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Stability of the quantized circulation of an attractive Bose-Einstein condensate in a rotating torus
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and CREST, Japan Science and Technology Corporation (JST), Saitama 332-0012, Japan
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We investigate rotational properties of a system of attractive bosons confined in a one-dimensional torus.
Two kinds of ground states, uniform-density and bright soliton, are obtained analytically as functions of the
strength of interaction and of the rotational frequency of the torus. The quantization of circulation appears in
the uniform-density state, but disappears upon formation of the soliton. By comparing the results of exact
diagonalization with those predicted by the Bogoliubov theory, we show that the Bogoliubov theory is valid at
absolute zero over a wide range of parameters. At finite temperatures we employ the exact diagonalization
method to examine how thermal fluctuations smear the plateaus of the quantized circulation. Finally, by
rotating the system with an axisymmetry-breaking potential, we clarify the process by which the quantized
circulation becomes thermodynamically stabilized.
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I. INTRODUCTION

Gaseous Bose-Einstein condensates~BECs! offer a testing
ground for superfluid phenomena over a wide range of
rameters because of their great flexibility in accommodat
various experimental conditions. In particular, the Feshb
technique makes it possible to control the sign and stren
of interactions. Furthermore, optical and magnetic traps p
vide ideal BEC containers, in which microscopic surfa
rugosities that give rise to dissipation are either absent or
be manipulated as tunable parameters@1#. These experiments
have now become possible in low-dimensional syste
@2–6# by tightening the confinement in one or two direction
Low-dimensional systems are simple theoretical models
studying vortices, persistent currents, and solitons@7–16#.
For the case of attractive interactions, BECs do not colla
but instead form solitons in one-dimensional mesosco
systems@5,6,14#, where the finite-size effect cuts off long
wavelength quantum fluctuations of the phase. Interestin
a bright soliton can be formed also in two dimensions if t
strength of the interaction is made to oscillate rapid
@16,17#. However, much of the physics of superfluidity in a
attractive BEC remains to be investigated.

In this paper we study a system of attractive bosons
are confined in a one-dimensional torus@18# under rotation.
When the excitation in the radial direction is negligible, su
a system is described by the Lieb-Liniger model with attr
tive interaction@19#, in which a rotating term is added to th
Hamiltonian and the periodic boundary condition in a fin
system is explicitly taken into account. A Hartree-Fo
theory@10# shows that the angular momentum of the syst
exhibits plateaus of the quantized circulation@20–22# as a
function of the rotational frequency of the container. We
vestigate the stability of quantized circulation by employi
the Gross-Pitaevskii mean-field theory~MFT!, the Bogoliu-
bov theory, and the exact diagonalization of the many-bo
Hamiltonian. In Refs.@23,24#, it is found that quantum fluc-
tuations become significant near the boundary between
uniform and soliton phases in a nonrotating torus, and
the boundary is singular in the Bogoliubov approximatio
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This paper shows, however, that when the system is confi
in a rotating torus, quantum fluctuations are significant o
in the immediate vicinity of a critical point at which a no
malized rotational frequency of the containerV is integral
and the dimensionless strength of interactiong is equal to
21/2. For other values ofV andg, no singularities appea
in physical quantities at the phase boundary. This is beca
a soliton can be formed without passing through the singu
critical point. This paper also points out that the system
the soliton phase does not possess all of the properties
are usually attributed to a superfluid, especially the quant
tion of circulation.

This paper is organized as follows. In Sec. II, the groun
state wave functions of the system under rotation are der
analytically within the Gross-Pitaevskii MFT. In Sec. III, th
effects of quantum fluctuations on quantized circulation
examined based on the Bogoliubov theory and on the e
diagonalization of the many-body Hamiltonian. The resu
obtained by these two methods will be shown to agree v
well, demonstrating the validity of the Bogoliubov theory.
Sec. IV, the circulation is calculated as a function ofV at
zero and finite temperatures based on the MFT and on
exact diagonalization method. In Sec. V, we examine
response of the system, which is initially at rest, to a tim
dependent axisymmetry-breaking potential in order to cla
the process by which the quantized circulation becomes t
modynamically stabilized. In Sec. VI, the main results of th
paper are summarized. In Appendix A, the definitions a
inter-relations of elliptic functions and integrals are summ
rized to make the present paper self-contained. In Appen
B, some limiting behaviors of soliton solutions are discuss
for use in the main text. In Appendix C, some properties
the ground state near the phase boundary are discussed

II. ANALYTIC SOLUTION OF THE ONE-DIMENSIONAL
GROSS-PITAEVSKII EQUATION WITH

A ROTATING DRIVE

A. Hamiltonian for the system

We consider a system ofN identical bosons with massM
that are confined in a rotating torus with a radiusR and cross
©2003 The American Physical Society19-1
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sectionS. The angular frequency of rotation is 2V in units of
\/(2MR2). The Hamiltonian for the system in the rotatin
frame of reference is then given by

K̂5(
j

~ L̂ j2V!21
U

2 (
i , j

d~u i2u j !, ~1!

whereL̂ j[2 i ]/]u j is the angular-momentum operator,u is
the azimuthal angle, andU58paR/S characterizes the
strength of interaction witha being thes-wave scattering
length. Hereafter, the length, energy, and angular momen
are measured in units ofR, \2/(2MR2), and\, respectively.
In Eq. ~1!, we include for convenience the rigid body’s k
netic energyNV2, which is a constant and only shifts th
zero of energy.

