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Adiabatic-following criterion, estimation of the nonadiabatic excitation fraction,
and quantum jumps
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An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system
is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is
found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be
presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the
limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the
nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the
variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change
of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jump-
wise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation
parameter takes its maximum value.

DOI: 10.1103/PhysRevA.68.043802 PACS number~s!: 42.50.Gy, 32.80.Qk, 42.50.Md, 42.50.Hz
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I. INTRODUCTION

Stimulated Raman adiabatic passage~STIRAP! resulting
in the population transfer between the states which are
directly coupled@1#, electromagnetically induced transpa
ency via adiabatic following of the dark, nonabsorbing st
@2#, nonresonant pulse excitation of the two-level atom@3#
are just a short list of phenomena in quantum optics wh
adiabatic processes are considered. Generally, one can fi
any part of physics problems concerned with adiabatic
which are treated almost similarly. Among them we can m
tion multiphoton resonances induced in atoms and molec
by a strong low-frequency field@4–7#, wave-packet dynam
ics in physics and chemistry or, so-called, ‘‘femtochemistr
@8–10#, and slow atomic and molecular collisions@11–18#.

In this paper we consider the adiabatic following of t
dark, nonabsorbing state in the three-level system, excite
two resonant fields, which results in STIRAP~population
transfer!. It was proposed in Ref.@19# where the so-called
counterintuitive Raman pulse sequence emerged as a r
of the search for the generalization of the Liouville equatio
for theN-level system using SU(N) coherence vector theor
@20,21#. This pulse sequence consists of two fields coupl
two low-energy levels 1 and 2 with one common excit
state 3. If one of the levels~for example, 2! is initially empty,
then applying first the field which couples this state w
level 3, and then the field coupling the populated state~for
example, 1) with 3, it is possible to transfer the populat
of state 1 to state 2, without appreciably populating the
termediate state 3.

Later, the importance of the adiabaticity in the counter
tuitive pulse sequence development was realized in R
@22–24#. There is a particular superposition of states 1 an
that does not interact with the coupling fields and, if t
development of the field amplitudes in time is properly ch
sen, this superposition state changes from state 1 to state
the three-level atom follows this superposition state,
1050-2947/2003/68~4!/043802~13!/$20.00 68 0438
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atom population is transferred from state 1 to state 2 by
pulse sequence without populating the intermediate exc
state 3. This noncoupled superposition state was first in
duced by Arimondo@25# to explain qualitatively the dark
resonance as population trapping in this state@26–28#. The
noncoupled state is often referred to as a dark state.

It is obvious that, if the dark state changes in time,
process must exist which tends to empty this state. The c
dition minimizing the dark state depopulation is formulat
in Ref. @22#. This is donead hoc, without an estimation of
the nonadiabatic correction for the excited probability amp
tude. However, numerical calculations show that, if this co
dition is satisfied, the adiabatic population transfer 1→2 is
almost perfect. Some attempts were undertaken to find a
orous justification of the intuitively found adiabaticity con
dition and to estimate the amplitude of the excited state d
ing the STIRAP pulse sequence~see, for example, Refs
@29,30#!. In Ref. @29#, the so-called ramp pulses were co
sidered, which allow an exact solution. Furthermore, with
help of the method developed for the two-level system
Dykhne ~see Refs.@31,32# and the discussion in Refs
@33,34#!, the nonadiabatic amplitude of the excited state 3
estimated for Gaussian and hyperbolic secant pulses. Th
possible because the Liouville equation for the two-le
atom in terms of the SU~2! coherence vector~Bloch-vector
model! coincides with the Schro¨dinger equation for the stat
probability amplitudes of the three-level atom excited by tw
resonant fields~see, for example, Refs.@2,24,29#!. However,
the authors of Ref.@29# admit that the analytical approxima
tions for the nonadiabatic corrections ‘‘have been introduced
ad hoc without derivation’’ and they ‘‘would really like to see
more detailed investigations of the analytic behavior of t
system discussed.’’

Fleischhauer and co-workers@30# developed a different
approach introducing higher-order trapping states. They
fine annth-order generalized adiabatic basis, which is simi
to the superadiabatic basis introduced for the two-level s
tem in Refs.@35–38#. By successive transformations from
©2003 The American Physical Society02-1
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R. N. SHAKHMURATOV AND J. ODEURS PHYSICAL REVIEW A68, 043802 ~2003!
the diabatic basis to the adiabatic basis, then from this a
batic basis, which can be considered as the adiabatic bas
the first order, to the next, i.e., the second-order adiab
basis, etc., the solution is presented as an infinite produc
transformations. The general expression for thenth transfor-
mation matrix is presented. However, it is hard to implem
this scheme for an arbitrary pulse sequence.

In this paper we develop a method that allows us to c
culate the adiabatic and nonadiabatic components of the
lution with controllable accuracy. The adiabatic compon
describes the part of the atomic probability amplitude vis
ing the excited atomic state during the pulse train and co
ing back to the dark state when the pulses are gone.
atom evolution following the adiabatic component of the s
lution resembles the excitation-deexcitation process indu
by a soliton in the two-level atom. The nonadiabatic comp
nent is that part which is lost from the dark state and
scribes the fraction of the atomic probability amplitude th
is left excited after the pulse train. We compare our res
with the previous theories reported in Refs.@29,30#. We
found corrections to the theory presented in Ref.@29# and
show that our result corresponds to the calculation of
infinite number of transformations proposed in Ref.@30#.

The paper is organized as follows. In Sec. II we pres
the general formalism employed in the description of
three-level atom excited by two resonant fields. The trans
mation to the basis of the bright and dark states is derive
is shown that the system evolves between two states,
‘‘bright’’ and ‘‘common’’ ~they are specified in Sec. II!. In
Sec. III we consider the time evolution of the atomic sta
vector for theL scheme of excitation if the field amplitude
are time dependent. Bloch-like equations are derived. In S
IV the adiabatic-following approximation is presented. T
adiabatic solution for the STIRAP is found. Nonadiaba
corrections are described in Sec. V. The case when the
man Rabi frequency changes in time is considered in S
VI–VIII.

II. THREE-LEVEL ATOM INTERACTING WITH TWO
RESONANT FIELDS: GENERAL FORMALISM

We consider a three-level atom shown in Fig. 1~a!. The
arrows indicate the transitions induced by the coherent fie
We define the level that is common for both transitions as
The others are designated by the numbers 1 and 2, lev
being of higher energy than 1 and initially not populate
The dynamic part of the Hamiltonian of this three-lev
atom, excited by two resonant fieldsE1(t)5E1cos(V1t
1w1) andE2(t)5E2cos(V2t1w2), is

H5 (
n51

3

vnP̂nn2~B1P̂13e
iV1t1 iw11B2P̂23e

iV2t1 iw21H.c.!,

~1!

wherevn is the energy of the staten. Planck’s constant is se
equal to 1 (\51) for simplicity. The operatorsP̂mn are de-
fined by P̂mn5um&^nu, where^nu and um& are bra and ket
vectors of the statesn andm in the Schro¨dinger representa
tion. The interaction constant~Rabi frequency! Bn
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.
l

5(dn3•En)/25(d3n•En)/2 depends on the dipole-transitio
matrix element, taken real so,dn35d3n , and on the field
amplitudeEn . The rotating wave approximation is taken in
account.

