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GaugeP representation and N-boson problem with binary interactions
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Recently, the gaugB-representation has been introduced to eliminate boundary term problems arising in
some cases with the positiefrepresentation. We show that the galyeepresentation does not solve the
problem in the case of a many-body system with binary interactions, unless the number of atoms is definite. In
this case we find a set of stochastic equations for the gRuggresentation that reduces the statistical errors
with respect to the equations suggested in a previous work. We also analyze the possibility to reduce the
statistical errors with appropriate decompositions of the diffusion matrix. Finally, we study the relation be-
tween the gaug®-and alternative representations.
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l. INTRODUCTION . o
p=f DaDBA(a,B)P(a,B), 3
In this paper we will consider the dynamics of a multidi-
mensional system described by the creation and annihilationh - . Hic
Bose operatorg; , &;, respectively, and with the following " erea=(ay,az, ...), '8_5'8_1'32’ ) aremult imen-
associated Hamiltonian, normalizedito Z;S)nal complex vectors arjfke) is a Bargmann state, defined
P 05ty o L STty g
H=2 Hid +5 2 Vydidldid. (@ ] .
E E la)=25 (eip))"/nt|0). 4

With a suitable choice dﬂﬂ , this is the discretized version

of the Hamiltonian of a gas with binary interactions and it is |t can pe proved that the positifunction P(a, ) can be
used to describe the dynamics of dilute Bose-Einstein congnosen positive for any density matfi,4]. It is well-known
qens?tef. In the continuum limit we have the correspondengg gt among the infinite evolution equations of fdunction

¢i— ¢(x). When the field fluctuations are sufficiently small there exists a Fokker-Planck equation with a positive definite
it is possible to describe the system with the mean-fielddiffusion matrix[3,4]. Thus, the evolution oP can be evalu-
Gross-Pitaevskii equation of a collective wave-functjah ated using stochastic equations toand E [5]. However, in
However, in this approximation genuine quantum effects argyme cases, as for Hamiltonid), these equations have
lost. An exact quantum solution is a formidable task for large,nstable solutions that diverge at a finite time.

;ystem;. In quantum mgchanics, a system Wittoordinates The gaugeP representation introduced in R&6] allows

is described by a function dfl variables, thus the quantum 5 to eliminate the instabilities of the stochastic equations,
state is an element of a functional space with infinite dimeny, .t it is not able to solve another problem. Smith and Gar-
sions. Suppose to di_screti;e the variables with a I.attidlafl of diner [7] have demonstrated that the dynamics may not be
elemints for each dlm_en5|on,. the quantum s_tate is descrlb?gopeﬂy described by the stochastic equations, even though
by M™ elements. On increasinly, the dynamical problem {he solutions do not diverge. This occurs because, in the
becomes rapidly numerically intractable. In these casegerivation of the equations, nonzero boundary terms arising
Monte Carlo techniques can be useful, since the state is ogrom an integration by parts are neglected. Such an anomaly
tained with different suitably weighted statistical realizationsyccyrs also for the system described by Hamiltor{Brun-

of the evolution ofN classical variables. A statistical method |e5s5 5 definite number of atoms is considered. In this last
is obtained by the Feynmann’s path integral formulation angtase we introduce a set of stochastic equations that reduces
is used to calculate the thermodynamical properties. Howghe statistical errors with respect to the equations suggested
ever, the path integral is not suitable to evaluate the dynamh Ref. [6]. We also analyze the possibility to reduce the
ics, because of well-known phase problems. Alternativelygiagistical errors with appropriate decompositions of the dif-
the stochastic approach can be extended for quasiprobabilifysion matrix. Finally, we find that the stochastic equations
distributions in the phase space. A Monte Carlo techniqug, Refs.[8,9] can be recovered from the gauBerepresen-

has been dealt with in Reff2] using the positiveR? represen-  iation. In Sec. Il we show, with the gauge choice in Réf,
tation. In this representation the density operator is written ag,at the boundary terms cannot be neglected even by using

a superposition of the operators the gaugeP representation. In Sec. Ill we consider a system
L. R, with a fixed number of atoms and show that problems with
Ale,B)=exp—B* - a)||a)(Bll, (20 the boundary terms do not occur. Then, we find the opti-

mized stochastic equations. In Sec. IV we analyze the possi-
ie., bility to reduce the statistical errors with appropriate decom-
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positions of the diffusion matrix. In Sec. V we study the
relation between the gaudeand alternative representations.

