } (6)
X y

The fine modification of the pump angle can further enhance

the sharp patterns, however, it is very difficult to precisely

define the optimal incident angle for each pattern. Although )

each different sharp pattern is obtained at a different cavity!Nere @x=v2#/(myw,) and w,=y2h/(myw,). The ei-

length, the change of the cavity lengths is rather short. Th@envalues — associated  with  the  eigenfunctions

difference between the cavity lengths of two sharp patterns i€mn(X.Y; @, @) are given by

approximately 30um. The difference of the cavity lengths

for different sharp patterns mainly arises from the fact that

the effective cavity length depends on the order of the trans- _
. Emnn=

verse mode, even though the dependence is very weak. Spe- ’

cifically there is unavoidable astigmatism in the present cav-

ity because of the thermal lensing effect and anisotropic

properties of the gain medium. Astigmatism-induced split-As is well known, the classical trajectory for 2D anisotropic

ting of the two degenerate mode frequencies can lead to laarmonic oscillator with commensurate frequencies is a pe-

significant influence on laser dynamigs. Here we believe riodic orbit, called alissajousfigure[9]. However, the con-

that the inevitable astigmatism plays an important role notentional eigenstate®, ,(X,y;@,,w,) do not manifest the

only for the dependence of the effective cavity length on thecharacteristics of classical periodic orbits even in the corre-

transverse order but also for the origin of the symmetryspondence limit of large quantum numbers.
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Recently, the wave functions associated with the classicall)
elliptical trajectories in a 2D isotropic harmonic oscillator ,
have been analytically constructed by using the representa
tion of SU2) coherent state§10,11]. Mathematically, the
SU(2) coherent states is a superposition of degenerate eigen
states. Here we find that the wave functions related to the
Lissajousfigures can be constructed by coherent states simi-
lar to the SUW2) representation. Consider a 2D anisotropic
harmonic oscillator with frequencies in the ratio, :w,
=q:p, wherep andq are integers. The eigenvalues can be

-

rewritten in the form

Em,nz pliw, 8

( 1
q+|{n+3

1
m+§ 5

where w is the common factor of the frequencies, and

w, . For q:p anisotropic quantum oscillators, it is explicit

that a family of the eigenstate® x on—k)(X,Y;Tx, @)
with K=0,1,2 ... N are degenerate for a given indsband
the eigenvalue of these eigenstates is giverERy=[ pgqN

+(p+Qq)/2]fiw. As in the Schwinger representation of the
SU(2) algebra, the coherent state fpp anisotropic quantum

oscillators is given by

1

N 12
PRI, Y @y @y, T) = oz 2 (N)
N 1Y X1 yo (1+|T|2)N2K=O K

X 75D o qn— (XY @, @ y),
€)

where the parameter is, in general, complex anfr|? is
approximately the ratio of the mean energies in xtendy
axes. With the SI(2) coherent state in Eq9), the mean
energies in thex andy axes are derived to be

B I71? \ g
EN,x_ DQN 1+—|T|2 + E ho,
1 p
EN‘yZ pgN l+—|T|2 + E ho. (10

It can be found thaEy=Ey x+ Ey,y and the raticey ,/Ey
approachesr|? for N>1.

For making a connection with the classical periodic or-
bits, it is convenient to express the parametas the polar

representation, i.ez=Aexp(¢). In terms ofA and ¢, the

coherent stateV9(x,y;w,,w,,A€?) can be associated

with the Lissajousfigures,

x(t)=y2(x? cos( qut— %) ,

y(t)=+2(y?) cog pwt), (11
where
o A2 N 1 mi
= TrarPNt 32

FIG. 3. A comparison between the coherent states and the clas-
sical Lissajousperiodic orbits forp:q to be 2:1, 3:2, and 4:3.
(8—(c) The coherent states calculated with E(@) and 7
=exp(mn/2) and N=30. (d)—(f) The coherent states calculated
with Egs.(11) and(12) andA=1, ¢=7/2, andw,=w,.

2

o 1 1 w, 5
Y=l 2Nt 5|5 (12

Note that(x?) and(y?) are, respectively, the expectation
values of x* and y? for the coherent state
YRIx,y;wy, @, ,A€?). Figure 3 shows a comparison be-
tween the S(P) coherent states and the classical Lissajous
figures for the frequency ratio of 2:1, 3:2, and 4:3 wih
=1, ¢=7l2, my=w,, andN=30. It can be seen that the
distributions of |[WR(x,y;wy,w, ,A€?)|? are in good
agreement with the classical periodic orbits. Moreover, the
behavior of| WR(x,y;wy,w,,Ae'?)|? illustrates geometri-
cally Bohr’s correspondence principle: the velocity of the
classical particle is at a minimum at the apogees of the mo-
tion, and therefore the probability density has a peak at these
points.