If the fieldsE1(t) andE2(t) are in exact resonance wit
the relevant transitions, the Hamiltonian, Eq.~1!, can be
made slowly varying by transforming it into the interactio
representation~IR!. This representation is defined by a c
nonical transformation by means of the unitary operator

T5expS i (
n51

3

vnP̂nnt D . ~2!

The wave function of the atom in the IR is defined b
uF(t)&5TuC(t)&, whereuC(t)& is the wave function in the
Schrödinger representation.uF(t)& satisfies the Schro¨dinger
equation with the effective Hamiltonian

H5THT211 i ṪT21. ~3!

This Hamiltonian has the explicit form

H52B1P̂13e
iw12B2P̂23e

iw21H.c., ~4!

or in matrix notation

H52F 0 0 B1eiw1

0 0 B2eiw2

B1e2 iw1 B2e2 iw2 0
G . ~5!

The P̂MN operators are defined for the vectorsuM & and ^Nu
of the interaction representation differing from the statesum&
and ^nu by the phase factors exp(2ivmt) and exp(ivnt).

Assume that the field amplitudesB1 , B2 and the phases
w1 , w2 are constant. Then the Hamiltonian, Eqs.~4!–~5!, is
diagonalized by a unitary transformation

H̄5QHQ215AB1
21B2

2~ P̂3̄3̄2 P̂1̄1̄!, ~6!

where

FIG. 1. The excitation scheme of the three-level atom by t
resonant fields with interaction constantsB1 andB2 : L scheme~a!,
and the same excitation scheme in the basis of darkd, bright b, and
commonc states~b!. B5AB1

21B2
2 is the generalized interaction

constant for the Raman excitation. The vertical scale in diagram~b!
is not the energy and represents the initial population of the le
before the excitation. The higher populated level is put at the b
tom and the lower or unpopulated level is at the top.
2-2
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ADIABATIC-FOLLOWING CRITERION, ESTIMATION . . . PHYSICAL REVIEW A68, 043802 ~2003!
Q5
1

A2F e2 iw1sina e2 iw2cosa 1

A2eiw2cosa 2A2eiw1sina 0

e2 iw1sina e2 iw2cosa 21
G ~7!

and tana5B1 /B2. The new ket vectorsun̄& are related to the
former onesuN&, defined in the interaction representation,
follows uF̄&5QuF&. The explicit relations are

u1̄&5
A2

2
~eiw1sinau1&1eiw2cosau2&1u3&), ~8!

u2̄&5e2 iw2cosau1&2e2 iw1sinau2&, ~9!

u3̄&5
A2

2
~eiw1sinau1&1eiw2cosau2&2u3&). ~10!

The basisun̄&, in which the Hamiltonian is diagonal, is calle
the basis of the quasienergy states@39,40#. It coincides with
the basis of the dressed states if the limit of the classical fi
is taken for them.

Statesu1̄& and u3̄& are mixtures of all unperturbed state
u1&, u2&, and u3&, whereas stateu2̄& does not contain the
common stateu3&. If the atom is in stateu2̄&, a mixture of the
ground-state sublevels 1 and 2, the atom does not leave
state since it is an eigenstate of the interaction Hamilton
Eq. ~6!. The bichromatic fieldE(t)5E1(t)1E2(t) does not
interact with such an atom, and, consequently, it is not
cited. Therefore, we call this state a dark state and desig
it ud&. This state was introduced for the first time by Ar
mondo in Ref.@25#, who called this state a noncoupled sta
He introduced the coupled state as well, which interacts w
the bichromatic fieldE(t). Following Arimondo we define
the state

ub&5eiw1sinau1&1eiw2cosau2&, ~11!

which is orthogonal to the dark state. We call this state
bright state, since for theL scheme, if the atom is in this
state, it is excited by the bichromatic field and then the
minescence from stateu3& may follow. Excitation can take
place because the bright state is not an eigenstate of
interaction Hamiltonian, Eq.~6!.

The statesud&, ub&, and u3& are mutually orthogonal and
can be chosen as a new basis. We call this basisdbc, desig-
nating the stateu3& by the letteruc&, since it is common for
the induced transitions. Because we will often refer to th
states, they are presented below in a common set of e
tions to simplify further citation:

ud&5e2 iw2cosau1&2e2 iw1sinau2&, ~12!

ub&5eiw1sinau1&1eiw2cosau2&, ~13!

uc&5u3&. ~14!

The interaction Hamiltonian, Eqs.~4! and~5!, is transformed
in this basis as follows:
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Hdbc5SHS2152B~ P̂bc1 P̂cb!, ~15!

or in a matrix form

Hdbc52F 0 0 0

0 0 B

0 B 0
G , ~16!

whereB5AB1
21B2

2 and the unitary operator of the canonic
transformation is

S5F eiw2cosa 2eiw1sina 0

e2 iw1sina e2 iw2cosa 0

0 0 1
G . ~17!

We call this basis thedbc representation.
Figure 1~b! shows the excitation scheme in thedbc basis

where only theb andc states are coupled. Theb andc states
do not correspond to a defined energy. To present schem
cally the dbc states and the transitions between them,
choose the state population before the excitation for th
relative position in the diagram. So, the vertical scale in F
1~b! represents the initial population of the states coun
from the bottom to the top.

The Hamiltonian in thedbc basis, Eq.~15!, resembles the
interaction Hamiltonian of the two-level systembc, excited
by one resonant field with an effective interaction constanB.
The dynamic evolution of the atom is described by t
Schrödinger equation with this Hamiltonian containing on
the transition operators between statesb andc.

III. TIME-DEPENDENT AMPLITUDES

If during the pulse excitation the field amplitudesE1 , E2
are time dependent and they have the same time evolu
satisfying the conditionB1(t)/B2(t)5tana5const, then the
developments of theud&, ub& states in the ket vectorsu1&, u2&
have constant coefficients and theS transformation is time
independent. In this case the solution of the Schro¨dinger
equation is simple and the development coefficients of
state vectoruFdbc&,

uFdbc~ t !&5Cd~ t !ud&1Cb~ t !ub&1Cc~ t !uc&, ~18!

are Cd(t)5Cd(0), Cb(t)5Cb(0)cos@u(t)/2#, and Cc(t)
5 iCb(0)sin@u(t)/2#, whereCd(0), Cb(0) are the initial val-
ues of the probability amplitudes andu(t)52*2`

t B(t)dt is
the pulse area of the bichromatic field. This case correspo
to so-called matched pulses@41,42#.