Il. GAUGE- P REPRESENTATION
AND BOUNDARY TERMS

The equation of motion af is d,p= —iHp+ipH, which
by using Eq.(3) becomes,

J DaDBA(a,B)dP(a,pB)

zfDaDﬁ[—iﬂ,A(&,é)]P(&,,é). (5)
It is easily proved that
$ih(a,B)=aih(a,p),
A(a,B)dl=pf Aa.B),
A (@, B)=(Bf +d4)A(a,B),

)

(a.B)¢i=(ai+dg)A(a,p). (8)
Furthermore, because of the analyticityfbf we have
aar/‘\(&ﬁ):aﬁiﬁ(&,[ﬂ:o. 7)

Thus, we find that

[_i,’:[,/’&]:z [ —iHijajﬁai—iVijajﬂJ* ai&ai
1]

i N
—EVijaiaj&ai&aj+a<—>,8+c.C. A. (8)

At this point, we integrate by parts and obtain

f DaDBAOE p P=0, 9
where
OF.P.: at'f' iHij&aiaj-i—iVij&aiaj,Bj*ai
i
- EVijﬁaiﬁajaiaj-l—aH,B-i-C.C. (10)
This equation is fulfilled if

Note that it is not a necessary condition, sidcgx, 8) is an

overcomplete set. The Fokker-Planck equatibh does not
have a positive-definite diffusion matrix and, consequently, it

Z Uijaiar&aiﬁa}e+a<—>ﬁ A, (12
]

whereU=ZZ" and the matriXZ is, by definition, the square
root of —iV, i.e., ZZ=—iV. Thus, we obtain a Fokker-
Planck equation with the following associated stochastic
equations

di:_i; Hijaj—iai; Vijal-,Bl*-i-ai; legj(l),

(13
Bi=—12 HyBy— B2 Vel B2 2,7,
(14)
where ¢M(t) are real stochastic functions with

9 V(1) = 88, 8(t—t'). A different choice of the ad-
ditional terms leads to alternative equatideee Sec. IV. If

we neglect the stochastic term and pTu:t:B the equations
become the mean-field nonlinear equation which is generally
used to study the Bose-Einstein condensates. The two equa-
tions have independent noises, thus it is not possibledhat
=B at every time. This implies that the nonlinear coefficient
—iEjVijajﬂ}* of Egs.(13) and (14) have in general a real
part, which is the reason of the well-known instability of
these stochastic equations. In the gaRgepresentation it is
possible to eliminate the destabilizing drift term by adding a
diffusion term[6]. In this representation a new complex vari-
able(} is introduced and the density operator is expanded in
the overcomplete basis

Ag(Q,a,8)=0Q exp(— B* - a)||a){Bl|=QA(a,B).
(15)

Equation(3) becomes
,SzfDaDﬁdQAg(Q,&,B)PQ(Q,&,B). (16)

Infinite choices ong(Q,&,B) are possible for each density
operator. One of them is the following

Py(Q,a,8)=58(Q—1)P(a,B), (17)

whereP(a, ) is the positiveP representation.
Suppose that in the positivdrepresentation the stochas-
tic equations are

a=A+ zk: B &k

Bi:Aib+§k: BR&D, (18)

does not have an associated stochastic equation. We can use

Egs.(7) to add terms into Eq(8) which lead to a positive-
definite diffusion matrix. A simple choice is the following

it is possible to obtain the following equations fer 3, and
Q) in the gaugeR representatiofi6]
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aj=

