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Stability of the quantized circulation of an attractive Bose-Einstein condensate in a rotating torus
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We investigate rotational properties of a system of attractive bosons confined in a one-dimensional torus.
Two kinds of ground states, uniform-density and bright soliton, are obtained analytically as functions of the
strength of interaction and of the rotational frequency of the torus. The quantization of circulation appears in
the uniform-density state, but disappears upon formation of the soliton. By comparing the results of exact
diagonalization with those predicted by the Bogoliubov theory, we show that the Bogoliubov theory is valid at
absolute zero over a wide range of parameters. At finite temperatures we employ the exact diagonalization
method to examine how thermal fluctuations smear the plateaus of the quantized circulation. Finally, by
rotating the system with an axisymmetry-breaking potential, we clarify the process by which the quantized
circulation becomes thermodynamically stabilized.
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[. INTRODUCTION This paper shows, however, that when the system is confined
in a rotating torus, quantum fluctuations are significant only
Gaseous Bose-Einstein condens&BiECs offer a testing in the immediate vicinity of a critical point at which a nor-
ground for superfluid phenomena over a wide range of pahalized rotational frequency of the contair@ris integral
rameters because of their great flexibility in accommodating"d the dimensionless strength of interactjoiis equal to

various experimental conditions. In particular, the Feshbach_ 1/2. For other values df} andy, no singularities appear

technique makes it possible to control the sign and strengtl Physical quantities at the phase boundary. This is because
a soliton can be formed without passing through the singular

of intgractions. Furthermore, pptica_l and magneti(f‘ traps P'%itical point. This paper also points out that the system in
vide |.(3eal ﬂ?fc. cor)talr;erds_, n V\t’.h'Ch mlc'rtcr)]scopgc Sl,:rfacethe soliton phase does not possess all of the properties that
rugosities that give rise to dissipation are either abSent or Calye ;a|ly attributed to a superfluid, especially the quantiza-
be manipulated as tunable paramefé@isThese experiments i, of circulation.

have now become possible in low-dimensional systems This paper is organized as follows. In Sec. I, the ground-
[2—6] by tightening the confinement in one or two directions. state wave functions of the system under rotation are derived
Low-dimensional systems are simple theoretical models fognalytically within the Gross-Pitaevskii MFT. In Sec. IlI, the
studying vortices, persistent currents, and solitbns16.  effects of quantum fluctuations on quantized circulation are
For the case of attractive interactions, BECs do not collapsgxamined based on the Bogoliubov theory and on the exact
but instead form solitons in one-dimensional mesoscopigiagonalization of the many-body Hamiltonian. The results
systems[5,6,14, where the finite-size effect cuts off long- optained by these two methods will be shown to agree very
wavelength quantum fluctuations of the phase. Interestinglyyell, demonstrating the validity of the Bogoliubov theory. In
a bright soliton can be formed also in two dimensions if thesec. |v, the circulation is calculated as a function(dfat
strength of the interaction is made to oscillate rapidlyzero and finite temperatures based on the MFT and on the
[16,17. However, much of the physics of superfluidity in an exact diagonalization method. In Sec. V, we examine the
attractive BEC remains to be investigated. response of the system, which is initially at rest, to a time-
In this paper we study a system of attractive bosons thajependent axisymmetry-breaking potential in order to clarify
are confined in a one-dimensional tofus] under rotation.  the process by which the quantized circulation becomes ther-
When the excitation in the radial direction is negligible, suchmodynamically stabilized. In Sec. VI, the main results of this
a system is described by the Lieb-Liniger model with attracpaper are summarized. In Appendix A, the definitions and
tive interaction[19], in which a rotating term is added to the jnter-relations of elliptic functions and integrals are summa-
Hamiltonian and the periodic boundary condition in a finiteized to make the present paper self-contained. In Appendix
system is explicitly taken into account. A Hartree-Fockg some limiting behaviors of soliton solutions are discussed
theory[10] shows that the angular momentum of the systentor yse in the main text. In Appendix C, some properties of

exhibits plateaus of the quantized circulati®0-223 as a  the ground state near the phase boundary are discussed.
function of the rotational frequency of the container. We in-

vestigate the stability of quantized circulation by employingil. ANALYTIC SOLUTION OF THE ONE-DIMENSIONAL
the Gross-Pitaevskii mean-field thediMFT), the Bogoliu- GROSS-PITAEVSKII EQUATION WITH

bov theory, and the exact diagonalization of the many-body A ROTATING DRIVE

Hamiltonian. In Refs[23,24], it is found that quantum fluc-
tuations become significant near the boundary between the
uniform and soliton phases in a nonrotating torus, and that We consider a system &f identical bosons with masdd
the boundary is singular in the Bogoliubov approximation.that are confined in a rotating torus with a radRiand cross