If there is a time shiftT between the pulsesE1(t) and
E2(t), one can again introduce the bright and dark sta
employing the time-dependentS transformation. Then the
evolution of the state vector of the atom in thedbc basis is
given by

uFdbc~ t !&5S~ t !uF~ t !&, ~19!
2-3



n

-

-

re
ou

e

s,
or
he

,

the

A

ed

ap-
vel

is is
the

s

ent

state
vel

ua-
rix

ur
tities.

to
in-
m
dy

to

t be-

e
f the

ver,

ve

R. N. SHAKHMURATOV AND J. ODEURS PHYSICAL REVIEW A68, 043802 ~2003!
whereuF(t)& is the state vector in the interaction represe
tation. Taking the time derivative of Eq.~19!, one can obtain
the Schro¨dinger equation

duFdbc&
dt

52 i H̄dbcuFdbc& ~20!

with the modified Hamiltonian

H̄dbc5Hdbc1 iṠS21, ~21!

whereHdbc is defined in Eq.~15! and

iṠS215 i ȧ@ P̂bde
2 i (w11w2)2 P̂dbe

i (w11w2)#. ~22!

The first partHdbc of the modified Hamiltonian induces tran
sitions between theub& and uc& states with the ratexR

52B, and the second partiṠS21, induces transitions be
tween statesud& and ub& with the rate 2ȧ ~see Fig. 2!.

The development coefficients of the state vectoruFdbc&
satisfy the equations

Żd52ȧYb , ~23!

Ẏb52BXc1ȧZd , ~24!

Ẋc5BYb , ~25!

where the substitutionZd5Cdexp(2iw2), Yb5Cbexp(iw1),
Xc52 iCcexp(iw1) is made to deal with real numbers. He
the phasesw1 andw2 are assumed to be constant through
the excitation process. Equations~23!–~25! remarkably co-
incide with the Bloch equations for an abstract two-lev
systemg-e excited by a field with frequencyv slightly tuned
from resonance (g and e being ground and excited state
respectively! @2#. Expressed in terms of the Bloch-vect
components, which are the following combinations of t

FIG. 2. The bichromatic excitation scheme of the three-le
atom in thedbc basis if the state developments ofud& and ub&
change in time. The coupling parameter of statesd andb is ȧ, the
derivative of the mixing angle~see the text!.
04380
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density matrix of the two-level systemr: u2 iv
52rgeexp(2ivt) andw5rgg2ree, these equations are

ẇ52xv, ~26!

v̇52Du1xw, ~27!

u̇5Dv. ~28!

Here D is the detuning from resonance andx is the Rabi
frequency. If one makes the substitutionw5Zd , v5Yb , u

5Xc for the variables andx5ȧ, D5B for the parameters
both sets of equations are identical.

The coincidence of the equations enables us to use
adiabatic-following approach developed by Crisp@3# to de-
scribe nonresonant excitation of the two-level system.
similar approach was applied by Laine and Stenholm~LS!
@29# based on the ideas of the adiabatic following develop
by Dykhne @31,32# for the two-level system with time-
dependent splitting and coupling parameters. In the LS
proach@29#, the instantaneous eigenstates of the three-le
atom excited by two resonant pulses are found. This bas
called the adiabatic representation. The transformation to
instantaneous basis@see Eq. ~7!# and the instantaneou
Hamiltonian diagonal in this basis@see Eq.~6!# are time
dependent. Therefore, the adiabatic states couplingiQ̇Q21

also appears in their consideration. In spite of being differ
in structure, our Schro¨dinger equation in the changingdbc
basis and the LS equation in the instantaneous eigen
basis can both be reduced to the equation for the two-le
system. However, our Eqs.~23!–~25! are in a one to one
correspondence with the Bloch equations while the LS eq
tions match the equations for the two-level density mat
elementsreg , rge , andrgg2ree. Although this difference
is not crucial, it brings, however, some convenience in o
case, because our equations are expressed for real quan

IV. ADIABATIC SOLUTION

The adiabatic-following approximation can be applied
the consideration of STIRAP and electromagnetically
duced transparency~EIT! because in both cases the ato
follows the dark, noncoupled state. A first attempt to stu
adiabatic following in EIT was undertaken in Ref.@2#. In this
section we consider the application of this approach
STIRAP.

The stimulated Raman adiabatic passage assumes tha
fore the application of theE1(t) andE2(t) pulses the atom is
in state u1&. The duration of the excitation as well as th
pulse sequence must be chosen such that at the end o
pulse train the atom is left in stateu2&. It is expected that
during this process the atom stays in the dark state. Howe
this state itself changes since the coefficients cosa and sina
of the development of the dark state in the vectorsu1& and
u2& @see Eq.~12!# change in time. The parametera rises
from zero top/2, so ud&5u1& before the excitation andud&
52e2 i (w12w2)u2& after it. Since tana5B1 /B2, the condi-
tion imposed ona means that theB1(t) pulse must be de-

l

2-4
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layed with respect to theB2(t) pulse. We have to emphasiz
that the phase of the final state 2 after the pulse train
related to the phase of the initial state 1 according to
~12!.

If we choose two identical, bell-shaped, delayed pul
having a hyperbolic secant shape, then the interaction c
stants evolve in time as follows:

Bn~ t !5B0 sech@r ~ t2tn!#, ~29!

wheren51 or 2, tn is the time when then-pulse has maxi-
mum amplitude, andr is the rise and fall rate of the puls
edges. The mixing parametera(t) increases monotonously
the condition t1.t2 is satisfied. This pulse sequence w
considered by Laine and Stenholm in Ref.@29#.

Let us analyze the constraints imposed on the parame
r, t1, andt2 to havea changed from zero top/2. The mixing
angle a varies according to the relation tana(t)
5B1(t)/B2(t). For the pulse sequence specified above,
explicit form of this relation is

tana~ t !5
11Dtanh@r ~ t2t0!#

12Dtanh@r ~ t2t0!#
, ~30!

