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Gauge-P representation andN-boson problem with binary interactions

Alberto Montina
Dipartimento di Fisica, Universita` di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
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Recently, the gauge-P representation has been introduced to eliminate boundary term problems arising in
some cases with the positive-P representation. We show that the gauge-P representation does not solve the
problem in the case of a many-body system with binary interactions, unless the number of atoms is definite. In
this case we find a set of stochastic equations for the gauge-P representation that reduces the statistical errors
with respect to the equations suggested in a previous work. We also analyze the possibility to reduce the
statistical errors with appropriate decompositions of the diffusion matrix. Finally, we study the relation be-
tween the gauge-P and alternative representations.
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I. INTRODUCTION

In this paper we will consider the dynamics of a multid
mensional system described by the creation and annihila
Bose operatorsf̂ i

† , f̂ i , respectively, and with the following
associated Hamiltonian, normalized to\,

Ĥ5(
i , j

Hi j
0 f̂ i

†f̂ j1
1

2 (
i , j

Vi j f̂ i
†f̂ j

†f̂ if̂ j . ~1!

With a suitable choice ofHi j
0 , this is the discretized versio

of the Hamiltonian of a gas with binary interactions and it
used to describe the dynamics of dilute Bose-Einstein c
densates. In the continuum limit we have the corresponde
f̂ i→f̂(xW ). When the field fluctuations are sufficiently sma
it is possible to describe the system with the mean-fi
Gross-Pitaevskii equation of a collective wave-function@1#.
However, in this approximation genuine quantum effects
lost. An exact quantum solution is a formidable task for la
systems. In quantum mechanics, a system withN coordinates
is described by a function ofN variables, thus the quantum
state is an element of a functional space with infinite dim
sions. Suppose to discretize the variables with a lattice oM
elements for each dimension, the quantum state is descr
by MN elements. On increasingN, the dynamical problem
becomes rapidly numerically intractable. In these ca
Monte Carlo techniques can be useful, since the state is
tained with different suitably weighted statistical realizatio
of the evolution ofN classical variables. A statistical metho
is obtained by the Feynmann’s path integral formulation a
is used to calculate the thermodynamical properties. H
ever, the path integral is not suitable to evaluate the dyn
ics, because of well-known phase problems. Alternativ
the stochastic approach can be extended for quasiproba
distributions in the phase space. A Monte Carlo techniq
has been dealt with in Ref.@2# using the positive-P represen-
tation. In this representation the density operator is written
a superposition of the operators

L̂~aW ,bW ![exp~2bW * •aW !uuaW &^bW uu, ~2!

i.e.,
1050-2947/2003/68~4!/043616~9!/$20.00 68 0436
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r̂5E DaDbL̂~aW ,bW !P~aW ,bW !, ~3!

whereaW [(a1 ,a2 , . . . ), bW [(b1 ,b2 , . . . ) aremultidimen-
sional complex vectors anduuaW & is a Bargmann state, define
by

uuaW &[(
i ,n

~a if̂ i
†!n/n! u0&. ~4!

It can be proved that the positive-P function P(aW ,bW ) can be
chosen positive for any density matrix@3,4#. It is well-known
that among the infinite evolution equations of theP function
there exists a Fokker-Planck equation with a positive defin
diffusion matrix@3,4#. Thus, the evolution ofP can be evalu-
ated using stochastic equations foraW andbW @5#. However, in
some cases, as for Hamiltonian~1!, these equations hav
unstable solutions that diverge at a finite time.

The gauge-P representation introduced in Ref.@6# allows
us to eliminate the instabilities of the stochastic equatio
but it is not able to solve another problem. Smith and G
diner @7# have demonstrated that the dynamics may not
properly described by the stochastic equations, even tho
the solutions do not diverge. This occurs because, in
derivation of the equations, nonzero boundary terms aris
from an integration by parts are neglected. Such an anom
occurs also for the system described by Hamiltonian~1! un-
less a definite number of atoms is considered. In this
case, we introduce a set of stochastic equations that red
the statistical errors with respect to the equations sugge
in Ref. @6#. We also analyze the possibility to reduce t
statistical errors with appropriate decompositions of the d
fusion matrix. Finally, we find that the stochastic equatio
in Refs. @8,9# can be recovered from the gauge-P represen-
tation. In Sec. II we show, with the gauge choice in Ref.@6#,
that the boundary terms cannot be neglected even by u
the gauge-P representation. In Sec. III we consider a syste
with a fixed number of atoms and show that problems w
the boundary terms do not occur. Then, we find the o
mized stochastic equations. In Sec. IV we analyze the po
bility to reduce the statistical errors with appropriate deco
©2003 The American Physical Society16-1
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positions of the diffusion matrix. In Sec. V we study th
relation between the gauge-P and alternative representation

II. GAUGE- P REPRESENTATION
AND BOUNDARY TERMS

The equation of motion ofr̂ is ] tr̂52 i Ĥr̂1 i r̂Ĥ, which
by using Eq.~3! becomes,

E DaDbL̂~aW ,bW !] tP~aW ,bW !