A. Hamiltonian for the system
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sectionS. The angular frequency of rotation i€2in units of @) 3
#/(2MR?). The Hamiltonian for the system in the rotating ) i
frame of reference is then given by 3 & .
U -
fczg (E,——Q)2+§i2j 5(6,—6)), (1) 0
-1
whereﬂjs —idl30; is the angular-momentum operateérjs 2
the azimuthal angle, andJ=87aR/S characterizes the
strength of interaction witta being thes-wave scattering -8
length. Hereafter, the length, energy, and angular momentum (b) N )
are measured in units &, #2/(2MR?), and#, respectively. 13111fo;tm-
In Eq. (1), we include for convenience the rigid body’s ki- s p%%ssley
netic energyNQ?, which is a constant and only shifts the
zero of energy. -0.5
The physical properties of the system described by Hamil- dn-function
tonian (1) change periodically with respect & [25,26. To bright-spliton iphase
show this, let us consider the Schinger equation k| cn-function
R ({6) =FQ)D({6)), @ ‘3210 1 2 3
where {6} stands foré,,6,, ...,6y, and the many-body 2
wave function satisfies the single-valuedness boundary con- FIG. 1. (a) Phase winding numbed and angular frequency
dition (relative tod) w=Q—J vs. (b) Ground-state phase diagram. The
bold curve corresponds to the phase boundary determined by Eq.
DO, ....0;,....00)=P(0,,...,0,+2m,...,04), (20):: y—2(Q—J)2+1/2=0. The upper and lower regions of the

3 bold curve correspond to the uniform-density phase and the bright-
o ) soliton phase, respectively. The winding numbBedekes on a con-
for any ¢; . Substituting a transformation stant integer in between the vertical solid lines(i and changes
by 1 when crossing them. On the solid lines, the ground-state wave
CD({&}), (4) function is described by the Jacobian cn function, which has one
node. On the vertical dotted lines, the ground-state wave function is
described by the Jacobian dn function. In the space between the
into Eqg. (2), we can eliminate the rotating-drive term from horizontal dotted line and the bold curve, the uniform-density state
the Sch'r'dinger equation as is thermodynamically unstable, and below the horizontal dotted
line, the uniform-density state is dynamically unstable.

&)({a})zexp[—iQZ 0,
J

Ro®({6})=FQ)D({6}), (5)
J=

Q+1
2

: ()

whereK, is given by

. o, U where the symbo[x] expresses the maximum integer that
’CO_; Lits .2, o(0i=6;). ©®  does not exceed. The angular frequency relative tbis
defined by
However, the boundary condition of the wave function is
modified as w=0-1J, 9)
(})(01’ b6y where the range ob is limited to —1/2<w<<1/2. In Fig.
1(a), we plotJ and w against().
:eZWiS@(gl, G2, 6. 7) We first seek the lowest-energy state of the one-

dimensional Gross-Pitaevskii equati@@PE in the rotating

Becausek, in Eq. (5) does not depend oft and the bound- rame of reference,

ary condition(7) is periodic with respect té) with the pe- .
riod of one, the eigenvalu&() should be a periodic func- [(L=Q)%+27y|¢(0)[*1(6) = wyn(6), (10
tion of () with the same period. Since the thermodynamic . ) ) ) )
quantities are specified completely by the energy spectrunyvhere is the chemical potential, and a dimensionless pa-
all thermodynamic quantities calculated below, such as Egameter
(59), have the same periodic structure.

In the mean-field approximation, we can therefore define UN

a phase winding numberas Y= on (D
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gives the ratio of the mean-field interaction energy to theFigure Xb) is a phase diagram of the ground states with
zero-point kinetic energy. The condensate wave functiomespect toy and (). The bold curve represents the phase

(6) is assumed to obey the periodic boundary conditiorboundary(20) of the ground states. The uniform-density so-

#(0)=y(2), and is normalized af3"|¢(6)|?do=1. Itis
appropriate to assume the form of the solution as

W(6)=\p(6)e ¢, (12

wherep is the number density and the phase.

B. Uniform-density solution

The stationary state that circulates on a ring with a uni-
form density is a plane wave,

1
PY(0)=1\/ 7Te"m, w=w’+1y.

13

lution becomes thermodynamically unstable ferl/2<vy
<2w?-1/2 (in between the horizontal dotted line and the
bold curve because the first excitation energy becomes
negative. On the other hand, the solution becomes dynami-
cally unstable fory<—1/2 (in the lower region of the hori-
zontal dotted ling because the first excitation energy ac-
quires an imaginary part. The uniform-density state is thus
stable only wheny=2w»?2—1/2 (i.e., in the upper region of
the bold curve

C. Bright-soliton solution

For y<2w?—1/2[in the lower region of the bold curve in
Fig. 1(b)], a uniform-density state is either thermodynami-
cally or dynamically unstable, but a soliton state is stable. In

The stability of the ground state is determined by the sigrthis section, we derive the ground-state soliton solution of

of the lowest excitation energy. Diagonalizing the

Bogoliubov—de Genne@BdG) equations

d 2
(—I%—Q) —pu+ 4y |uy+ 27yt =NyUp,,

d

i%—ﬂ Unt 2Ty Puy=—\pn,

(14

2
) —pt+amylypl?

[

we obtain the excitation energias, and the corresponding
amplitudesu, ,v,, with positive norms as

Ap=N?(N°+27%)—2nw, (15)
Up=ANe0+me (16)
:Nr:efi(\]fn)ﬁy (17)

where the normalization constamé, are determined from
the orthonormality condition

2

o [Un(OUR(O)=va(O)vn(6)1d0=0m,  (18)
as
2+')’
Ny= \/47T Nraer 1]. (19

For repulsive interactiong>0, the ground state of Eq.

(10) always takes the form of the uniform-density solution

(13), since the lowest excitation energy ; (for —1/2<w
<0) or\; (for 0<w<1/2) is positive for ally and(}. In
the attractive case, however, the first excitation enarggr
N\ _, becomes zero at

2O.

y—2w%+ (20

Eq. (10). Several kinds of elliptic integrals and elliptic
functions [27] used throughout this paper are defined in
Appendix A.