AR—2 gayBY [+ > BREY,
k k

Bi:[AP_Z 9 kB

> 0,485+ 3 852,

Q=02k [Qaxél+ 05 (&2, (19)

In Ref. [6] the proof is obtained using a real notation. For

pedagogical reasons we demonstrate again @§s. using a
complex notation. Since(¥do—1)A,=0 and dg«A4=0,

by integration by parts it is easy to show that the following
terms can be added to the Fokker-Planck equation without

modifying the dynamics of the density operafor

J . o N
((?_Qﬂ_l) Fl(Qianﬁi&Q 5(9&!F7E)Pg(ﬂialﬁ)!

(20

90* FZ(Q!&!B!‘?Q !(9& l&E)Pg(Qi&lB)i

where F, , are generic functions of), «;, B;, and their
derivatives. It is obvious that Eq§l8) are valid also in the
gaugeP representation, with

0=0 (21
for Q). The Fokker-Planck equation associated with Ef8)
and(21) is

Py a5, 1 9 vlp
ot T dy 24 r?yi(?yj* WYY Te
where
@ Aa
51* Aa*
R B . Ab ;
y=| _ |. D= E c=MMT", (22
,3* AP*
QO 0
Q* 0
and
BE 0 0 0 O
B* 0 0 0 0 O
0O 0 B 0 0 O -
M= 0 0B™ 00O 23
0O 0 0 00 O
0O 0 0 00O
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a, B ), and their conjugate values are considered as inde-
pendent variables. Bold zeros are zero submatrices, whose
dimensions are consistent with the dimension of the six ele-

ments in the column vecto}.

The presence of the redundant variableallows us to
obtain a larger set of stochastic equations by means of Egs.
(20). Let us replacev with the following matrix

B 0 0 0 0 O

B* 0 0 0 0 O
0O 0 B 0 0 O

M=l o o B™ 0 0 0l (24)
I 0 g 000
gl 0 gl 00 O

whereg, andgy, are the column vectors whose elements are
0. and gy, respectively. With this modification second-
order terms in?,/i are added. Terms with the left-hand factors
920%=(9oQ—1)dnQ and dy« do not modify the dynam-
ics of the density operator because of E@)). Thus the
only terms that have to be counterbalanced are the following

2 709270 9aiBai+ 75,90, BikBi T C.C)Pg. (25)

They can be compensated by adding the following drift
terms[see the first of Eq920)]

- % (90, 9a kBikai 35i9b,k5ibk,3i +c.c)Py.  (26)

So, we obtain the Fokker-Planck equation associated with
the stochastic Eq$19).

In our caser}zaiZij and Bﬁ- =BiZij, thus the second
drift term of Eqgs.(13) and (14) can be removed withy, ;
=3Zjjq;B] andgp;=32;Z;;B;af . We have the following
stochastic equations

a|=—|§J: H”aJ—i-ozlzJ: lefl(l),
BiZ—i; Hijﬁj"'ﬁi; ;&%)

Q=02 126"+ Zj6). (27
They have solutions that do not diverge at a finite time.

It is important to remark an interesting result by Smith
and Gardiner[7]. They studied a single mode which is
damped by both linear and nonlinear couplings to a zero-
temperature reservoir and found that the stochastic equations
associated with the standard positedistribution lead to
large, but finite, excursions. They demonstrated that the dy-
namics is not properly described by the stochastic equations,
even though the solutions do not diverge. The issue of this
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anomaly, reported also ii0,11], is the validity of neglect- o aa N = A N = =
ing the boundary terms arising from integration by parts. Let P=QnpQn= KJ dQDaDBAG(Q,a,B)Py(Q,a,p),
us define the modulus of an operat6r as follows, |C|
=[Tr(CCM]Y2 It is easily proved thaf exp(—B*-a) is a  Where
constant of motion of Eqs(27). Indeed, it is sufficient to
show thats In[Q exp(—5* -a)]=JIn Q—B* -a] is zero up to
the first order inst. Now suppose that at the initial time the NPT N P 5 e _
density operator i$ag)(ay| we can choose at this time the \;wtnr(])lrﬁécl?i:ti(oi ?o%s{ﬂ|o> and ¢=(¢1,¢2, ...).Kis

