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Adiabatic-following criterion, estimation of the nonadiabatic excitation fraction,
and quantum jumps
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An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system
is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is
found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be
presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the
limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the
nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the
variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change
of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jump-
wise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation
parameter takes its maximum value.
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[. INTRODUCTION atom population is transferred from state 1 to state 2 by the
pulse sequence without populating the intermediate excited
Stimulated Raman adiabatic pass#§&IRAP) resulting  state 3. This noncoupled superposition state was first intro-
in the population transfer between the states which are natuced by Arimondd[25] to explain qualitatively the dark
directly coupled[1], electromagnetically induced transpar- resonance as population trapping in this s{@@-2§. The
ency via adiabatic following of the dark, nonabsorbing state'oncoupled state is often referred to as a dark state.
[2], nonresonant pulse excitation of the two-level ati8h It is obvious that, if the dark state changes in time, a
are just a short list of phenomena in quantum optics wher@"0Cess must exist which tends to empty this state. The con-
adiabatic processes are considered. Generally, one can find@ion minimizing the dark state depopulation is formulated

any part of physics problems concerned with adiabaticity,'tn Ref. [22]. This is donead hog without an estimation of
- - he nonadiabatic correction for the excited probability ampli-
which are treated almost similarly. Among them we can men, de. However, numerical calculations shovF\)/ that, if t)r/ﬂs cgn—

. . X ) t
tion multiphoton resonances induced in atoms and moIecuIe(%tion is satisfied, the adiabatic population transfes 2 is

by a strong low-frequency fielth 7], wave-“packet dynam- ,almost perfect. Some attempts were undertaken to find a rig-
ics in physics and cher_mstry or, so-called, f_e_mtochemlstry orous justification of the intuitively found adiabaticity con-
[8—10], and slow atomic and molecular collisiofEl-18.  yiion and to estimate the amplitude of the excited state dur-
In this paper we consider the adiabatic following of theing the STIRAP pulse sequendsee, for example, Refs.
dark, nonabsorbing state in the three-level system, excited %9,3@_ In Ref.[29], the so-called ramp pulses were con-
two resonant fields, which results in STIRABopulation  sjgered, which allow an exact solution. Furthermore, with the
transfey. It was proposed in Ref19] where the so-called help of the method developed for the two-level system by
counterintuitive Raman pulse sequence emerged as a resgjykhne (see Refs.[31,37 and the discussion in Refs.
of the search for the generalization of the Liouville equationg33,34)), the nonadiabatic amplitude of the excited state 3 is
for the N-level system using SUN) coherence vector theory estimated for Gaussian and hyperbolic secant pulses. This is
[20,21]. This pulse sequence consists of two fields couplingpossible because the Liouville equation for the two-level
two low-energy levels 1 and 2 with one common excitedatom in terms of the S(2) coherence vectofBloch-vector
state 3. If one of the leveldor example, 2is initially empty,  mode) coincides with the Schidinger equation for the state
then applying first the field which couples this state withprobability amplitudes of the three-level atom excited by two
level 3, and then the field coupling the populated stbde  resonant fieldgsee, for example, Reff2,24,29). However,
example, 1) with 3, it is possible to transfer the populationthe authors of Ref.29] admit that the analytical approxima-
of state 1 to state 2, without appreciably populating the intions for the nonadiabatic correctionsdve been introduced
termediate state 3. ad hoc without derivatiohand they “would really like to see
Later, the importance of the adiabaticity in the counterin-more detailed investigations of the analytic behavior of the
tuitive pulse sequence development was realized in Refgystem discussed
[22—-24. There is a particular superposition of states 1 and 2 Fleischhauer and co-workef80] developed a different
that does not interact with the coupling fields and, if theapproach introducing higher-order trapping states. They de-
development of the field amplitudes in time is properly cho-fine annth-order generalized adiabatic basis, which is similar
sen, this superposition state changes from state 1 to state 2.tf the superadiabatic basis introduced for the two-level sys-
the three-level atom follows this superposition state, theem in Refs.[35-38. By successive transformations from
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the diabatic basis to the adiabatic basis, then from this adia- @) (b)
batic basis, which can be considered as the adiabatic basis of 3 C g
the first order, to the next, i.e., the second-order adiabatic
basis, etc., the solution is presented as an infinite product of B B> B
transformations. The general expression forritte transfor- p X
mation matrix is presented. However, it is hard to implement
this scheme for an arbitrary pulse sequence. (e
In this paper we develop a method that allows us to cal-
culate the adiabatic and nonadiabatic components of the so-
lution with controllable accuracy. The adiabatic component FIG. 1. The excitation scheme of the three-level atom by two
describes the part of the atomic probability amplitude visit-résonant fields with interaction constaBigandB, : A scheme(a),
ing the excited atomic state during the pulse train and com2nd the same excitation scheme in the basis of datkightb, and
ing back to the dark state when the pulses are gone. ThHgPmmonc states(b). B=\/B_21+_BZ2 is the ge_nerallzed_lntgractlon
atom evolution following the adiabatic component of the so-constant for the Raman excitation. The vertical scale in diagtim
lution resembles the excitation-deexcitation process induce not the energy gnd represents the initial pOPUIat'On of the levels
by a soliton in the two-level atom. The nonadiabatic compo- efore the excitation. The higher popula.ted level is put at the bot-
nent is that part which is lost from the dark state and de—tOIm and the lower or unpopulated level is at the top.
scribes the fraction of the atomic probability amplitude that . .
is left excited after the pulse trairFl). We cor)xgparg our resul™(dna-En)/2=(ds,- E)/2 depends on the dipole-transition
with the previous theories reported in Ref29,30. We Matrix element, taken real sdys=ds,, and on the field
found corrections to the theory presented in R&g] and amplitudeE,,. The rotating wave approximation is taken into
show that our result corresponds to the calculation of théccount. _ _
infinite number of transformations proposed in R&0]. If the fields E4(t) andE,(t) are in exact resonance with
The paper is organized as follows. In Sec. Il we presenih® relevant transitions, the Hamiltonian, Ed), can be
the general formalism employed in the description of theMade slowly varying by transforming it into the interaction
three-level atom excited by two resonant fields. The transfori€PresentatioliR). This representation is defined by a ca-
mation to the basis of the bright and dark states is derived. fgonical transformation by means of the unitary operator
is shown that the system evolves between two states, i.e.,
“bright” and “common” (they are specified in Sec.)llIn
Sec. Il we consider the time evolution of the atomic state
vector for theA scheme of excitation if the field amplitudes
are time dependent. Bloch-like equations are derived. In Se@he wave function of the atom in the IR is defined by
IV the adiabatic-following approximation is presented. The|®(t))=T|W¥(t)), where|¥(t)) is the wave function in the
adiabatic solution for the STIRAP is found. Nonadiabatic Schralinger representation®(t)) satisfies the Schroinger
corrections are described in Sec. V. The case when the Raquation with the effective Hamiltonian
man Rabi frequency changes in time is considered in Sec.