Substituting Eq(12) into the GPE10) and taking the real
and imaginary parts, we obtain

M:QZ_(\/;) +(@")?=20¢ +2myp,  (21)
Jp
(o) (p)’
" +2¢' —-2Q =0. (22
Vo Vo
Equation(22) is integrated to give
W
o' =0+ —. (23
p
Substituting this into Eq(21) yields
pr 2
M92=W7p3+Vp—(7) — W2, (24

This equation can be rewritten in the form of an elliptic
integral

dp
[ ao- | ,
VAT ypS—4up?+4Vp—4W?

(25

which has formally the same solution as that without the
rotating term[15] and is given by

dr?

K
p(0)=N? ;(9_90) m)_ﬂml , (26)

where dn(|m) is the Jacobian elliptic function,97=<1,
andm;=1-m. A constanty is given below in Eq(29), and

the parametem is determined later in Eq42). We denote
the complete elliptic integrals of the first and second kinds as
K=K(m) and E=E(m), respectively. Since the soliton
breaks the translational symmetry, soluti(®6) contains a
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parameterd, that specifies the center of mass of the total
particles. From the normalization condition, the normaliza-

tion constant A/ is determined as N?=K/[2n(E
— nm;K)]. Substitutingp in Eq. (26) into Eq. (24), we ob-
tain

A= K K2 @7
2m(E—nmiK)  734|’
_ 1 (fg—fo—1) (28)
M 2772 d C ’
fd fc
= =1-——, 29
7 2m;K? 2m;K? @9
W= = sgriw) /o (30
=—sgnw _—,
g 8778’}’2
wheref,f.,fy are defined as
f=2K?—2KE— 7%y, (31)
fe=2m;K?—2KE— 7y, (32
f=2KE+ 7y, (33

and sgn denotes the sign function such that ejs{—1
when —1/2<w<0 (i.e., J—1/2<(Q<J) and sgnp)=+1
when 0<w<1/2 (i.e., J<Q<J+1/2) [see Fig. 18)]. The
cases ofw=0 and—1/2 are treated separately below.

From Egs.(23) and(26), we find that the phase is given

by
-1
<P(0)=fd79

(39

Q+ K {dnz(fb‘ )— }
wAwl T L

which can be integrated analytically using relatidA%) and
(Al10), giving

- K@
go(a):QG—sgr(w)Sz1H(n;7‘m), (35)

wherellI(n;u|m) is the elliptic integral of the third kind, and

the constants and &, are given by

~om _2mK2 5K 2f 36
“Toom f O % \/E- (36)

Since the wave function is single valued, the phasmust
satisfy

n

@(2m)— ¢(0)=2m]. (37

This condition can be used to determine the valumai the
following manner. In the present case, the parameteasd
n satisfy the relatioom<<n<<1. Then, using relation@\14)—
(A17), the elliptic integrallI(n;u|m) at =2 reduces to

PHYSICAL REVIEW A 68, 043619 (2003

II(n;2K|m)=2

K+g52{1_/\0(8|m)}}- (39

=arcsim\/ Lo 39
e=arcsi m_lf (39

whereA, is Heuman’s Lambda function defined in terms of
the incomplete elliptic integrals of the firBt(¢|m) and sec-
ond E(g|m) kinds as

2
Ao(e|m)= —[KE(e[m;) —(K-E)F(s|my]. (40

The phase at= 27 thus becomes

2f 4f
\/ fd°+7r(1—A0)

Using the notationrn=()—J instead of() andJ, condition
(37) then leads to

- 2f4fe
27| w|= - +m(1-Ayp), (42

which determines the parameter Equation(42) has a so-
lution only wheny<2w?—1/2 and 0<|w|<1/2, i.e., in the
region delimited by(but not on adjacent vertical dotted and
solid lines and by the bold curve in Fig(al.

Next let us consider two special cases=0 (Q is equal
to integer), i.e., on the vertical dotted linggsee Fig. )],
and|w|=1/2 (Q is equal to half integed+ 1/2, i.e., on the
vertical solid lineg. The ground-state wave function given
by Egs.(26) and (35) is simplified when|w|=0 and |o|
=1/2 according to the limiting values of several parameters
discussed in Appendix B.

Whenw=0, the amplitude/p(6) reduces to the Jacobian
elliptic function dn@u|m) and the phase(6) reduces talé,

B K? K(6—6o)
w(ﬂ)—\/ws|y|dn< -

Substituting this solution into the GREO) yields the chemi-
cal potential

e(27)=27Q—sgn ) . (41

m) el (43)

KZ
p=——(1+my) (44)
an
and an equation
fq=2KE+ 7m%y=0, (45)

which determines the parameter=1—m; only wheny<
—1/2. The dn solution includes the ground state in the rest
container withQ)=0.

When |w|=1/2, the amplitude is given by the Jacobian
elliptic function cn@u|m), and ¢(6) reduces to J+ 1/2)0,
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FIG. 3. (a) Ground-state energg per atom andb) chemical
potential u. Both decrease monotonically with increasing and
are periodic with respect tQ.

action is increased, the parametarapproaches unitysee
Fig. 12 in Appendix B for all . In the limit of m— 1, both
dn(ulm) and cn@|m) become seah which is a soliton so-
lution in infinite spacd14].