. . . - > _ _ -> 2 -’_-’ > .
distribution  Py(Q2,a, )= 5[ Q —exp(ag| )]5@ o) A8 In the representation of Ref9] the density operator is
—ap), thus we have) exp(—8*-a)=1 at every time, where

S i written as a superposition of the operatorfsc
Py is different from zero. Then, since the modulus OfE|N:a><NZ,8|. So, this representation differs from the

Ag(Q,a,B) is expl|al?/2+|B|?12), the distributionPy has  gaugeP representation, in the subspaa, by a factor
to decay rather quickly by increasinig| and|g| in order Q exp(—a-f) (see Sec. V.

that the argument of the integral in E(.6) has a suitable .-
behavior at the boundary. This is not the case in our system. Let us show that the boundary terms are negligible. The

N
At sufficiently small times we can neglect the deterministic™0dulus ofA4 is
terms. We diagonalizg with a unitary transformation of; ,
Bi, and&M? | thus the equations of motion become

AN=0 exp(—a- B*)|N:a)(N: Bl=QuA,Qy (3D

|Q exp(—a-B*)|| VBN, (32

Since|) exp(—&',é*)| is a constant of motion of the stochas-

o= otz &) 28 N
a=aiZig (28) tic Egs. (27) (see preceding sectipnthe modulus ong‘ is
: K|a|N AN, K being a multiplicative constant. Once multi-

plied by P of Eq. (30), this modulus does not diverge for

R —12) _ &,E’—m. It is reasonable to suppose that this occurs also at
where o;, B and " are the transformed variables and 4 finjte time. Thus, the stochastic equations are exact. How-
noises, respectively, arfj are the complex eigenvaluesff  ever, the statistical error with a fixed number of realizations
If the initial state is a Dirac’s delta centered iaY, 8°), the  can grow very rapidly in time for highl since fluctuations of

probability distributionP of |«!| and|B}| at the timeét is || and|B| are amplified by the exponehtin Eq. (32).
We have seen that in the gauBeepresentation we can
(In|al]—In|a?])? add diffusion terms in the Fokker-Planck equation if we add
P(|ail,| Bl 8t)>exp — T 20tZn also suitable drift terms. We now use this property to reduce

the statistical fluctuations. We impose that the variation of

0 0 the modulus offxg is zero at the order of the square root of
+(aj, o) = (Bi.B7) |- (30 the time integration stept. This condition is fulfilled if we
choose the following equation fd2

The modulus ofA o(a', 8Y) is exii(|e!|*+|81?)/2] that multi-

plied by P of Eq. (30), diverges for|a!|,|8!|—, i.e., the Q=02 {aiBF[Z;eV+25 2
boundary terms are not negligible. Since for an initial coher- .
ent stateQ) exp(—A*-@)=1, the gauge? representation be- — N[l a|?Z;; €M+ 8i|| BI2ZE €21} (33

comes a Bargmann state representation, wh%geof Eq.

(15) is replaced byAB=||a)(B||. In this case, it has been

shown that the statistical method not only gives erroneou

results, but leads also to an infinite statistical uncertainty at

every time[8]. =
In the following section we consider the case of a fixed ]

number of atoms and show that the boundary terms are al-

ways negligible in contrast with the preceding case. We in- .

troduce a set of stochastic equations that reduce the statistical ~ 8i= Z

error with respect to the equations suggested in [&f. :

From Egs.(19), we find that the corresponding equations for
gi and g3; are

—iH —iNa:V ij 7. &1
IHjjaj—INa; i a2 aiZij &7 |,

12
—iH; B —INB;V;j %"’Bizijf}z)l- (34)

They have stable solutions, as E(&7). Even thougﬂf\m is
Ill. N PARTICLE SYSTEM constant at the orde®t)?, it is not the case at the ordét.