Vi=Viil. H=THT 1+iTT 1, 3)

3
T=exp i, wnﬁ,mt). )
n=1

Il. THREE-LEVEL ATOM INTERACTING WITH TWO This Hamiltonian has the explicit form
RESONANT FIELDS: GENERAL FORMALISM

— _R.P el R P A
We consider a three-level atom shown in Figa)1 The H==B1P1 "1 =B,Po 2+ H.C., )

arrows indicate the transitions induced by the coherent fieldsdr in matrix notation
We define the level that is common for both transitions as 3.

The others are designated by the numbers 1 and 2, level 2 io
. . L 0 0 B,e'¥1
being of higher energy than 1 and initially not populated. :
The dynamic part of the Hamiltonian of this three-level H=-|0 0 Boe'¥2 1. ©)
atom, excited by two resonant fields;(t)=E;cos(,t Be ¢t B,e 2 0

+¢q) andE,(t) = E,cosQ,t+¢,), is
3 The Py, operators are defined for the vect¢ks) and(N|
H= E ) _(Bl|513eiﬂlt+i<pl+ BZ|523eiQZt+i<p2+ H.c) of the interaction representation differing from the staes
e " and(n| by the phase factors exp{wyt) and expiwt).
(1) Assume that the field amplituddés;, B, and the phases

) ) ¢©1, @, are constant. Then the Hamiltonian, E¢®—(5), is
wherew), is the energy of the state Planck’s constant is set giagonalized by a unitary transformation

equal to 1 =1) for simplicity. The operator®,,, are de-

fined by Pr,,=|m)(n|, where(n| and|m) are bra and ket H=QHQ '=/B?+B3(P3z— P, (6)
vectors of the states andm in the Schrdinger representa-

tion. The interaction constant(Rabi frequency B,  where
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p [e risinaetcosa 1 Hype=SHS 1=~ B(Pyet Poy), 15
Q=——| V2€'2cosa —2€'¢1sine 0 7 , _
\/5 i i or in a matrix form
e '“isina e 'Y2cosa -1

and tane=B;/B,. The new ket vectorbT) are related to the
former onegN), defined in the interaction representation, as Hape=—

follows |®)=Q|®). The explicit relations are

; (16)

o O O
W O O
o W o

I \/E(eimsin |1)+ €e'¢2cosa|2) +|3)) ) whereB= \/Blz+ Bz2 and the unitary operator of the canonical
= — o o
2 1

transformation is

2)=e"*2cosa|1)— e “1sina|2), (9) e'¢2cose  —€'?1sina 0

3 S=| e '*1sina e '¥2cosa 0], (17
— 2 )
[3)= - (€*1sinal1) +€/*2cosal2)~[3)).  (10) 0 0 1

o ) S ) We call this basis thelbc representation.
The basign), in which the Hamiltonian is diagonal, is called  Figure 1b) shows the excitation scheme in thbc basis
the basis of the quasienergy staf88,40. It coincides with  \yhere only theb andc states are coupled. Theandc states
the basis of the dressed states if the limit of the classical fieldig not correspond to a defined energy. To present schemati-
is taken for them. cally the dbc states and the transitions between them, we
States|1) and|3) are mixtures of all unperturbed states choose the state population before the excitation for their
|1>1 |2>, and |3>, whereas Stat¢?> does not contain the relative position in the diagram. So, the vertical scale in Fig.

common stat¢3). If the atom is in stat@, a mixture of the 1(b) represents the initial population of the states counted

ground-state sublevels 1 and 2, the atom does not leave tHi™M the bottom to the top. ,
The Hamiltonian in thelbc basis, Eq(15), resembles the

state since it is an eigenstate of the interaction Hamiltonian, i e )
Eq. (6). The bichromatic fielcE(t) = E,(t) + E,(t) does not interaction Hamiltonian of the two-level systdme, excited
interact with such an atom. and co%]sequezntly it is not exPY one resonant field with an effective interaction conskant

cited. Therefore, we call this state a dark state and designafd'€ dynamic evolution of the atom is described by the
it |d). This state was introduced for the first time by Ari- Schrcdlnggr equation with this Hamiltonian containing only
mondo in Ref[25], who called this state a noncoupled state.the transition operators between staesndc.
He introduced the coupled state as well, which interacts with
the bichromatic fieldE(t). Following Arimondo we define [l. TIME-DEPENDENT AMPLITUDES
the state
_— . If during the pulse excitation the field amplitudés, E,

|b)=€'¢1sina|1)+€'2cosa|2), (1D are time dependent and they have the same time evolution
it s ortogonal (o e ik state, We call s 1S vatoene r i ) s e et amalay o
bright state, since for the, _scheme,. if Fhe atom is in this have constant coefficients and tBeransformation is time
state, it is excited by the bichromatic field and then the Iu'independent. In this case the solution of the Sdhmger

minescence from Staﬂ@ may foII_ow. Excnan_on can take equation is simple and the development coefficients of the
place because the bright state is not an eigenstate of t ate vectotd )
c/

interaction Hamiltonian, Eq6).
The stategd), |b), and|3) are mutually orthogonal and
can be chosen as a new basis. We call this kiHsts desig-

nating the staté3) by the letter|c), since it is common for gre Ca(t)=Cy(0), Cp(t)=Cy(0)cogat)/2], and C(t)

the induced transitions. Because we will often refer to these" . . L
states, they are presented below in a common set of eque?—'cb(o)s'rw(t)/z]’ whereCq(0), Cy(0) are the initial val-

tions to simplify further citation: ues of the probability amplitudes amdt) =2f" ,B(7)dr is
the pulse area of the bichromatic field. This case corresponds

| gpe(t))=Cqy(t)|d)+Cp(t)|b) +Ce(t)[c),  (18)

|dy=e"'#2cosa|1)—e ' ¢isina|2), (12 to so-calleo_l matghed pglséé;lAZ.
If there is a time shiftfT between the pulseg;(t) and
|b)=e'“1sina|1)+ €' *2cosa|2), (13 E,(t), one can again introduce the bright and dark states,
employing the time-depender® transformation. Then the
lc)=13). (14) evolution of the state vector of the atom in tibc basis is
given by