The ground-state energ§ per atom of the uniform-
density state is given by

E=w?+ 2, (49)
2
and that of the soliton is given by
K[3E—(1+myK]
pel E=y+ 5
a
FIG. 2. Densitiegp (solid curveg and phase® (dotted curves ) 5 )
for several values of angular frequeneyand phase winding num- N 2K3E“—2(1+my)KE+m; K] (50
ber J=Q— o with y=—0.55. The density depends only ¢sa|. :

37t
The phase difference(6+2)— ¢(0) is given by 27J in panels 4

(@ and (b), and by 27J+ = in panel(c) because alw|=0.5 the  Equation(50) reduces to the energy of the dn solution in the
wave function has a node at which the phase jumpsrby [imit w—0 as

K?m| (K(6-6 . KZ[(1+my)E+mK
W(O)=\— cn( (0= %) m) el (120 (46) g - KAAFMIEXmK] (51)
7yl m 37%E
The chemical potential and the equation that determines thgnd to that of the cn solution in the limib| — 1/2 as
parametem are obtained as
K?[(1—2my)E—my(2—3my)K
<2 e KAAZZME- M@ am)K] o,
p==—(1-2my), (47) 37 (E—mK)
w

The ground-state energy per atghand the chemical poten-
tial u are shown in Figs. @ and 3b). For a giveny, the
ground-state energy reaches minima for integefl and
maxima for half integef), and is smooth everywhere. In the
regime y<—1/2, the chemical potentigh becomes maxi-
mal for integerQ) and minimal for half integef), and has
kinks at the phase boundaries given py 2(Q—J)?+1/2

=0. The phase-transition type is the same as that in the
nonrotating casg23]: at the phase boundarfiy £ is smooth,

To illustrate theQ) dependence of the soliton solution, the first derivative of with respect toy or () has a kink and
Fig. 2 shows the densities and the phasesyfer—0.55, the second derivative &f has a jump andii) u has a kink
where the integral constant for the phase is chosen so thahd the first derivative oft has a jump. The behaviors of
¢()=0. The density profiles of the solitons depend only onthese quantities near the phase boundary are detailed in Ap-
the relative angular frequendw|. As the strength of inter- pendix C.

fe=2mK2— 2KE— 72y=0. (48)

Equation (48) has a solution only whey<<0. The wave
function (46) has a node af= 6,+ 7, and the phase jumps
by the amount ofr at the node. With increasing adiabati-
cally, the vortex enters the ring through this node.

D. Ground-state properties
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FIG. 4. Quantum depletioN’ [Eq. (55)] at the phase boundary Il
calculated by the Bogoliubov theory. FIG. 5. Bogoliubov spectra,, for |w|=0 (solid curve, |w|
=0.2(dashed-and-dotted curyeand|w|= 0.5 (dotted curves The
Ill. EFFECTS OF QUANTUM FLUCTUATIONS (quasiy zero-energy levels in the soliton regime correspond to the

. . . . Goldstone modes associated with the breaking of the translation
Without rotation, the quantum depletion divergesyat symmetry due to soliton formation. The open circles show the ex-

—1/2, at wh|f:h point the lowest excitation energy Obta.'”edcitation spectrunt, (L) — £y(L,) obtained by the exact diagonal-
by the Bogoliubov theory becomes gapless. This requires gation of Hamiltonian(57) for N=500 with || =0.2. This spec-
modification of the MFT[23,24. We investigate here tum agrees with the Bogoliubov spectrum+X _; (bold curve
whether or not in the presence of rotation there is such @ven at the phase bounddry = 0.42.

singular point at which the effects beyond the Bogoliubov

the\;)vry are|5|gtn|ft|r(]:ar(|jt. leti fth q te which i Iexcitation energies from the uniform-density state [fgr<
€ évaluate the depietion of the condensate which IS €al- 5 24 15 and those from the soliton state fop|>

culated according to the Bogoliubov theory as —2w?+1/2. All levels are continuous at the boundarigé
om =—2w?+1/2, thus indicating a smooth crossover between
N’=f > |va(6)|%de, (53)  the uniform-density state and the soliton state. When0
0 n#0 (solid curve$, N, and A_; are degenerate in the uniform-
; - ; : density regime, but in the soliton regiméy(>0.5) they
herev ,(0) is the hole amplitude in the BdG equat . . g ) /
W on(0) | ptude | quatidts) bifurcate into two branches, the first excited state and a

If N’/N is of the order of unity, the validity of the Bogoliu- o .
bov theory is not ensured. Since the excitation in theGoldstone mode. The Goldstone mode, which is associated

uniform-density regime is contributed mainly by the excita_with the breaking of translation symmetry, boosts the soliton

tion with quantum number 1, the depletion in the uniform-@long the ring without increasing the energy. hal is in-
density regime becomes creased from zergdashed-and-dotted curyeghe degen-

eracy is lifted by rotation.
Next we calculate the low-lying energy levels by the exact

1+
N’ = 4 —1. (54)  diagonalization of the many-body Hamiltonian to see how
Vi+2y they deviate from the Bogoliubov spectra near the phase

5 boundary. The diagonalization procedure is the same as that
At the phase boundary=2w"~1/2, Eq.(54) reduces o ithout rotation[23]. We denote the number of atoms with
1 angular momenturk asn, and prepare the plane-wave bases
N’ =w+ E_l’ (55) as|n|0_,c, SRR A [P TPY ATHRY T PR ,n|0+,c), wherely=J is
the angular momentum of the condensate larisl the cutoff.
which is shown in Fig. 4. The quantum depletion diverges atVithin the subspace in which the particle number and the
the phase boundary with=0 and y=—1/2. However, as total angular momentum are conserved as
|w| is increasedN’ at the phase boundary decreases and the

depletion becomes much less pronounced, as shown in Fig. lotlc lotlc

4. This result is also inferred from Fig(l). The uniform- > ne=N, > kne=L, (56)
density state becomes dynamically unstable below the hori- k=lo—lc k=lo=lc

zontal dotted liney= —1/2, and this line touches the phase

boundary(the bold curvg at =0. we perform the diagonalization of Hamiltonigh), which is