Although the number of eigenstates used in the coherent
stateW R} (x,y; @y, @, ,A€?) is N+ 1, the number of domi-
nant eigenstates for wave localization is rather small for
high-order states. To manifest the efficiency of wave local-
ization, we modifyW{(x,y; @y, @, ,A€?) to define a par-
tially coherent state as

VR XY @y, @y AE?)

N—-J —1/2[N—-J
N) (N):L/Z ]
_ A2 AKeIK¢
= (K] 3 [

Xq)pK,q(NK)(va;mx,wy):|y (13

where the indexM =N-2J+1 represents the number of
eigenstates used in the stal;,(x,y; @, @, ,Ae?).

Numerical analyses reveal that the transverse pattern
shown in Fig. 2 can be nicely explained by the partially
coherent state in Eq13). As mentioned earlier, the forma-
tion of the observed patterns is a cooperative frequency lock-
ing among different transverse orders with the help of differ-
ent longitudinal orders. For a cavity neAw, /Av;=3, the
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family of the transverse modaB((%) \_«,(X.yi®,) with a @ |U(x)|
given indexN can be frequency locked by a different longi-
tudinal index |=L*K with a given indexL, where K
=0,1,2,..N and p—q= = 3. Substitutingm=pK, n=q(N
—K), I=L¥K, p—g==3, andAv_ /Av=3 into Eq.(2),
the laser frequency of the familp &) ) (X.y;@,) can
be found to bey, y=L(Av_ )+ (qN+1)(Av) independent

®) |U )| © |V )|

7,4

of K. From the numerical analysis, the transverse patterns(d) |Uui,3(x,y)|2

© |Us (%) ® |Us ()

shown in Fig. 2 are found to be associated with the partially
coherent states in Eq13) with A=1 and ¢=0. In other

words, the wave functions related to the observed patterng
can be in terms of HG modes as

—1/2[N-J N\ 22
KE:J (K) FIG. 4. The numerically reconstructed patterns for the results
shown in Fig. 2, calculated with Eq14). (a) [U334X,y)|? (b)
[US24x.Y)I% (0 [USS4x.Y) 1% (@) [UTsx.y)I% () [U3xy) |2
X‘D(;lfc;mm(x'y?mo)} 14 |usixy)l2

N—-J N
Uﬁ,‘b(x,y):{i (K)

In conclusion, we have used the representation of the
with p—qg==*3. Note that for a spherical cavity, the trans- SU(2) coherent state to make a connection between the wave
verse components of the resonance frequencies are not dgnctions and the classical trajectories in a 2D anisotropic
generate for each eigenstate in Etd) except forp=q. For  oscillator with commensurate frequencies. With the analyti-
the Kth eigenstate of the coherent statf%,(x,y), the cal wave function, the experimental transverse patterns asso-

transverse components of the resonance frequencies arigted with theLissajoustrajectories can be explained very
[qN+1+(p—q)K]JAwr. If the condition ofp—q==3 is well. The nice explanation suggests that the laser resonators

e\p{ith an identical functional form can be used to attain a more

: : thorough understanding of the quantum-classical connection.
P.q
ent stateyy (x,y) can be possibly locked with the help of It is worthwhile to mention that a similar phenomenon is

different longitudinal component ofl(+K)A v because of = tqnq in a nonintegrable classical system: the wave patterns
Av /Avy=3.To be brief, the formation of the present trans-of the eigenstates are usually concentrated along unstable
verse patterns is a spontaneous frequency locking in the Beriodic orbits instead of being randomly distributeB—

+1 dimension, not a pure transverse mode locking. Figure 45]. In addition, there are some striking phenomena in open
shows the numerically reconstructed patterns for the resultguantum ballistic cavities associated with the wave functions
shown in Fig. 2, calculated with E¢L4) for several cases of in terms of classical periodic orbi{46-18. Therefore, to
p—q==*3. It is clear that only 3-5 eigenstates are alreadyconstruct the connection between the wave functions and
sufficient to localize the wave patterns on the classical traclassical periodic trajectories is not only useful for explain-
jectories, even for high-order periodic orbits. The presening the present transverse patterns but also helpful for under-
analysis indicates that the wave function obtained as a linegtanding quantum-classical correspondence as well as the
superposition of a few degenerate eigenstates can provided@iantum transport in mesoscopic systems. Recently, Doya
more physical description of a phenomenon than the truét al.[19,20 have introduced the paraxial approximation to
eigenstates in mesoscopic systdit@. The good agreement €stablish an analogy between light propagation along a mul-

between the experimental and reconstructed patterns cofMode fiber and quantum confined systems. We believe that

firms that the interrelation between wave optics and geo'ghese analogies will continue to be exploited for understand-
ing the physics of mesoscopic systems.

metrical optics is somewhat similar to that between quanturt”
and classical mechanics. Such an analogy enables us to em-The authors thank the National Science Council for finan-
ploy quantum theory in analyzing the formation of high- cially supporting this research under Contract No. NSC-91-
order laser transverse modes. 2112-M-009-030.

satisfied, then the frequency of each eigenstate in the coh
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