The physical properties of the system described by Ham
tonian~1! change periodically with respect toV @25,26#. To
show this, let us consider the Schro¨dinger equation

K̂~V!F~$u%!5F~V!F~$u%!, ~2!

where $u% stands foru1 ,u2 , . . . ,uN , and the many-body
wave function satisfies the single-valuedness boundary
dition

F~u1 , . . . ,u i , . . . ,uN!5F~u1 , . . . ,u i12p, . . . ,uN!,
~3!

for any u i . Substituting a transformation

F̃~$u%![expF2 iV(
j

u j GF~$u%!, ~4!

into Eq. ~2!, we can eliminate the rotating-drive term fro
the Schro¨dinger equation as

K̂0F̃~$u%!5F~V!F̃~$u%!, ~5!

whereK̂0 is given by

K̂05(
j

L̂ j
21

U

2 (
i , j

d~u i2u j !. ~6!

However, the boundary condition of the wave function
modified as

F̃~u1 , . . . ,u i , . . . ,uN!

5e2p iVF̃~u1 , . . . ,u i12p, . . . ,uN!. ~7!

BecauseK̂0 in Eq. ~5! does not depend onV and the bound-
ary condition~7! is periodic with respect toV with the pe-
riod of one, the eigenvalueF(V) should be a periodic func
tion of V with the same period. Since the thermodynam
quantities are specified completely by the energy spectr
all thermodynamic quantities calculated below, such as
~59!, have the same periodic structure.

In the mean-field approximation, we can therefore defi
a phase winding numberJ as
04361
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J5FV1
1

2G , ~8!

where the symbol@x# expresses the maximum integer th
does not exceedx. The angular frequency relative toJ is
defined by

v[V2J, ~9!

where the range ofv is limited to 21/2<v,1/2. In Fig.
1~a!, we plotJ andv againstV.

We first seek the lowest-energy state of the on
dimensional Gross-Pitaevskii equation~GPE! in the rotating
frame of reference,

@~ L̂2V!212pguc~u!u2#c~u!5mc~u!, ~10!

wherem is the chemical potential, and a dimensionless
rameter

g[
UN

2p
~11!

FIG. 1. ~a! Phase winding numberJ and angular frequency
~relative toJ) v5V2J vs V. ~b! Ground-state phase diagram. Th
bold curve corresponds to the phase boundary determined by
~20!: g22(V2J)211/250. The upper and lower regions of th
bold curve correspond to the uniform-density phase and the bri
soliton phase, respectively. The winding numberJ takes on a con-
stant integer in between the vertical solid lines in~b! and changes
by 1 when crossing them. On the solid lines, the ground-state w
function is described by the Jacobian cn function, which has
node. On the vertical dotted lines, the ground-state wave functio
described by the Jacobian dn function. In the space between
horizontal dotted line and the bold curve, the uniform-density st
is thermodynamically unstable, and below the horizontal dot
line, the uniform-density state is dynamically unstable.
9-2
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STABILITY OF THE QUANTIZED CIRCULATION OF . . . PHYSICAL REVIEW A 68, 043619 ~2003!
gives the ratio of the mean-field interaction energy to
zero-point kinetic energy. The condensate wave funct
c(u) is assumed to obey the periodic boundary condit
c(0)5c(2p), and is normalized as*0

2puc(u)u2du51. It is
appropriate to assume the form of the solution as

c~u!5Ar~u!eiw(u), ~12!

wherer is the number density andw the phase.

B. Uniform-density solution

The stationary state that circulates on a ring with a u
form density is a plane wave,

c~u!5A 1

2p
eiJu, m5v21g. ~13!

The stability of the ground state is determined by the s
of the lowest excitation energy. Diagonalizing th
Bogoliubov–de Gennes~BdG! equations

F S 2 i
]

]u
2V D 2

2m14pgucu2Gun12pgc2vn5lnun ,

F S i
]

]u
2V D 2

2m14pgucu2Gvn12pgc* 2un52lnvn ,

~14!

we obtain the excitation energiesln and the corresponding
amplitudesun ,vn with positive norms as

ln5An2~n212g!22nv, ~15!

un5N n
1ei (J1n)u, ~16!

vn5N n
2e2 i (J2n)u, ~17!

where the normalization constantsN n
6 are determined from

the orthonormality condition

E
0

2p

@un~u!um* ~u!2vn~u!vm* ~u!#du5dn,m , ~18!

as

N n
65A 1

4p F n21g

An2~n212g!
61G . ~19!

For repulsive interactionsg.0, the ground state of Eq
~10! always takes the form of the uniform-density soluti
~13!, since the lowest excitation energyl21 ~for 21/2<v
,0) or l1 ~for 0<v,1/2) is positive for allg and V. In
the attractive case, however, the first excitation energyl1 or
l21 becomes zero at

g22v21
1

2
50. ~20!
04361
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Figure 1~b! is a phase diagram of the ground states w
respect tog and V. The bold curve represents the pha
boundary~20! of the ground states. The uniform-density s
lution becomes thermodynamically unstable for21/2<g
,2v221/2 ~in between the horizontal dotted line and th
bold curve! because the first excitation energy becom
negative. On the other hand, the solution becomes dyna
cally unstable forg,21/2 ~in the lower region of the hori-
zontal dotted line! because the first excitation energy a
quires an imaginary part. The uniform-density state is th
stable only wheng>2v221/2 ~i.e., in the upper region of
the bold curve!.