whereD5tanh(rT/2), t05(t11t2)/2 is the mean time of the
maxima, andT5t12t2 is the time interval between th
maxima of the pulses. Suppose that, initially, the atom is
the ground state 1 and we start the atom evolution from
initial mixing parametera in(2`) satisfying the condition
tan(a in)50.01, which means that essential
Cd(2`)e2 iw25cos(ain)'1 and Cb(2`)eiw15sin(ain)
51022. We stop the atom evolution at tan@a f in(1`)#
5100. So, if the final state coincides with state 2 thenCd
(1`)e2 iw25sin(afin)'1 and Cb(2`)eiw152cos(afin)5
21022, where the phase change of state 2 is taken
account. From Eq.~30! it follows that tana(6`)5(1
6D)/(17D) and at the condition imposed ona in anda f in
we haverT54.6. Since stateb is strongly coupled with state
c @the coupling isB(t)], we have to keep the initial popula
tion of stateb as small as possible@Cb(2`) must be close to
zero#. Otherwise, the probability amplitudeCb(2`), if not
infinitely small, will be spread among theb andc states by
the pulse train and population transfer 1→2 will be imper-
fect. Therefore, on the one hand, the initial value of the m
ing parametera must be as small as possible to have co
plete population transfer 1→2. For a small initial mixing
anglea in , the relation betweena in andT becomes simple
i.e., tanh(rT/2)'122a in . The smaller the initial value o
the mixing anglea, the larger the productrT or the pulse
separationT is. On the other hand, if the distance betwe
the pulses is large, the value of the couplingB(t) at t0 be-
comes small: the larger the distance, the smaller the c
pling. However, the adiabatic following demands a lar
couplingB at t0. Therefore, one has to choose the optimu
value of the pulse spacing satisfying two conditions simu
neously. The distance between pulses is to be as larg
possible to have a small value ofa in and, at the same time
B(t0) should be kept as large as possible. Below we g
some arguments on how to find this optimum value.
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If rT→0, then according to Eq.~30! we havea→p/4
throughout the excitation and the dark state does not cha
in time. It has the probability amplitudeuCdu5A2/2. Stateb,
having the initial populationuCb(2`)u251/2, is depopu-
lated with the rateB „Cb(t)5Cb(2`)cos@u(t)/2#, Cc(t)
5 iCb(2`)sin@u(t)/2#, see the definition ofu(t) in Sec. III….
For small values ofrT, the interval of thea change is small.
For example, if rT50.5, then cos(ain)50.855, sin(ain)
50.519 and cos(afin)50.519, sin(afin)50.855, which corre-
sponds to the change ofa from a in50.174p to a f in
50.326p during the pulse train. In this case only the fractio
(0.855)250.731 of the atomic population is transferred
state u2& if the atom adiabatically follows the dark stat
Another fraction (0.515)250.269 of the atomic population
participates in the process of excitation and deexcitation
tween statesb andc. This means that the population transf
via the change of the amplitude of the dark state compon
is possible only if the time interval between the pulses
ceeds a certain value. We choose the valuerT55 since in
this case the initial population of stateb is 4.531025 so that
we neglect this population in our further consideration.

Figure 3~a! shows the pulse train withrT55 along with
the change of the mixing parametera during the excitation.
On the same plot the dependence of the derivative

ȧ~ t !5
rD sech2@r ~ t2t0!#

11D2tanh2@r ~ t2t0!#
~31!

FIG. 3. ~a! The pulse train with corresponding interaction p
rametersB1(t) and B2(t) evolving in time ~bold lines!. They are
normalized by the maximum valueB0. The delay between pulses i
r t55, t050. The time is scaled in units ofr. The time dependence
of the mixing parametera is shown by the thin line. The dashe

line shows the dependence of the mixing parameter derivativȧ
normalized byr. In ~b! the time dependence of the bichromatic Ra
frequencyx/25B(t) ~solid line! and the mixing parameter deriva
tive ~dashed line! are shown for comparison.
2-5
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is shown. This derivative takes a maximum valueȧmax(t0)
5rD at t5t0. For example, if rT55, then ȧmax(t0)
50.987r . In Fig. 3~b! we compare the time evolution of th
Rabi frequencyxR/25B(t)5AB1

2(t)1B2
2(t) with the evolu-

tion of the derivativeȧ(t).
The Rabi frequency determines the transition rate

tween statesb and c, whereas the derivative of the sta
mixing anglea specifies the transition rate between stated

andb @see Eqs.~23!–~25!#. Since att5t0 the parameterȧ(t)
takes its maximum value andB(t) has its minimum, the
adiabatic-following condition isB(t0)@ȧ(t0) or, explicitly,
A2B0@rsinh(rT/2). Figure 4 ~solid lines! shows the time
dependence of the amplitudesXc @plot ~a!#, Yb @plot ~b!#, and

FIG. 4. ~a! The evolution of the amplitudesXc @plot ~a!#, Yb

@plot ~b!#, Zd @plot ~c!# for a pulse trainB1(t), B2(t) with the
parametersB0542.8r , t152.5/r , t2522.5/r . Solid lines are the
numerical solution of Eqs.~23!–~25!. Dashed lines are analytica
approximations given by the first two terms of Eqs.~36! and ~37!
and the first two terms in each of the parentheses of Eq.~45!.
04380
-

Zd @plot ~c!# obtained by the numerical solution of Eq
~23!–~25! for the pulse train witht152.5/r , t050, t25
22.5/r , T55/r , B0542.8r . The relation betweenB0 and r

corresponds to the ratioB(t0)/ȧ(t)510.
To estimate the probability amplitudes of thedbc states

during the excitation and find the borders within which t
adiabatic following of the dark state takes place, we follo
the theory developed by Crisp@3# for the case when the
conditionB(t0)@ȧ(t) is well satisfied. However, in our cas
both B(t) and ȧ(t) are time dependent, whereas Crisp co
sidered the case when onlyȧ(t) is time dependent andB is
constant. Therefore, we have to modify the method of Cri

If B(t)@ȧ(t) at any time, we can use the expansion in
power series of the parameterȧ(t) for the solution of Eqs.
~23!–~25!. Then the first term of the expansion is found b
settingZd(t)51 in Eqs.~24! and~25! and then solving them
The solution is

Yb~ t !5E
2`

t

cosF E
t

t

B~t1!dt1G ȧ~t!dt, ~32!

Xc~ t !5E
2`

t

sinF E
t

t

B~t1!dt1G ȧ~t!dt. ~33!

This is the part of the general solution that is linear inȧ(t).
Zd satisfies the equation

Zd~ t !512E
2`

t

ȧ~t! Yb~t!dt, ~34!

which is the formal solution of Eq.~23!. Therefore, the
change of the dark state amplitudeZd is nonlinear inȧ(t)
and can be presented in products ofȧ ’s. The first contribu-
tion of ȧ(t) to Zd can be found as the square ofȧ, i.e., in the
second term of the expansion. Substituting the correctedZd
into Eqs.~24! and ~25! ~instead ofZd51), one can find the
next term in the expansion ofYb andXc . Then the substitu-
tion of the thus foundYb into Eq.~34! gives the next term of
the expansion ofZd , etc. In this paper we consider only th
linear corrections toYb andXc . Figures 4~a!–4~c! show the
comparison of the numerical solution of Eqs.~23!–~25! with
Eqs.~32!–~34!. They are indistinguishable and shown by t
same solid lines.

We find the adiabatic and nonadiabatic components of
analytical solution by applying two different procedures. T
adiabatic components of Eqs.~32!–~33! are calculated by
integrating them by parts. For example, the first step of
Xc(t) calculation is

Xc~ t !5E
2`

t ȧ~t!

B~t!
dS cosF E

t

t

B~t1!dt1G D
5

ȧ

B
2E

2`

t

cosF E
t

t

B~t1!dt1G S ȧ

B
D

t

8
dt, ~35!
2-6
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where (ȧ/B)t8 is the derivative with respect tot. Repeating
these steps several times, we obtain

Yb~ t !5a22a41a62a81•••, ~36!