The interaction Hamiltonian, Eq&4) and(5), is transformed
in this basis as follows: | D gpdt))=S(t)|D(1)), (19
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C density matrix of the two-level systemp: u-—iv
A =2pgeeXp(—iwt) andw=pq4—pee, these equations are

W:—XU, (26)
B v=—AUu+ YW, (27)

u=Av. (28)

b v Here A is the detuning from resonance apdis the Rabi
frequency. If one makes the substitutisr=Z4, v=Y,, u

. =X, for the variables angy= @, A=B for the parameters,
(44 both sets of equations are identical.
The coincidence of the equations enables us to use the
d adiabatic-following approach developed by Cr[&) to de-
) ) o scribe nonresonant excitation of the two-level system. A
FIG_. 2. The blch!ror_natlc excitation scheme of the three-levelg;.io, approach was applied by Laine and Stenh@lL8)
atom in thedbc basis if the state developments jof) and[b)  |59] pased on the ideas of the adiabatic following developed
cha_nge_ in time. Th_e_coupling parameter of statemdb is «, the by Dykhne [31,37 for the two-level system with time-
derivative of the mixing anglésee the text dependent splitting and coupling parameters. In the LS ap-
proach[29], the instantaneous eigenstates of the three-level
atom excited by two resonant pulses are found. This basis is
called the adiabatic representation. The transformation to the
instantaneous basifsee Eq.(7)] and the instantaneous
d|®ypo) B Hamiltonian diagonal in this basisee Eq.(6)] are time
dbe =—iHapd Pabo) (200 dependent. Therefore, the adiabatic states coup@@*
dt also appears in their consideration. In spite of being different
in structure, our Schdinger equation in the changirdjc
basis and the LS equation in the instantaneous eigenstate

where|®(t)) is the state vector in the interaction represen-
tation. Taking the time derivative of E¢L9), one can obtain
the Schrdinger equation

with the modified Hamiltonian

= ] basis can both be reduced to the equation for the two-level

Hape=Hapct1SS (21) system. However, our Eq$23)—(25) are in a one to one
whereH,,. is defined in Eq(15) and correspondence with the Bloch equations while the LS equa-
tions match the equations for the two-level density matrix

iSS L=ia[P, e (¢17 92— P el (et e2)], (22) elementspey, pge, @andpgg— pee- Although this difference

is not crucial, it brings, however, some convenience in our
The first partHyp of the modified Hamiltonian induces tran- Case, because our equations are expressed for real quantities.
sitions between theéb) and |c) states with the rateyg

=2B, and the second paiSS™!, induces transitions be- IV. ADIABATIC SOLUTION
tween stategd) and|b) with the rate 2 (see Fig. 2 The adiabatic-following approximation can be applied to
The development coefficients of the state ved®hn)  the consideration of STIRAP and electromagnetically in-
satisfy the equations duced transparencEIT) because in both cases the atom
. . follows the dark, noncoupled state. A first attempt to study
Zg=—aYy, (23)  adiabatic following in EIT was undertaken in REZ]. In this
) ) section we consider the application of this approach to
Yy=—BX.+aZy, (24)  STIRAP.
The stimulated Raman adiabatic passage assumes that be-
X.=BY,, (25  fore the application of th&, (t) andE,(t) pulses the atom is

in state|1). The duration of the excitation as well as the

where the substitutiorZ y= Cyexp(—ie,), Yp=Cpexpliey), pulse sequence must be chosen such that at the end of the
X.=—iC.expl¢,) is made to deal with real numbers. Here pulse train the atom is left in stat@). It is expected that

the phaseg; and ¢, are assumed to be constant throughoutduring this process the atom stays in the dark state. However,
the excitation process. Equatiof3)—(25) remarkably co- this state itself changes since the coefficientsccaad sina
incide with the Bloch equations for an abstract two-levelof the development of the dark state in the vectdrsand
systemg-e excited by a field with frequency slightly tuned  |2) [see Eq.(12)] change in time. The parameter rises

from resonanced and e being ground and excited states, from zero to/2, so|d)=|1) before the excitation anf)
respectively [2]. Expressed in terms of the Bloch-vector = —e~'(¥17¢2)|2) after it. Since tam=B,/B,, the condi-
components, which are the following combinations of thetion imposed ona means that th@®,(t) pulse must be de-
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layed with respect to thB,(t) pulse. We have to emphasize BB, 2 T . I
that the phase of the final state 2 after the pulse train is —
related to the phase of the initial state 1 according to Eq. BJ/B, L5
(12. I

If we choose two identical, bell-shaped, delayed pulses a 1r
having a hyperbolic secant shape, then the interaction con- -
stants evolve in time as follows: a/r 05t

B,(t)=Bgsechir(t—t,)]1, (29 0

wheren=1 or 2,1, is the time when th@&-pulse has maxi- Ls
mum amplitude, and is the rise and fall rate of the pulse
edges. The mixing paramete(t) increases monotonously if B(t)/By
the conditiont;>t, is satisfied. This pulse sequence was 1
considered by Laine and Stenholm in Rigf9]. alr

Let us analyze the constraints imposed on the parameters T
r, t;, andt, to havea changed from zero t@/2. The mixing 05
angle o varies according to the relation tat)
=B, (1)/B,(t). For the pulse sequence specified above, an LA )
explicit form of this relation is 0 5 0 5 o

tana(t)= 1+Dtanhr(t—to)] (30) FIG. 3. (a) The pulse train with corresponding interaction pa-
1-DtanHr(t—tg)]’ rametersB;(t) and B,(t) evolving in time (bold lines. They are

normalized by the maximum valug,. The delay between pulses is
whereD =tanh{T/2), to=(t;+1,)/2 is the mean time of the rr=5,t,=0. The time is scaled in units of The time dependence
maxima, andT=t,;—t, is the time interval between the of the mixing parametew is shown by the thin line. The dashed
maxima of the pulses. Suppose that, initially, the atom is inine shows the dependence of the mixing parameter derivative
the ground state 1 and we start the atom evolution from th@ormalized byr. In (b) the time dependence of the bichromatic Rabi
initial mixing parameterq;,(—«) satisfying the condition frequencyy/2=B(t) (solid line) and the mixing parameter deriva-
tan(e;,)=0.01,  which means that essentially tive (dashed lingare shown for comparison.
Cy(—x)e '*2=cosf,)~1 and Cp(—x=)e'’1=sin(w,)

=10"2. We stop the atom evolution at faw,(+*)] If rT—0, then according to Eq.30) we havea— /4
=100. So, if the final state coincides with state 2 tf@&n throughout the excitation and the dark state does not change
(+)e *2=sin(as,)~1 and C,(—=)e'1=—cos@s,)= in time. It has the probability amplitud€4| = \2/2. Stateb,