Let Qy be the projector onto the Hilbert subspagsg  NOW. let us evaluate the variation of the modulusﬁd}I at
associated with a fixed number of atoms. We consider onljhis order. It corresponds to the evaluatation of variation of
the states in this subspace. The corresponding density opefatAL| multiplied by|Ag| since|Ag| is constant at the order
tor can be written in the following way: (5t)Y2. We have
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0.2

@
[
T

Optimized numerical
solution

0.2 04 _
ot

FIG. 1. Mean fraction of atoms

0.6

in level 1 in the two-mode

model foro=w=1 andN=2. The optimized numerical solution is

evaluated by means of Eq&33) and

(34). The line with larger

fluctuations is obtained from Eq&L9) [6]. We have used 200 real-

izations.
~n N |ai|2|a'|2)
SINJAN==| Ugg— > U;i ————| st
| g| 2 00 ; 1] |a|4
EARVER
+5 uoo—iZj U”—IBI“ ot
<N Ut (35)

This equation is obtained by supposing tisg,=U;;, for
everyi. This result is identical to the one that we can obtaincurs also with the approach in R¢€].

by the stochastic formulation in

Refg3,9]. In Sec. V we

show the relation between that approach and E8R. and

PHYSICAL REVIEW A68, 043616 (2003

variables, but a number of realizations growing exponen-
tially by increasingt andN is necessary to reduce the statis-
tical error. Thus, the exponential complexity of a quantum
system is not circumvented by using a statistical method.
However, such a method can be very useful wNéshyAt is
not too large At being the time integration.

We test the stochastic Eq&3) and(34) by considering a
two-mode problem withVj;=2wd;;, Hi,=H2=0, and
Hi>,=H»,1=w/2. In Fig. 1, we report the mean fractidhy of

atoms in the level 1 fom=w=1 andN=2. At the initial

time =1 anda;=B,=0 (every atom is in level 2). Note
that the solution of Eqgs(33) and (34) has considerably
smaller statistical errors than the one of E(9). We have
chosen a small number of atoms to have a rapid convergence
with Eqs(19).

In Fig. 2 we plot, with the error bars, the same quantity as
in Fig. 1, but with the parametel=17, w=1, and o
=0.1, which have been used in R¢f]. The number of
realizations is X 10°. In this case we have considered only
the optimized Eqs(33) and (34), since with Eqs(19) the
statistical errors are too large. Equatid@8) and (34) yield
statistical errors compatible with the ones in Ri&f] (see
Fig. 1(d) in Ref.[9]), as suggested by E@5).

During the dynamical evolution almost all the atoms re-
main in level 2, so the variatiorzﬁlnlfxw in Eq. (39 is
<NUggdt. This is not the case if we choose a different initial
state. In Fig. 3, we consider the same case as in Fig. 2, but at
the initial time the variables a® =1, ;= 8,=+0.2N, and
a,= B,=—+/0.8N. The statistical errors are larger. This oc-

Note that the stochastic term in E®J) is of the order of
QON+V¢, in contrast with the ones af; and 3; that are of

(34). Note that the aspectation value/®} has to be equal to  the ordera V¢ and B\V¢, respectively. Thus, in general,
one, thus if its modulus increases exponentially with the cothe equation forQ) requires a smaller integration step. To
efficientNUqg, then interference cancellation among the stacircumvent this inconvenience, we can replérén Eq. (15)
tistical realizations has to occur. This implies also a statisticalvith QN so that the stochastic term becomes of the order
fluctuation of the aspectation value over a finite number of) \/V&. However, a more suitable replacement is performed

realizations. The statistical error increases exponentially iry i, exp(). With this choice the) in Eq. (33) is replaced

the time. [t is indeed the negative aspect of a Monte Carl Q0. However, since the stochastic equations are written
method, whereby the equations have a reduced number y > ochaslic eq )
In the Ito formalism, the substitution in these equations has

to be accomplished with the addition of a drift term in the

§Im -

ot

FIG. 2. Mean fraction of atoms
model forw=0.1, w=1, N=2, and
initial time a;=8,=0 andQ=1.