5E DaDb@2 i Ĥ,L̂~aW ,bW !#P~aW ,bW !. ~5!

It is easily proved that

f̂ iL̂~aW ,bW !5a iL̂~aW ,bW !,

L̂~aW ,bW !f̂ i
†5b i* L̂~aW ,bW !,

f̂ i
†L̂~aW ,bW !5~b i* 1]a i

!L̂~aW ,bW !,

L̂~aW ,bW !f̂ i5~a i1]b
i*
!L̂~aW ,bW !. ~6!

Furthermore, because of the analyticity ofL̂, we have

]a
i*
L̂~aW ,bW !5]b i

L̂~aW ,bW !50. ~7!

Thus, we find that

@2 i Ĥ,L̂#5(
i j

H 2 iH i j a j]a i
2 iVi j a jb j* a i]a i

2
i

2
Vi j a ia j]a i

]a j
1a↔b1c.c.J L̂. ~8!

At this point, we integrate by parts and obtain

E DaDbL̂OF.P.P50, ~9!

where

OF.P.5F] t1S iH i j ]a i
a j1 iVi j ]a i

a jb j* a i

2
i

2
Vi j ]a i

]a j
a ia j1a↔b1c.c.D G ~10!

This equation is fulfilled if

OF.P.P50. ~11!

Note that it is not a necessary condition, sinceL̂(a,b) is an
overcomplete set. The Fokker-Planck equation~11! does not
have a positive-definite diffusion matrix and, consequently
does not have an associated stochastic equation. We ca
Eqs. ~7! to add terms into Eq.~8! which lead to a positive-
definite diffusion matrix. A simple choice is the following
04361
it
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H(
i j

Ui j a ia j* ]a i
]a

j*
1a↔bJ L̂, ~12!

whereU[ZZ† and the matrixZ is, by definition, the square
root of 2 iV, i.e., ZZ[2 iV. Thus, we obtain a Fokker
Planck equation with the following associated stochas
equations

ȧ i52 i(
j

Hi j a j2 ia i(
j

Vi j a jb j* 1a i(
j

Zi j j j
(1) ,

~13!

ḃ i52 i(
j

Hi j b j2 ib i(
j

Vi j b ja j* 1b i(
j

Zi j j j
(2) ,

~14!

where j i
(k)(t) are real stochastic functions wit

j i
(k)(t)j j

( l )(t8)5dkld i j d(t2t8). A different choice of the ad-
ditional terms leads to alternative equations~see Sec. IV!. If
we neglect the stochastic term and putaW 5bW , the equations
become the mean-field nonlinear equation which is gener
used to study the Bose-Einstein condensates. The two e
tions have independent noises, thus it is not possible thaaW

5bW at every time. This implies that the nonlinear coefficie
2 i ( jVi j a jb j* of Eqs. ~13! and ~14! have in general a rea
part, which is the reason of the well-known instability
these stochastic equations. In the gauge-P representation it is
possible to eliminate the destabilizing drift term by adding
diffusion term@6#. In this representation a new complex va
ableV is introduced and the density operator is expanded
the overcomplete basis

L̂g~V,aW ,bW ![V exp~2bW * •aW !uuaW &^bW uu5VL̂~aW ,bW !.
~15!

Equation~3! becomes

r̂5E DaDbdVL̂g~V,aW ,bW !Pg~V,aW ,bW !. ~16!

Infinite choices ofPg(V,aW ,bW ) are possible for each densit
operator. One of them is the following

Pg~V,aW ,bW !5d~V21!P~aW ,bW !, ~17!

whereP(aW ,bW ) is the positive-P representation.
Suppose that in the positive-P representation the stocha

tic equations are

ȧ i5Ai
a1(

k
Bik

a jk
(1)

ḃ i5Ai
b1(

k
Bik

b jk
(2) , ~18!

it is possible to obtain the following equations foraW , bW , and
V in the gauge-P representation@6#
6-2
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ȧ i5FAi
a2(

k
ga,kBik

a G1(
k

Bik
a jk

(1),

ḃ i5FAi
b2(

k
gb,kBik

b G1(
k

Bik
b jk

(2),

V̇5V(
k

@ga,kjk
(1)1gb,k* jk

(2)#. ~19!