We compare low-lying energy levels obtained by the Bo-rewritten in second quantized form as
goliubov theory with those obtained by the exact diagonal-
ization of the many-body Hamiltoniafl). Figure 5 shows
the Bogoliubov spectra,, obtained by the BdG equation c_ | —0)2658 +l P 1 P
(14) as a function of the strength of interaction for angular K §|: (I=)%eiatoN k%n CkCl CmCndimi n—k-1 -

frequenciesiw|=0,0.2, and 0.5. The curves represent the (57

043619-6
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We denote the angular momentum of the ground stai&,as <£>0/N
which gives the lowest-energy eigenvalue, and the ground-
state energy asy(Ly). The open circles in Fig. 5 show the 3 -~
excitation spectrung,(Ly) — &Ey(Ly) obtained by the diago-
nalization of Hamiltoniar{57) for N=500 and w|=0.2 with 25 [
cutoff I.=1. The results agree very well with the Bogoliu-
bov spectrumh;+\ _; (we represent here only the excita-
tions that conserve the total angular momentfgh. We can

also confirm that the difference between the Bogoliubov
spectrum and the exact one becomes even smalléwlas 1
moves further away from zero. This is consistent with the
analysis of the depletion of the condensate. The Bogoliubow.5 -
theory is thus vindicated, except for=—1/2 and(Q)=J.

IV. QUANTIZED CIRCULATION AT ZERO
AND FINITE TEMPERATURES

A. Quantized circulation at zero temperature

A superconductor has no magnetic flux when the applied
magnetic field is below a critical value. The analog of this FIG. 6. Expectation value of the angular momentum per atom at
Meissner effect in a neutral superfluid system is the Hesszero temperature. The plateau regions correspong=@ (2 —J)?
Fairbank effec{20], in which the system is not set into ro- —1/2. Wheny<—0.5, the plateaus disappear.
tation when the frequenc) of a rotating drive is below a
critical value Q.. WhenQ exceeds()., the circulation of sive interaction has a uniform density for all parameters. The
the system, which is defined as the integral of the superfluiéxpectation value of the angular momentum then increases
velocity along a closed contour, is quantized in unit$a¥ stepwise like the noninteracting case, as demonstrated in Fig.
with M being the atomic mag®1,22. This is analogous to 6 with y=0. The repulsive bosons do not prefer the mixing
the case of a type-Il superconductor in which quantized voref different angular-momentum states since it costs the Fock
tices enter the system when the external magnetic field exexchange energy.
ceeds the lower critical fieIHICl. The applied magnetic field When Q is controlled in a time-dependent manner, the

and the magnetic flux in the superconductor correspond téesponse to the external rotation displays hysteretic behavior,

the rotating drive and the angular momentdi) of the which is possible only when the energy structure has at least
superfluid, respectively. two minima separated by a free-energy barfg].

We calculate the angular momentum of the ground Stat%ec\:/n\flsazt(je%pgzi;htiﬂzzicr:C;?c?r?edtr:rgr;]rrzoevrvos tghoor\]/sna%d g}en?
(LYo=NJ2"y* (0)(—id,) 4(6)d6, where s is the mean- ’ g g !

: ) : . Unlike the soliton regime for the attractive case, the angular
field solution(13) or (26) and(35) obtained in Sec. II. The momentum is a good quantum number for the repulsive case.

resulting analytical expression for the expectation value of These quantum numbers are shown in parentheses in Fig. 7.

per atom is When () is increased from zero, the angular momentum per
. J, y=2w2—1/2, ato_m(E)O/N remains zero until the boundary between || a_nd
(LYo/N= ) 58 Il is reached, and then jumps to one at the boundary since
J+w+2aW, y<20°-172, the two states 127 and €'’/ 27 are divided by a free-

where W is given in Eq.(30) [see also Fig. 1&)]. In the
limits of |w|—0 and|w|—1/2, J+ w+27W reduces taJ
andJ+ 1/2, respectively. Equatiofb8) is shown in Fig. 6 as

a function of() and y, where the plateaus correspond to the
uniform-density regime and the crossover regions between
plateaus correspond to the soliton regime. er—1/2, the
stable uniform-density state does not exist and the plateaus
disappear.

Since the quantum fluctuation is small, E§8) correctly
describes the ground-state angular momentum excepy for
=—1/2 andQ)=J. Both the Hartree-Fock theoif10] and
the Monte Carlo calculatioh28] show that this system ex-
hibits the Hess-Fairbank effect in a certain parameter regime,
which is consistent with our results. FIG. 7. Angular-momentum quantum numbers for repulsive in-

We briefly comment on the case of repulsive interactionteractions. The curves arg—2(Q—J)?+1/2=0 for J=-2,
(y>0). According to the MFT, the ground state with repul- —1, 0, 1, and 2.