C. Bright-soliton solution

For g,2v221/2 @in the lower region of the bold curve in
Fig. 1~b!#, a uniform-density state is either thermodynam
cally or dynamically unstable, but a soliton state is stable
this section, we derive the ground-state soliton solution
Eq. ~10!. Several kinds of elliptic integrals and ellipti
functions @27# used throughout this paper are defined
Appendix A.

Substituting Eq.~12! into the GPE~10! and taking the real
and imaginary parts, we obtain

m5V22
~Ar!9

Ar
1~w8!222Vw812pgr, ~21!

w912w8
~Ar!8

Ar
22V

~Ar!8

Ar
50. ~22!

Equation~22! is integrated to give

w85V1
W

r
. ~23!

Substituting this into Eq.~21! yields

mr25pgr31Vr2S r8

2 D 2

2W2. ~24!

This equation can be rewritten in the form of an ellipt
integral

E du5E dr

A4pgr324mr214Vr24W2
, ~25!

which has formally the same solution as that without t
rotating term@15# and is given by

r~u!5N 2Fdn2S K

p
~u2u0!UmD2hm1G , ~26!

where dn(uum) is the Jacobian elliptic function, 0<h<1,
andm1512m. A constanth is given below in Eq.~29!, and
the parameterm is determined later in Eq.~42!. We denote
the complete elliptic integrals of the first and second kinds
K[K(m) and E[E(m), respectively. Since the solito
breaks the translational symmetry, solution~26! contains a
9-3
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parameteru0 that specifies the center of mass of the to
particles. From the normalization condition, the normaliz
tion constant N is determined as N 25K/@2p(E
2hm1K)#. Substitutingr in Eq. ~26! into Eq. ~24!, we ob-
tain

N 25
K

2p~E2hm1K !
5

K2

p3ugu
, ~27!

m5
1

2p2
~ f d2 f c2 f !, ~28!

h5
f d

2m1K2
512

f c

2m1K2
, ~29!

W52sgn~v!A f f cf d

8p8g2
, ~30!

where f , f c , f d are defined as

f [2K222KE2p2g, ~31!

f c[2m1K222KE2p2g, ~32!

f d[2KE1p2g, ~33!

and sgn denotes the sign function such that sgn(v)521
when 21/2,v,0 ~i.e., J21/2,V,J) and sgn(v)511
when 0,v,1/2 ~i.e., J,V,J11/2) @see Fig. 1~a!#. The
cases ofv50 and21/2 are treated separately below.

From Eqs.~23! and ~26!, we find that the phase is give
by

w~u!5E dũFV1H K2

p3uguW
Fdn2S K

p
ũUmD2hm1G J 21G ,

~34!

which can be integrated analytically using relations~A7! and
~A10!, giving

w~u!5Vu2sgn~v!d2
21PS n;

Ku

p UmD , ~35!

whereP(n;uum) is the elliptic integral of the third kind, and
the constantsn andd2 are given by

n5
m

12hm1
5

2mK2

f
, d25KA 2 f

f cf d
. ~36!

Since the wave function is single valued, the phasew must
satisfy

w~2p!2w~0!52pJ. ~37!

This condition can be used to determine the value ofm in the
following manner. In the present case, the parametersm and
n satisfy the relationm,n,1. Then, using relations~A14!–
~A17!, the elliptic integralP(n;uum) at u52p reduces to
04361
l
- P~n;2Kum!52FK1

p

2
d2$12L0~«um!%G , ~38!

«5arcsinA f c

m1f
, ~39!

whereL0 is Heuman’s Lambda function defined in terms
the incomplete elliptic integrals of the firstF(«um) and sec-
ond E(«um) kinds as

L0~«um!5
2

p
@KE~«um1!2~K2E!F~«um1!#. ~40!

The phase atu52p thus becomes

w~2p!52pV2sgn~v!FA2 f df c

f
1p~12L0!G . ~41!

Using the notationv[V2J instead ofV and J, condition
~37! then leads to

2puvu5A2 f df c

f
1p~12L0!, ~42!

which determines the parameterm. Equation~42! has a so-
lution only wheng,2v221/2 and 0,uvu,1/2, i.e., in the
region delimited by~but not on! adjacent vertical dotted an
solid lines and by the bold curve in Fig. 1~a!.

Next let us consider two special cases:v50 (V is equal
to integerJ, i.e., on the vertical dotted lines! @see Fig. 1~b!#,
and uvu51/2 (V is equal to half integerJ11/2, i.e., on the
vertical solid lines!. The ground-state wave function give
by Eqs. ~26! and ~35! is simplified whenuvu50 and uvu
51/2 according to the limiting values of several paramet
discussed in Appendix B.

Whenv50, the amplitudeAr(u) reduces to the Jacobia
elliptic function dn(uum) and the phasew(u) reduces toJu,

c~u!5A K2

p3ugu
dnS K~u2u0!

p UmDeiJu. ~43!

Substituting this solution into the GPE~10! yields the chemi-
cal potential

m52
K2

p2
~11m1! ~44!

and an equation

f d52KE1p2g50, ~45!

which determines the parameterm512m1 only wheng,
21/2. The dn solution includes the ground state in the r
container withV50.