in level 1 in the two-mode
2x 10° realizations. At the

FIG. 3. The same as in Fig. 2, but with=1, a;=p8;
=40.2N, anda,=B,=— 0.8\ at the initial time.
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equation for() [5], which then becomes We now show that the exponential growth &} is minimal
with the standard decomposition. Replacigd? with the
. complex noises;){?, we have
0= aiBF[Zi €M+ 25 £7] P 7
ij
1 2 —InlA”lﬂE [Aj (R R +S,Sh)
—N[Jai|?/| a?Z;; &+ 8171 BIPZ}; €] dem et 2 g e e
o N2|a.|2|ajlzv LIRS IBJIZV”_ +By; (R, RE+S,SH)1, (40)
2 2 4
o # where  Ay=laflal’d ~la lafYalt, B,
| | |ﬁ|2 |B| /|ﬂ| 5 _|:8| |IBJ| /|:8| er Eka*-kr ’ Sir
i |al|? Ja? WTVITIN g2 1B BVii- B8 =3,7,21? R, =%,7,22?, andS, ==,z =Y. Let
O, andOg be orthogonal matrlces that dmgonalvke and
Bjj, i.e, (OAAOA)IJ ija; and (O BOg)i;= jjb;i, a; and
IV. ALTERNATIVE DECOMPOSITIONS OF THE b; being the eigenvalues oA and B, respectively. Using
DIFFUSION MATRIX these transformations in E40) we have

In Ref.[12] it has been shown that the stochastic error can

be reduced by choosing a different decomposition of the dif- InIAN| = 2 [ai(O;R)ir(OgR*)ir
Ir

fusion matrix. We investigate if a different decomposition dt

can reduce the exponential growth |<z)f |. Let us indicate +a;(0,9);; (04S* )i

with z the set of complex variables andg; . The diffusion = —

term with only derivative irz can be written in the following +bi(O5R);r (O5R* )i bi(O5S);r (O5S* )i/ .

way: (42)
1 92 N Note thatO, g can be chosen with real coefficients, sice
> > 9707 (BB™); iPq and B are real matrices. The eigenvalues Afand B are

i,] i04]

positive, since;;viv;A;j; andXjviv;B;; are positive for ev-
eryv;. This implies the following inequality:

_EE (BOOT*BT*)- pN (37)
2157 9z07 AR d N
alnlAgTI?g; [ai(OaR)ir (OXR)ir +a(0,S)ir (O,S);
whereB is the matrix in a particular decomposition a@ds

a complex matrix such thabO™ =1. As previously done, = = = =
we use a matrix with 2 blocks forB, with the blocks of +bi(OgR)ir (OgR)irbi(OgS)ir (OgS)ir ]
the first column equal t& and Z*. Also BO is a valid

decomposition matrix. Note that the terms with one deriva- . o

tive in z* and one inz are not in general invariant with =§; [@i(Oa2)ir (OaZ" )¢

respect to the transformatidd— BO, however these terms

do not influence the evolution of the density operator be-

cause of Eqs(7). Also terms with one derivative i) and +h (O Z),,(O Z*)ir]
one inz are not invariant unless a suitable transformation of
Ja, gy is performed. The transformation gf , g,,, andB is
equivalent to replacing the real noisg$? with the follow-

ing complex noises:

N
=5 % [AijUi;+BjjUj ]

|ail?]aj|?
=5 | Voo 2 Uj———| +a=p=T,.
ij |l

(1)_2 [EEDED + 512£2)7,
(42)

) 1)1 s ¥ In this chain of derivations we have used E(&9) and the
D=1 > [EPVED+ 2D (38  fact thatZ can be decomposed into a real matrix and a com-
! plex factor. The inequality42) implies that the minimal

L (ab) g o value ofd/dtIn|A}| is obtained with the standard decompo-
where the complex coefficien&S;™ fulfill the conditions sition, for which Eq.(35) is fulfilled.