—10"2, where the phase change of state 2 is taken intdaving the initial populationCy(—=)|?=1/2, is depopu-
account. From Eq.30) it follows that tana(*x«~)=(1 lated with the rateB (C,(t)=Cy(—>)coga(t)/2], C.(t)
+D)/(15 D) and at the condition imposed an,, and as;, =iCu(—)sin A(t)/2], see the definition of(t) in Sec. IlI).

we haverT=4.6. Since statb is strongly coupled with state For small values of T, the interval of thex change is small.

c [the coupling isB(t)], we have to keep the initial popula- For example, if rT=0.5, then cosf,)=0.855, sin;,)
tion of stateb as small as possib[eC,(— ) must be close to =0.519 and cosf;,)=0.519, sing;,)=0.855, which corre-
zerqg|. Otherwise, the probability amplitudgé,(—«), if not  sponds to the change ok from «;,=0.1747 to «ay,
infinitely small, will be spread among theandc states by =0.326r during the pulse train. In this case only the fraction
the pulse train and population transfer=2 will be imper-  (0.855¢=0.731 of the atomic population is transferred to
fect. Therefore, on the one hand, the initial value of the mix-state |2) if the atom adiabatically follows the dark state.
ing parameter must be as small as possible to have com-Another fraction (0.515)=0.269 of the atomic population
plete population transfer-+2. For a small initial mixing participates in the process of excitation and deexcitation be-
angle«;,, the relation betweew;, and T becomes simple, tween state® andc. This means that the population transfer
i.e., tanh(T/2)~1—2¢«;,. The smaller the initial value of viathe change of the amplitude of the dark state components
the mixing anglea, the larger the produatT or the pulse is possible only if the time interval between the pulses ex-
separationT is. On the other hand, if the distance betweenceeds a certain value. We choose the valle5 since in
the pulses is large, the value of the coupliBft) att, be-  this case the initial population of staes 4.5< 10 ° so that
comes small: the larger the distance, the smaller the couwe neglect this population in our further consideration.
pling. However, the adiabatic following demands a large Figure 3a) shows the pulse train withT =5 along with
couplingB atty. Therefore, one has to choose the optimumthe change of the mixing parameterduring the excitation.
value of the pulse spacing satisfying two conditions simulta-On the same plot the dependence of the derivative
neously. The distance between pulses is to be as large as

possible to have a small value af, and, at the same time, . rD sech[r(t—ty)]
B(tg) should be kept as large as possible. Below we give a(t)= 5 (3D
some arguments on how to find this optimum value. 1+D?tanif[r(t—to)]
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X ' @ Z4 [plot (c)] obtained by the numerical solution of Egs.
‘ 2 (23)—(25) for the pulse train witht;=2.5k, t;=0, t,=
01 —2.5k, T=5/r, Bo=42.&. The relation betweeB, andr

corresponds to the ratB(ty)/a(t) = 10.

To estimate the probability amplitudes of tdéc states
during the excitation and find the borders within which the
adiabatic following of the dark state takes place, we follow
the theory developed by Crisf8] for the case when the
conditionB(to)>d(t) is well satisfied. However, in our case
both B(t) and «a(t) are time dependent, whereas Crisp con-
sidered the case when ondi(t) is time dependent anl is
constant. Therefore, we have to modify the method of Crisp.

If B(t)>a(t) at any time, we can use the expansion in a
power series of the paramete(t) for the solution of Egs.
(23)—(25). Then the first term of the expansion is found by
settingZ4(t) =1 in Egs.(24) and(25) and then solving them.
The solution is

Yu(t)= ﬁwco{

t
0.02 I 1 L | Xe(t)= j sin
5 —o

0.05

-5

Y,
0.01

JtB(Tl)dTl a(7)dT, (32

T

-0.01

JtB(Tl)dTl a(7)dr. (33

T

rt .
This is the part of the general solution that is lineawift).
Z; 1 T ) Z, satisfies the equation
| — t .
08 Zy(t)=1- J a(7) Yy(r)dr, (34
0.996 [ -
which is the formal solution of Eq(23). Therefore, the
0.994 ! I ! ! change of the dark state amplitudg is nonlinear ina(t)
S5o3 1 3 5 and can be presented in productsadé. The first contribu-
rt tion of a(t) to Zy4 can be found as the squareamfi.e., in the

FIG. 4. () The evolution of the amplitudeX, [plot (@], Y, §econd term of the expansion. Substituting the co.rrezged
[plot (b)], Z4 [plot (©)] for a pulse trainB,(t), B,(t) with the  iNto Egs.(24) and(25) (instead ofZ4=1), one can find the
parameters8,=42.8, t,=2.5f, t,= —2.5f. Solid lines are the NeXxt term in the expansion of, and X, . Then the substitu-
numerical solution of Eqs(23)—(25). Dashed lines are analytical tion of the thus found,, into Eq.(34) gives the next term of
approximations given by the first two terms of E¢86) and(37)  the expansion oZ, etc. In this paper we consider only the
and the first two terms in each of the parentheses of(&5). linear corrections t&/,, and X, . Figures 4a)—4(c) show the

comparison of the numerical solution of E¢23)—(25) with
is shown. This derivative takes a maximum vakiga(ty) ~ Eds-(32)—(34). They are indistinguishable and shown by the

=rD at t=t,. For example, ifrT=5, then ¢ t same S.Olid Iines.. . . .
—0.98%. In F?g. 3b) we corFT)]pare the time evolug[omr?)g?)the We find the adiabatic and nonadiabatic components of the

X 7 — JBX(0)+ B(D) wi _ analytical solution by applying two different procedures. The
Rabi frequencyr/2= B(t) = vBi(t) + B3(t) with the evolu adiabatic components of Eq&32)—(33) are calculated by

tion of the derivativen(t). _ N integrating them by parts. For example, the first step of the
The Rabi frequency determines the transition rate bex (1) calculation is

tween stated and ¢, whereas the derivative of the state
mixing anglea specifies the transition rate between states U () .

andb [see Eqs(23)—(25)]. Since at=t, the paramete&(t) X(t)= f ﬂd( cos{f B(r)dry

takes its maximum value anB(t) has its minimum, the -=B(7) T
adiabatic-following condition isB(t0)>d(tO) or, explicitly, o ¢ ‘ o2\
V2Bo>rsinh(T/2). Figure 4(solid line9 shows the time :E—f cos{f B(r)dr (E) dr, (39
dependence of the amplitudXs [plot (a)], Y, [plot (b)], and T 7
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where (d/B)’T is the derivative with respect te. Repeating transformations have a simple meaning. Since dHe and
these steps several times, we obtain b-c transitions are excited simultaneously by theand B
“fields,” one can make arg, transformation to the new set
of dark, bright, and common statek,, b, andc,, whered;
is a particular mixture of the formeat and c states)b, is a
state orthogonal to stai®;, andc; coincides with statedo.

wherea, = a,_1/B, ap=a, and it is assumed that(t) isa  1h€ Néw mixing angle igr; =arc tan@/B). Repeating this
bell-shaped function with first and higher derivatives equalProceduren times, one can get our solution if the conditions
to zero att=—c. To find a similar expansion of E{34), arctang,/B)~«,/B and \/aﬁ+ B2~B are applied at each
we introduce the functio)(t)= [{B(7)dr. Then the equa- step.