When uvu51/2, the amplitude is given by the Jacobia
elliptic function cn(uum), andw(u) reduces to (J11/2)u,
9-4
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STABILITY OF THE QUANTIZED CIRCULATION OF . . . PHYSICAL REVIEW A 68, 043619 ~2003!
c~u!5A K2m

p3ugu
UcnS K~u2u0!

p UmD Uei (J11/2)u. ~46!

The chemical potential and the equation that determines
parameterm are obtained as

m52
K2

p2
~122m1!, ~47!

f c52m1K222KE2p2g50. ~48!

Equation ~48! has a solution only wheng,0. The wave
function ~46! has a node atu5u01p, and the phase jump
by the amount ofp at the node. With increasingV adiabati-
cally, the vortex enters the ring through this node.

D. Ground-state properties

To illustrate theV dependence of the soliton solutio
Fig. 2 shows the densities and the phases forg520.55,
where the integral constant for the phase is chosen so
w(p)50. The density profiles of the solitons depend only
the relative angular frequencyuvu. As the strength of inter-

FIG. 2. Densitiesr ~solid curves! and phasesw ~dotted curves!
for several values of angular frequencyv and phase winding num
ber J5V2v with g520.55. The density depends only onuvu.
The phase differencew(u12p)2w(u) is given by 2pJ in panels
~a! and ~b!, and by 2pJ1p in panel ~c! because atuvu50.5 the
wave function has a node at which the phase jumps byp.
04361
he

at

action is increased, the parameterm approaches unity~see
Fig. 12 in Appendix B! for all v. In the limit of m→1, both
dn(uum) and cn(uum) become sechu, which is a soliton so-
lution in infinite space@14#.

The ground-state energyE per atom of the uniform-
density state is given by

E5v21
g

2
, ~49!

and that of the soliton is given by

E5g1
K@3E2~11m1!K#

p2

1
2K2@3E222~11m1!KE1m1K2#

3p4g
. ~50!

Equation~50! reduces to the energy of the dn solution in t
limit v→0 as

E52
K2@~11m1!E1m1K#

3p2E
, ~51!

and to that of the cn solution in the limituvu→1/2 as

E52
K2@~122m1!E2m1~223m1!K#

3p2~E2m1K !
. ~52!

The ground-state energy per atomE and the chemical poten
tial m are shown in Figs. 3~a! and 3~b!. For a giveng, the
ground-state energyE reaches minima for integerV and
maxima for half integerV, and is smooth everywhere. In th
regimeg,21/2, the chemical potentialm becomes maxi-
mal for integerV and minimal for half integerV, and has
kinks at the phase boundaries given byg22(V2J)211/2
50. The phase-transition type is the same as that in
nonrotating case@23#: at the phase boundary~i! E is smooth,
the first derivative ofE with respect tog or V has a kink and
the second derivative ofE has a jump and~ii ! m has a kink
and the first derivative ofm has a jump. The behaviors o
these quantities near the phase boundary are detailed in
pendix C.

FIG. 3. ~a! Ground-state energyE per atom and~b! chemical
potentialm. Both decrease monotonically with increasingugu and
are periodic with respect toV.
9-5
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III. EFFECTS OF QUANTUM FLUCTUATIONS

Without rotation, the quantum depletion diverges atg5
21/2, at which point the lowest excitation energy obtain
by the Bogoliubov theory becomes gapless. This require
modification of the MFT @23,24#. We investigate here
whether or not in the presence of rotation there is suc
singular point at which the effects beyond the Bogoliub
theory are significant.

We evaluate the depletion of the condensate which is
culated according to the Bogoliubov theory as

N85E
0

2p

(
nÞ0

uvn~u!u2du, ~53!

wherevn(u) is the hole amplitude in the BdG equation~14!.
If N8/N is of the order of unity, the validity of the Bogoliu
bov theory is not ensured. Since the excitation in
uniform-density regime is contributed mainly by the exci
tion with quantum number 1, the depletion in the uniform
density regime becomes

N8.
11g

A112g
21. ~54!

At the phase boundaryg52v221/2, Eq.~54! reduces to

N8.v1
1

4v
21, ~55!

which is shown in Fig. 4. The quantum depletion diverges
the phase boundary withv50 andg521/2. However, as
uvu is increased,N8 at the phase boundary decreases and
depletion becomes much less pronounced, as shown in
4. This result is also inferred from Fig. 1~b!. The uniform-
density state becomes dynamically unstable below the h
zontal dotted lineg521/2, and this line touches the pha
boundary~the bold curve! at v50.

We compare low-lying energy levels obtained by the B
goliubov theory with those obtained by the exact diagon
ization of the many-body Hamiltonian~1!. Figure 5 shows
the Bogoliubov spectraln obtained by the BdG equatio
~14! as a function of the strength of interaction for angu
frequenciesuvu50,0.2, and 0.5. The curves represent t

FIG. 4. Quantum depletionN8 @Eq. ~55!# at the phase boundar
calculated by the Bogoliubov theory.
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excitation energies from the uniform-density state forugu,
22v211/2, and those from the soliton state forugu.
22v211/2. All levels are continuous at the boundariesugu
522v211/2, thus indicating a smooth crossover betwe
the uniform-density state and the soliton state. Whenv50
~solid curves!, l1 and l21 are degenerate in the uniform
density regime, but in the soliton regime (ugu.0.5) they
bifurcate into two branches, the first excited state and
Goldstone mode. The Goldstone mode, which is associ
with the breaking of translation symmetry, boosts the soli
along the ring without increasing the energy. Asuvu is in-
creased from zero~dashed-and-dotted curves!, the degen-
eracy is lifted by rotation.