In Ref. @6# the proof is obtained using a real notation. F
pedagogical reasons we demonstrate again Eqs.~19!, using a
complex notation. Since (V]V21)L̂g50 and ]V* L̂g50,
by integration by parts it is easy to show that the followi
terms can be added to the Fokker-Planck equation with
modifying the dynamics of the density operatorr̂,

S ]

]V
V21DF1~V,aW ,bW ,]V ,]aW ,]bW !Pg~V,aW ,bW !,

]

]V*
F2~V,aW ,bW ,]V ,]aW ,]bW !Pg~V,aW ,bW !, ~20!

where F1,2 are generic functions ofV, a i , b i , and their
derivatives. It is obvious that Eqs.~18! are valid also in the
gauge-P representation, with

V̇50 ~21!

for V. The Fokker-Planck equation associated with Eqs.~18!
and ~21! is

]Pg

]t
5F2(

i

]

]g i
Di1

1

2 (
i j

]2

]g i]g j*
Ci j g ig j* GPg ,

where

gW 5S aW

aW *

bW

bW *

V

V*

D , DW 5S AW a

AW a*

AW b

AW b*

0

0

D , C5MM†, ~22!

and

M5S Ba 0 0 0 0 0

Ba* 0 0 0 0 0

0 0 Bb 0 0 0

0 0 Bb* 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D . ~23!
04361
r

ut

aW , bW , V, and their conjugate values are considered as in
pendent variables. Bold zeros are zero submatrices, wh
dimensions are consistent with the dimension of the six e
ments in the column vectorgW .

The presence of the redundant variableV allows us to
obtain a larger set of stochastic equations by means of E
~20!. Let us replaceM with the following matrix

M 85S Ba 0 0 0 0 0

Ba* 0 0 0 0 0

0 0 Bb 0 0 0

0 0 Bb* 0 0 0

gW a
T 0 gW b

† 0 0 0

gW a
† 0 gW b

T 0 0 0

D , ~24!

wheregW a andgW b are the column vectors whose elements
ga,i and gb,i , respectively. With this modification second
order terms in]g i

are added. Terms with the left-hand facto

]V
2 V25(]VV21)]VV and]V* do not modify the dynam-

ics of the density operator because of Eqs.~20!. Thus the
only terms that have to be counterbalanced are the follow

(
ki

]VV~]a i
ga,kBik

a a i1]b i
gb,kBik

b b i1c.c.!Pg . ~25!

They can be compensated by adding the following d
terms@see the first of Eqs.~20!#

2(
ki

~]a i
ga,kBik

a a i1]b i
gb,kBik

b b i1c.c.!Pg . ~26!

So, we obtain the Fokker-Planck equation associated w
the stochastic Eqs.~19!.

In our caseBi j
a 5a iZi j and Bi j

b 5b iZi j , thus the second
drift term of Eqs.~13! and ~14! can be removed withga,i

5( jZi j a jb j* andgb,i5( jZi j b ja j* . We have the following
stochastic equations

ȧ i52 i(
j

Hi j a j1a i(
j

Zi j j j
(1) ,

ḃ i52 i(
j

Hi j b j1b i(
j

Zi j j j
(2) ,

V̇5V(
i j

a ib i* @Zi j j j
(1)1Zi j* j j

(2)#. ~27!

They have solutions that do not diverge at a finite time.
It is important to remark an interesting result by Sm

and Gardiner@7#. They studied a single mode which
damped by both linear and nonlinear couplings to a ze
temperature reservoir and found that the stochastic equa
associated with the standard positive-P distribution lead to
large, but finite, excursions. They demonstrated that the
namics is not properly described by the stochastic equati
even though the solutions do not diverge. The issue of
6-3
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ALBERTO MONTINA PHYSICAL REVIEW A 68, 043616 ~2003!
anomaly, reported also in@10,11#, is the validity of neglect-
ing the boundary terms arising from integration by parts.
us define the modulus of an operatorĈ as follows, uĈu
[@Tr(ĈĈ†)#1/2. It is easily proved thatV exp(2bW*•aW ) is a
constant of motion of Eqs.~27!. Indeed, it is sufficient to
show thatd ln@V exp(2bW*•aW )#5d@ln V2bW*•aW # is zero up to
the first order indt. Now suppose that at the initial time th
density operator isua0&^a0u we can choose at this time th
distribution Pg(V,aW ,bW )5d@V2exp(uaW 0u2)#d(aW2aW 0)d(bW