Yb(t)=a2—a4+a6—a8+-~~, (36)

Xc(t)zal—a3+a5—a7+-~-, (37)

tion for Z4(t) takes the form Figures 4a—09 show the comparison of the numerical so-
lution (solid lines with the expansions given by Eq&36),
Zy()=1—-Ac(t)—Aq(D), (38)  (37), and (45) (dashed lines The parameters of the pulse

train are specified above and they are the same as in Figs.
3(a,b. Only the first two terms of the expansions are taken
¢ . __ into account for each plot, which is justified becayag)|
AC(t)zf dTla(Tl)COSQ(Tl)f d7a(1,)cosQ(r,), >|ay|>|ag|>]aq4>- - -. For the X, and Y, components,
- - the maximum absolute values of the second terms of the
(39 expansiongi.e., the adiabatic termsre already comparable
‘ - with the amplitude of the oscillationg.e., the nonadiabatic
As(t):f dTl&(Tl)SinQ(Tl)f deC'y(TZ)sinQ(Tz). contribution, coming from the summation of an infinite num-
- - ber of the expansion termsOf course, nonadiabatic oscil-
(40) lations are not described by the main part of the adiabatic
solution presented by a few leading terms of the expansion
Concluding this section, we refer to a particular case
when B(t) and & have the same time dependence. This is
1/ [t . 2 again the case of matched pulgese the beginning of Sec.
Ac(t)= z(f dTla(Tl)COSQ(Tl)) : (4D 111), however in thedbc basis. Fleischhauer and co-workers,
o Ref.[30], classify this case as second-order matched pulses.
1/ [t 2 The solution of Eqs(23)—(25) is trivial since these equations
Al(t)= —( J drld(fl)sinﬂ(q-l)) ) (42) in terms of a new variablg= [* _F(7)dr can be reduced to
2\ J- a set of differential equations with constant coefficients,
where F(t)=B(t)/B(to) = a(t)/a(t,). For the first time,
this analytically solvable model was considered by Vitanov
t 1 and Stenholm in Refl43]. We would classify the case as
Ac,s(t):f

with

The functionsA.(t) and A(t) are reduced to the single in-
tegrals

This can be done since they have the structure

dec,s(T)fc,s(T)=Efg,s(t), (43)  nonadiabatic, however in the second-ordhb,c, basis,

* where the transition takes place. If the generalized pulse area
is properly chosen in this basis, the population transfer be-
tween the diabatic states 1 and 2 is complete. For these par-

cosQ(7) ticular pulse areas, there are no nonadiabatic corrections,

SinQ(7) ] (44)  which is typical for the resonant nonadiabatic transitions.

wheref ¢(7) is

fcys(t)Iftmdrd(T){

and the index stands for the cosine function and indgfor V. NONADIABATIC CORRECTIONS

sine. Integrating these integrals by parts, we obtain . . )
g g 9 yp All adiabatic terms tend to zero &t 4+, which secures

Za()=1—3[(a;— agt+ag+---)? for the three-level atom the adiabatic following of a particu-
) lar state coinciding with statd at t— +. However, as it
+(ay—agtagt---)°]. (45 will be shown below, if we sum all these infinitely small

. . . . terms, the result will be finite. The net value of the small
Equations(36), (37), and(45) give the probability ampli- -, htributions of each adiabatic term is a nonadiabatic contri-

tudes of the dark, bright, and common states. They coincidg sion, which specifies the excited probability amplitude left
with those one obtains if the successive transformatlongy the pulse train. To estimate this value, we rewrite the

SnSh-1-+-S1S to the new set ofd,b.c, states are per- <o tion. Egs(32) and(33). as follows:
formed, as was done by Fleischhauer and co-workers in Re%. - Bas(32 33,
[30], i.e., [®y)=S:Sy-1---S1S|Pp), Where[dg)=Cy[1)

+C,|2)+C4[3) is the initial state] Cy(—) =1, Cy(— o) Yp(t)=fe(t)cos(t) + f(t)sin€ (1), (46)
=C3(—»)=0]. The transformatiors is defined in Eq(17)
and the other transformationS;J are specified below. These Xe(t) =fo(1)sinQ(t) — f4(t)cosQ(t). (47)
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the maximum andr is the interpulse distance, fixed in our
case by the relatiomr=5, soBy/r is a variablg. They
followed the calculation procedure proposed by Davis and
Pechuka$33,34] employing the Dykhne modé¢B1,32. Ac-
cording to Refs[31-34 one has to find the zeros of the
functionB(t) in a complex plan¢ and take the ond,, that

is nearest to the real axis. Then the population of the dark
state after the pulse train is

aq(tp)

0.1
fe(+0)

0.01

|d(+oo)|20CeX[{ -2 ImJtCB(t)dt
t

0

. (48

We propose another calculation procedure of the nonadia-
batic deviation. It will be shown that there are two nonadia-
batic contributions, one coming from the Rabi frequency

B(t) and another from the mixing parameter derivatiye).
Only the cooperative contribution of both determines the net
nonadiabatic correction, while the Pechukas-Dykhne theory,
taking into account only thB(t) change, underestimates the
nonadiabatic correction.