Next we calculate the low-lying energy levels by the exa
diagonalization of the many-body Hamiltonian to see h
they deviate from the Bogoliubov spectra near the ph
boundary. The diagonalization procedure is the same as
without rotation@23#. We denote the number of atoms wit
angular momentumk asnk and prepare the plane-wave bas
as unl 02 l c

, . . . ,nl 021 ,nl 0
,nl 011 , . . . ,nl 01 l c

&, wherel 0.J is

the angular momentum of the condensate andl c is the cutoff.
Within the subspace in which the particle number and
total angular momentum are conserved as

(
k5 l 02 l c

l 01 l c

nk5N, (
k5 l 02 l c

l 01 l c

knk5L, ~56!

we perform the diagonalization of Hamiltonian~1!, which is
rewritten in second quantized form as

K̂5(
l

~ l 2V!2ĉl
†ĉl1

g

2N (
klmn

ĉk
†ĉl

†ĉmĉndm1n2k2 l .

~57!

FIG. 5. Bogoliubov spectraln for uvu50 ~solid curve!, uvu
50.2 ~dashed-and-dotted curves!, anduvu50.5 ~dotted curves!. The
~quasi-! zero-energy levels in the soliton regime correspond to
Goldstone modes associated with the breaking of the transla
symmetry due to soliton formation. The open circles show the
citation spectrumE1(L0)2E0(L0) obtained by the exact diagona
ization of Hamiltonian~57! for N5500 with uvu50.2. This spec-
trum agrees with the Bogoliubov spectruml11l21 ~bold curve!
even at the phase boundaryugu50.42.
9-6
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We denote the angular momentum of the ground state asL0,
which gives the lowest-energy eigenvalue, and the grou
state energy asE0(L0). The open circles in Fig. 5 show th
excitation spectrumE1(L0)2E0(L0) obtained by the diago
nalization of Hamiltonian~57! for N5500 anduvu50.2 with
cutoff l c51. The results agree very well with the Bogoliu
bov spectruml11l21 ~we represent here only the excit
tions that conserve the total angular momentumL0). We can
also confirm that the difference between the Bogoliub
spectrum and the exact one becomes even smaller asuvu
moves further away from zero. This is consistent with t
analysis of the depletion of the condensate. The Bogoliu
theory is thus vindicated, except forg.21/2 andV.J.

IV. QUANTIZED CIRCULATION AT ZERO
AND FINITE TEMPERATURES

A. Quantized circulation at zero temperature

A superconductor has no magnetic flux when the app
magnetic field is below a critical value. The analog of th
Meissner effect in a neutral superfluid system is the He
Fairbank effect@20#, in which the system is not set into ro
tation when the frequencyV of a rotating drive is below a
critical valueVc . When V exceedsVc , the circulation of
the system, which is defined as the integral of the superfl
velocity along a closed contour, is quantized in units ofh/M
with M being the atomic mass@21,22#. This is analogous to
the case of a type-II superconductor in which quantized v
tices enter the system when the external magnetic field
ceeds the lower critical fieldHc1

. The applied magnetic field
and the magnetic flux in the superconductor correspond
the rotating drive and the angular momentum^L̂& of the
superfluid, respectively.

We calculate the angular momentum of the ground s

^L̂&05N*0
2pc* (u)(2 i ]u)c(u)du, where c is the mean-

field solution~13! or ~26! and ~35! obtained in Sec. II. The
resulting analytical expression for the expectation value oL̂
per atom is

^L̂&0 /N5H J, g>2v221/2,

J1v12pW, g,2v221/2,
~58!

where W is given in Eq.~30! @see also Fig. 11~a!#. In the
limits of uvu→0 and uvu→1/2, J1v12pW reduces toJ
andJ11/2, respectively. Equation~58! is shown in Fig. 6 as
a function ofV andg, where the plateaus correspond to t
uniform-density regime and the crossover regions betw
plateaus correspond to the soliton regime. Forg,21/2, the
stable uniform-density state does not exist and the plate
disappear.

Since the quantum fluctuation is small, Eq.~58! correctly
describes the ground-state angular momentum except fg
.21/2 andV.J. Both the Hartree-Fock theory@10# and
the Monte Carlo calculation@28# show that this system ex
hibits the Hess-Fairbank effect in a certain parameter regi
which is consistent with our results.

We briefly comment on the case of repulsive interact
(g.0). According to the MFT, the ground state with repu
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sive interaction has a uniform density for all parameters. T
expectation value of the angular momentum then increa
stepwise like the noninteracting case, as demonstrated in
6 with g50. The repulsive bosons do not prefer the mixi
of different angular-momentum states since it costs the F
exchange energy.

When V is controlled in a time-dependent manner, t
response to the external rotation displays hysteretic beha
which is possible only when the energy structure has at le
two minima separated by a free-energy barrier@29#.