2aW 0), thus we haveV exp(2bW*•aW )51 at every time, where
Pg is different from zero. Then, since the modulus
L̂g(V,a,b) is exp(uau2/21ubu2/2), the distributionPg has
to decay rather quickly by increasinguau and ubu in order
that the argument of the integral in Eq.~16! has a suitable
behavior at the boundary. This is not the case in our syst
At sufficiently small times we can neglect the determinis
terms. We diagonalizeZ with a unitary transformation ofa i ,
b i , andj i

(1,2) , thus the equations of motion become

ȧ i
t.a i

tZ̄i j̄ i
(1) , ~28!

ḃ i
t.b i

tZ̄i j̄ i
(2) , ~29!

where a i
t , b i

t and j̄ i
(1,2) are the transformed variables an

noises, respectively, andZ̄i are the complex eigenvalues ofZ.
If the initial state is a Dirac’s delta centered in (a i

0 , b i
0), the

probability distributionP of ua i
tu and ub i

tu at the timedt is

P~ ua i
tu,ub i

tu,dt !}expF2
~ lnua i

tu2 lnua i
0u!2

2dtZR

1~a i ,a i
0!↔~b i ,b i

0!G . ~30!

The modulus ofL̂g(aW t,bW t) is exp@(uaW tu21ubW tu2)/2# that multi-
plied by P of Eq. ~30!, diverges foruaW tu,ubW tu→`, i.e., the
boundary terms are not negligible. Since for an initial coh
ent stateV exp(2bW*•aW )51, the gauge-P representation be
comes a Bargmann state representation, whereL̂g of Eq.
~15! is replaced byL̂B[uua&^buu. In this case, it has bee
shown that the statistical method not only gives errone
results, but leads also to an infinite statistical uncertainty
every time@8#.

In the following section we consider the case of a fix
number of atoms and show that the boundary terms are
ways negligible in contrast with the preceding case. We
troduce a set of stochastic equations that reduce the statis
error with respect to the equations suggested in Ref.@6#.

III. N PARTICLE SYSTEM

Let Q̂N be the projector onto the Hilbert subspaceSN
associated with a fixed number of atoms. We consider o
the states in this subspace. The corresponding density op
tor can be written in the following way:
04361
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r̂5Q̂Nr̂Q̂N5KE dVDaDbL̂g
N~V,aW ,bW !Pg

N~V,aW ,bW !,

where

L̂g
N[V exp~2aW •bW * !uN:aW &^N:bW u}Q̂NL̂gQ̂N ~31!

with uN:aW &[(aW •fW †̂)N/AN! u0& andfŴ [(f̂1 ,f̂2 , . . . ). K is
a normalization constant.

In the representation of Ref.@9# the density operator is
written as a superposition of the operatorsL̂C
[uN:a&^N:bu. So, this representation differs from th
gauge-P representation, in the subspaceSN , by a factor
V exp(2aW•bW ) ~see Sec. V!.

Let us show that the boundary terms are negligible. T
modulus ofL̂g

N is

uV exp~2aW •bW * !uuaW uNubW uN. ~32!

SinceuV exp(2aW•bW* )u is a constant of motion of the stocha
tic Eqs. ~27! ~see preceding section!, the modulus ofL̂g

N is

K̄uaW uNubW uN, K̄ being a multiplicative constant. Once mult
plied by P of Eq. ~30!, this modulus does not diverge fo
aW ,bW →`. It is reasonable to suppose that this occurs also
a finite time. Thus, the stochastic equations are exact. H
ever, the statistical error with a fixed number of realizatio
can grow very rapidly in time for highN since fluctuations of
uau and ubu are amplified by the exponentN in Eq. ~32!.

We have seen that in the gauge-P representation we can
add diffusion terms in the Fokker-Planck equation if we a
also suitable drift terms. We now use this property to redu
the statistical fluctuations. We impose that the variation
the modulus ofL̂g

N is zero at the order of the square root
the time integration stepdt. This condition is fulfilled if we
choose the following equation forV

V̇5V(
i j

$a ib i* @Zi j j j
(1)1Zi j* j j

(2)#

2N@ ua i u2/uau2Zi j j j
(1)1ub i u2/ubu2Zi j* j j

(2)#%. ~33!