To show this, we expresik.(t) via the Fourier transform

of a(t):

0.001 L 1 ]
10 20 30 40 50

B a(w)= f j:dT'a(T) elor, (49)

FIG. 5. (a) Comparison of the dependence of the adiabatic t 1 [+ )
a,(ty) (dashed lingand nonadiabati€.(+ «) (solid ling) parts of fc(t)ZJ dTCOSQ(T)Z—f dwa(w)e™'*". (50
the analytical solution of Eq923)—(25) on the maximum pulse - T e

amplitudesB,. In (b) the comparison of the nonadiabatic part, nu- . . . . .
merically calculated using the actual Rabi frequeBfy) (solid Let us consider first the case if the Raman Rabi frequency is

line) and its parabolic approximation, E(63) (dashed ling are ~ constant, i.e.B(t)=Bo=const. Ther()(7)= o7 and
shown. f (+x) is the true nonadiabatic part aridy(+) is an .
approximation. fe(+o)= Jl dw3[d(w+ Bo)+ 8(w—Bo)]a(w)=a(Bo),

When t— + o, the functionf.(t) tends to a finite value (5

whereasf ((t) tends to zero since in the corresponding inte- ) ) . .
rals [see Eq.(44)] a(r) is an even function of time and where §(x) is the Dirac delta function and(w) is an even
%( ) is an o?j.d funcctyio; As a result. at the end of the ulsel‘unction of . The Fourier transform of the mixing param-
trai7r-1 Y (t) and X(t) oséillate as co’Sl(t) and sin)(t) rep eter derivative for a secant hyperbolic pulse train can be
b c . re- ; . L
spectively, and they have constant amplituflgst «). The found, for example in Ref44]. This function is

value off .(+ ) defines the probability amplitude left by the »
pulse sequence in statbsandc. sinh{Zarc tarﬁsinf{rT)]}
The excitation process is adiabatic if the nonadiabatic part a(w)=m (52
fo(+<0) is small. If the nonadiabatic part becomes compa- sin)-(ﬂ)
rable with the main termi,(ty) of the adiabatic expansion, 2r

then we cannot describe the excitation process as adiabatic.
Figure Fa) shows the numerically found dependences of thdf we take Bo=B(to) = 2B, sech(T/2), which is the value
a;(to) term (dashed lingand the nonadiabatic contribution of the Raman Rabi frequency at timet, whena(t) takes
fo(+) (solid line) on the maximum amplitud®, of the its maximum, then for our numerical example specified
pulses for the pulse train witfr=>5. The adiabatic and above we obtain the amplitude of the nonadiabatic contribu-
nonadiabatic parts of the solution become comparabBy if tion f,(+)=1.263< 10" 3. This value is four times smaller
<15r. than the amplitude of the nonadiabatic oscillations on the
The semilogarithmic plot of .(+ %) versusBg, Figure right tail of the functionsX.(t) and Yy(t) (which is ~5
5(a), clearly demonstrates that the nonadiabatic part dex 10 %), shown in Figs. 4,b), i.e., four times smaller than
creases exponentially with the increase By. Laine and the nonadiabatic contribution given by the numerical calcu-
Stenholm[29] also found an exponential decrease of thelations of the solution of Eqg23)—(25).
nonadiabatic deviation from the ideal population transfer To explain this difference and clarify the origin of the
with increase oByT (B is the amplitude of each pulse at nonadiabatic contribution, we recall the interaction Hamil-
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tonian in thedbc basis, Eq.(21) [see also Eqs(15) and tional, the main part of the nonadiabatic contribution appears
(22)]. This Hamiltonian resembles the interaction representain a short time interval arount,, corresponding to the far
tion Hamiltonian of the three-level system excited by twotail of the spectral distributiora(w). This means that the
resonant “fields” with amplitudes(t) anda(t) (see Fig. 2 tim_e scale of_ the nonadiaba_lt'ic clhange is shorter th@g, 1/
Assume, first, that the couplingd(t) and a(t) are absent while, according to the condition imposed on the parameters,
and the system is in statk Then, statesl, b, andc can be the time variation ofa(t) is much longer than the Rabi os-
considered as having the same energies in the interactigillation period~1/8,. Thus, a nonadiabatic transition takes
representation. Switching on the coupling(t)=a®(t) place almogt jumpwise compared to the time scale of the
[here®(t) is the Heaviside step function aradis an arbi-  Variation ofa(t). Due to this circumstance, we can simplify
trary constaritmixes statesl andb or in other words induces the calculation of the integrdl(+<) by expandingB(t) in

the transitiond—b. If the B field is also present and its @ power series of neart, and retaining only the first two
amplitude B, is constant, i.e.B(t)=B,0(t), this B field terms of the expansion:

mixes state® andc producing a new couple of statbs and

¢’, which are the stated) and|3) [see Eqs(8) and(10)]. B(t)=~Bo[ 1+9(t—to)?], (53)
This couple is split by the energy gap Bg=2B - . _
~2./B%+B? [see Eq.(6)]. This is the so-called Autler- Whgreg=r2[3tanff(rT/2)—1]/2. We verified this approxi-
Townes splitting[45] or quasienergy splitting39,40. As-  mation by comparing numerically two integrdlg( + ) and
sume that without th@ field the « field is in resonance with ]I;CA( ;;O) calculft;\_tec: W_;:[RB(t) and Its apprﬁmma'_[edF_value,
levelsd andb. The switching on of thé field mixes levels g.(53), respectively. e comparison IS shown in i)

b andc, producing an additional splitting. Levblmoves on wherefa() (dashed lingis the approximation. The depen-

) - . dences of both integrals on the amplituBg are indistin-
the frequencyB out of resonance with the field. If the « guishable.

field had as spectrum(in the case specified above it has only = 110 approximation oB(t) by a parabolic function helps
a zero-frequency compongnthen it would not interact with express (+) via the Airy integral. Further, to simplify
'Fhe atom. However, because of the finite spectral width of th,,o otations we sdt=0. Then the phas@(t) is

« field, its spectrum has a component with frequeBcgn

the far tail which is in resonance with the new position of

level b. Only this spectral component excites the atom if the Q(t)= B,
B field is on. With increase of thB field, the component of

the « field spectrum, which interacts with the atom, shifts andf
further to the tail of the spectrum. If thB field amplitude

t+ gtS), (54)

ca(+ ) is expressed as

changes in time, several spectral components ofattfield 1 [+ g
interact with the atom since at each instant of time some fea(+o)= Z_J dTCOf{Bo T+ §T3>
particular spectral component is in resonance. The process of m) e

the sweeping of the splitting(t) along the tail of thex field +oo _

spectrum involves a broader band of thespectrum in the X fo do a(w)e™'". (59
interaction. To find the net atom excitation in this case, we

have to calculate the integrél(+<) where the change of
B(t) is taken into account. This is done in the following two
sections.