We suppose thatV is increased from zero to one and the
decreased back to zero, along the arrows shown in Fig
Unlike the soliton regime for the attractive case, the angu
momentum is a good quantum number for the repulsive c
These quantum numbers are shown in parentheses in Fi
WhenV is increased from zero, the angular momentum
atom^L̂&0/N remains zero until the boundary between II a
III is reached, and then jumps to one at the boundary si
the two states 1/A2p and eiu/A2p are divided by a free-

FIG. 6. Expectation value of the angular momentum per atom
zero temperature. The plateau regions correspond tog>2(V2J)2

21/2. Wheng<20.5, the plateaus disappear.

FIG. 7. Angular-momentum quantum numbers for repulsive
teractions. The curves areg22(V2J)211/250 for J522,
21, 0, 1, and 2.
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energy barrier in regime II. WhenV is decreased from one

^L̂&0/N is initially one and remains so until the bounda
between I and II is reached, at which point it jumps to zero
the boundary. Thus the hysteresis of^L̂& for the external
rotationV appears. The energy barrier is explicitly obtain
by the microscopic calculation of Hamiltonian~57! in
Ref. @29#.

B. Quantized circulation at finite temperature

We examine the effect of thermal fluctuations on t
quantized circulation at finite temperature. The total angu
momentum of the system is obtained from the derivative
free energyF with respect toV as

^L̂&t52
1

2

]F
]V

1NV, ~59!

where

t5
kBT

\2/~2MR2!
~60!

is a dimensionless temperature withkB being the Boltzmann
constant,̂ •••&t denotes the ensemble average at temp
ture t, and the second term in Eq.~59! corresponds to the
angular momentum of the rigid body arising from the co
stant term of Hamiltonian~1!.

To evaluate the free energy, we employ the exact dia
nalization method of the many-body Hamiltonian. All low
lying levels En have been obtained in Sec. III, and we u
them to calculate the free energy

F52t ln(
n

e2En /t. ~61!

Figure 8 shows the angular momentum for several temp
tures calculated from Eqs.~59! and ~61!, where the mean-
field result att50 is also presented for comparison~dotted
lines!. At absolute zero, the result obtained by the exact

FIG. 8. Angular momentum per atom forg520.2 and N
5500 at temperaturest50, 0.5, 1, and 2 obtained by diagonaliz
tion of Hamiltonian~57!. The plot shows the result of the mea
field theory att50.
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agonalization agrees well with the mean-field result. T
supports the validity of the MFT consistent with the resu
in Sec. III. As the temperature increases, thermal excitati
wash out the edge of the circulation step, and the ang
momentum of the system approaches that of a classical fl
i.e., ^L̂&t5NV.

In the present paper, we have focused on the prope
near t50 in this calculation. In principle, however, thi
method can be extended to higher temperatures by increa
the cutoff angular momentum, as long as the excitations
radial modes are negligible. Nearuvu.1/2, however, the re-
sults of diagonalization are less accurate than they are av
.0, since more bases are needed in order to allow the s
to have a node. In that case, the accuracy can be improve
increasing the cutoff angular momentum.

Finally, we consider an experimental situation. A tor
trap may be set up by Laguerre-Gaussian beams@18# or the
technique of microelectronic chips@30#. To be concrete, let
us consider7Li; then Eq.~60! leads to

T.34
t

~R@mm# !2
@nK#. ~62!

Thus for a torus withR51 mm, t52 in Fig. 8 corresponds
to T568 nK, which can be achieved with the current expe
mental techniques.

V. PREPARATION OF THE GROUND STATE BY A
STIRRING POTENTIAL

Rotation of the system can actually be driven by a pot
tial that breaks the axisymmetry of the system. As a conc
example, we consider a time-dependent potential

V~u,t !5V0cos~u22Vt !, ~63!

which stirs the system with angular frequency 2V, and we
fix the amplitude of the potential asV051023. We take as an
initial statec(u,t50)51/A2p with a fixed strength of in-
teractiong521/4, and let the system evolve in time accor
ing to the GPE,

i
]

]t
c~u,t !5F2

]2

]u2
1V~u,t !12pguc~u,t !u2Gc~u,t !.

~64!

Figures 9~a!–9~c! show the time evolution of the angula
momentum of the condensate and that of the amplit
uc(u5p,t)u. One of the phase boundaries forg521/4 de-
termined by Eq.~20! is Vcr5A1/8.0.354. AsV nearsVcr ,
the stirring potential causes a significant growth in density
shown in Fig. 9~c!. Figure 9~d! plots the maximum amplitude
uc(u0)u as a function ofV, which shows the resonance in
duced near the phase boundary. However, the angular
mentum of the system oscillates without damping, and
system does not reach any stationary state.

To achieve a stationary state, we must introduce ene
dissipation. We therefore study the time evolution of the s
tem according to a generalized GPE@31,32#,
9-8
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~ i 2G!
]

]t
c~u,t !5F S i

]

]u
1V D 2

1V0 cosu

12pguc~u,t !u2Gc~u,t !, ~65!

where G is a phenomenological damping constant. Figu
10~a! shows the time evolutions of the angular moment
for several values of the angular frequency of stirring w
G50.1. The system acquires a finite angular momentum,
the magnitude of the absorbed angular momentum conve
to that of the thermodynamically stable state, as shown
Fig. 10~b!. We note that as long asV lies in the same platea
region, the angular momentum converges to the same
gral value. This demonstrates that the ground state derive
Sec. II can indeed be prepared by the time-dependent stir
potential in the presence of energy dissipation, and that
circulation is indeed quantized in the thermodynamica
stable state.