From Eqs.~19!, we find that the corresponding equations f
a i andb i are

ȧ i5(
j

F2 iH i j a j2 iNa iVi j

ua j u2

uau2
1a iZi j j j

(1)G ,

ḃ i5(
j

F2 iH i j b j2 iNb iVi j

ub j u2

ubu2
1b iZi j j j

(2)G . ~34!

They have stable solutions, as Eqs.~27!. Even thoughuL̂g
Nu is

constant at the order (dt)1/2, it is not the case at the orderdt.
Now, let us evaluate the variation of the modulus ofL̂g

N at
this order. It corresponds to the evaluatation of variation
lnuL̂g

Nu multiplied by uL̂g
Nu sinceuL̂g

Nu is constant at the orde
(dt)1/2. We have
6-4
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d lnuL̂g
Nu5

N

2 S U002(
i j

Ui j

ua i u2ua j u2

uau4 D dt

1
N

2 S U002(
i j

Ui j

ub i u2ub j u2

ubu4
D dt

<NU00dt. ~35!

This equation is obtained by supposing thatU005Uii , for
every i. This result is identical to the one that we can obta
by the stochastic formulation in Refs.@8,9#. In Sec. V we
show the relation between that approach and Eqs.~33! and
~34!. Note that the aspectation value ofL̂g

N has to be equal to
one, thus if its modulus increases exponentially with the
efficientNU00, then interference cancellation among the s
tistical realizations has to occur. This implies also a statist
fluctuation of the aspectation value over a finite number
realizations. The statistical error increases exponentially
the time. It is indeed the negative aspect of a Monte Ca
method, whereby the equations have a reduced numbe

FIG. 1. Mean fraction of atoms in level 1 in the two-mod

model forv5v̄51 andN52. The optimized numerical solution i
evaluated by means of Eqs.~33! and ~34!. The line with larger
fluctuations is obtained from Eqs.~19! @6#. We have used 200 real
izations.

FIG. 2. Mean fraction of atoms in level 1 in the two-mod

model for v50.1, v̄51, N52, and 23105 realizations. At the
initial time a15b150 andV51.
04361
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variables, but a number of realizations growing expon
tially by increasingt andN is necessary to reduce the stat
tical error. Thus, the exponential complexity of a quantu
system is not circumvented by using a statistical meth
However, such a method can be very useful whenNU00Dt is
not too large,Dt being the time integration.

We test the stochastic Eqs.~33! and~34! by considering a
two-mode problem withVi j 52vd i j , H125H2250, and
H125H215v̄/2. In Fig. 1, we report the mean fractionN1 of
atoms in the level 1 forv5v̄51 andN52. At the initial
time V51 anda15b150 ~every atom is in level 2). Note
that the solution of Eqs.~33! and ~34! has considerably
smaller statistical errors than the one of Eqs.~19!. We have
chosen a small number of atoms to have a rapid converge
with Eqs.~19!.

In Fig. 2 we plot, with the error bars, the same quantity
in Fig. 1, but with the parametersN517, v̄51, and v
50.1, which have been used in Ref.@9#. The number of
realizations is 23105. In this case we have considered on
the optimized Eqs.~33! and ~34!, since with Eqs.~19! the
statistical errors are too large. Equations~33! and ~34! yield
statistical errors compatible with the ones in Ref.@9# ~see
Fig. 1~d! in Ref. @9#!, as suggested by Eq.~35!.

During the dynamical evolution almost all the atoms r
main in level 2, so the variationd lnuL̂g

Nu in Eq. ~35! is
!NU00dt. This is not the case if we choose a different initi
state. In Fig. 3, we consider the same case as in Fig. 2, b
the initial time the variables areV51, a15b15A0.2N, and
a25b252A0.8N. The statistical errors are larger. This o
curs also with the approach in Ref.@9#.

Note that the stochastic term in Eq.~33! is of the order of
VNAVj, in contrast with the ones ofa i andb i that are of
the orderaAVj and bAVj, respectively. Thus, in genera
the equation forV requires a smaller integration step. T
circumvent this inconvenience, we can replaceV in Eq. ~15!
with VN so that the stochastic term becomes of the or
VAVj. However, a more suitable replacement is perform
with exp(V). With this choice theV̇ in Eq. ~33! is replaced
by VV̇. However, since the stochastic equations are writ
in the Ito formalism, the substitution in these equations h
to be accomplished with the addition of a drift term in th

FIG. 3. The same as in Fig. 2, but withV51, a15b1

5A0.2N, anda25b252A0.8N at the initial time.
6-5
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equation forV @5#, which then becomes

V̇5(
i j

H a ib i* @Zi j j j
(1)1Zi j* j j

(2)#

2N@ ua i u2/uau2Zi j j j
(1)1ub i u2/ubu2Zi j* j j

(2)#

3
i

2
N2

ua i u2ua j u2

uau4
Vi j 2

i

2
N2

ub i u2ub j u2

ubu4
Vi j

1 iN
ua i u2

uau2
a jb j* Vi j 2 iN

ub i u2

ubu2
a jb j* Vi j J . ~36!