Evaluating the time integral in E@55), we obtain

+ oo

_dwa()Aly(Bot@)], (56

fea(+)= ')’f
VI. NONADIABATIC TRANSITION AS A QUANTUM

JUMP: BASIC ARGUMENTS where Ai(x) is the Airy integral andy=1/3/gB,. We derived

If the Raman Rabi frequency changes during the developthis equation assuming thai{w) is an even function. The
sweeping the frequency bandwidth @ft) contribute to the negative argumenttsee, for example, Ref46)). If So+ w
parameter and the Raman Rabi frequency. In general, this AL y(Bo+ @)]= E [Bot @
calculation is nontrivial. For the case of secant hyperbolic YALY Po 3 V 398
spectral components @f(w) with |w|= B, contribute. Be- wherel . 1;5(X) is the modified Bessel function of the order
cause time and frequency domains are inversely propomlf + 3. If the argument is negativgg,+ w<0, then

=0, we have
| 3[2 [(Bot ®)®
. B K 980
pulses[see the time development of the pulses, the Raman

nonadiabatic corrections. To take this process into account;
we have to convolute the spectral content of both the mixing

Rabi frequency and the mixing parameter in Fig®,8], it O 2 (Bot )’
is possible to simplify the problem. Sin@&(t) has a mini- 133 980
mum value ofB, atty wherea(t) has its maximum, only the

] : (57)
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|Bo+ ] 2 [IBotwl? i i 2
7A|[7(IBO+U))]_ Jpgls\ ——— = —=— — - - 64
3980 3V 9k * Jg T V3tanRrT2)-1 (64
3
3 /w ] , (58  Infact, there are two saddle pointg:=*i/ Jg. The negative
9bo

sign is chosen to avoid exponentially increasing numbers.
Then the method of stationary phasae of the saddle-point

whereJ.. 15(x) is the Bessel function of the order af3.  methods s applied. This method is applicable to integrals of

For large arguments both functions have a simple asymptotighe form

behavior
er{ 2 [(Bo+w)®
X — = [20 1
3 980

+Jy3

1(Bo)= f Ceiﬁ’o”Z)d z, (65)

YAI[Y(Bot w) ]~ (590  wherep, is large andC is a path in the complex plane such

2\/;[950(30+ )]V that the ends of the path do not contribute significantly to the
_ ) . integral. The idea of the method is to deform the cont@ur
if Bo+ w is positive, and so that the region of most of the contribution It63,) is
compressed into as short a space as possible. This compres-
cos( [|Bot ] E) sion occurs at the saddle point.
) 3 980 4 Since the main contribution to this integral comes from
YAI[Y(Bot w)]~ N 7o (60 the vicinity of the saddle point, one may conclude that in the
m(9Bo| Bot w]) adiabatic limit the atom abruptly makes a nonadiabatic tran-
. . . . . sition between adiabatic states.
if Bo+ wis negative. If the argument is zeBy+ w =0, this The Pechukas-Dykhri@3,34 recipe of the calculation of

function is the nonadiabatic contribution is similar to the method de-

1 scribed above since the definitions of the saddle ppiahd
F(—) the crossing point,, whereB(t.) is zero, are the same.
However, in our consideration we substituted the expression

7Ai[7(30+w)]|w:—ﬁo: 273398, (61) for the Raman Rabi frequency
herel'(3)~2.679 is the G functi B(t)=2B YL+ costirT)cost2r) 66
wherel'(3)=~2. is the Gamma function. (1)=2Bo cosi{rT)+cosh2rt) ’ (66
VIl. RABI CHIRPING ONLY by the expansion near tintg, Eq. (53). Therefore, we have

only two saddle or crossing points, E@4), whereas Eq.
~ If the a field does not depend on time and has a valugeg) has an infinite number of crossing points in the complex
a(t)= a(to) then a(w)= 27ra(t0)5(w)/r and the main plane. According to Pechukas, one has to take the crossing
contribution to the nonadiabatic part is given by the Airy point that is nearest to the real axis. For the secant hyperbolic

integral pulse train, this point, as shown by Stenhdi®9], has only
an imaginary part Int¢), i.e.,
fea(+o0)=2myAi(yBo) e(to)/r, (62 i T
_ N t.=-tan ! cotI-(—”. (67)
which has the explicit form r 2

Reformulating the Dykhne approadi31,32 we conclude
i _ E @ that if there are no spectral componentsagfv) matching
——ex , (63 . .
Bovg 3y the frequenpy gap between the quasienergy levels split by the
B field, the « field comes to resonance with tldec transi-
expressed via approximatid®9). In this section we show tion at the imaginary time¢, whenB is zero.
how the approximation, specified above, is related to the Thjs approach disregards the spectral contenk(@j. |

Dykhne-Pechukas modg81-34. we takea(t) = a(t,) throughout the excitation, this method

(Ij:(;)|r Iargeﬁo, tﬂe dAlry |rr]1tegralf can be c?lcglated by the gives also an underestimated value of the nonadiabatic con-
saddle-point methodas shown, for example, in Ref47]. i 1tion. For our numerical example, E¢63) gives f,x

First, the stationary or saddle_ poity is found where the (+%)=7.131x 10"%, which is seven times smaller than the
phasef)(t) becomes stationar{(ts) =0. In this point, the  yalue of the nonadiabatic contribution given by the numeri-
Raman Rabi frequency becomes zero sifi¢¢) =B(t). For  cal calculation of the Schdinger Equation$23)—(25). Fig-

the case of the positive argument of the Airy integral, theure §a) shows the comparison of the numerically calculated
saddle point is in the complex plane amghas only an nonadiabatic componefit(+«) (solid line), Eq. (44), with
imaginary componeritRe(ts) =0], i.e., that calculated for the case if the time dependence of the

rT
ch(+oc>)=tanI‘(7
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1 ' ' ' or the time dependence of the(t) field, being taken into

account separately, was not enough to have the right nona-
diabatic correction for STIRAP induced by secant hyperbolic
pulses. Only both processes taken together, i.e., the Rabi fre-
guencyB(t) chirping and the participation of all spectral
components(w) of the a(t) field engaged by this chirping

to excite the atom, give the right value of the nonadiabatic
component. This value is given by E6). To calculate
analytically the convolution integral of the two spectaéw)
1020 30 40 50 and the Airy integral describing the process of the Rabi fre-
Bo/r quency sweeping, we make two approximations. First, we
take the approximation of the Airy integral, given by Eq.
(59 in the frequency domaim= — B,. This gives a small
overestimation of the integrand nearB,. For this reason,

we start the integration from this value, not fronr. The
oscillating part of the Airy integral foro<— B, gives a
much smaller contribution than the main part, which is lo-
cated between- 8y and zero, ¢ 8,,0). So, neglecting the
part (—©,—Bg), we compensate the overestimation near
— Bo- Second, we approximate the spectrafw) in the
domain (~ By,0) by

fe(r00)

a(w)=mexp —R|w|), (68

where R=(w—arctafsinh(T)])/2r~ =/4r. This approxi-
mation also gives a slight overestimation of the integrand
nearw~0. To compensate this, we stop the integration at
w=0. The integrand has a maximum betwees — 3, and
»=0. To calculate the contribution of this part, we use the
modified method of the saddle-point method. Usually, in the
method of the saddle point, the integration near the point is
extended tatoo. In our case, to avoid the overestimation of
the integrand we limit the integration by finite boundaries.
The calculation of these boundaries for the deformed integra-
tion contourC is simple because the deform€&dstays on the
0.001 I I ! real axis. The result of the integration is