Xc~ t !5a12a31a52a71•••, ~37!

wherean5ȧn21 /B, a05a, and it is assumed thatȧ(t) is a
bell-shaped function with first and higher derivatives eq
to zero att52`. To find a similar expansion of Eq.~34!,
we introduce the functionV(t)5*0

t B(t)dt. Then the equa-
tion for Zd(t) takes the form

Zd~ t !512Ac~ t !2As~ t !, ~38!

with

Ac~ t !5E
2`

t

dt1ȧ~t1!cosV~t1!E
2`

t1
dt2ȧ~t2!cosV~t2!,

~39!

As~ t !5E
2`

t

dt1ȧ~t1!sinV~t1!E
2`

t1
dt2ȧ~t2!sinV~t2!.

~40!

The functionsAc(t) andAs(t) are reduced to the single in
tegrals

Ac~ t !5
1

2 S E
2`

t

dt1ȧ~t1!cosV~t1! D 2

, ~41!

As~ t !5
1

2 S E
2`

t

dt1ȧ~t1!sinV~t1! D 2

. ~42!

This can be done since they have the structure

Ac,s~ t !5E
2`

t

dt ḟ c,s~t! f c,s~t!5
1

2
f c,s

2 ~ t !, ~43!

where f c,s(t) is

f c,s~ t !5E
2`

t

dtȧ~t!H cosV~t!

sinV~t!
J , ~44!

and the indexc stands for the cosine function and indexs for
sine. Integrating these integrals by parts, we obtain

Zd~ t !512 1
2 @~a12a31a51••• !2

1~a22a41a61••• !2#. ~45!

Equations~36!, ~37!, and~45! give the probability ampli-
tudes of the dark, bright, and common states. They coinc
with those one obtains if the successive transformati
SnSn21•••S1S to the new set ofdnbncn states are per
formed, as was done by Fleischhauer and co-workers in
@30#, i.e., uFn&5SnSn21•••S1SuF0&, where uF0&5C1u1&
1C2u2&1C3u3& is the initial state@C1(2`)51, C2(2`)
5C3(2`)50]. The transformationS is defined in Eq.~17!
and the other transformations (Si) are specified below. Thes
04380
l

e
s

f.

transformations have a simple meaning. Since thed-b and
b-c transitions are excited simultaneously by theȧ and B
‘‘fields,’’ one can make anS1 transformation to the new se
of dark, bright, and common states,d1 , b1, andc1, whered1
is a particular mixture of the formerd and c states,b1 is a
state orthogonal to stated1, and c1 coincides with stateb.
The new mixing angle isa15arc tan(ȧ/B). Repeating this
proceduren times, one can get our solution if the condition

arc tan(ȧn /B)'ȧn /B andAȧn
21B2'B are applied at each

step.
Figures 4~a–c! show the comparison of the numerical s

lution ~solid lines! with the expansions given by Eqs.~36!,
~37!, and ~45! ~dashed lines!. The parameters of the puls
train are specified above and they are the same as in F
3~a,b!. Only the first two terms of the expansions are tak
into account for each plot, which is justified becauseua1u
@ua2u@ua3u@ua4u@•••. For the Xc and Yb components,
the maximum absolute values of the second terms of
expansions~i.e., the adiabatic terms! are already comparabl
with the amplitude of the oscillations~i.e., the nonadiabatic
contribution, coming from the summation of an infinite num
ber of the expansion terms!. Of course, nonadiabatic oscil-
lations are not described by the main part of the adiaba
solution presented by a few leading terms of the expans.

Concluding this section, we refer to a particular ca
when B(t) and ȧ have the same time dependence. This
again the case of matched pulses~see the beginning of Sec
III !, however in thedbc basis. Fleischhauer and co-worker
Ref. @30#, classify this case as second-order matched pul
The solution of Eqs.~23!–~25! is trivial since these equation
in terms of a new variablez5*2`

t F(t)dt can be reduced to
a set of differential equations with constant coefficien
where F(t)5B(t)/B(t0)5ȧ(t)/ȧ(t0). For the first time,
this analytically solvable model was considered by Vitan
and Stenholm in Ref.@43#. We would classify the case a
nonadiabatic, however in the second-orderd1b1c1 basis,
where the transition takes place. If the generalized pulse
is properly chosen in this basis, the population transfer
tween the diabatic states 1 and 2 is complete. For these
ticular pulse areas, there are no nonadiabatic correcti
which is typical for the resonant nonadiabatic transitions.

V. NONADIABATIC CORRECTIONS

All adiabatic terms tend to zero att→1`, which secures
for the three-level atom the adiabatic following of a partic
lar state coinciding with stated at t→1`. However, as it
will be shown below, if we sum all these infinitely sma
terms, the result will be finite. The net value of the sm
contributions of each adiabatic term is a nonadiabatic con
bution, which specifies the excited probability amplitude l
by the pulse train. To estimate this value, we rewrite
solution, Eqs.~32! and ~33!, as follows:

Yb~ t !5 f c~ t !cosV~ t !1 f s~ t !sinV~ t !, ~46!

Xc~ t !5 f c~ t !sinV~ t !2 f s~ t !cosV~ t !. ~47!
2-7
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When t→1`, the function f c(t) tends to a finite value
whereasf s(t) tends to zero since in the corresponding in
grals @see Eq.~44!# ȧ(t) is an even function of time and
V(t) is an odd function. As a result, at the end of the pu
train Yb(t) and Xc(t) oscillate as cosV(t) and sinV(t), re-
spectively, and they have constant amplitudesf c(1`). The
value of f c(1`) defines the probability amplitude left by th
pulse sequence in statesb andc.

The excitation process is adiabatic if the nonadiabatic p
f c(1`) is small. If the nonadiabatic part becomes comp
rable with the main terma1(t0) of the adiabatic expansion
then we cannot describe the excitation process as adiab
Figure 5~a! shows the numerically found dependences of
a1(t0) term ~dashed line! and the nonadiabatic contributio
f c(1`) ~solid line! on the maximum amplitudeB0 of the
pulses for the pulse train withTr55. The adiabatic and
nonadiabatic parts of the solution become comparable ifB0
,15r .

The semilogarithmic plot off c(1`) versusB0, Figure
5~a!, clearly demonstrates that the nonadiabatic part
creases exponentially with the increase ofB0. Laine and
Stenholm @29# also found an exponential decrease of t
nonadiabatic deviation from the ideal population trans
with increase ofB0T (B0 is the amplitude of each pulse a

FIG. 5. ~a! Comparison of the dependence of the adiaba
a1(t0) ~dashed line! and nonadiabaticf c(1`) ~solid line! parts of
the analytical solution of Eqs.~23!–~25! on the maximum pulse
amplitudesB0. In ~b! the comparison of the nonadiabatic part, n
merically calculated using the actual Rabi frequencyB(t) ~solid
line! and its parabolic approximation, Eq.~53! ~dashed line!, are
shown. f c(1`) is the true nonadiabatic part andf cA(1`) is an
approximation.
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the maximum andT is the interpulse distance, fixed in ou
case by the relationTr55, so B0 /r is a variable!. They
followed the calculation procedure proposed by Davis a
Pechukas@33,34# employing the Dykhne model@31,32#. Ac-
cording to Refs.@31–34# one has to find the zeros of th
functionB(t) in a complex planet and take the one,tc , that
is nearest to the real axis. Then the population of the d
state after the pulse train is

ud~1`!u2}expF22 ImE
t0

tc
B~ t !dtG . ~48!