-1 05 0 05 1 1.5

043619-7



KANAMOTO, SAITO, AND UEDA PHYSICAL REVIEW A 68, 043619 (2003

0.5 ' . - . agonalization agrees well with the mean-field result. This
N=500,y=-02 supports the validity of the MFT consistent with the results
04 1 7 in Sec. lll. As the temperature increases, thermal excitations
03 | / | wash out the edge of the circulation step, and the angular
z . momentum of the system approaches that of a classical fluid,
ozt T=2 | / i.e., (L),=NQ.
~ 03, In the present paper, we have focused on the properties
0.1 - . near 7=0 in this calculation. In principle, however, this
method can be extended to higher temperatures by increasing
0 . . . . ] the cutoff angular momentum, as long as the excitations of

radial modes are negligible. Nes|=1/2, however, the re-
sults of diagonalization are less accurate than they ate at

Q =0, since more bases are needed in order to allow the state
FIG. 8. Angular momentum per atom fop=—0.2 and N to have a node. In that case, the accuracy can be improved by

=500 at temperatures=0, 0.5, 1, and 2 obtained by diagonaliza- incrgasing the CUtoﬁ angular momentum. . .
tion of Hamiltonian(57). The plot shows the result of the mean-  Finally, we consider an experimental situation. A torus
field theory atr=0. trap may be set up by Laguerre-Gaussian befi@kor the

technique of microelectronic chig80]. To be concrete, let
energy barrier in regime Il. Whefd is decreased from one, US consider'Li; then Eq.(60) leads to
(L)o/N is initially one and remains so until the boundary
between | and Il is reached, at which point it jumps to zero at Tz34;[nK]. (62)

the boundary. Thus the hysteresis (@f) for the external (R[um])?

rotation() appears. The energy barrier is explicitly obtained e P
by the microscopic calculation of Hamiltoniat67) in 1 hus fora torus wittR=1 um, 7=2 in Fig. 8 corresponds
Ref. [29]. to T=68 nK, which can be achieved with the current experi-

mental techniques.

0 0.1 0.2 0.3 0.4 0.5

B. Quantized circulation at finite temperature V. PREPARATION OF THE GROUND STATE BY A

We examine the effect of thermal fluctuations on the STIRRING POTENTIAL
qguantized circulation at finite temperature. The total angular

momentum of the system is obtained from the derivative of Rotation of the system can actually be driven by a poten-
free energyF with respect ta) as tial that breaks the axisymmetry of the system. As a concrete

example, we consider a time-dependent potential

(IZ)Tz—%%:+NQ, (59 V(6,t)=Vycoq 6—20t), (63
which stirs the system with angular frequenc§) 2and we
where fix the amplitude of the potential & =10"3. We take as an
initial state y(6,t=0)=1/\y27 with a fixed strength of in-
r= kB—T (60) teractiony= —1/4, and let the system evolve in time accord-
721(2MR?) ing to the GPE,

is a dimensionless temperature with being the Boltzmann 2

H _ 2
constant- - -), denotes the ensemble average at tempera- 15; #(6:00=| — [9_02+V(9:t)+2777| P(0,0)]7| ¢(6,1).

ture 7, and the second term in E¢G9) corresponds to the (64)
angular momentum of the rigid body arising from the con-
stant term of Hamiltoniar(l). Figures 9a)—9(c) show the time evolution of the angular

To evaluate the free energy, we employ the exact diagomomentum of the condensate and that of the amplitude
nalization method of the many-body Hamiltonian. All low- |4(6=,1)|. One of the phase boundaries fpr —1/4 de-
lying levels &, have been obtained in Sec. I, and we usetermined by Eq(20) is Q= \1/8=0.354. AsQ) nears(),,

them to calculate the free energy the stirring potential causes a significant growth in density as
shown in Fig. 9c). Figure 9d) plots the maximum amplitude
F=—71In> e &7, 61) |#(6p)| as a function o}, which shows the resonance in-

n duced near the phase boundary. However, the angular mo-

mentum of the system oscillates without damping, and the
Figure 8 shows the angular momentum for several temperaystem does not reach any stationary state.
tures calculated from Eq$59) and (61), where the mean- To achieve a stationary state, we must introduce energy
field result at7=0 is also presented for comparis@tted dissipation. We therefore study the time evolution of the sys-
lines). At absolute zero, the result obtained by the exact ditem according to a generalized GIPEL,32,

043619-8
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0.02 T . r T
£ [wam0s Joas _ @ b
g 5 =
g 001 e K ) g ol Q=21,20,18
2 < 035 > 2
80 1Y —_—
< 0 ' . . ; 5 16
0 200 400 600 800 1000 g
! £ 1.3,1.0,08
g 002 8 1t .
% 045 — 2, Y
£ < s | |
g 001 04 & < / 05
g
_g.b 0‘35 i‘ 0 L L 0'3I 1 1 .
< 0 0 200 400 600 8000 05 1 15 2
0 200 400 600 800 1000
¢ t Q
0.02 T . T T . )
g (©) Q=0 045 FIG. 10. (&) Time evolution of the angular momentum of an
% ] ! ‘ \ ll ’ H‘ ‘ ‘ } it = initially uniform state with a damping constaht=0.1 for y=
g 001 ’WWW }b‘ | | i , MNWMV‘W ) “ \H 04 T —1/4 andV,=10"3. (b) Expectation value of angular momentum
g il ‘ i S . g
E" 035 — per atom obtained by the MFT foy=—1/4.
Lo 0 ) Il 1
0 200 400 p 600 800 1000 tically enhanced near the resonant frequency. However, en-
ergy must be dissipated in order for the system to acquire a
'g 0.52 T T T T . y q . .
2 @ net and thermodynamically stable angular momentum. Simi-
g o4} . lar mechanisms have been found in the vortex lattice forma-
g tion [13].
goaf .
§ 037 1 1 1 1
0 0.1 02 03 0.4 0.5 VI. CONCLUSIONS