Bo/r

ch(+00)=7-rKexr{—ﬁoR 1—%gR2”, (69)

FIG. 6. (a) Comparison of the dependencies of the nonadiabatic

contributionsf;(+<) (solid line) andf  ,(+) (dashed lingvs the i . . .
pulse amplitudeB,. The first is calculated with and the second whereK is a correction factor, which takes into account the

without taking into account the time dependence of the mixing pafinite integration boundaries to avoid the overestimation of
rameter derivativex(t). (b) The plots of the truef (+), and the the integral. Explicitly, we have

approximate,f.,(+°°), nonadiabatic contributions B, where 1

fea(+0) (long dashed lingis calculated taking into account the K= E[erf(hmax)+erf(hmin)]v (70)
time dependence at(t) using the approximation described in the

text. (c) The same plots as ifb), exceptf A(+°) (dot dashed ling

where the correction factdf is dropped(see the text 2 413
. Nmax= Bo| —=— (§ R+ §R39 ) (71)
a(t) field is neglecteddashed ling The latter is given by 39
Eq. (63). The plots obviously demonstrate that this approxi-
mation underestimates the nonadiabatic contribution. BogR®
Nimin= 3 (72)

VIIl. COOPERATIVE CONTRIBUTION OF RABI
CHIRPING AND THE TIME-DEPENDENT COUPLING,
THE APPLICATION TO STIRAP BY SECANT

HYPERBOLIC PULSES

and erf() is the error function. Figure(b) shows the com-
parison of the true nonadiabatic contributifyf +) (solid
line) with our approximate calculation d§(+ ), given by

In previous sections we showed that the contribution tdEq. (69) (dashed ling Figure &c) compares the same depen-
the nonadiabatic corrections of the Rabi frequency chirpinglencies if the correction factor k=1 (dash dotted ling
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FIG. 7. Numerical solution of the Schiimger equation(solid
lineg) for the amplitudesX (t) [plot ()], Yu(t) [plot (b)] and the
approximation given by Eqg73) and (74) (dashed linesfor the

amplitudesX a(t) [plot (a)], Ypa(t) [plot (b)].
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IX. CONCLUSION

The introduction of the basis of the dark and bright states
facilitates the understanding of the physical processes in the
three-level atom excited by a bichromatic field. The dynamic
evolution of the atom among the dark, bright, and common
states is as simple as the dynamics of the two-level atom
excited by one field with Rabi frequend®; This is because
the evolution of the three-level atom can be effectively re-
duced to the evolution between two states, i.e., the bright and
common states. The reduction of the three-level model to the
two-level one allows also the application of the Bloch-vector
model and Bloch equations for the treatment of the three-
level atom excitation by the bichromatic field.

This quite simple algebra is applicable for the case of
matched pulses. If the pulses do not match in shape and have
different time dependencies, one can also reduce the consid-
eration to the Bloch-vector model since there is a similarity
between the Schdinger equations for the probability ampli-
tudes of the dark, bright, and common states and the Bloch
equation for an effective two-level system. The effective de-
tuning of the two-level system from resonanceBig) and

the Rabi frequency is(t), which is the derivative of the
mixing angle in the dark state development in states of the
reciprocal three-level system. This similarity allows a simple
interpretation of the physical processes in the three-level sys-
tem in case of adiabatic following of the dark state by use of
the Crisp theory 3].

We developed an approximation describing the adiabatic
interaction of the three-level atom with two resonant pulses.
The method of estimation of the nonadiabatic correction is
presented. It is applied to the case of two secant hyperbolic
pulses. The adiabatic part of the solution describes the exci-
tation and deexcitation processes of the three-level atom. The
time dependence of the adiabatic part is smooth and follows
the derivatives of the mixing angle(t). Both parts, excita-
tion and deexcitation, are symmetric in time with respect to

For our numerical example specified above, the approxit=0 wherea(t) takes its maximum and they exactly com-

mated value of the nonadiabatic contributionfig,(+ )

pensate each other. In this respect the adiabatic following

=5.822<10 3. As was discussed above, this contributionresembles the solitonlike interaction with the field. The nona-

appears in a very short time interval arougdTherefore, we
can approximate the solution of the Scfimger equations

(23)—(25) by

Ypa(t) =~ ar—as+ 0O (t—tg) f.a( +0)cosQ(t), (73

Xeat)~ay—az+O(t—tg)fa( +0)sinQ(t), (74

where the indexA stands for the approximatiof (t—ty) is
the Heaviside step functiof)(t)=[{B(7)dr, andB has its
exact value[not approximation(53)]. Figures Ta,b show
the comparison of the numerically found solutions of the
Schralinger equatior(solid lineg with approximationg73)

diabatic part appears in a short time interval in the vicinity of

the maximum of the mixing paramete(t). It contains the
information about the excitation left in the atom by the
pulses because of the imperfect following of the dark state.
Since this excitation lasts only a short time, we consider the
nonadiabatic process as a transition between the ground and
excited states, which takes place like a jump. The origin of
the transition has a simple interpretation. The paramBter
defines the coupling strength of the brighy and common

(c) states of the three-level system in théc basis. The

parametera(t) defines the coupling strength of the bright
and dark(d) states. It is assumed that, initially, the system is

in the dark state and any time we haBe>a(t). The B
coupling moves the bright state from the resonance with the

a(t) coupling to the value determined by the frequeBcyf

and (74) (dashed lines The fit of the solutions is striking. the spectral content of the(t) coupling has a component
This means that the nonadiabatic contribution really appear#ith frequencyB, the nonadiabatic transition takes place. If

in a quite short time range arourngl

B changes in time, several spectral components ofatft
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coupling contribute to the transition. Our results are com-<ited state Bis comparable or much shorter than the above-

pared with those of Laine-Stenholf29] and Fleischhauer
et al. [30].
We found the boundary limiting the applicability of the

mentioned parameters, then one has to pursue a different
approach.
The simplified algebra developed in this paper could be

adiabatic following consideration. The adiabatic-following is useful for the description of the atom state manipulation by
violated if the nonadiabatic contribution becomes compa<oherent fields.

rable with the first term of the adiabatic expansjsee Sec.

V and Fig. %a)]. The presented theory, as in the theories

developed in Refs[29,30, disregards the relaxation pro-
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