It is important to understand that the minimization of
2 »;«(a 1)»~(b l)_’_»;«(a 2)»—«(b M=56 39 d/dtIn|f\N| is a single-step optimization. It is the simplest
[ ] ijPab - ( ) g .. .
attempt to reduce the statistical errors. However, this does

043616-6
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nop war.rant a .m|n|m|z§t|on of thg- fluctuations at a finite evo- dpxAi(a,B)=dgA¢(a,B)=0. (47)
lution time, sincel’|, is a function of¢; and B;, whose i '

evolutions depend on the decomposition choice. Further.-l.
more, we can obtain a single-step optimization for a specifi
observable that does not coincide with the minimization o

d/dtln|f\g‘|. These observations are in accordance with the

results in Ref[12], where an error reduction is obtained with ;= i Hy o +if' @Y, Vija; 85 + > Z;ED,

respect to the standard decomposition for a specific problem ] j i

that is solvable analytically. (48)
Note that in a Bose-Einstein condensate the quantity

=, Uijl@il?| ;|| a|* is in general negligible with respect to _ _ _ ,

Ugo. In the s-wave approximation, the interparticle potential 8= —lg Hi; ) +if IBi; Vi Bjaf +Bi; Z;;E?.

his is fulfilled if f is analytic. Thus, we can obtain the fol-
‘ffowing stochastic equations:

V(r—r') is replaced with an effective interaction (49)
N - s A further generalization of Eq$45) and (46) is the follow-
V(r—r")y=gdé(r'—r), (43 ing:
where the coupling constant is related to the scattering length
a through_g=4qrﬁ2a_/m. When the s_tochastic equation; are ;):j DaD,Bde\g f(Q,&.B)Pg f(Q,&,,é), (50)
solved using a spatial lattice, the Dirac’s delta in Ep) is ’ ’
replaced by a Kronecker delta, that is,
where
Uij:|Vii|:%5ij ; (44) Ag,f(&,ﬁ)fﬂexrﬁ([e*-&)]||&><B||=QAf(&,ﬁ).(51)
r

0

It includes, as a particular case, the posittethe gaugeR,
and the Bargmann representations.
It is evident that the representatiof&0) and(51) can be

ro being the lattice step. We have

|ai|2|aj|2 la| |ail* gl v gl always reduced to the case=0 with the variable transfor-
Z i 2 Z =3 72" 3 353 VYoo mation Q) — exp(—f)Q. Without loss in generality, from now
| |l T 1o |« f'ofo To

on we consider this representation and call it “Bargamm
gaugeP representation.” It is related to the gauBe-
representation by means of the transformatidn

—>exp(—§-,é*)9 to have nondiverging trajectories. Note that
for f=0 it is not necessary to introduce the variakleto
have nondiverging trajectories. However, also in this case the
V. RELATION OF THE GAUGE- P REPRESENTATION boundary terms are not negligible, unless the number of par-
WITH OTHER REPRESENTATIONS ticle is well-defined. For aiN-particle system, the represen-

In the previous sections we have considered the gﬂjge—tatlon becomes

representation. It is possible to introduce a more general dis-
tribution that includes the positivie; the gauge? and the A_f B - = B >
Bargmann representations. In the N-particle case, the last p= | DaDBdQAG(Q,a,p)Py(Q,a.fB), (52
two become the representions used in Sec. Il and [Rgf.

First let us generalize the positiRrepresentation in the Where
following way:

wherev is the volume of the condensate. Thiig, is nearly
independent ony; and B; and the single-step optimization

minimizes the growth off\g'| also at a finite time.