We propose another calculation procedure of the nona
batic deviation. It will be shown that there are two nonad
batic contributions, one coming from the Rabi frequen
B(t) and another from the mixing parameter derivativeȧ(t).
Only the cooperative contribution of both determines the
nonadiabatic correction, while the Pechukas-Dykhne the
taking into account only theB(t) change, underestimates th
nonadiabatic correction.

To show this, we expressf c(t) via the Fourier transform
of ȧ(t):

a~v!5E
2`

1`

dtȧ~t! eivt, ~49!

f c~ t !5E
2`

t

dtcosV~t!
1

2pE2`

1`

dv a~v!e2 ivt. ~50!

Let us consider first the case if the Raman Rabi frequenc
constant, i.e.,B(t)5b05const. ThenV(t)5b0t and

f c~1`!5E
2`

1`

dv 1
2 @d~v1b0!1d~v2b0!#a~v!5a~b0!,

~51!

whered(x) is the Dirac delta function anda(v) is an even
function of v. The Fourier transform of the mixing param
eter derivative for a secant hyperbolic pulse train can
found, for example in Ref.@44#. This function is

a~v!5p

sinhH v

2r
arc tan@sinh~rT !#J
sinhS pv

2r D . ~52!

If we takeb05B(t0)5A2B0 sech(rT/2), which is the value
of the Raman Rabi frequency at timet5t0 when ȧ(t) takes
its maximum, then for our numerical example specifi
above we obtain the amplitude of the nonadiabatic contri
tion f c(1`)51.26331023. This value is four times smalle
than the amplitude of the nonadiabatic oscillations on
right tail of the functionsXc(t) and Yb(t) ~which is ;5
31023), shown in Figs. 4~a,b!, i.e., four times smaller than
the nonadiabatic contribution given by the numerical cal
lations of the solution of Eqs.~23!–~25!.

To explain this difference and clarify the origin of th
nonadiabatic contribution, we recall the interaction Ham

c

2-8
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ADIABATIC-FOLLOWING CRITERION, ESTIMATION . . . PHYSICAL REVIEW A68, 043802 ~2003!
tonian in thedbc basis, Eq.~21! @see also Eqs.~15! and
~22!#. This Hamiltonian resembles the interaction represen
tion Hamiltonian of the three-level system excited by tw
resonant ‘‘fields’’ with amplitudesB(t) andȧ(t) ~see Fig. 2!.
Assume, first, that the couplingsB(t) and ȧ(t) are absent
and the system is in stated. Then, statesd, b, andc can be
considered as having the same energies in the interac
representation. Switching on the couplingȧ(t)5aQ(t)
@hereQ(t) is the Heaviside step function anda is an arbi-
trary constant# mixes statesd andb or in other words induces
the transitiond→b. If the B field is also present and it
amplitudeb0 is constant, i.e.,B(t)5b0Q(t), this B field
mixes statesb andc producing a new couple of statesb8 and
c8, which are the statesu1̄& and u3̄& @see Eqs.~8! and ~10!#.
This couple is split by the energy gap 2b052B
52AB1

21B2
2 @see Eq.~6!#. This is the so-called Autler-

Townes splitting@45# or quasienergy splitting@39,40#. As-
sume that without theB field theȧ field is in resonance with
levelsd andb. The switching on of theB field mixes levels
b andc, producing an additional splitting. Levelb moves on
the frequencyB out of resonance with theȧ field. If the ȧ
field had ad spectrum~in the case specified above it has on
a zero-frequency component!, then it would not interact with
the atom. However, because of the finite spectral width of
ȧ field, its spectrum has a component with frequencyB on
the far tail which is in resonance with the new position
level b. Only this spectral component excites the atom if t
B field is on. With increase of theB field, the component of
the ȧ field spectrum, which interacts with the atom, shi
further to the tail of the spectrum. If theB field amplitude
changes in time, several spectral components of theȧ field
interact with the atom since at each instant of time so
particular spectral component is in resonance. The proce
the sweeping of the splittingB(t) along the tail of theȧ field
spectrum involves a broader band of theȧ spectrum in the
interaction. To find the net atom excitation in this case,
have to calculate the integralf c(1`) where the change o
B(t) is taken into account. This is done in the following tw
sections.

VI. NONADIABATIC TRANSITION AS A QUANTUM
JUMP: BASIC ARGUMENTS

If the Raman Rabi frequency changes during the deve
ment of the mixing parameterȧ(t), those Rabi frequencie
sweeping the frequency bandwidth ofȧ(t) contribute to the
nonadiabatic corrections. To take this process into acco
we have to convolute the spectral content of both the mix
parameter and the Raman Rabi frequency. In general,
calculation is nontrivial. For the case of secant hyperbo
pulses@see the time development of the pulses, the Ram
Rabi frequency and the mixing parameter in Figs. 3~a,b!#, it
is possible to simplify the problem. SinceB(t) has a mini-
mum value ofb0 at t0 whereȧ(t) has its maximum, only the
spectral components ofa(v) with uvu>b0 contribute. Be-
cause time and frequency domains are inversely pro
04380
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tional, the main part of the nonadiabatic contribution appe
in a short time interval aroundt0, corresponding to the fa
tail of the spectral distributiona(v). This means that the
time scale of the nonadiabatic change is shorter than 1b0,
while, according to the condition imposed on the paramet
the time variation ofȧ(t) is much longer than the Rabi os
cillation period;1/b0. Thus, a nonadiabatic transition take
place almost jumpwise compared to the time scale of
variation ofȧ(t). Due to this circumstance, we can simpli
the calculation of the integralf c(1`) by expandingB(t) in
a power series oft near t0 and retaining only the first two
terms of the expansion:

B~ t !'b0@11g~ t2t0!2#, ~53!

whereg5r 2@3tanh2(rT/2)21#/2. We verified this approxi-
mation by comparing numerically two integralsf c(1`) and
f cA(1`) calculated withB(t) and its approximated value
Eq. ~53!, respectively. The comparison is shown in Fig. 5~b!,
wheref cA(`) ~dashed line! is the approximation. The depen
dences of both integrals on the amplitudeB0 are indistin-
guishable.