IV. ALTERNATIVE DECOMPOSITIONS OF THE
DIFFUSION MATRIX

In Ref. @12# it has been shown that the stochastic error c
be reduced by choosing a different decomposition of the
fusion matrix. We investigate if a different decompositio
can reduce the exponential growth ofuL̂g

Nu. Let us indicate

with zW the set of complex variablesa i andb i* . The diffusion
term with only derivative inz can be written in the following
way:

1

2 (
i , j

]2

]zi]zj
~BB†* ! i , j Pg

N

5
1

2 (
i , j

]2

]zi]zj
~BOO†* B†* ! i , j Pg

N , ~37!

whereB is the matrix in a particular decomposition andO is
a complex matrix such thatOO†* 51. As previously done,
we use a matrix with 232 blocks forB, with the blocks of
the first column equal toZ and Z* . Also BO is a valid
decomposition matrix. Note that the terms with one deri
tive in z* and one inz are not in general invariant with
respect to the transformationB→BO, however these term
do not influence the evolution of the density operator
cause of Eqs.~7!. Also terms with one derivative inV and
one inz are not invariant unless a suitable transformation
gW a , gW b is performed. The transformation ofgW a , gW b , andB is
equivalent to replacing the real noisesj i

(1,2) with the follow-
ing complex noises:

h i
(1)5(

j
@J i j

(1,1)j j
(1)1J i j

(1,2)j j
(2)#,

h i
(2)5H(

j
@J i j

(2,1)j j
(1)1J i j

(2,2)j j
(2)#J *

, ~38!

where the complex coefficientsJ i j
(a,b) fulfill the conditions

(
k

@J ik
(a,1)J jk

(b,1)1J ik
(a,2)J jk

(b,2)#5d i j dab . ~39!
04361
n
f-

-

-

f

We now show that the exponential growth ofL̂g
N is minimal

with the standard decomposition. Replacingj i
(1,2) with the

complex noisesh i
(1,2) , we have

d

dt
lnuL̂g

Nu5
N

2 (
i j r

@Ai j ~Rir Rjr* 1Sir Sjr* !

1Bi j ~R̄ir R̄jr* 1S̄ir S̄jr* !#, ~40!

where Ai j 5ua i u2/uau2d i j 2ua i u2ua j u2/uau4, Bi j

5ub i u2/ubu2d i j 2ub i u2ub j u2/ubu4, Rir [(kZikJkr
(1,1) , Sir

[(kZikJkr
(1,2) , R̄ir [(kZikJkr

(2,2) , andS̄ir [(kZikJkr
(2,1) . Let

OA andOB be orthogonal matrices that diagonalizeAi j and
Bi j , i.e., (OA

†AOA) i j 5d i j ai and (OB
†BOB) i j 5d i j bi , ai and

bi being the eigenvalues ofA and B, respectively. Using
these transformations in Eq.~40! we have

d

dt
lnuL̂g

Nu5
N

2 (
ir

@ai~OA
t R! ir ~OA

t R* ! ir

1ai~OA
t S! ir ~OA

t S* ! ir

1bi~OB
t R̄! ir ~OB

t R̄* ! ir bi~OB
t S̄! ir ~OB

t S̄* ! ir #.

~41!

Note thatOA,B can be chosen with real coefficients, sinceA
and B are real matrices. The eigenvalues ofA and B are
positive, since( i j v iv jAi j and( i j v iv jBi j are positive for ev-
ery v i . This implies the following inequality:

d

dt
lnuL̂g

Nu>
N

2 U(
ir

@ai~OA
t R! ir ~OA

t R! ir 1ai~OA
t S! ir ~OA

t S! ir

1bi~OB
t R̄! ir ~OB

t R̄! ir bi~OB
t S̄! ir ~OB

t S̄! ir #U
5

N

2 U(
ir

@ai~OA
t Z! ir ~OA

t Z* ! ir

1bi~OB
t Z! ir ~OB

t Z* ! ir #U
5

N

2 (
i j

@Ai j Ui j 1Bi j Ui j #

5
N

2 S U002(
i j

Ui j

ua i u2ua j u2

uau4
D 1a↔b[Gm .