From these results, it is concluded that the system rea
a thermodynamically stable state after both density fluct
tions and energy dissipation. The density oscillation is dr

FIG. 9. Time evolution of the angular momentum of the co
densate~bold curves! and that of the amplitudeuc(u0 ,t)u at u0

5p ~solid curves! driven by a time-dependent stirring potenti
~63! with g521/4 for ~a! V50.3, ~b! V50.35, and ~c! V
5Vcr . Note that the oscillations of the density and angular mom
tum are enhanced close toVcr5A1/8.0.354.~d! Maximum ampli-
tude of the wave function as a function ofV.
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tically enhanced near the resonant frequency. However,
ergy must be dissipated in order for the system to acqui
net and thermodynamically stable angular momentum. Si
lar mechanisms have been found in the vortex lattice form
tion @13#.

VI. CONCLUSIONS

We investigated the rotational properties of on
dimensional bosons with attractive interactions confined i
rotating torus trap.

We derived the ground-state wave function analytica
within the MFT as a function of the strength of interactiong
and of the rotational frequency of the torusV. A uniform-
density solution and a bright-soliton one were found to cr
over each other smoothly. The density of the soliton depe
on the rotational frequencyv and has a node atV5J11/2
when a vortex enters the ring.

In order to investigate the validity of the Bogoliubo
theory, we compared the excitation spectrum obtained by
Bogoliubov theory with that obtained by the exact diagon
ization of the many-body Hamiltonian. We found that th
MFT well describes the ground state and the low-lying e
cited states, except forV.J,g.21/2, where the phase
boundary coincides with the borderline of the onset of d
namical instability, thereby producing significant quantu
fluctuations.

The angular momentum of the ground state is quanti
with respect toV in the uniform-density regime, but it is no
quantized in the soliton regime. The circulations at fin
temperature were examined by the exact diagonaliza
method, and an experimental situation to realize our pre
tions was discussed.

To understand the process by which the system is set
rotation, we considered a time-dependent stirring poten
that breaks the axisymmetry of the torus. The potential w
shown to induce the resonance, causing the density to o
late and thus triggering the system to acquire angular m
mentum. However, energy must be dissipated in order for

-

-

FIG. 10. ~a! Time evolution of the angular momentum of a
initially uniform state with a damping constantG50.1 for g5
21/4 andV051023. ~b! Expectation value of angular momentu
per atom obtained by the MFT forg521/4.
9-9
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circulation to acquire a thermodynamically stabilized qua
tized value.
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APPENDIX A: ELLIPTIC INTEGRALS
AND ELLIPTIC FUNCTIONS

Definitions and inter-relations of some elliptic integra
and elliptic functions@27# appearing in this paper are sum
marized as follows.

Elliptic integrals of the first kindF, the second kindE,
and the third kindP are defined as

F~f/a![E
0

f du

A12sin2a sin2u
, ~A1!

E~f/a![E
0

f

duA12sin2a sin2u, ~A2!

P~n;f/a![E
0

f du

~12n sin2u!A12sin2a sin2u
. ~A3!

Using a parameterm[sin2a, Jacobian elliptic functions are
defined by

sn~uum![sinf, ~A4!

cn~uum![cosf, ~A5!

dn~uum![A12m sin2f, ~A6!

and these functions are inter-related as

dn2~uum!2m15mcn2~uum!5m@12sn2~uum!#. ~A7!

Using the parameter set$u,m% instead of$f,a%, the elliptic
integrals are also expressed as

F~uum![E
0

u

dv5u, ~A8!

E~uum![E
0

u

dn2~vum!dv, ~A9!

P~n;uum![E
0

u dv

12nsn2~vum!
. ~A10!

Elliptic integrals are said to be complete whenf5p/2,
and are usually denoted as

K~m![FS p UmD , E~m![ES p UmD . ~A11!

2 2

04361
-

-

e
l-

Complete elliptic integrals of the first and second kinds
expanded forumu,1 as infinite series

K~m!5
p

2 F11S 1

2D 2

m1S 1•3

2•4D 2

m21S 1•3•5

2•4•6D 2

m31•••G ,
~A12!

E~m!5
p

2 F12S 1

2D 2

m2S 1•3

2•4D 2 m2

3
2S 1•3•5

2•4•6D 2 m3

5
2•••G .

~A13!

The elliptic integral of the third kindP(n;f\a) has other
expressions depending on the relation betweenm and n.
Whenm,n,1 andf5p/2, it reduces to

PS n;
p

2 \ a D5K~a!1
p

2
d2$12L0~«\a!%, ~A14!

d2[A n

~12n!~n2sin2a!
, ~A15!

«[arcsinA 12n

cos2a
, ~A16!

whereL0 is Heuman’s lambda function defined as

L0~f\a![
2

p
@K~a!E~f\90°2a!

2$K~a!2E~a!%F~f\90°2a!#. ~A17!

APPENDIX B: LIMITING BEHAVIORS OF THE SOLITON
SOLUTIONS

We consider the limitsuvu→0 anduvu→1/2 of the soliton
solution for 0,uvu,1/2 given by

r~u!5
K2

p3ugu
Fdn2S K

p
~u2u0!UmD2hm1G , ~B1!

w~u!5Vu2sgn~v!d2
21PS n;

Ku

p UmD , ~B2!

m5
1

2p2
~ f d2 f c2 f !, ~B3!

where

f [2K222KE2p2g, ~B4!

f c[2m1K222KE2p2g, ~B5!

f d[2KE1p2g. ~B6!