Q
We investigated the rotational properties of one-

FIG. 9. Time evolution of the angular momentum of the con- dimensional bosons with attractive interactions confined in a
densate(bold curvey and that of the amplitudéy(6,,t)| at 6, rotating torus trap.
= (splid curve$ driven by a time-dependent stirring potential We derived the ground-state wave function analytically
(63 with y=—1/4 for (@ 0=0.3, (b) £=0.35 and(©) @  ihin the MFT as a function of the strength of interactign
=, . Note that the oscillations of the density and angular momen-, .4 of the rotational frequency of the torfls A uniform-
tum are enhanced close &, = 1/8=0.354. (d) Maximum ampli- density solution and a bright-soliton one were found to cross
tude of the wave function as a function &f. . :
over each other smoothly. The density of the soliton depends
on the rotational frequency and has a node & =J+1/2
when a vortex enters the ring.
In order to investigate the validity of the Bogoliubov
theory, we compared the excitation spectrum obtained by the
(65) Bogoliubov theory with that obtained by the exact diagonal-
ization of the many-body Hamiltonian. We found that the
MFT well describes the ground state and the low-lying ex-
whereT" is a phenomenological damping constant. Figurecited states, except fof)=J,y=—1/2, where the phase
10(a) shows the time evolutions of the angular momentumboundary coincides with the borderline of the onset of dy-
for several values of the angular frequency of stirring withnamical instability, thereby producing significant quantum
I'=0.1. The system acquires a finite angular momentum, anfluctuations.
the magnitude of the absorbed angular momentum converges The angular momentum of the ground state is quantized
to that of the thermodynamically stable state, as shown imwith respect td) in the uniform-density regime, but it is not
Fig. 10b). We note that as long 42 lies in the same plateau quantized in the soliton regime. The circulations at finite
region, the angular momentum converges to the same intéemperature were examined by the exact diagonalization
gral value. This demonstrates that the ground state derived imethod, and an experimental situation to realize our predic-
Sec. Il can indeed be prepared by the time-dependent stirrintipns was discussed.
potential in the presence of energy dissipation, and that the To understand the process by which the system is set into
circulation is indeed quantized in the thermodynamicallyrotation, we considered a time-dependent stirring potential
stable state. that breaks the axisymmetry of the torus. The potential was
From these results, it is concluded that the system reacheshown to induce the resonance, causing the density to oscil-
a thermodynamically stable state after both density fluctualate and thus triggering the system to acquire angular mo-
tions and energy dissipation. The density oscillation is drasmentum. However, energy must be dissipated in order for the

2
+V,cosé

, J 9
(I_F)mlﬁ(e,t):[(lae‘f‘ﬂ

+2my|(6,1)|? | ¢(6,1),
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circulation to acquire a thermodynamically stabilized quan-Complete elliptic integrals of the first and second kinds are

tized value. expanded fotm|<1 as infinite series
2 2 2
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(A13)
APPENDIX A: ELLIPTIC INTEGRALS The elliptic integral of the third kindI(n; ¢\ «) has other
AND ELLIPTIC EUNCTIONS expressions depending on the relation betwegmnd n.
o ) ) o Whenm<n<1 and¢= /2, it reduces to
Definitions and inter-relations of some elliptic integrals
and elliptic functiond27] appearing in this paper are sum- T iy
marized as follows. H( N> \ a) =K(a)+ 552{1—A0(8\a)}, (A14)
Elliptic integrals of the first kind~, the second kindg,
and the third kindll are defined as \/ n
%2 (1-n)(n—sirfa)’ (AL5)

(A1)

¢ de
Fl¢la)= fo J1—sirfasirts’
E(dla)= f:de\/l—sinzasinza, (A2)

) 1-n
g=arcsim\/ ——, (Al6)
coSa

where A is Heuman’s lambda function defined as

¢ de
II(n; ¢/ o EJ . (A3 :E o_
(M= ) A nsioi_siasits Aol )= —[K(e)E($\90°~ a)
Using a parametem=sira, Jacobian elliptic functions are —{K(a)—E(a)}F(4\90°—a)]. (ALl7)
defined by
. APPENDIX B: LIMITING BEHAVIORS OF THE SOLITON
sn(ulm)=sin¢, (A4) SOLUTIONS
cn(u|m)=cos¢, (AS) We consider the limitsw|—0 and|w|— 1/2 of the soliton
solution for 0<|w|<1/2 given by
dn(ulm)=+1-msirt¢, (AB)
2 K
and these functions are inter-related as p(0)= 3y [dnz(;(e— 0o) m) - nml}, (B1)
™Y
dr?(ulm)—m; =mer?(ulm)=m[1—srf(u/m)]. (A7)
N Ko
Using the parameter séi,m} instead of{ ¢,a}, the elliptic @(6)=Q6-sgnw) 5, IH( n; 7m), (B2)
integrals are also expressed as
u
F(u|m)zf dv=u, (A8) u=;(fd—fc—f), (B3)
0 a
u where
E(u|m)zf dré(v|m)du, (A9)
0 f=2K?—2KE— 72y, (B4)
u dv fe=2m;K?—2KE— 7%y, (B5)
H(n;u|m)zf Tnerialm” (A10)
0 1-nsrr(v|m) f=2KE+ 72y. (B6)