~42!

In this chain of derivations we have used Eqs.~39! and the
fact thatZ can be decomposed into a real matrix and a co
plex factor. The inequality~42! implies that the minimal
value ofd/dt lnuL̂g

Nu is obtained with the standard decomp
sition, for which Eq.~35! is fulfilled.

It is important to understand that the minimization
d/dt lnuL̂g

Nu is a single-step optimization. It is the simple
attempt to reduce the statistical errors. However, this d
6-6
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not warrant a minimization of the fluctuations at a finite ev
lution time, sinceGm is a function of a i and b i , whose
evolutions depend on the decomposition choice. Furth
more, we can obtain a single-step optimization for a spec
observable that does not coincide with the minimization
d/dt lnuL̂g

Nu. These observations are in accordance with
results in Ref.@12#, where an error reduction is obtained wi
respect to the standard decomposition for a specific prob
that is solvable analytically.

Note that in a Bose-Einstein condensate the quan
( i j Ui j ua i u2ua j u2/uau4 is in general negligible with respect t
U00. In the s-wave approximation, the interparticle poten
V(rW2rW8) is replaced with an effective interaction

V~rW2rW8!5gd~rW82rW !, ~43!

where the coupling constant is related to the scattering len
a throughg54p\2a/m. When the stochastic equations a
solved using a spatial lattice, the Dirac’s delta in Eq.~43! is
replaced by a Kronecker delta, that is,

Ui j 5uVi j u5
ugu

r 0
3

d i j , ~44!

r 0 being the lattice step. We have

(
i j

Ui j

ua i u2ua j u2

uau4
5(

i

ugu

r 0
3

ua i u4

uau4
;

ugu

r 0
3

v

r 0
3

!
ugu

r 0
3

5U00,

wherev is the volume of the condensate. Thus,Gm is nearly
independent ona i and b i and the single-step optimizatio
minimizes the growth ofuL̂g

Nu also at a finite time.

V. RELATION OF THE GAUGE- P REPRESENTATION
WITH OTHER REPRESENTATIONS

In the previous sections we have considered the gaugP
representation. It is possible to introduce a more general
tribution that includes the positive-P, the gauge-P and the
Bargmann representations. In the N-particle case, the
two become the representions used in Sec. III and Ref.@9#.

First let us generalize the positive-P representation in the
following way:

r̂5E DaDbL̂ f~aW ,bW !Pf~aW ,bW !, ~45!

where

L̂ f~aW ,bW ![exp@ f ~bW * •aW !#uuaW &^bW uu ~46!

andf is generic function. To obtain a Fokker-Planck equat
with a positive-definite diffusion matrix, it is necessary th
L̂ f is analytic, i.e.,
04361
-

r-
c
f
e
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l
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-
is-

st

n
t

]a
i*
L̂ f~aW ,bW !5]b i

L̂ f~aW ,bW !50. ~47!

This is fulfilled if f is analytic. Thus, we can obtain the fo
lowing stochastic equations:

ȧ i52 i(
j

Hi j a j1 i f 8a i(
j

Vi j a jb j* 1a i(
j

Zi j j j
(1) ,

~48!

ḃ i52 i(
j

Hi j b j1 i f 8b i(
j

Vi j b ja j* 1b i(
j

Zi j j j
(2) .

~49!

A further generalization of Eqs.~45! and ~46! is the follow-
ing:

r̂5E DaDbdVL̂g, f~V,aW ,bW !Pg, f~V,aW ,bW !, ~50!

where

L̂g, f~aW ,bW ![Vexp@ f ~bW * •aW !#uuaW &^bW uu5VL̂ f~aW ,bW !.
~51!

It includes, as a particular case, the positive-P, the gauge-P,
and the Bargmann representations.

It is evident that the representations~50! and ~51! can be
always reduced to the casef 50 with the variable transfor-
mationV→exp(2f)V. Without loss in generality, from now
on we consider this representation and call it ‘‘Bargam
gauge-P representation.’’ It is related to the gauge-P
representation by means of the transformationV
→exp(2aW•bW* )V to have nondiverging trajectories. Note th
for f 50 it is not necessary to introduce the variableV to
have nondiverging trajectories. However, also in this case
boundary terms are not negligible, unless the number of
ticle is well-defined. For anN-particle system, the represen
tation becomes

r̂5E DaDbdVL̂g
B~V,aW ,bW !Pg

B~V,aW ,bW !, ~52!

where

L̂g
B~V,aW ,bW ![VuN:aW &^N:bW u. ~53!