The approximation ofB(t) by a parabolic function helps
to expressf c(1`) via the Airy integral. Further, to simplify
the notations we sett050. Then the phaseV(t) is

V~ t !5b0S t1
g

3
t3D , ~54!

and f cA(1`) is expressed as

f cA~1`!5
1

2pE2`

1`

dtcosFb0S t1
g

3
t 3D G

3E
2`

1`

dv a~v!e2 ivt. ~55!

Evaluating the time integral in Eq.~55!, we obtain

f cA~1`!5gE
2`

1`

dv a~v!Ai @g~b01v!#, ~56!

where Ai(x) is the Airy integral andg51/A3 gb0. We derived
this equation assuming thata(v) is an even function. The
Airy integral has a different dependence for positive a
negative arguments~see, for example, Ref.@46#!. If b01v
>0, we have

gAi @g~b01v!#5
1

3
Ab01v

3gb0
H I 21/3F2

3
A~b01v!3

gb0
G

2I 1/3F2

3
A~b01v!3

gb0
G J , ~57!

where I 61/3(x) is the modified Bessel function of the orde
of 6 1

3 . If the argument is negative,b01v,0, then
2-9
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gAi @g~b01v!#5
1

3
Aub01vu

3gb0
H J21/3S 2

3
Aub01vu3

gb0
D

1J1/3S 2

3
Aub01vu3

gb0
D J , ~58!

whereJ61/3(x) is the Bessel function of the order of6 1
3 .

For large arguments both functions have a simple asymp
behavior

gAi @g~b01v!#'

expF2
2

3
A~b01v!3

gb0
G

2Ap@gb0~b01v!#1/4
, ~59!

if b01v is positive, and

gAi @g~b01v!#'

cosS 2

3
Aub01vu3

gb0
2

p

4 D
Ap~gb0ub01vu!1/4

, ~60!

if b01v is negative. If the argument is zero,b01v50, this
function is

gAi @g~b01v!#uv52b0
5

GS 1

3D
2pA3 31/2gb0

, ~61!

whereG( 1
3 )'2.679 is the Gamma function.

VII. RABI CHIRPING ONLY

If the ȧ field does not depend on time and has a va
ȧ(t)5ȧ(t0), then a(v)52pȧ(t0)d(v)/r and the main
contribution to the nonadiabatic part is given by the A
integral

f cA~1`!52pgAi ~gb0!ȧ~ t0!/r , ~62!

which has the explicit form

f cA~1`!5tanhS rT

2 DA p

b0Ag
expS 2

2

3

b0

Ag
D , ~63!

expressed via approximation~59!. In this section we show
how the approximation, specified above, is related to
Dykhne-Pechukas model@31–34#.

For largeb0, the Airy integral can be calculated by th
saddle-point methodsas shown, for example, in Ref.@47#.
First, the stationary or saddle pointts is found where the
phaseV(t) becomes stationary:V̇(ts)50. In this point, the
Raman Rabi frequency becomes zero sinceV̇(t)5B(t). For
the case of the positive argument of the Airy integral, t
saddle point is in the complex plane andts has only an
imaginary component@Re(ts)50#, i.e.,
04380
tic
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e

ts52
i

Ag
52

i

r
A 2

3tanh2~rT/2!21
. ~64!

In fact, there are two saddle points:ts56 i /Ag. The negative
sign is chosen to avoid exponentially increasing numbe
Then the method of stationary phase~one of the saddle-poin
methods! is applied. This method is applicable to integrals
the form

I ~b0!5E
C
eib0f (z)dz, ~65!

whereb0 is large andC is a path in the complex plane suc
that the ends of the path do not contribute significantly to
integral. The idea of the method is to deform the contouC
so that the region of most of the contribution toI (b0) is
compressed into as short a space as possible. This com
sion occurs at the saddle point.

Since the main contribution to this integral comes fro
the vicinity of the saddle point, one may conclude that in t
adiabatic limit the atom abruptly makes a nonadiabatic tr
sition between adiabatic states.

The Pechukas-Dykhne@33,34# recipe of the calculation of
the nonadiabatic contribution is similar to the method d
scribed above since the definitions of the saddle pointts and
the crossing pointtc , where B(tc) is zero, are the same
However, in our consideration we substituted the express
for the Raman Rabi frequency

B~ t !52B0

A11cosh~rT !cosh~2rt !

cosh~rT !1cosh~2rt !
, ~66!

by the expansion near timet0, Eq. ~53!. Therefore, we have
only two saddle or crossing points, Eq.~64!, whereas Eq.
~66! has an infinite number of crossing points in the comp
plane. According to Pechukas, one has to take the cros
point that is nearest to the real axis. For the secant hyperb
pulse train, this point, as shown by Stenholm@29#, has only
an imaginary part Im(tc), i.e.,

tc5
i

r
tan21FcothS rT

2 D G . ~67!

Reformulating the Dykhne approach@31,32# we conclude
that if there are no spectral components ofa(v) matching
the frequency gap between the quasienergy levels split by
B field, the ȧ field comes to resonance with thed-c transi-
tion at the imaginary timetc whenB is zero.

This approach disregards the spectral content ofȧ(t). If
we takeȧ(t)5ȧ(t0) throughout the excitation, this metho
gives also an underestimated value of the nonadiabatic
tribution. For our numerical example, Eq.~63! gives f cA
(1`)57.13131024, which is seven times smaller than th
value of the nonadiabatic contribution given by the nume
cal calculation of the Schro¨dinger Equations~23!–~25!. Fig-
ure 6~a! shows the comparison of the numerically calculat
nonadiabatic componentf c(1`) ~solid line!, Eq. ~44!, with
that calculated for the case if the time dependence of
2-10
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ȧ(t) field is neglected~dashed line!. The latter is given by
Eq. ~63!. The plots obviously demonstrate that this appro
mation underestimates the nonadiabatic contribution.

VIII. COOPERATIVE CONTRIBUTION OF RABI
CHIRPING AND THE TIME-DEPENDENT COUPLING,

THE APPLICATION TO STIRAP BY SECANT
HYPERBOLIC PULSES

In previous sections we showed that the contribution
the nonadiabatic corrections of the Rabi frequency chirp

FIG. 6. ~a! Comparison of the dependencies of the nonadiab
contributionsf c(1`) ~solid line! and f cA(1`) ~dashed line! vs the
pulse amplitudeB0. The first is calculated with and the secon
without taking into account the time dependence of the mixing

rameter derivativeȧ(t). ~b! The plots of the true,f c(1`), and the
approximate,f cA(1`), nonadiabatic contributions vsB0, where
f cA(1`) ~long dashed line! is calculated taking into account th

time dependence ofȧ(t) using the approximation described in th
text. ~c! The same plots as in~b!, exceptf cA(1`) ~dot dashed line!,
where the correction factorK is dropped~see the text!.
04380
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or the time dependence of theȧ(t) field, being taken into
account separately, was not enough to have the right no
diabatic correction for STIRAP induced by secant hyperbo
pulses. Only both processes taken together, i.e., the Rab
quency B(t) chirping and the participation of all spectra
componentsa(v) of the ȧ(t) field engaged by this chirping
to excite the atom, give the right value of the nonadiaba
component. This value is given by Eq.~56!. To calculate
analytically the convolution integral of the two spectra,a(v)
and the Airy integral describing the process of the Rabi f
quency sweeping, we make two approximations. First,
take the approximation of the Airy integral, given by E
~59! in the frequency domainv>2b0. This gives a small
overestimation of the integrand near2b0. For this reason,
we start the integration from this value, not from2`. The
oscillating part of the Airy integral forv,2b0 gives a
much smaller contribution than the main part, which is
cated between2b0 and zero, (2b0,0). So, neglecting the
part (2`,2b0), we compensate the overestimation ne
2b0. Second, we approximate the spectruma(v) in the
domain (2b0,0) by

a~v!5pexp~2Ruvu!, ~68!