Elliptic integrals are said to be complete wher= /2,

The limiting values and behaviors of several parameters
and are usually denoted as

are summarized in Table | and Fig. 11, respectively. In the
- - limit |w|—0 (f4—0), Egs.(B1) and(B2) continuously be-
= , E(m)EE<§‘m>. (A11) come the dn solution, since—0 andW—0, as seen from

2

K(m)EF( m

043619-10
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TABLE |. Limiting values of various parameters of the soliton

solution. The limit|w|—0 is equivalent to the limif 4,—0 or y
— —2KE/#?-0, and|w|—0.5 is equivalent tof,,—0 or y—

—2(KE—m;K?)/#?2—0. The limit m—0 corresponds to the

uniform-density limit of| y| — —2w?+ 1/2+0.

|w|—0 |w|—0.5 m— 0
n 0 1 1+2y
n m 1 0
w2 0 0 Vi+2ylam
6, o % V1/(1+27y)
€ /2 0 /2

Fig. 11 and Table I. In the limitw|— 1/2 (f.—0), where the
parameters behave as—1, W—0, Eqgs.(B1) and(B2) re-

produce the cn solution. It can easily be verified by setting

fq=0 or f.=0 in Eqg. (B3) that in these limits the chemical
potential for 0<|w|<1/2 continuously approaches

K2 1
,u=——2(1+m1):—2(—fc—f), |w|=0, (B7)
T 21
K2 1
,u=——2(1—2m1)=—2(fd—f), |w|=1/2. (B8)
T 2
(a) b
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FIG. 11. (a)—(c) Behaviors of several parameters appeared in the

soliton solution for y=-0.4 (dashed-and-dott¢d y=—0.5
(dasheg, y=—0.6 (solid), and y=—0.7 (dotted curves (d) In-
complete elliptic integral of the third kindll(n;K 6/#|m) for |w|
=0.4 as a function of.
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The first derivative of the ground-state energy with re-
spect to) has a kink at the phase boundary, which is verified
by relations(58) and (59) as

0, |w|=0,1/2,

—47W, 0<|w|<1/2.
(B9)
Figure 12 shows the solutian calculated numerically by
solving

9 . -
g =20 —(D)o/N)=

fd:O, |(1)|:O,
2f4f ¢
27| w|= - +m(1-Ag), 0<|w|<1/2,
(B10)
fc=0, |w|=1/2,

where the line of intersection between the curves and the

y-w plane corresponds to the phase boundgary2w?+ 1/2
=0.

APPENDIX C: GROUND-STATE PROPERTIES NEAR THE
PHASE BOUNDARY

We investigate the continuity of the ground-state proper-
ties at the phase boundary. From Fig. 12, we see that the
parametemrm becomes zero for all soliton solutions in the
limit |y|— —2w?+ 1/2+0. The uniform-density limit of the
soliton solution is hence mathematically obtained by taking
the limit of m—0. Let § be a positive small deviation of
from the value at the phase boundary for a fixed For
|w|=0,1/2, the parametam, the complete elliptic integrals
K(m),E(m), and hence the physical quantities near the
phase boundary are expanded in terms& @i the following
manner.

For the dn solution ¢=0), the phase boundary ig=
—1/2 and lety=—1/2— 6. Using the equatiorf4=0, we
obtain

m=85%2—326+895%?—2006°+ O(5°?).  (C1)
m
1 -
08
06 |
04
0.2 F
0.5 uj,[”lﬂ]j \4
|w| 0 0 » 0.2‘ ) 04 ‘ 0.6 ) ‘0.8 1
| 7]

FIG. 12. The solutiorm calculated numerically from E¢B10).

The dotted curve on the-vy plane represents the phase boundary
v—2w?+1/2=0, and there exists a unique solutionin the soli-
ton regimel|y|> — 2w?+ 1/2.

043619-11



KANAMOTO, SAITO, AND UEDA

The expansion formula@\12) and (A13) become

™ 1 1
K=Z|1+28"%+ 5+ 7 6%+ 567 +0(6”), (C2)

33 ,, 23
E=S|1-28"2+56— 6%+ = 87| +0(5°?).

N

(C3

PHYSICAL REVIEW A 68, 043619 (2003

The ground-state energy and the chemical potential are ex-
panded in terms ob as

1 35 &2
2
L8930 0(6%), (CY

Using these expansions, the ground-state energy and the

chemical potential are expressed as functionsg ofstead of
m near the phase boundags= —1/2— 6. The jump in the

which are continuously connected with those of the uniform-
density solution aty=0 and|w|=1/2. However, the first

second derivative of the ground-state energy and that in theerivative of the ground-state energy and that of the chemi-

first derivative of the chemical potential are obtained as
c;n_ gL:: —4, :U’c/jn_ :U’(J: -2, (C4)

at y=—-1/2 andw=0.

For the cn solution|@|=1/2) aty= — 8, the expansions

are obtained in a similar way, as

m=45—68°+0(6%), (C5)
T 3
K=> 1+5+252 +0(8%), (C6)
_ﬂ'( 3, 5
E—E 1—5+Z5 +0(6%). (C7

cal potential are given by

3 o
- 2+0(&),

Sén= - Z 4 (C10
3 36
po=— 5= 7 +0(&), (c1D

and have discontinuous jumps a0 and|w|=1/2 by the
following amounts:
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