For V[1, we recover the representation of Ref.@9#. With V
constant the dynamical equations are the same as in
Bargmann representation, i.e.@see Eqs.~48! and ~49!#,

ȧ i52 i(
j

Hi j a j1a i(
j

Zi j j j
(1) ,

ḃ i52 i(
j

Hi j b j1b i(
j

Zi j j j
(2) . ~54!
6-7
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As in the gauge-P representation, it is possible to add su
able diffusion and drift terms to the Fokker-Planck equat
without modifying the dynamics of the density operator. W
have the following stochastic equations:

ȧ i52 i(
j

Hi j a j1a i(
j

Zi j j j
(1)2(

k
a iZikga,k ,

ḃ i52 i(
j

Hi j b j1b i(
j

Zi j j j
(2)2(

k
b iZikgb,k ,

V̇5V(
k

@ga,kjk
(1)1gb,k* jk

(2)#. ~55!

For

ga,k52N(
j

ua j u2

uau2
Zjk ,

gb,k52N(
j

ub j u2

ubu2
Zjk , ~56!

the variationd lnuL̂g
Bu is zero at the order (dt)1/2. Equations

~55! become

ȧ i52 i(
j

FHi j a j1a iZi j j j
(1)2 iNa i

ua j u2

uau2
Vi j G ,

ḃ i52 i(
j

FHi j b j1b iZi j j j
(2)2 iNb i

ub j u2

ubu2
Vi j G ,

V̇52NV(
k j

F ua j u2

uau2
Zjkjk

(1)1
ub j u2

ubu2
Zjk* jk

(2)G . ~57!

The variation of lnuL̂g
Bu at the orderdt is equal tod lnuL̂g

Nu of
Eq. ~35!. This is evident, since the gauge-P and the Barg-
mann gauge-P representations differ by a transformation
V.

Note thatL̂g
B(V,aW ,bW ) satisfies the following property:

L̂g
B~V,aW ,bW !5L̂g

B~1,VN/2aW ,VN/2bW !. ~58!

Thus, in a N-particle system the Bargmann gauge-P repre-
sentation is equivalent to the Bargmann representat
whose variablesaW and bW are replaced byaW 85VN/2aW and
bW 85VN/2bW . With a little of algebra, we find that the equa
tions for aW 8 andbW 8 are
04361
n

n,

ȧ i852 i(
j

Hi j a j82 i ~N21!a i8(
j

Vi j ua j8u
2

1
i

2
~N21!a i8(

jk
Vjk

ua j8u
2uak8u

2

ua8u4

1(
k

Qa8
ik ak8(

j
Zk jj j

(1) , ~59!

ḃ i852 i(
j

Hi j b j82 i ~N21!b i8(
j

Vi j ub j8u
2

1
i

2
~N21!b i8(

jk
Vjk

ub j8u
2ubk8u

2

ub8u4

1(
k

Qb8
ik bk8(

j
Zk jj j

(1) , ~60!

where (kQa
ikvk projects the vectorvW orthogonally to aW .

These are an implementation of the stochastic approac
Refs.@8,9# ~see, in particular, Ref.@8#!. These equations ca
be obtained also without introducing the variableV. In the
Bargmann representation, we have

S (
i

a i

]

]a i
2ND L̂B5S (

i
b i*

]

]b i*
2ND L̂B50. ~61!

They allow us to add the following terms to the Fokke
Planck equation associated with the stochastic Eqs.~54!:

(
i j l

H iVi j

ua i u2

uau2
a jF(

k
ak

]

]ak
2~N21!G ]

]a j

2
i

2
Vi j

ua i u2ua j u2

uau4
(

l
a lF(

k
ak

]

]ak
2~N21!G ]

]a l

1c.c.1a↔bJ L̂B. ~62!

With suitable choice of terms for the derivatives]a i
]a

j*
and

]b i
]b

j*
we obtain a positive definite Fokker-Planck equatio

whose associated stochastic equations are Eqs.~59! and~60!.

VI. CONCLUSION

We have shown that the gauge-P representation is not abl
to eliminate boundary term problems, unless the numbe
atoms is definite. We have found in this representation a
of optimized stochastic equations that considerably red
the statistical errors, as compared to previous equations
have analyzed the possibility to reduce the statistical er
with appropriate decompositions of the diffusion matrix a
we have found that a single-step optimization is obtain
with the standard decomposition. We have also studied
relation between the gauge-P representation, the Bargman
representation, and the one used in Refs.@8,9#, whose results
are recovered.
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