The limiting values and behaviors of several paramet
are summarized in Table I and Fig. 11, respectively. In
limit uvu→0 ( f d→0), Eqs.~B1! and ~B2! continuously be-
come the dn solution, sinceh→0 andW→0, as seen from
9-10
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Fig. 11 and Table I. In the limituvu→1/2 (f c→0), where the
parameters behave ash→1, W→0, Eqs.~B1! and ~B2! re-
produce the cn solution. It can easily be verified by sett
f d50 or f c50 in Eq. ~B3! that in these limits the chemica
potential for 0,uvu,1/2 continuously approaches

m52
K2

p2
~11m1!5

1

2p2
~2 f c2 f !, uvu50, ~B7!

m52
K2

p2
~122m1!5

1

2p2
~ f d2 f !, uvu51/2. ~B8!

TABLE I. Limiting values of various parameters of the solito
solution. The limit uvu→0 is equivalent to the limitf dn→0 or g
→22KE/p220, and uvu→0.5 is equivalent tof cn→0 or g→
22(KE2m1K2)/p220. The limit m→0 corresponds to the
uniform-density limit ofugu→22v211/210.

uvu→0 uvu→0.5 m→ 0

h 0 1 112g
n m 1 0

W2 0 0 A112g/4p
d2 ` ` A1/(112g)
« p/2 0 p/2

FIG. 11. ~a!–~c! Behaviors of several parameters appeared in
soliton solution for g520.4 ~dashed-and-dotted!, g520.5
~dashed!, g520.6 ~solid!, and g520.7 ~dotted curves!. ~d! In-
complete elliptic integral of the third kindP(n;Ku/pum) for uvu
50.4 as a function ofu.
04361
g

The first derivative of the ground-state energy with r
spect toV has a kink at the phase boundary, which is verifi
by relations~58! and ~59! as

]E
]V

52~V2^L̂&0 /N!5H 0, uvu50,1/2,

24pW, 0,uvu,1/2.
~B9!

Figure 12 shows the solutionm calculated numerically by
solving

f d50, uvu50,

2puvu5A2 f df c

f
1p~12L0!, 0,uvu,1/2,

~B10!

f c50, uvu51/2,

where the line of intersection between the curves and
g-v plane corresponds to the phase boundaryg22v211/2
50.

APPENDIX C: GROUND-STATE PROPERTIES NEAR THE
PHASE BOUNDARY

We investigate the continuity of the ground-state prop
ties at the phase boundary. From Fig. 12, we see that
parameterm becomes zero for all soliton solutions in th
limit ugu→22v211/210. The uniform-density limit of the
soliton solution is hence mathematically obtained by tak
the limit of m→0. Let d be a positive small deviation ofg
from the value at the phase boundary for a fixedv. For
uvu50,1/2, the parameterm, the complete elliptic integrals
K(m),E(m), and hence the physical quantities near t
phase boundary are expanded in terms ofd in the following
manner.

For the dn solution (v50), the phase boundary isg5
21/2 and letg521/22d. Using the equationf d50, we
obtain

m58d1/2232d189d3/22200d21O~d5/2!. ~C1!

FIG. 12. The solutionm calculated numerically from Eq.~B10!.
The dotted curve on thev-g plane represents the phase bounda
g22v211/250, and there exists a unique solutionm in the soli-
ton regimeugu.22v211/2.

e
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The expansion formulas~A12! and ~A13! become

K5
p

2 S 112d1/21d1
1

4
d3/21

1

2
d2D1O~d5/2!, ~C2!

E5
p

2 S 122d1/215d2
33

4
d3/21

23

2
d2D1O~d5/2!.

~C3!

Using these expansions, the ground-state energy and
chemical potential are expressed as functions ofd instead of
m near the phase boundaryg521/22d. The jump in the
second derivative of the ground-state energy and that in
first derivative of the chemical potential are obtained as

Edn9 2Eu9524, mdn8 2mu8522, ~C4!

at g521/2 andv50.
For the cn solution (uvu51/2) atg52d, the expansions

are obtained in a similar way, as

m54d26d21O~d3!, ~C5!

K5
p

2 S 11d1
3

4
d2D1O~d3!, ~C6!

E5
p

2 S 12d1
3

4
d2D1O~d3!. ~C7!
et

.
I

r-

i-

let

.

A

04361
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The ground-state energy and the chemical potential are
panded in terms ofd as

Ecn5
1

4
2

3d

4
2

d2

8
1O~d3!, ~C8!

mcn5
1

4
2

3d

2
2

3d2

8
1O~d3!, ~C9!

which are continuously connected with those of the unifor
density solution atg50 and uvu51/2. However, the first
derivative of the ground-state energy and that of the che
cal potential are given by

Ecn8 52
3

4
2

d

4
1O~d2!, ~C10!

mcn8 52
3

2
2

3d

4
1O~d2!, ~C11!

and have discontinuous jumps atg50 anduvu51/2 by the
following amounts:

Ecn8 2Eu852
1

4
, mcn8 2mu852

1

2
. ~C12!
l-
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