where R5„p2arc tan@sinh(rT)#…/2r'p/4r . This approxi-
mation also gives a slight overestimation of the integra
nearv;0. To compensate this, we stop the integration
v50. The integrand has a maximum betweenv52b0 and
v50. To calculate the contribution of this part, we use t
modified method of the saddle-point method. Usually, in
method of the saddle point, the integration near the poin
extended to6`. In our case, to avoid the overestimation
the integrand we limit the integration by finite boundarie
The calculation of these boundaries for the deformed integ
tion contourC is simple because the deformedC stays on the
real axis. The result of the integration is

f cA~1`!5pKexpF2b0RS 12
1

3
gR2D G , ~69!

whereK is a correction factor, which takes into account t
finite integration boundaries to avoid the overestimation
the integral. Explicitly, we have

K5
1

2
@erf~hmax!1erf~hmin!#, ~70!

hmax5Ab0F 2

3Ag
2S 2

3D 4/3

R1
1

3
R3gG , ~71!

hmin5Ab0gR3

3
, ~72!

and erf(x) is the error function. Figure 6~b! shows the com-
parison of the true nonadiabatic contributionf c(1`) ~solid
line! with our approximate calculation off cA(1`), given by
Eq. ~69! ~dashed line!. Figure 6~c! compares the same depe
dencies if the correction factor isK51 ~dash dotted line!.
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For our numerical example specified above, the appro
mated value of the nonadiabatic contribution isf cA(1`)
55.82231023. As was discussed above, this contributi
appears in a very short time interval aroundt0. Therefore, we
can approximate the solution of the Schro¨dinger equations
~23!–~25! by

YbA~ t !'a22a41Q~ t2t0! f cA~1`!cosV~ t !, ~73!

XcA~ t !'a12a31Q~ t2t0! f cA~1`!sinV~ t !, ~74!

where the indexA stands for the approximation,Q(t2t0) is
the Heaviside step function,V(t)5*0

t B(t)dt, andB has its
exact value@not approximation~53!#. Figures 7~a,b! show
the comparison of the numerically found solutions of t
Schrödinger equation~solid lines! with approximations~73!
and ~74! ~dashed lines!. The fit of the solutions is striking
This means that the nonadiabatic contribution really appe
in a quite short time range aroundt0.

FIG. 7. Numerical solution of the Schro¨dinger equation~solid
lines! for the amplitudesXc(t) @plot ~a!#, Yb(t) @plot ~b!# and the
approximation given by Eqs.~73! and ~74! ~dashed lines! for the
amplitudesXcA(t) @plot ~a!#, YbA(t) @plot ~b!#.
04380
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IX. CONCLUSION

The introduction of the basis of the dark and bright sta
facilitates the understanding of the physical processes in
three-level atom excited by a bichromatic field. The dynam
evolution of the atom among the dark, bright, and comm
states is as simple as the dynamics of the two-level a
excited by one field with Rabi frequencyB. This is because
the evolution of the three-level atom can be effectively
duced to the evolution between two states, i.e., the bright
common states. The reduction of the three-level model to
two-level one allows also the application of the Bloch-vec
model and Bloch equations for the treatment of the thr
level atom excitation by the bichromatic field.

This quite simple algebra is applicable for the case
matched pulses. If the pulses do not match in shape and
different time dependencies, one can also reduce the con
eration to the Bloch-vector model since there is a similar
between the Schro¨dinger equations for the probability ampl
tudes of the dark, bright, and common states and the Bl
equation for an effective two-level system. The effective d
tuning of the two-level system from resonance isB(t) and
the Rabi frequency isȧ(t), which is the derivative of the
mixing angle in the dark state development in states of
reciprocal three-level system. This similarity allows a simp
interpretation of the physical processes in the three-level
tem in case of adiabatic following of the dark state by use
the Crisp theory@3#.

We developed an approximation describing the adiab
interaction of the three-level atom with two resonant puls
The method of estimation of the nonadiabatic correction
presented. It is applied to the case of two secant hyperb
pulses. The adiabatic part of the solution describes the e
tation and deexcitation processes of the three-level atom.
time dependence of the adiabatic part is smooth and follo
the derivatives of the mixing anglea(t). Both parts, excita-
tion and deexcitation, are symmetric in time with respect
t50 whereȧ(t) takes its maximum and they exactly com
pensate each other. In this respect the adiabatic follow
resembles the solitonlike interaction with the field. The non
diabatic part appears in a short time interval in the vicinity
the maximum of the mixing parameterȧ(t). It contains the
information about the excitation left in the atom by th
pulses because of the imperfect following of the dark sta
Since this excitation lasts only a short time, we consider
nonadiabatic process as a transition between the ground
excited states, which takes place like a jump. The origin
the transition has a simple interpretation. The parameteB
defines the coupling strength of the bright~b! and common
~c! states of the three-level system in thedbc basis. The
parameterȧ(t) defines the coupling strength of the brig
and dark~d! states. It is assumed that, initially, the system
in the dark state and any time we haveB@ȧ(t). The B
coupling moves the bright state from the resonance with
ȧ(t) coupling to the value determined by the frequencyB. If
the spectral content of theȧ(t) coupling has a componen
with frequencyB, the nonadiabatic transition takes place.
B changes in time, several spectral components of theȧ(t)
2-12
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coupling contribute to the transition. Our results are co
pared with those of Laine-Stenholm@29# and Fleischhaue
et al. @30#.

We found the boundary limiting the applicability of th
adiabatic following consideration. The adiabatic-following
violated if the nonadiabatic contribution becomes com
rable with the first term of the adiabatic expansion@see Sec.
V and Fig. 5~a!#. The presented theory, as in the theor
developed in Refs.@29,30#, disregards the relaxation pro
cesses, which is justified if the relaxation time is mu
longer than the time scale of the STIRAP pulse sequence
the period of the Rabi oscillations during the populati
transfer. If the relaxation time~e.g., the lifetime of the ex-
an

sp

n

04380
-

-
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nd

cited state 3! is comparable or much shorter than the abo
mentioned parameters, then one has to pursue a diffe
approach.

The simplified algebra developed in this paper could
useful for the description of the atom state manipulation
coherent fields.
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