AS(Q,a,8)=QIN:a)(N:4]. (53)

p= f DaDﬁf\f(&,,é)Pf(&,,é), (45) For (=1, we recover the representation of Ré&fl. With ()
constant the dynamical equations are the same as in the

where Bargmann representation, ijsee Eqs(48) and (49)],

At Br=exd (B @ lla)All (46) @=-12 Hjajt a2 Zyg?,

andf is generic function. To obtain a Fokker-Planck equation
with a positive-definite diffusion matrix, it is necessary that

Ay is analytic, i.e.,

Bi=_i§j: Hijﬁj+[3i§j: Zijffz)- (54

043616-7
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As in the gauge? representation, it is possible to add suit-
able diffusion and drift terms to the Fokker-Planck equation
without modifying the dynamics of the density operator. We

have the following stochastic equations:

di=—i; Hij“J‘Lai; Zij§}l)_2k @i Zi9a k>

Bi:_i; Hijﬁj"'Bi; Zijfj(z)_Ek BiZikp K »

Q=02 (a1l + 95,6 (55
For
| oy?
Jak=—N> 12 ko
T el
|Bil?
Ob k= _NEJ_: |,3J|2 Zik, (56)

the variationsIn|A] is zero at the orderdt)*? Equations
(55) become

< | o ayl?
a|:—|; Hijaj—i—aizijgj(l)—lNainij )

< | @) |B;|? _
B.I—'; HijBi+ BiZijé; _'NﬁiWVii ’

Z5 &2, (57

12 12
QZ—NQE ||aj|| |BJ|
Kj

Zj &P+
al? B2

The variation of IfAf] at the orderst is equal tosin|Aj]| of
Eqg. (35). This is evident, since the gaugeand the Barg-

mann gaugd? representations differ by a transformation of

Q.
Note thatfxg(ﬂ,&,,é) satisfies the following property:

Ag(Q,a,8)=A5(1ON%,QN2G). (58)

Thus, in a N-particle system the Bargmann gaBgespre-

PHYSICAL REVIEW A 68, 043616 (2003

di’=—i; Hijaj,_i(N_l)ai,; \/i1'|aJ',|2

|ef[?] exel®

']

i
+5(N=1)a/ > Vj,
jk

+2 QibaLEj Z,;eM, (59)
'ﬂ{=—iEi Hi,»/sj'—im—l)ﬂ@ Vil 12
P o BB
+5(N 1)[%% ij—|,8’|4
+2 Q%ﬂ@ 24, (60)

where EkQ'cka projects the vecton orthogonally to a.
These are an implementation of the stochastic approach of
Refs.[8,9] (see, in particular, Ref8]). These equations can
be obtained also without introducing the variakle In the
Bargmann representation, we have

(EI aiaiai—N [\Bz(Z B

d
B

—~N|AB=0. (61

They allow us to add the following terms to the Fokker-
Planck equation associated with the stochastic Exb:

o al? J
2 Vi % G (N |5,
[ |a||2|a1|2 d
T2V 2 > ax;——(N-1) Ja
+c.c.+a— B AB. (62

With suitable choice of terms for the derivativeésd,» and
! J
dg dg+ We obtain a positive definite Fokker-Planck equation,
[ J
whose associated stochastic equations are (Bsand(60).

VI. CONCLUSION

We have shown that the gau@eepresentation is not able
to eliminate boundary term problems, unless the number of
atoms is definite. We have found in this representation a set
of optimized stochastic equations that considerably reduce
the statistical errors, as compared to previous equations. We
have analyzed the possibility to reduce the statistical errors
with appropriate decompositions of the diffusion matrix and

sentation is equivalent to the Bargmann representatiof® have found that a single-step optimization is obtained

whose variablesr and 3 are replaced by’ = QN2 and

B'=QN23. With a little of algebra, we find that the equa-

tions fora’ and 3’ are

with the standard decomposition. We have also studied the
relation between the gaudefepresentation, the Bargmann
representation, and the one used in REFQ], whose results
are recovered.
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